Transcript

AbstractRalph   Linsker   developed   an   artificial   neural   network simulating the emergence of orientation selective cells in the   visual   cortex   of   the   mammalian   brain.   He accomplished   this  using   random  input   for  his  network. The   goal   of   our   project   was   to   study   the   effects   of structured input, namely real world images and computer generated   barcode­like   images,   on   Linsker's   network. After reproducing Linsker's original results we trained the network with structured input and found the network did not   develop   similarly.   We   present   the   results   of   our experiments and suggest some ways to improve them.

Introduction

When   the   primary   visual   cortex   of   mammals was   thoroughly   studied   starting   in   the   1950s, specialized cells were found to exist within. One of these cell types, discovered by David Hubel and Torsten Wiesel (1959), was the orientation selective cell. This type of cell has a bar­shaped or   edge­shaped   receptive   field   with   a   certain orientation,   which   makes   the   cell   respond   to lines   of   that   orientation.   For   example,   if   a vertical ray of light hits the excitatory region of 

the cell's receptive field depicted in figure 1, the cell's activation is increased. However, when the light is rotated or moved laterally it will hit the inhibitory region(s) of the field as well, and the response of the cell will decrease or even stop completely. It is clear that the cell would display maximum activity when a bar of light with the correct orientation (vertical) hits the center of its receptive field. Furthermore, Hubel and Wiesel (1963) discovered that orientation selective cells exist   in   a   logically   organized   structure   in   the brain.   Cells   which   respond   to   similar orientations are located nearer to each other in columns   of   neurons   in   the   visual   cortex   than cells  which   respond   to  orientations   that  differ more.

A series of deprivation experiments was carried out to better understand the development of  the visual cortex (Hubel  and Wiesel 1998). The most noteworthy discovery of these studies was the existence of orientation selective cells in animals whose eyes had been sewn shut before they had ever opened them (though Hubel and Wiesel report there are fewer of these cells and they are  'sluggish'). This meant the specialized cells   in   the  visual   cortex  develop  without   the need   for   any   external   input.  However,  Hirsch and   Spinelli   (1970)   found   that   when   animals were   raised   in   environments   lacking,   for example,   vertical   components,   orientation selective cells responding to vertical lines were not found in the animal's cortex, indicating the environment   is   capable   of   affecting   the development of the visual cortex. Any vertically orientated   cells   that   did   form   during   early development   apparently   disappeared   in   the postnatal stage.

The Effect of Structured Input on Linsker's NetworkSelwin van Dijk and Geert Jan Alsem

Figure 1. The receptive field of an orientation­selective cell.  The   area  marked  with  +   signs   is   excitatory,   the areas marked with ­ signs are inhibitory.

Though   the   structure   and   development   of   the primary   visual   cortex   had   been   studied,   the mechanisms behind  the  development remained largely unknown. To explain the development of the   specialized   cells  Ralph  Linsker   performed experiments   with   an   artificial   neural   network simulating   the   mammalian   visual   cortex (Linsker 1986a 1986b 1986c). Linsker designed the  network   to  be  as  biologically  plausible   as possible.   This   is   discussed   further   in (McDermott 1996). The network is governed by a simple set of Hebbian learning type rules. It is trained using only random values as input to the first layer of cells. So, the activation values of any two input cells, whether they be adjacent or not,   are   completely   uncorrelated.   Cells   from following   layers   are  connected   to  cells  of   the previous   layer   through   Gaussian   distributed connections.   Under   these   conditions   Linsker reported   the   emergence   of   spatial   opponent cells,   seen   in   figure   2   (Linsker   1986a), orientation­selective   cells   (Linsker   1986b) (figure   1)   and   orientation   columns   (Linsker 1986c),   effectively   reproducing   Hubel   and Wiesel's findings in biological brains.

Two   important   things   should   be   noted about Linsker's experiments. First, by using only random,   uncorrelated   data   as   input   to   the 

network, Linsker could explain the existence of specialized cells in the visual cortex of prenatal or   blinded   mammals.   However,   the   effect   of structured, real­world input on the network was not studied, though it is known it has effect on the   mammalian   brain   (Hirsch   and   Spinelli 1970). And second, Linsker never implemented the network he first  designed. Presumably due to limits on computational power at the time, he instead   derived   a   different   set   of   formulas averaging   the   change   of   each   layer   resulting from   a   large   number   of   inputs   over   time (Linsker   1986a).   Accounts   of   an   actual implementation   of   the   network   using   the original   formulas   conceived,   but  not   used,   by Linsker   have   not   been   found   by   us. Furthermore,   in  deriving  the   formulas  Linsker had to make several assumptions. Reproducing the   results   Linsker   gets   with   his   derived calculations   using   an   implementation   of   the original  network  would   therefor  be   in   itself   a substantial experiment.

