dr. martin bittens

15
28/8/2009/DWIH/BAH/dmc/P:\DWIH Meetings_Events\2009_08_30-01_09_Deutsch Brasiliansiche Wirtschaftstage 2009 _Vitoria\Workshop I\Bittens\Martin Bittens.doc 1 Dr. Martin Bittens, TASK Environmental Research Center - UFZ, LeipziG Presentation: “Partial Source Removal Technologies “ Short biography Martin Bittens, a chemist by training, is the manager of the SAFIRA II research program "Revitalization of Contaminated Land and Groundwater at Megasites" and responsible for the implementation of demonstration measures at the SAFIRA II sites. He is also involved in research activities in the area of risk assessment/decision support with specific focus on the development of methods quantifying the vapor intrusion in buildings caused by contaminations in the subsurface. Martin Bittens contributes as co-leader to the "Terra-, Aqua- & Site Remediation Competence Centre and Network" (TASK), an initiative for innovation, technology and know-how transfer in contaminated land management and sustainable site revitalization.

Upload: others

Post on 16-Oct-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dr. Martin Bittens

28/8/2009/DWIH/BAH/dmc/P:\DWIH Meetings_Events\2009_08_30-01_09_Deutsch Brasiliansiche Wirtschaftstage 2009 _Vitoria\Workshop I\Bittens\Martin Bittens.doc

1

Dr. Martin Bittens,

TASK Environmental Research Center - UFZ, LeipziG

Presentation: “Partial Source Removal Technologies “

Short biography

Martin Bittens, a chemist by training, is the manager of the SAFIRA II research program "Revitalization of Contaminated Land and Groundwater at Megasites" and responsible for the implementation of demonstration measures at the SAFIRA II sites. He is also involved in research activities in the area of risk assessment/decision support with specific focus on the development of methods quantifying the vapor intrusion in buildings caused by contaminations in the subsurface. Martin Bittens contributes as co-leader to the "Terra-, Aqua- & Site Remediation Competence Centre and Network" (TASK), an initiative for innovation, technology and know-how transfer in contaminated land management and sustainable site revitalization.

Page 2: Dr. Martin Bittens

SEITE 1

Competence Centre for Soil, Groundwater Remediation and Site Revitalisation

Partial Source Removal Technologies

Page 3: Dr. Martin Bittens

SEITE 2

Challenge: Cost

Efficient

Source

Removal

ENHANCED INTRINSIC

DEGRADATION

ENHANCED INTRINSIC

DEGRADATION

Q, C(t)

Q, C(t)

Q, C(t)

Q, C(t)

Q, C(t)

Q, C(t)

RELIABLE & LONG-TERM MONITORING

RELIABLE & LONG-TERM MONITORING

TREATMENT OF COMPLEX

MIXTURES

TREATMENT OF COMPLEX

MIXTURES

EFFICIENT & EXPEDITED SOURCE

REMOVAL

INTEGRALINVESTIGATIONS

PARTIAL SOURCEREMOVAL

Extractor

Heat exchanger

Effluent clean-upE [V/m]

Remotecontrol

Radio-wave generator

Monitoring of electricalfield strength

Optical temperaturemeasurement

Process control

Power supply

Matchbox

Radio-wave transmission line

Activated carbon

Tank"cold" electrode

Tank"cold" electrode

Extraction wells"hot" electrodes

→ Expedited (Partial) Source Removal

by Thermal

Methods

Page 4: Dr. Martin Bittens

SEITE 3

DNAPL

(e.g. CHC

LNAPL (e.g. mineral oil, BTEX)

Aquitard

Vadose zone

Saturated zone

• Source Zone Remediation

• In-situ Technology

• Organic Contaminants

• LNAPL and DNAPL

• Soil Types: Gravel-Sand Through Silt- Clay

Thermal Methods: Windows Of Application

Page 5: Dr. Martin Bittens

SEITE 4

unsaturatedzone

saturated zone

contaminantsource

Heat Front

low k zone

dissolved phaseresidual

NAPL

low k zone

Steam/Steam-Air Injection Into Unsaturated/Saturated Zone

Air As Carrier GasSteam For Heat Transfer

Thermally Enhanced Soil Vapor Extraction (I)

