Transcript
Page 1: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

Use of thermally modified wood in Use of thermally modified wood in building constructions building constructions

Prof.dr. Franc PohlevenProf.dr. Franc [email protected]

University of LjubljanaUniversity of LjubljanaBiotechnical Faculty,Biotechnical Faculty,

Department of Wood Science and Technology,Department of Wood Science and Technology,RoRožžna dolina, Cesta VIII/34na dolina, Cesta VIII/34SI1000 Ljubljana, SloveniaSI1000 Ljubljana, Slovenia

Page 2: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

INTRODUCTIONINTRODUCTION

• Different wood modification process:• Thermal• Chemical• Enzimatic

Page 3: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,
Page 4: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

INTRODUCTIONINTRODUCTION

• DIFFERENT HEATING MEDIA:nitrogen, steam, oilVACUUM – A SLOVENIAN METHOD

• Exposure to high temperatures cause severe degradation of cellulose and losses in mechanical properties

Page 5: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

INTRODUCTIONINTRODUCTION

• Temperatures from 160 °C to 260 °C• Absence of oxygen• Process of wood modification• Chemical changes in wood cell walls• Changes of wood (=modified wood)

Page 6: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

Phases of process (24 h)

drying at 103 °C

vacuuming up to 0,05 bar

heating to 150 °C

heating to T of modif. (3 h)

cooling down

MATERIALS AND METHODS - modificationMATERIALS AND METHODS - modification

SOFTWOOD or HARDWOOD

Page 7: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

PROPERTIES OF THERMALLY MODIFIED PROPERTIES OF THERMALLY MODIFIED WOODWOOD

• Improvement of durability and dimensional stability

• Removing of resins• Improvement of resonant (acoustic) properties• Mass loss• Change of physical properties:

• Colour• Reduction of strength and stiffness• Bending strength 10 % – 50 %

Page 8: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

Results - change of colourResults - change of colour

Page 9: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

S B H

Page 10: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

Elm wood

Page 11: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

• MASS LOSSES

Spruce: 3 % (190 °C) – 24 % (230 °C)Larch: 5 % (190 °C) – 31 % (230 °C)

Page 12: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

MATERIALS AND METHODS – decay testsMATERIALS AND METHODS – decay tests

• DECAY TESTS

mini-block test (Bravery)

cross-section: 10 mm × 5 mm

length: 30 mm

Gloeophyllum trabeum

Coniophora puteana

exposure: 8 weeks

Page 13: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

Mass loss (%)

Gt Cp

Spruce untreated 35,2±5,4 56±12

treated 1,5±1,1 8,9±4,4

Larch untreated 34,2±7,7 29,0±2,9

treated 1,17±0,18 0,90±0,21

• DECAY – samples treated at 200 °C

RESULTS – decay testsRESULTS – decay tests

Page 14: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

MATERIALS AND METHODS – dimensional stabilityMATERIALS AND METHODS – dimensional stability

• DIMENSIONAL STABILITY

ASE – soaking/ovendrying test (3 cycles)

shrinkage (α) in r, t dim.

20 mm × 20 mm × 20 mm

Page 15: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

50 mm × 20 mm × 20 50 mm × 20 mm × 20 mmmm

unorientedunoriented

ABSORPTION OF WATER VAPOUR AT 83 ABSORPTION OF WATER VAPOUR AT 83 % AIR HUMIDITY% AIR HUMIDITY AND T = 25 °CAND T = 25 °C

Page 16: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

Exposure atExposure at 83 % 83 % RH and RH and 25 °C 25 °C

Page 17: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

RESULTS: absorption of RESULTS: absorption of water vapour – spruce water vapour – spruce

woodwood

Page 18: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

RESULTS: absorption of RESULTS: absorption of water vapour – beech woodwater vapour – beech wood

Page 19: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

RESULTS: absorption of RESULTS: absorption of water vapour – oak woodwater vapour – oak wood

Page 20: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

DIMENSIONAL STABILITYDIMENSIONAL STABILITY (spruce) (spruce)

Page 21: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

DIMENSIONAL STABILITY (beech)DIMENSIONAL STABILITY (beech)

Page 22: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

DIMENSIONAL STABILITY (oak)DIMENSIONAL STABILITY (oak)

Page 23: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

APPROXIMATIONAPPROXIMATION OF REDUCTION OF DIMENSIONOF REDUCTION OF DIMENSIONSS OF OF MODIFIED WOODMODIFIED WOOD SPECIMENS (spruce) SPECIMENS (spruce)

Page 24: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

APPROXIMATIONAPPROXIMATION OF REDUCTION OF DIMENSIONOF REDUCTION OF DIMENSIONSS OF OF MODIFIED WOODMODIFIED WOOD SPECIMENS (beech) SPECIMENS (beech)

Page 25: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

APPROXIMATIONAPPROXIMATION OF REDUCTION OF OF REDUCTION OF DIMENSIONDIMENSIONSS OF MODIFIED WOOD OF MODIFIED WOOD SPECIMENS SPECIMENS

(oak)(oak)

Page 26: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

MATERIALS AND METHODS – MOE AND MATERIALS AND METHODS – MOE AND MORMOR

• MOE, MOR

static three-point bending test

300 mm × 20 mm x 20 mm, absolute dry

Zwick Z-100Zwick Z-100

10 mm/min

Page 27: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

MATERIALS AND METHODS - MATERIALS AND METHODS - MOEMOE

• MOE non-destructively

natural vibration analysis in clamped-free conditions

300 × mm 20 mm × 10 mm, absolute dry

12

3

4

56

Page 28: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

MATERIALS AND METHODS - MATERIALS AND METHODS - MOEMOE

• MOE non-destructively

inductive proximity sensor

0

2

4

6

8

10

0 0,2 0,4 0,6 0,8 1 1,2

čas (s)

nape

tost

(V

) FFT

νn

dynamic signal analyzerdynamic signal analyzer

Page 29: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

• MOR AND MOE of absolute dry samples

0

2000

4000

6000

8000

10000

12000

14000

16000

100 x MOR(spruce-bending)

MOE (spruce-bending)

MOE (spruce-

vibration)

MOE (larch-

vibration)

MP

a

Untreated

Treated, 190 °C

Treated, 210 °C

Treated, 230 °C

RESULTS – MOE and RESULTS – MOE and MORMOR

Page 30: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

Laboratory chamber for thermal wood modification

Page 31: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

Industrial chamber for thermal wood modification

Page 32: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

Silvaprodukt d.o.o., Ljubljana, Sovenia

Page 33: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,
Page 34: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,
Page 35: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,
Page 36: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,
Page 37: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,
Page 38: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,
Page 39: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,
Page 40: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,
Page 41: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

The first product made from thermally modified wood, modified according to “our procedure”

Page 42: Use of thermally modified wood in building constructions Prof.dr. Franc Pohleven franc.pohleven@bf.uni-lj.si University of Ljubljana Biotechnical Faculty,

CONCLUSIONSCONCLUSIONS

• The best characteristics of the products made of modified wood were achieved with wood, modified at temperatures between 180 °C and 210 °C

• In spite of the treatment, the mechanical properties of modified wood are still appropriate for wood to be used in constructions

• Wood modification process can ensure appropriate resistance for diverse ways of utilisation of wooden products, especially in in wet conditions


Top Related