Transcript
Page 1: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Sequence motifs, information content,

logos, and HMM’sMorten Nielsen,

CBS, BioCentrum, DTU

Page 2: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Outline• Multiple alignments and sequence motifs• Weight matrices and consensus sequence

– Sequence weighting– Low (pseudo) counts

• Information content– Sequence logos– Mutual information

• Example from the real world• HMM’s and profile HMM’s

– TMHMM (trans-membrane protein) – Gene finding

• Links to HMM packages

Page 3: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Multiple alignment and sequence motifs

• Core• Consensus

sequence• Weight matrices• Problems

– Sequence weights– Low counts

----------MLEFVVEADLPGIKA------------------MLEFVVEFALPGIKA------------------MLEFVVEFDLPGIAA---------------------YLQDSDPDSFQD-----------GSDTITLPCRMKQFINMWQE-------------RNQEERLLADLMQNYDPNLR-----------------YDPNLRPAERDSDVVNVSLK----------------NVSLKLTLTNLISLNEREEA-------EREEALTTNVWIEMQWCDYR-------------------WCDYRLRWDPRDYEGLWVLR-----LWVLRVPSTMVWRPDIVLEN-----------------------IVLENNVDGVFEVALYCNVL--------------YCNVLVSPDGCIYWLPPAIF---------PPAIFRSACSISVTYFPFDW---- ********* FVVEFDLPG

Consensus

Page 4: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Sequences weighting 1 - Clustering

----------MLEFVVEADLPGIKA------------------MLEFVVEFALPGIKA------------------MLEFVVEFDLPGIAA---------------------YLQDSDPDSFQD-----------GSDTITLPCRMKQFINMWQE-------------RNQEERLLADLMQNYDPNLR-----------------YDPNLRPAERDSDVVNVSLK----------------NVSLKLTLTNLISLNEREEA-------EREEALTTNVWIEMQWCDYR-------------------WCDYRLRWDPRDYEGLWVLR-----LWVLRVPSTMVWRPDIVLEN-----------------------IVLENNVDGVFEVALYCNVL--------------YCNVLVSPDGCIYWLPPAIF---------PPAIFRSACSISVTYFPFDW----

*********

} Homologous sequencesWeight = 1/n (1/3)

Consensus sequence

YRQELDPLV

Previous

FVVEFDLPG

Page 5: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Sequences weighting 2 - (Henikoff & Henikoff)

w FVVEADLPG 0.37FVVEFALPG 0.43FVVEFDLPG 0.32YLQDSDPDS 0.59MKQFINMWQ 0.90LMQNYDPNL 0.68PAERDSDVV 0.75LKLTLTNLI 0.85VWIEMQWCD 0.84YRLRWDPRD 0.51WRPDIVLEN 0.71VLENNVDGV 0.59YCNVLVSPD 0.71FRSACSISV 0.75

• waa’ = 1/rs• r: Number of different aa in a column• s: Number occurrences• Normalize so waa= 1 for each column• Sequence weight is sum of waa

F: r=7 (FYMLPVW), s=4 w’=1/28, w = 0.055Y: s=3, w`=1/21, w = 0.073M,P,W: s=1, w’=1/7, w = 0.218L,V: s=2, w’=1/14, w = 0.109

Page 6: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Low count correction

--------MLEFVVEADLPGIKA----------------MLEFVVEFALPGIKA----------------MLEFVVEFDLPGIAA-------------------YLQDSDPDSFQD---------GSDTITLPCRMKQFINMWQE-----------RNQEERLLADLMQNYDPNLR---------------YDPNLRPAERDSDVVNVSLK--------------NVSLKLTLTNLISLNEREEA-----EREEALTTNVWIEMQWCDYR-----------------WCDYRLRWDPRDYEGLWVLR---LWVLRVPSTMVWRPDIVLEN---------------------IVLENNVDGVFEVALYCNVL------------YCNVLVSPDGCIYWLPPAIF-------PPAIFRSACSISVTYFPFDW---- *********

• Limited number of data

• Poor sampling of sequence space

• I is not found at position P1. Does this mean that I is forbidden?

• No! Use Blosum matrix to estimate pseudo frequency of I

P1

Page 7: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Low count correction using Blosum matrices

# I L V

L 0.1154 0.3755 0.0962

V 0.1646 0.1303 0.2689

Blosum62 substitution frequencies• Every time for

instance L/V is observed, I is also likely to occur

• Estimate low (pseudo) count correction using this approach

• As more data are included the pseudo count correction becomes less important

NL = 2, NV=2, Neff=12 =>fI = (2*0.1154 + 2*0.1646)/12 = 0.05

pI* = (Neff * pI + * fI)/(Neff+) = (12*0 + 10*0.05)/(12+10) = 0.02

Page 8: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Information content

• Information and entropy– Conserved amino acid regions contain high degree of

information (high order == low entropy)– Variable amino acid regions contain low degree of

information (low order == high entropy)

• Shannon information D = log2(N) + pi log2 pi (for proteins N=20, DNA

N=4)