We   are   interested   in   the   effect   of   structured input   on  Linsker's  network.   In  order   to   study this   effect   we   have   reimplemented   Linsker's neural network in its original form. This allowed us to not impose any restrictions on the type of input  used,  as opposed  to Linsker, who in his derived   formulas  makes   assumptions,   like   the input being uncorrelated.

First, we set out  to reproduce Linsker's results   of   emerging   spatial   opponent   and orientation   selective   cells.   We   then   started experiments where another network was trained using   real­world   images.   In   this   situation activity  values  of   two adjacent  cells  are  often correlated, since two adjacent input cells have a high probability of representing part of the same object in the world. Because Linsker's network is considered to be a good model of the visual 

Figure 2. The receptive field of a spatial opponent cell. The area  marked with  + signs   is  excitatory,   the areas marked with ­ signs are inhibitory.

cortex   we   expected   to   find   more   orientation selective   cells   in   networks   trained   this   way. Also,   as   in   real   animal   brains,   we   expected horizontal and vertical orientation selective cells to   outnumber   any   others   because   of   the importance of horizontal and vertical objects in our world (Coppola, Purves, McCoy and Purves 1998).  Finally,   to  match   results  of   studies   by Hirsch   and   Spinelli,   we   trained   the   network using input containing only vertically orientated structures.   Again,   we   expected   the   same outcome   as   in   Hirsch   and   Spinelli's   original experiment,   in   this   case   the   complete   lack  of development of cells responding to orientations differing   more   than   15   degrees   from   the orientations present in the training data (Hirsch and Spinelli 1971).

In   the   next   section   we   will   describe   the architecture of the network in detail, as well as the training methods used. Also, the data used in the   experiments   is   described.   Following   that section   we   will   present   the   results   of   the experiments conducted. We conclude this paper with   a   section   discussing   our   results   and   the experiments in general.

Method

In   this   chapter   we   will   describe   the   neural network used in our experiments, as well as the experiments   themselves.   We   will   begin   by discussing   the   general   architecture   of   the network. Next we shall describe the mechanism through which the network develops, that is its training   equations,   the   parameters   and   the algorithm   it   uses.  Finally  we  will   discuss   the different   kinds   of   experiments  we   ran   on   the network.

As   with   any   artificial   neural   network,   the network   designed   by   Linsker   consists   of neurons, grouped in layers, and the connections between  them.   In  order   to  get   the  network  to display   the  desired  behavior,  we  have   largely kept to the specifications provided by Linsker in the first of his three articles (1986a).

The   network   consists   of   a   number   of two­dimensional   layers,   each   divided   up   into rows   and   columns   of   neurons   (figure   3).   As Linsker   describes   the   development   of orientation selective cells in the seventh layer of the   network   (Linsker   1986b),   the   number   of layers in our implementation is also set to seven. With  the experiments using real­world   images in mind, each layer was defined to have 75 rows 

Figure 3. A single layer of the network. Actual layers are 75×75. Entire network consists of seven of these layers.

Figure   4.   Schematic   depiction   of   three   layers   of   the network.  Note   the   Gaussian   distribution   of   the connections   and   the   overlapping   receptive   fields. Neurons at the edge of the layer have fewer connections than those to the middle.

and   75   columns   of   neurons.   Similarly   sized layers are used by Linsker, as he mentions the use of layers of  both 72×72 and 80×80 neurons in   size   (Linsker  1986c).  Associated  with  each neuron   is   a   value,   modeling   the   activity   of biological neurons.

One   of   the  most   important   features   of any neural network is the way in which neurons are   connected.  Keeping  with  Linsker's  design, each  neuron  receives   input   from a  number  of neurons in the previous layer (except of course the neurons in the very first layer which receive their   input   directly).   The   information   travels exclusively   from   input   layer   to   output   layer, making   this   a   feedforward   network.   The presynaptic neurons with which a postsynaptic neuron   is   connected   are   drawn   from   a   two­dimensional   Gaussian   distribution   centered   at the   postsynaptic   neuron's   position   (figure   4). The number of connections to neurons directly above the postsynaptic neuron is therefor greater than   the   number   of   connections   to   neurons located more to  the side.  Multiple connections between the same two neurons can, and are in fact   likely,   to  exist.  Also note  there  is  a  large overlap between the sets of presynaptic neurons of two postsynaptic neurons, which are located near each other.  Because of  this,   input   to  two neighboring   neurons   is   largely   identical,   and their outputs will  be correlated, given that   the weights of their connections will also be similar due to the similarity of their input. In (Linsker 1986a)   connection   numbers   of   300   and   600 connections   per   neuron   are   given.   By   an assessment   between   these   figures   and   time constraints on training the network we have set the maximum number of connections per neuron at   400.   Not   all   neurons   reach   this   number, however, since some presynaptic neurons drawn from the distribution could lie outside the layer boundaries and are therefor non­existent. In this 