Steam or Steam-Air Injection

Page 6: Dr. Martin Bittens

SEITE 5

Heat Propagation (Unsaturated Zone)

138

139

140

141

142

143

144

145

146

147

148

149

565 570 575 580415

420425

430

YX

Z

temperature1009590858075706560555045403530252015100

I3 I1GWL1I2

EK1EK4 EK3EK5

EK2

24 h

UZSZ

138

139

140

141

142

143

144

145

146

147

148

149

565 570 575 580415

420425

430

YX

Z

temperature1009590858075706560555045403530252015100

I3 I1GWL1I2

EK1EK4 EK3EK5

EK2

288 h

Injection UZ: I1

day 1 Injection UZ: I1 + I2 day 12

138

139

140

141

142

143

144

145

146

147

148

149

565 570 575 580415

420425

430

YX

Z

temperature1009590858075706560555045403530252015100

I3 I1GWL1I2

EK1EK4 EK3EK5

EK2

720 h

138

139

140

141

142

143

144

145

146

147

148

149

565 570 575 580415

420425

430

YX

Z

temperature1009590858075706560555045403530252015100

I3 I1GWL1I2

EK1EK4 EK3EK5

EK2

1056 h

Injection UZ: I1 + I2 + I3 day 30 Injection UZ: I1 + I2 + I3 + EK3 day 44

UZSZ

Page 7: Dr. Martin Bittens

SEITE 6

0

10

20

30

40

50

60

70

80

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105

112

119

126

133

140

147

154

161

168

175

182

189

196

Zeit [d]

benz

ene

by s

oil v

apou

r [g/

m³]

0

1000

2000

3000

4000

5000

6000

7000

8000

02.05.21 h

16.05.21 h

30.05.21 h

13.06.21 h

27.06.21 h

11.07.21 h

25.07.21 h

08.08.21 h

22.08.21 h

05.09.21 h

19.09.21 h

03.10.21 h

17.10.21 h

31.10.21 h

14.11.21 h

mas

s be

nzen

e [k

g]

Soil Vapour Benzene (g/m³)Soil Vapour Benzene (g/m³)Cumulative Mass [kg]Log. Decline SVE [g/m³]

Phase 1: 2130 kgPhase 2: 4050 kg Phase 3.1 (UZ): 6330 kgPhase 3.2 (SZ): 6630 kgPhase 3.3 (SZ+UZ): 6710 kg Phase 3.4 (SZ), 15.10.07: 6720 kg

regression curve"cold" SVE

I1I1+I2

I1 - I3

I1u

I1u+ I2uTaktung 7h ein, 1 h aus

I1u+ I2uI1o + I3o

I1o+ I3oI2u + EK3

steam-air injection (SAI) UZPhase 3.1

SAI saturated zone (SZ)Phase 3.2

coolingPhase 4

SAI SZ + UZPhase 3.3

T SVE: 60 > AS AS I1 o I2 SAI field 1-3 +EK3 SAI (I1u) SAI (I1u+I2u) --> entire field entire fieldAS

SVEPhase 1

ASPhase 2

SAI UZPhase 3.4

UZ (silt)

Pilot Field –

Extracted Mass Of Benzene

Page 8: Dr. Martin Bittens

SEITE 7

Heating of Pilot Field –

Energy Consumption

10

20

30

40

50

60

70

80

90

1000 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105

112

119

126

133

140

147

154

161

168

175

182

189

196

time [d]

Tem

pera

ture

[°C

]