• Conserved residue pA=1, pi<>A=0, D = log2(N) ( = 4.3 for proteins)

• Variable region pA=0.05, pC=0.05, .., D = 0

Page 9: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Sequence logo

• Height of a column equal to D

• Relative height of a letter is pA

• Highly useful tool to visualize sequence motifs

High information position

MHC class IILogo from 10 sequences

http://www.cbs.dtu.dk/~gorodkin/appl/plogo.html

Page 10: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

More on logos

• Information contentD = pi log2 (pi/qi)

• Shannon, qi = 1/N = 0.05D = pi log2 (pi) - pi log2 (1/N)

= log2 N - pi log2 (pi)

• Kullback-Leibler, qi = background frequency– V/L/A more frequent than for instance C/H/W

A R N D C Q E G H I L K M F P S T W Y V2 1 1 1 1 1 1 1 1 4 16 1 6 15 7 1 2 7 18 138 19 1 1 7 2 2 2 1 3 15 13 6 2 1 2 2 7 1 83 2 7 2 1 17 13 2 1 8 14 3 1 1 7 7 2 0 1 88 13 13 14 1 2 13 2 1 2 3 3 1 7 1 3 7 0 1 74 1 7 7 7 1 2 2 1 13 15 2 6 6 1 7 2 7 7 45 2 8 23 1 6 3 2 1 3 3 2 1 1 1 13 8 0 1 182 1 7 13 1 1 2 2 1 8 14 2 6 1 20 7 2 7 1 33 7 7 8 7 1 7 8 1 2 8 2 1 1 13 7 2 7 1 73 2 7 19 1 6 2 8 1 9 9 2 1 1 1 7 2 0 1 18

Frequency matrix

Page 11: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Mutual information

I(i,j) = aai aaj

P(aai, aaj) *

log[P(aai, aaj)/P(aai)*P(aaj)]

P(G1) = 2/9 = 0.22, ..P(V6) = 4/9 = 0.44,..P(G1,V6) = 2/9 = 0.22, P(G1)*P(V6) = 8/81 = 0.10

log(0.22/0.10) > 0

ALWGFFPVAILKEPVHGVILGFVFTLTLLFGYPVYVGLSPTVWLSYMNGTMSQV

GILGFVFTL WLSLLVPFVFLPSDFFPS

P1 P6

Page 12: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Mutual information 

313 binding peptides 313 random peptides

Page 13: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Mutual information at anchor position is low

• Mutual information between anchor positions 2 and 9 and other residues low– At pos 2 we know that L,M,T,V and I are the most

frequent amino acids. – At pos 9 V,L,I and A are most frequent– 313 Rammensee + Buus pep

• P(L2) = 0.51, P(V9)=0.48, P(L2,V9) = 0.23• P(L2,V9)/(P(L2)*P(V9) )=0.23/0.24 = 1.0

• Knowing that we have L at position 2 does not tell us which one of V,L or I is placed on position 9 => NO mutual information

Page 14: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Weight matrices

• Estimate amino acid frequencies from alignment inc. sequence weighting and pseudo counts

• Now a weight matrix is given as

Wij = log(pij/qj)• Here i is a position in the motif, and j an amino

acid. qj is the background frequency for amino acid j.

• W is a L x 20 matrix, L is motif length• Score sequences to weight matrix by looking

up and adding L values from matrix

Page 15: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Example from real life

• 10 peptides from MHCpep database

• Bind to the MHC complex

• Relevant for immune system recognition

• Estimate sequence motif and weight matrix

• Evaluate on 528 peptides

ALAKAAAAMALAKAAAANALAKAAAARALAKAAAATALAKAAAAVGMNERPILTGILGFVFTMTLNAWVKVVKLNEPVLLLAVVPFIVSV

Page 16: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Example (cont.)

• Raw sequence counting– No sequence

weighting – No pseudo count– Prediction accuracy

0.45

• Sequence weighting– No pseudo count– Prediction accuracy

0.5

ALAKAAAAMALAKAAAANALAKAAAARALAKAAAATALAKAAAAVGMNERPILTGILGFVFTMTLNAWVKVVKLNEPVLLLAVVPFIVSV

Page 17: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Example (cont.)

• Sequence weighting and pseudo count– Prediction accuracy

0.60

• Motif found on all data (485)– Prediction accuracy

0.79

ALAKAAAAMALAKAAAANALAKAAAARALAKAAAATALAKAAAAVGMNERPILTGILGFVFTMTLNAWVKVVKLNEPVLLLAVVPFIVSV

Page 18: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Hidden Markov Models

• Weight matrices do not deal with insertions and deletions

• In alignments, this is done in an ad-hoc manner by optimization of the two gap penalties for first gap and gap extension

• HMM is a natural frame work where insertions/deletions are dealt with explicitly

Page 19: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

HMM (a simple example)

ACA---ATG

TCAACTATC

ACAC--AGC

AGA---ATC

ACCG--ATC

• Example from A. Krogh

• Core region defines the number of states in the HMM (red)

• Insertion and deletion statistics is derived from the non-core part of the alignment (blue)

Core of alignment

Page 20: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

.8

.2

ACGT

ACGT

ACGT

ACGT

ACGT

ACGT.8

.8 .8.8

.2.2.2

.2

1

ACGT .2

.2

.2

.4

1. .4 1. 1.1.