situation, though not touched upon by Linsker, we chose to simply remove these connections. Associated with each connection is a connection strength which serves to weigh the activity value of   the   presynaptic   neuron   before   using   it   as input   for   the  postsynaptic   neuron.  Connection strengths   are   allowed   to   vary   between   their extreme values of ­1 and 1. The strength of each connection is initialized at a small random value between ­1×10­5 and 1×10­5. The initial strengths need to be small enough so they have no lasting effect on the development of the network. For reasons   which   will   become   clear   when   we discuss   the   formulas   used   for   training   the network   later   in   this   section,   the   connections cannot be initialized with a strength of zero. A notable exception is the connections between the first two layers. Linsker notes in (1986a) these connections   should   all   reach   their   maximum weight when the proper parameters are used. To speed up the process, we simply set the weights to   their  positive  extremes.   It   should be  noted, though,   that   it  would be  trivial   to  achieve  the same effect through actual training.

In (Linsker 1986c) the presence of lateral connections   between   neurons   in   the   seventh layer   are   mentioned.   As   stated   in   that   same article,   and   confirmed   by   Yamazaki   (2002), these connections only serve the development of orientation   columns.   Because   we   are   not interested   in   the  emergence  of   these  columns, we   have   omitted   the   intra­layer   connections from our implementation.

Training the network is accomplished through a simple set of formulas adjusting the activation value of each neuron and the strength of every connection with each new input. These formulas come   straight   from   Linsker's   first   article (Linsker  1986a).  The  activation  value  of   each neuron   is   calculated   from   the   values   of   the 

neurons   to   which   it   is   connected   using   the formula:

(1) a iM

= rarb∑j

wij a jL

In   this   formula,  aiM  denotes   the   activation   of 

neuron i in layer M. L  is the presynaptic and M the  postsynaptic   layer,  ra  and  rb  are  constants and wij is the strength of the connection between neurons  i  and  j.   The   sum   in   this   formula   is scaled by  rb  and adjusted with  ra.  The scaling factor  rb  is probably introduced to prevent  the activations from reaching extreme values and is omitted  in  later  accounts of  Linsker's  network (MacKay   and   Miller   1990,   Yamazaki   2002). Because of the need to determine a proper value for rb  for each layer of the network, we too have introduced   a   way   of   eliminating   the   scaling factor. After the activity values are adjusted they are   immediately   scaled   so   the   absolute maximum of  the activities  equals  1.  With  this scaling mechanism in place,  we found we can achieve good results with ra set to zero and rb set to one. This effectively reduces formula (1) to:

(2) a iM

= ∑j

wij a jL

So,   the   activation  a  of   each   neuron   is   the weighted   sum   of   activities   of   the   previous layer's neurons with which it is connected.

The   formula   used   to   adjust   the connection  strengths   is  mentioned by  Linsker, but not used by him (Linsker 1986a). Instead, as noted   earlier,   using   knowledge   of   the   data presented   to   the   network,   Linsker   derives   a different set of formulas emulating the probable development   of   the   network.  The   validity   of these formulas, however, depends heavily on the input   consisting   of   an   infinite   number   of 

presentations   of   random,   uncorrelated   noise. Because of the type of data we plan on using we did not wish to put any such restrictions on the input   presented   and   so   we   use   the   original formula.  The connection strengths are updated using the following equation:

      (3)  wij = k akbaiM−a0

Ma j

L−a0

L

Again,  ka  and  kb  are  constants.  The parameter a0

L denotes the average activation of all neurons in   layer  L  with  which  neuron  i  is   connected. Similarly,  a0

M  is   the  average  activation  of   the postsynaptic  M­layer   neurons   sharing   the positions  of   the  neurons   from  the  presynaptic layer   with   which   neuron  i  is   connected.   The important aspect to note about this equation is that   the   weight   change   is   greater   when   the activity   at   the   presynaptic   neuron  ai

L  is correlated with the activity at the output neuron ai

M  and smaller when their respective activities are not correlated or anti­correlated. As Linsker does   not   use   this   formula,   no   values   for   the constants ka and kb are mentioned in his articles, nor   were   we   able   to   find   any   other   articles discussing   these   parameters.   The   constant  kb 

determines   the   level   of   influence   of   the correlation between neurons  i  and  j. The value of  ka  needs   to   be   small   enough   for   negative connection weights to arise. In testing we found setting ka to zero did not produce desired results, as   no   specialized   cells   were   formed   in   the network   from   the   third   layer   up.   By   running experiments using varying values for  ka  and  kb 

we found several providing similar good results. For a discussion of these experiments and their results, see the next section.