0

40

80

120

160

200

240

280

320

360

Ener

gy [M

Wh]

average temperatureav. temperature 3 - 6.5 mav. temperature 6.5 - 11 mav. temperature SZ 8.5 - 11 menergy of field [Mwh]energy input [mWh]

steam-air injection (SAI) UZPhase 3.1

SAI saturated zone (SZ)Phase 3.2

coolingPhase 4

SAI SZ + UZPhase 3.3

T SVE: 60 > AS AS I1 o I2 SAI field 1-3 +EK3 SAI (I1u) SAI (I1u+I2u) --> entire field entire fieldAS

SVEPhase 1

ASPhase 2

SAI UZPhase 3.4

UZ (silt)BLA AS

Page 9: Dr. Martin Bittens

SEITE 8

Steam Air Injection -

Equipment

Page 10: Dr. Martin Bittens

SEITE 9

Thermally Enhanced Soil Vapor Extraction (II)

T<100°C

102 ... 103 V50 or 60 Hz

1...3 m

Strong Temperature Gradients Method Applicable For Soils With Sufficient Humidity

Heating

LancesEnergy Sources: Electricity,Stesam, Hot Air

Direct Ohmic

Heating

Page 11: Dr. Martin Bittens

SEITE 10

Radio-wavegenerator Match-

box380 V50 Hz

T > 250°Cpossible

13.56 MHz

- Direct heat generation in the soil volume - High flexibility (temperature programmes)- Can be applied for dry and humid, sandy and tenaceous materials, e.g. soils

Match- box

Processcontrol

Analyticaltools

Addition ofair, water and

nutrients

Electrodesystem

in the soilRadio-wavegenerator

Fibre opticaltemperature

measurement

Off-gascleaning, catalyticoxidation

Scheme of an arrangement of radio-wavesoil heating

Applied electrode geometries

- Parallel plate or net-shaped electrodes- Arrays of rod-like electrodes (optional: also used as extraction wells)- Radio-wave antennas

Dielectric Soil Heating

Page 12: Dr. Martin Bittens

SEITE 11

Bioremediation facility Radio-wave generator Soil reactor (up to 20 m3)building with radio-wave and matching network with two parallel electrodesheated soil reactor andelectromagnetic shielding Radio-wave Fibre optical

transmission line temperature sensors

Bioremediation facility Radio-wave generator Soil reactor (up to 20 m3)building with radio-wave and matching network with two parallel electrodesheated soil reactor andelectromagnetic shielding Radio-wave Fibre optical

transmission line temperature sensors

Radio Frequency Waves -

Equipment

Page 13: Dr. Martin Bittens

SEITE 12

In-Situ

Groundwater

Treatment with

Colloids

Carbo-Iron

Composite Material of Nano-Fe On AC micro-particles (d50 = 0.8 µm)

10 To 20 wt% Fe(0)

Injectable as Stable Suspension

Reactivity Analogue To Nano-Fe

Page 14: Dr. Martin Bittens

SEITE 13

Mobility of ‘Carbo-Iron’

Colloids

Sediment matrix

Carbo-Iron

Suitable for plume treatment !

mmobile (l = 75 cm) = 90%

Carbo-Iron’s surface charge

• Allows Longer Transport Lengths And Homogeneous Sedimentation• AC particle size is optimal for long transport lengths.

%100[%],

, ⋅=−

inironcarbo

outironcarbomobile m

mm

Stabilized colloids (5 wt-% humic acid)

Page 15: Dr. Martin Bittens

SEITE 14

Contributors

• Markus Hirsch, Helmholtz Centre for Environmental Research - UFZ

• Frank-Dieter Kopinke, Helmholtz Centre for Environmental Research - UFZ

• Hans-Peter Koschitzky, VEGAS, University of Stuttgart

• Katrin Mackenzie, Helmholtz Centre for Environmental Research - UFZ

• Ulf Roland, Helmholtz Centre for Environmental Research - UFZ

• Oliver Trötschler, VEGAS, University of Stuttgart