Transcript

Lecture 5 Differential and Multistage Amplifiers

Thawatchai Thongleam

Program in Electronics Engineering

Faculty of Science and Technology

Nakhon Pathom Rajabhat University

Outline

• The BJT Differential Pair

• Small Signal Operation of The BJT Differential Amplifier

• Other Nonideal Differential Amplifier

• Biasing in BJT Integrated Circuit

• BJT Differential Amplifier

•MOS Differential Amplifiers

•Multistage Amplifiers

5.1 Introduction

5.1 Introduction

5.1 Introduction

รูปที� 5.2 การใชว้งจรขยาย CE สองภาคเพื�อกาํจดัผลกระทบของริปเปิล

5.1 Introduction

5.1 Introduction

VSS

vin1

RD

M1 M2

vout1

RSS

RD

vout2

P

RD

VDD

M3 M4

vout3

RSS

RD

vout4

P

vin2

5.2 Signal

• สัญญาณโหมดผลต่าง (Differential mode signal) คือ ระดบัของสัญญาณที�วงจรที�มีค่าแตกต่างกนั

• สัญญาณโหมดร่วม (Common mode signal) คือ ระดบัของสัญญาณที�วงจรใชร้่วมกนั

5.2 Differential Mode Signals

5.3 Common Mode Signals

5.3 Common Mode Signals

5.4 Differential pair

รูปที� 5.6 วงจรขยายคู่ผลต่าง (ก) ไบโพล่า (ข) มอสเฟต

5.5 Input CM Noise with Ideal Tail Current

5.6 Input CM Noise with Non-ideal Tail Current

5.7 Comparison

• As it can be seen, the differential output voltages for both cases are the same. So for small input CM noise, the differential pair is not affected.

MOSFET Differential Amplifier.

• Signal analysis of differential amplifier

• differential mode signal analysis

• common mode signal analysis

Fig 5.12 The basic MOS differential-pair

configuration.

RD1

VDD

M1 M2

vout1

RD2

vout2

P

ISS

X Y

id1 id2vIN1 vIN2

RD1 = RD2 = RD

RD1

VDD

M1 M2

vout1

RD2

vout2

P

ISS

X Y

id1 id2vIN1 vIN2

RD1 = RD2 = RD

Differential Response

RD1

VDD

M1 M2

vout1

RD2

vout2

P

ISS

X Y

id1 id2vIN1 vIN2

RD1 = RD2 = RD

in inV V−1 2

2

in inV V−1 2

2

in inV V+1 2

2in inV V+1 2

2

Differential Response

in inV V−1 2

2

in inV V−1 2

2

in inV V+1 2

2in inV V+1 2

2

Differential Response

RD1

VDD

M1 M2

voutd1

RD2

voutd2

ISS

X Y

vid

2

vid

2

RD1

VDD

M1 M2

voutc1

RD2

voutc2

ISS

X Y

vic

RD1

VDD

M1 M2

vout1

RD2

vout2

P

ISS

X Y

id1 id2vIN1 vIN2

RD1 = RD2 = RD

Differential Response

RD1

VDD

M1 M2

vout1

RD2

vout2

P

ISS

X Y

id1 id2vIN1 vIN2

RD1 = RD2 = RD

V∆

VIN1 – VIN2

ID

ISS

ID2

ISS

2

V∆−

Differential Response

RD1

VDD

M1 M2

vout1

RD2

vout2

P

ISS

X Y

id1 id2vIN1 vIN2

RD1 = RD2 = RD

V∆

VIN1 – VIN2

ID

ISS

ID2

ISS

2

V∆−

Differential Response

RD1

VDD

M1 M2

vout1

RD2

vout2

P

ISS

X Y

id1 id2vIN1 vIN2

RD1 = RD2 = RDVIN1 – VIN2

VDD

Vout

Vout1

Vout2

ISS

2VDD - RD

Differential Response

RD1

VDD

M1 M2

vout1

RD2

vout2

P

ISS

X Y

id1 id2vIN1 vIN2

RD1 = RD2 = RD

VIN1 – VIN2

+RDISS

-RDISS

Vout = VOUT1 – VOUT2

Differential Response

RD1

VDD

M1 M2

voutd1

RD2

voutd2

ISS

X Y

vid

2

vid

2

P

Differential Response

RD1

VDD

M1 M2

voutd1

RD2

voutd2

ISS

X Y

vid

2

vid

2

P

MOS Differential Pair’s Large-Signal Response

( ) ( )in

SSD D n ox in in in

n ox

W II I C V V V VWL C

L

µµ

− = − − −2

21 2 1 1 2

1 4

2

in in GS GSV V V V− = −1 2 1 2

1 21 2

2 2D Din in TH TH

n ox n ox

I IV V V VW W

C CL L

µ µ

− = + − +

MOS Differential Pair’s Small-Signal Response

out out out D D DV V V I I R= − =− −1 2 1 2( )

out out out D D DV V V I I R= − =− −1 2 1 2( )