At   this   point   it   should   be   easily understood why the connection weights wij have to be initialized at a value other than zero. From 

equation   (2)   it   follows   that   the   sum   of   zero valued connections results   in  activation values of zero, which, in turn, would lead to a ∆wij fully determined   by  ka.   The   input   to   the   network would not have any effect on its final form.

The network is trained one layer at a time, so not  until   one   layer  has   fully  developed  is   the next   layer   trained.   The   actual   training   of   the network consists of providing input to the first layer of the network (i.e. setting the values for all   neurons   in   the   first   layer),   adjusting   all activation  values   in   the   following   layer   using equation   (2)   and   then  updating  all   connection strengths between all neurons in the two layers using equation (3). This is repeated until all, or all but one, of the connections between any two neurons   have   reached   their   limiting   value,   as described   in   (Linsker   1986a).   Due   to   time constraints   there   was   a   maximum   number   of repetitions defined when training would cease, even   when   not   all   connections   had   matured. After   testing we decided  that  250,000 updates per   layer  would be  our   limit,  as  no  immature connections   regularly   matured   at   this   point. Even   when   training   was   constrained   by   this limit, the process of training an entire network could   take,   depending   on   the   input   used, anywhere between 12 and 30 hours to complete. When   one   layer   completes   training,   the   next 

layer is trained in much the same way, with, of course,  the input data now filtered through all previously   trained   (and   matured)   layers.   New layers  are  added and  trained until   the   seventh layer has completely developed and the network is finished.

The input to the network consists of a series of grayscale images with dimensions equal to those of the layers of the network. Input is fed to the network by setting the activations of the neurons in   the   first   layer   to   the   corresponding   pixel values   from  these   images.  The activations  are then   scaled   between   the   minimum   and maximum values of ­1 and 1,  as  is  done with neurons   in   following   layers   after   calculating their activation values.

In our first experiment, uniform noise is used   as   input.  This   is   not   actually   read   from image   files,   but   rather   generated   internally   at runtime.   Each   neuron's   activation   is   set   to   a random valid pixel value (an integer in the range 0­255)   and   then   scaled.  This   ensures   that   the random   activations   have   256   possible   values, just  as  activations obtained by reading  images have. An example of the random input provided to the network can be seen in figure 5a.

For our second experiment we used real­world   images   to   train   the   network.   For   this, photos obtained from flickr.com are used, which 

Figure 5. Examples of input used in the experiments. (a) Random input. (b) Picture of a building. (c) Picture of a landscape. (d) Image containing only vertical components.

(a) (b) (c) (d)

are prescaled to the desired size. We searched for  photos  of  buildings   to  create  a   set  of  500 images. The images from the set were presented to the network in randomized order. Photos of buildings  (figure  5b)  were  chosen because we wanted  to use  input  with more horizontal  and vertical   lines   than   are   seen   in   uniform   noise. Before   feeding   them   into   the   network,   the images are first converted to grayscale. Also, the average   pixel   value   is   subtracted   from   each individual   pixel's   value   before   the   values   are scaled.  They  are   scaled   so   that   the  maximum absolute value equals 1. This kept the average activation  in  the  input  layer of  the network at zero, as it was with the noise input.

The  landscape images (figure 5c),  used in   our   third   experiment,   are   to   test   how   the network reacts to real world images that are less structured than the pictures of buildings used in the second experiment. In these images, there is still   high   correlation   between   neighboring pixels,   but   sharp   contours   are   generally   not found with the exception of the horizon present in   many   of   the   photos.   Again,   a   set   of   500 photos  was  constructed  from photos  found on flickr.com.  These  pictures  were   treated   in   the same way as the pictures of buildings.

Training the network during the runs in our   last   experiment   was   done   using   images containing  only  vertically  orientated  structures as input (figure 5d). These images are generated 

in much the same way as the images of random noise.

Results

In this section we will present the results of the experiments conducted. Most importantly, these results are the numbers of the different types of specialized   cells:   spatial   opponent   and orientation   selective   cells.   These   counts   were generated from the trained networks. Cell types were   recognized   and   their   occurrence   scored automatically.  This was done by taking all the connections of a single neuron and representing them   as   a   matrix   of   numbers,   equal   to   the connection   weights.   This   matrix   was   then matched   with   example   matrices   of   various specialized cells. These example matrices were of   spatial   opponent   cells   and   two   forms   of orientation selective cells of all rotations in steps of ten degrees (figure 6). The gray areas allow the position of the boundary between excitatory and   inhibitory  areas  of   the   receptive   fields   to vary somewhat. The neuron was then classified as   the  type of  cell  with which  the match was highest, if it was above a certain threshold and otherwise marked as unrecognized. The number of   positive   and   negative   connections   in   the example  masks  were  kept   equal,   so  matching scores would tend to be zero for receptive fields 

Figure 6. Example masks of specialized cell types. (a) Spatial opponent cell. (b) Bilobed orientation selective cell of 130 degrees. (c) Orientation selective cell with an angle of 70 degrees.

(a) (b) (c)

Figure 7. Number of specialized cells in layers 3 through 7 networks trained with random data, using ka = 0.005 and varying values for kb. (a) Number of spatial opponent cells. (b) Number of orientation selective cells.

(a) (b)

Figure 8. Number of specialized cells in layers 3 through 7 networks trained with random data, using ka = 0.01 and varying values for kb. (a) Number of spatial opponent cells. (b) Number of orientation selective cells.

(a) (b)

Figure 9. Number of specialized cells in layers 3 through 7 networks trained with random data, using ka = 0.02 and varying values for kb. (a) Number of spatial opponent cells. (b) Number of orientation selective cells.

(a) (b)

Figure 10. Number of specialized cells in layers 3 through 7 networks trained with random data, using ka = 0.04 and varying values for kb. (a) Number of spatial opponent cells. (b) Number of orientation selective cells.

(a) (b)

Figure  11.  Average numbers  of  cell   types   found  in  13  networks   trained  with   random  input.  Error  bars   represent standard deviation.

Figure 12. Layers 3 to 7 of a network trained with random input. White pixels are spatial opponent cells, black pixels unrecognized. Color gradient represents an orientation going from vertical (0° = red) through horizontal (90° = green) back to vertical (180° = red).

(a) Layer 3 (b) Layer 4 (c) Layer 5 (d) Layer 6 (e) Layer 7

consisting   of   randomly   mixed   connections.   It should be  noted,  however,   that   the  number of positive   and   negative   connections   did   not remain equal after scaling the masks to the size of a receptive field. Receptive fields with only positive   connections   were   automatically dismissed as any specialized cell. This helps to prevent falsely recognized cells at the edge of a layer,   since  neurons   at   the   edges  have  partial receptive   fields   which   would   otherwise   be incorrectly matched with an orientation, causing artefacts in the output.

Before   the  main  experiments   could  begin,  we needed to determine values for a working set of parameters. To obtain these, we ran a series of tests   using   random   input,   while   varying   the values of the parameters present in equation (3). In   figures   7   through   10   we   show   graphs containing   the  numbers  of   specialized  cells   in each layer of the networks trained in these tests. In figure 7a the number of spatial opponent cells is   shown   for   the   networks   trained   with  ka  = 0.0005   and   varying   values   for  kb.   Figure   7b shows the number of orientation selective cells in the same networks. In figures 8, 9 and 10 the same data is presented for networks trained with increasing values of ka.

For all four values of  ka, it can be seen that  when  kb  is  100   times  bigger   than  ka,   the number   of   spatial   opponent   cells   is   highest. Also,   using   these   values,   the   number   of orientation  selective  cells   increases   throughout the  layers  of  the network.  Linsker  describes  a large number of spatial opponent cells in layer three,   which   are   gradually   replaced   by orientation selective cells in later layers. This is the effect observed when using a  ka:kb  ratio of 1:100. With little differences between the four optimal tested parameter pairs, and considering 

the duration of the training, we decided on using ka  =  0.001 and  kb  =  0.1   for   all   the   following experiments.

Next the main experiments were conducted. In the   first   experiment,   13   networks   were successfully trained using random noise as input and   using   the   parameters   discussed   above. Training time for these networks was around 26 hours each. Numbers of the cells found in each layer, averaged over the 13 networks, are shown in   figure   11.   It   can   be   seen   that   there   is   a relatively large number of spatial opponent cells in   the   third   layer   of   the   network.   Their occurrence gradually drops while the number of orientation selective cells increases.

Also,   pictures   of   all   layers   of   each network  were  output.  Herein,   the  neurons   are depicted  by  pixels  whose  colors   represent   the different orientations they were found to have. Additionally, spatial opponent cells are marked by   a   white   pixel   and   cells   that   are   not recognized   as   any   special   cell   type   by   black 

Figure   13.   Average   numbers   of   orientation   selective cells   in   the   seventh   layer   of   13   randomly   trained networks.

pixels. Shown in figure 12a through 12e are the third to seventh layers of a network trained with random data. We omit the first two layers, since the first layer doesn't have any connections and the   second   layer   always   has   only   positive connections,   resulting   in   a   completely   black output image. Here we see, just as in figure 11, that   spatial   opponent   cells   (white   pixels)   are mostly   present   in   the   third   layer,   while orientation   selective   cells   (colored   pixels) emerge more in later layers. The number of cells responding to each orientation is about the same, as can be seen in figure 13, showing the average numbers of different orientation selective cells in the seventh layer of the networks.   For these randomly   trained   networks   the   number   of immature   neurons   had   dropped   to   zero,   or almost   zero,   within   the   maximum   250,000 trainings.