out DD D DV V I R= −1 1 out DD D DV V I R= −2 2

( ) ( )in

SSout n ox in in in D

n ox

W IV C V V V V RWL C

L

µµ

=− − − −

2

21 1 2

1 4

2

MOS Differential Pair’s Large-Signal Response

( ) ( )in

SSD D n ox in in in

n ox

W II I C V V V V

WL CL

µµ

− = − − −2

21 2 1 1 2

1 4

2

Differential Response

Avd

and Avc

0ic

outdvd

id V

VA

V =

=

outd outd outd vd idV V V A V= − =1 2

id

outcvc

ic V

VA

V =

= 1,2

0

Small-Signal Analysis of MOS Differential Pair

1 12id

outd m DV

V g R= − 2 22id

outd m DV

V g R = − −

-gm1RD

voutd2

vid

2

vid

2

vid

2

Virtual Ground and Half Circuit

1 2m m m n ox SSW

g g g C IL

µ= = =

outdvd m D

id

VA g R

V= = −

outd outd outd m D idV V V g R V= − = −1 2

-gm1RD

voutd2

vid

2

vid

2

vid

2

Small-Signal Response

• Similar to its bipolar counterpart, the MOS differential pair exhibits the same virtual ground node and small signal gain.

vd m DA g R= −RD1

VDD

M1 M2

vout1

RD2

vout2

P

ISS

X Y

id1 id2vIN1 vIN2

RD1 = RD2 = RD

MOS Differential Pair Half Circuit Example I

1 3 1

3

0

1|| ||v m O O

m

A g r rg

λ ≠

= −

MOS Differential Pair’s Common-Mode Response

• Similar to its bipolar counterpart, MOS differential pair produces zero differential output as V

CMchanges.

SSX Y DD D

IV V V R= = −

2

outc outc outcV V V= =1 2

1 2outc X outc YV V ,V V= =

Common-Mode Response, ACM-DM

CS Stage with Degeneration

Common-Mode Response, ACM-DM

1 21 2

m Doutc outc ic

m SS

g RV V V

g R= ≅ −

+

Common-Mode Response

1 2outc m D

vcic m SS

V g RA

V g R= ≅ −

+

BJT Differential Amplifier.

• Differential Amplifier analysis • differential mode signal

analysis

• common mode signal analysis

Fig. 7.12 The basic BJT

differential-pair configuration.

Large Signal Analysis

Small Signal Analysis

Contrast Between MOS and Bipolar Differential Pairs

• In a MOS differential pair, there exists a finite differential input voltage to completely switch the current from one transistor to the other, whereas, in a bipolar pair that voltage is infinite.

MOS Bipolar

The effects of Doubling the Tail Current

• Since ISS is doubled and W/L is unchanged, the equilibrium overdrive voltage for each transistor must increase by to accommodate this change, thus ∆Vin,max increases by as well. Moreover, since ISS is doubled, the differential output swing will double.

2

2

The effects of Doubling W/L

• Since W/L is doubled and the tail current remains unchanged, the equilibrium overdrive voltage will be lowered by to accommodate this change, thus ∆Vin,max will be lowered by as well. Moreover, the differential output swing will remain unchanged since neither ISS nor RD has changed

2

2

Common Mode Response

1 2outc m C

vcCM m EE

V g RA

V g R= ≅ −

+

Common Mode Rejection Ratio : CMRR

• Common mode rejection ratio (CMRR) คือ อตัราการกําจดั

สญัญาณโหมดร่วม

vd

vc

ACMRR

A=

1 2 m SSCMRR g R= +

MOSFET BJT

1 2 m EECMRR g R= +

Ex 7.1 VDD=VSS=1.5 V, RD

= 2.5 k and M1= M2 has KN

= 2 mA/V2

VTH

= 0.5 V and ISS

= 0.4 mA Find Vout

Ex 7.2 VDD

=VSS

=1.5 V, RD

= 2.5 k and M1= M2 has KN

= 2 mA/V2

VTH

= 0.5 V and ISS

= 0.4 mA Find Vout

Ex 7.3 VDD=VSS=1.5 V, RD

= 2.5 k and M1= M2 has KN

= 2 mA/V2

VTH

= 0.5 V and ISS

= 0.4 mA Find Vout

Offset Voltage to compensate

Figure 7.25 (a) The MOS differential pair with both inputs grounded.

Owing to device and resistor mismatches, a finite dc output voltage VO

results. (b) Application of a voltage equal to the input offset voltage

VOS

to the terminals with opposite polarity reduces VO

to zero.

• สาเหตุที�เกิดแรงดนัออฟเซตคือค่าความตา้นทานของโหลด และค่า KN

และ VTH

ของมอสที�เป็นคู่ผลต่างไม่เท่ากนั

Active Loads

• Active load maintains bias current I

• Active load has high impedance

VDD

M1 M2

MC1

P

ISS

vIN2vIN1

M3 M4vOUT

VB

VDD

M1 M2

MC1

P

ISS

vIN2vIN1

M3 M4vOUT

VB

( )1,2 3 2

0

||vd m O OA g r r

λ ≠

= −( )( )1,2 3 2

1,2 3 2

0

||

1 || 2

m O O

vc

m O O SS

g r rA

g r r R

λ ≠

−=

+

Active Load

• Active Load in Saturation

• Without any input

Active Load

• The current generated by differential input will only flow to the load

Active Load

• In practice, leakage from Drain to Source

Reference

1. Adel S. Sedra, Kenneth C. Smith “Microelectronic Circuit”

2. Pual R. Gray and Robert G. Mayer “Analysis and Design of Integrated Circuit”


Top Related