It   quickly   became   clear   that   when   training 

multiple networks with the same type of input, the results did not vary much. Also taking the long training time into account, it was decided training only four full networks using photos of buildings as input would be sufficient. This was our second experiment. Training took nearly 30 hours   for   each   network.   After   the   maximum number of updates there were between 100 and 150 neurons still immature in each layer except the   second.  For   this   experiment  we  will   only present   images   showing   the   recognized specialized cells in a single network (figures 14a through 14e).  Most connections turn out to be positive  and correctly   stay  unrecognized,  with some mixed connections  at   the  edges   that  are falsely   recognized,   making   the   output   suffer somewhat from artefacts. A graph like figure 11 would   not   be   useful   with   these   results,   as   it would be dominated by the falsely recognized cells at the edges of the layers.

Results from the third experiment, where 

Figure 14. Layers 3 to 7 of a network trained with pictures of buildings. White pixels are spatial opponent cells, black pixels unrecognized. Color gradient represents an orientation going from vertical (0° = red) through horizontal (90° = green) back to vertical (180° = red).

(a) Layer 3 (b) Layer 4 (c) Layer 5 (d) Layer 6 (e) Layer 7

Figure 15. Layers 3 to 7 of a network trained with landscape pictures. White pixels are spatial opponent cells, black pixels unrecognized. Color gradient represents an orientation going from vertical (0° = red) through horizontal (90° = green) back to vertical (180° = red).

(a) Layer 3 (b) Layer 4 (c) Layer 5 (d) Layer 6 (e) Layer 7

the   networks   were   trained   with   landscape pictures, are presented in figure 15. The training time   was   similar   to   the   previous   experiment, about   29   hours.   The   number   of   immature neurons   was   a   bit   higher,   however,   mostly ranging between 200 and 400 neurons. Note the large   number   of   cells   with   horizontally orientated receptive  fields   in  the  center  of   the third   layer.  As  can be  seen  in  figure  16 cells with   an   orientation   differing   much   from   90 degrees (horizontal) hardly emerged.

Another four networks were trained with randomly  distributed   vertical   lines   making  up our fourth and final experiment. The number of 

immature   neurons   left   was   down   to   zero   for most   layers   in   the   networks,   which   in   turn explains   the   relatively   short   training   time   of about  15 hours.  As  seen  in  figure 17,  a   large number of cells with vertical receptive fields can be   seen   in   the   early   layers   of   the   network, disappearing   in   later   layers.   In   figure   18   it becomes   even   more   clear   a   large   number   of vertically orientated cells have emerged in layer three.

Discussion

The  networks   created   and   trained   in   our   first experiment,   using   random   activity   as   Linsker did,  show the effects that  Linsker describes  in his  articles.   In   the   third  layer  many circularly symmetric spatial opponent cells, or, as Linsker calls   them,   Mexican   hats,   can   be   seen.   An example of  the receptive field of one of  these can be seen in figure 19a. The number of spatial opponent   cells   then   drops   and   orientation selective   cells   start   appearing.   This   effect continues   until   the   seventh   layer,   where orientation selective cells   (figure  19b)  take up most of the layer. This progression can be seen in figures 11 and 12 in the previous chapter.

From   these   results   we   conclude   the network   does   indeed   match   Linsker's   original model, making no assumptions about the input 

Figure 17. Layers 3 to 7 of a network trained with random vertical lines as input. White pixels are spatial opponent cells, black pixels unrecognized. Color gradient represents an orientation going from vertical (0° = red) through horizontal (90° = green) back to vertical (180° = red).

(a) Layer 3 (b) Layer 4 (c) Layer 5 (d) Layer 6 (e) Layer 7

Figure   16.  Average   numbers   of   orientation   selective cells   in   the   third   layer   of   4   networks   trained   using landscape images.

as  Linsker  did   for  his  derived model.  Thus   it explains the emergence of orientation selective cells   in  the  brain under similar  circumstances, that   is,   without   any   structured   input.   As   was shown in studies by Hubel and Wiesel (1998), these   cell   types   develop   without   any   external input.

When training the network using images of buildings as input in the second experiment, hardly   any   specialized   cells   seem   to   emerge. Ignoring   the   edges,   only   a   small   number   of orientated   cells   appear   in   the   layers.   These 

however, may be a consequence of the detection method   used,   since,   when   manually   checking the   cells,   we   find   the   detected   orientation selective cells do not look quite as good as many of   the  ones   found   in   networks   from our   first experiment. Further examination of the finished networks showed that  almost all  neurons have only   positive   connections   (figure   20).   An explanation  of   this   could  be   that   there   is   too much correlation between neighboring pixels in the images, which could result in all connections maturing   to   the   positive   limit.   This   can   be illustrated  as   follows.  Neuron  Mi  in   figure  21 will   be   strongly   influenced   by   the   value   of neuron  Li, because of the Gaussian distribution of the connections. Therefor when Lj and Li are correlated   this   will   result   in   increased correlation between  Lj  and  Mi  as well. This, in turn, will result in an increase of the connection strength  between  Lj  and  Mi  as  can be  seen  in equation (3).

In   our   third   experiment   images   of 

Figure 19.  Receptive field of (a) a spatial opponent cell found in the third layer, (b) an orientation receptive cell responding to 130°  angles. Red pixels denote negative connections, green pixels positive ones. Gray pixels are of non­extreme connections.

(a) (b)

Figure   18.  Average   numbers   of   orientation   selective cells   in   the   third   layer   of   4   networks   trained   using images with vertical lines.

Figure 20. Completely excitatory receptive field. Green pixels  denote  positive   connections,   gray  pixels   are  of non­extreme connections.

Figure 21. A few neurons from two layers of a network.

landscapes   were   used   as   input.   A   striking feature of the trained networks is the number of orientation selective cells in early layers of the network   (figures   15   and   16).   All   these   cells respond   to   orientations   around   90   degrees (horizontal) and are located around the center of the layer. We believe these cells to be the result of the horizon present around the center of most landscape pictures.

In   the   final   experiment   with   inputs   of only vertical lines a large number of cells in the third  layer  end up having vertically  orientated receptive  fields,  with  angles  around 0  degrees (figure   22).   In   the   next   layers   however,   the amount of these cells decrease again, leaving the seventh layer with mostly unclassified cells. We found   the   connections   from   neurons   in   later layers appear to be randomly mixed positive and negative,   which   is   why   they   are   marked   as unclassified by our program.

It   seems Linsker's  network   is  not   suitable   for explaining   how   the   visual   cortex   develops   in biological brains when it receives input from the eyes.   Perhaps   it   only   shows   that   the   visual cortex cannot develop properly if it is to receive structured visual input from the very beginning. Research has shown that the mammalian visual cortex starts developing before the eyes are used (Hubel and Wiesel 1998), which is exactly what Linsker   simulated.   Of   course  development   of the   visual   cortex   does   not   end   once   it   starts 

receiving visual input. Still, in the experiments done  by  Hirsch and Spinelli   (1970,  1971)   the subjects,   whose   visual   cortex   turned   out   to develop   an   abnormal   ratio   of   the   different orientation   selective   cells,   had   already   started their   development   before   the   structured   input was presented. It seems to us a good idea to use this approach in another experiment. To model more realistically the way the mammalian visual cortex   develops,   networks   could   be   trained using random input at first, followed by training with structured input.

Concerning   the   experiments   with structured input, another possibility exists. As is mentioned in (Linsker 1986b), it is possible to have the network develop orientation selective cells in the early layers by choosing appropriate parameter values. These cells, Linsker remarks, are   less   robust   against   random   variations   in initial   conditions.   Since   we   determined   the parameter   values   based   solely   on   the   proper development   of   the   network   in   the   first experiment,   it   is   entirely   possible   this   has happened in our later experiments. Certainly the orientation selective cells seen in the third layers of   the   networks   from   our   third   and   fourth experiments   seem  to  be  a  direct   result  of   the input presented during training. The lack of this effect in the second experiment could be due to the   lack   of   lines   at   a   regular   position   in   the images and the generally lower contrast of these lines.

To summarize we believe the results in the first experiment show that the network designed by Linsker  will  work  when  provided  with   actual input.   As   noted   before,   Linsker   never implemented   his   network,   so   this   is   a   very interesting   result.   We   do   feel,   however,   the results could be greatly improved by searching the parameter space for optimal values for each 

Figure 22. Orientation selective cell found in third layer of   a   network   trained   with   vertical   input.   Orientation found   is   0°.   Red   pixels   denote   negative   connections, green pixels positive ones.

layer  separately,   instead of,  as we did,  having one   single   set   of   parameters   for   the   entire network.

The results of the final three experiments were   not   as   we   had   expected,   nor   indeed desired. Expected orientation cells did emerge, but   they did  so   in   third  layer  of   the  network, very   much   unlike   Linsker's   results   predict. However, we feel it is too early to say Linsker's network   does   not   cope   well   with   structured input.

Again,   results   could   be   improved   by examining   the   parameter   space   in   search   of parameter values giving better results for each layer.  For  our  experiments  we determined  the best  values   for   the  constants  by   running   tests with   random   input,   trying   to   duplicate   the effects seen in Linsker's network while trying to keep  things computational  within a   reasonable amount   of   time.   We   have   however   not investigated the effect of using a different set of parameters when using structured input. The key difference in the input presented in the first and following   experiments   is   the   correlation between  the  pixels   in   it,  which,  as  mentioned earlier,   results   in   an   inter­layer   correlation between neurons. Since this correlation, directly manipulated   by   the   parameters,   is   the   factor determining   the   development   of   the   network through   equation   (3),   it   seems   to  make   sense different   parameters   are   needed.  The   large number of immature neurons left in the second experiment   and   more   so   in   the   third,   also indicate   to   us   different   parameter   values   are needed.

As   it   is,   we   will   only   conclude   the network does not develop properly when trained with   structured   input   if   parameters   are optimized for uncorrelated input.

We   would   like   to   mention   some   of   the 

difficulties we faced in these experiments. First, the neurons lying at the edge of the layer have only  about  half  a  normal   receptive field.  This poses   problems   with   recognition   of   their   cell type.   This   is   partly   solved   by   ignoring   all­positive   receptive   fields.   However,   in   later layers, the effect is passed on to neurons more to the center, generating orientation selective cells which only develop due to the abnormal input. For   special   cases,   this   could   be   solved   by wrapping the connections around to the opposite side of  the layer when they would fall  off the side. When using real­world images as input, as in the second and third experiments, this would probably produce an unnatural edge in the input generating a similar problem.

Also,   we   found   we   had   some   trouble with   cell   type   recognition.  When  viewing   the recognized cells we sometimes felt the cell was, for   instance,   a   spatial   opponent   cell,   even though   it   was   classified   as   an   orientation selective cell. It proved very difficult to improve this.   When   changing   the   threshold   for   the matching   value,   any   improvements   in   cell recognition were always paired with an increase in   false   matches.   The   only   remedy   for   this would be scoring the cell counts by hand (from a sample of the network, as counting all 39,000+ neurons   in   a   single   network   is   not recommended).   This   way,   one   could   also concentrate on cells in the center of the layer, which   receive   no,   or   very   little,   input   from neurons with incomplete receptive fields.

Acknowledgments

We would like to thank the following people for their help with this project. Fokie Cnossen, for her   lectures   on   setting   up   a   presentation   and 

writing a report. Gert Kootstra for his guidance during   the   project   and   his   help   with understanding   the   material   and   creating   the network.

     Coppola, D. M. & Purves, H. R. & McCoy, H. N. & Purves, D. (1998). The distribution of oriented contours in the real world.  Proceedings of the National Academy of  Sciences of the United States of America, 95, 4002­4006.   Hirsch, H. V. B., & Spinelli, D. N. (1970). Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science, 168, 869­871.   Hirsch, H. V. B., & Spinelli, D. N. (1971). Modification of the Distribution of Receptive Field Orientation in Cats by Selective Visual Exposure During Development. Experimental brain research, 13, 509­527.    Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of  single  neurons  in   the cat's  striate  cortex.  Journal  of  Physiology, 148, 574­591.   Hubel, D. H., & Wiesel, T. N. (1963). Shape and arrangement of columns in cat's striate cortex. Jourmal of  Physiology, 165, 559­568.   Hubel, D. H., & Wiesel, T. N. (1998). Early exploration of the visual cortex. Neuron, 20, 401­412.   Linsker, R. (1986). From basic network principles to neural architecture: emergence of spatial­opponent cells. Proceedings of the National Academy of Sciences of the  United States of America, 83, 7508­7512.     Linsker, R. (1986). From basic network principles to neural   architecture:   emergence   of  orientation­selective cells. Proceedings of the National Academy of Sciences of  the United States of America, 83, 8390­9394.   Linsker, R. (1986). From basic network principles to neural architecture: emergence of orientation columns. Proceedings of the National Academy of Sciences of the  United States of America, 83, 8779­8783.   MacKay, D., Miller, K. (1990). Analysis of Linsker's application of Hebbian rules to linear networks. Network,  1, 257­297.     McDermott, J. (1996). The Emergence of Orientation Selectivity   in   Self­Organizing   Neural   Networks.  The  Harvard Brain, 3(1), 43­51.   Yamazaki, T. (2002). A Mathematical Analysis of Development of Oriented Receptive Fields in Linsker's Model. Neural Networks, 15(2), 201­207.


Top Related