.6.6

.4

HMM construction

ACA---ATG

TCAACTATC

ACAC--AGC

AGA---ATC

ACCG--ATC

• 5 matches. A, 2xC, T, G• 5 transitions in gap region

• C out, G out• A-C, C-T, T out• Out transition 3/5• Stay transition 2/5

ACA---ATG 0.8x1x0.8x1x0.8x0.4x1x0.8x1x0.2 = 3.3x10-2

Page 21: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Align sequence to HMMACA---ATG 0.8x1x0.8x1x0.8x0.4x1x0.8x1x0.2 = 3.3x10-2

TCAACTATC 0.2x1x0.8x1x0.8x0.6x0.2x0.4x0.4x0.4x0.2x0.6x1x1x0.8x1x0.8 = 0.0075x10-2

ACAC--AGC = 1.2x10-2

AGA---ATC = 3.3x10-2

ACCG--ATC = 0.59x10-2

Consensus:

ACAC--ATC = 4.7x10-2, ACA---ATC = 13.1x10-2

Exceptional:

TGCT--AGG = 0.0023x10-2

Page 22: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Align sequence to HMM - Null model

• Score depends strongly on length

• Null model is a random model. For length L the score is

0.25L

• Log-odd score for sequence S

Log( P(S)/0.25L)

ACA---ATG = 4.9

TCAACTATC = 3.0 ACAC--AGC = 5.3AGA---ATC = 4.9ACCG--ATC = 4.6Consensus:ACAC--ATC = 6.7 ACA---ATC = 6.3Exceptional:TGCT--AGG = -0.97

Note!

Page 23: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

HMM’s and weight matrices

• In the case of un-gapped alignments HMM’s become simple weight matrices

• It still might be useful to use a HMM tool package to estimate a weight matrix– Sequence weighting– Pseudo counts

Page 24: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Profile HMM’s

• Alignments based on conventional scoring matrices (BLOSUM62) scores all positions in a sequence in an equal manner

• Some position are highly conserved, some are highly flexible (more than what is described in the BLOSUM matrix)

• Profile HMM’s are ideal suited to describe such position specific variations

Page 25: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

ExampleSequence profiles

• Alignment of 1PLC._ to 1GYC.A• Blast e-value > 1000• Profile alignment

– Align 1PLC._ against Swiss-prot– Make position specific weight matrix from

alignment– Use this matrix to align 1PLC._ against

1GYC.A

• E-value > 10-22. Rmsd=3.3

Page 26: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Example continued Score = 97.1 bits (241), Expect = 9e-22 Identities = 13/107 (12%), Positives = 27/107 (25%), Gaps = 17/107 (15%) Query: 3 VLLGADDGSLAFVPSEFSISPGEKI------VFKNNAGFPHNIVFDEDSIPSGVDASKIS 56 V+ G F + G++ N+ + +G + +Sbjct: 26 VVNG------VFPSPLITGKKGDRFQLNVVDTLTNHTMLKSTSIHWHGFFQAGTNWADGP 79 Query: 57 MSEEDLLNAKGETFEVAL---SNKGEYSFYCSP--HQGAGMVGKVTV 98 A G +F G + ++ G+ G VSbjct: 80 AFVNQCPIASGHSFLYDFHVPDQAGTFWYHSHLSTQYCDGLRGPFVV 126

Rmsd=3.3

Page 27: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

EM55_HUMAN WWQGRVEGSSKESAGLIPSPELQEWRVASMAQSAP--SEAPSCSPFGKKKK-YKDKYLAKCSKP_HUMAN WWQGKLENSKNGTAGLIPSPELQEWRVACIAMEKTKQEQQASCTWFGKKKKQYKDKYLAKKAPB_MOUSE -----PENLLIDHQGYIQVTDFGFAKRVKG------------------------------NRC2_NEUCR -----PENILLHQSGHIMLSDFDLSKQSDPGGKPTMIIGKNGTSTSSLPTIDTKSCIANF

EM55_HUMAN HSSIFDQLDVVSYEEVVRLPAFKRKTLVLIGASGVGRSHIKNALLSQNPEKFVYPVPYTTCSKP_HUMAN HNAVFDQLDLVTYEEVVKLPAFKRKTLVLLGAHGVGRRHIKNTLITKHPDRFAYPIPHTTKAPB_MOUSE RTWTLCGTPEYLAPEIILSKGYNKAVDWWALGVLIYEMAAGYPPFFADQPIQIYEKIVSGNRC2_NEUCR RTNSFVGTEEYIAPEVIKGSGHTSAVDWWTLGILIYEMLYGTTPFKGKNRNATFANILRE

EM55_HUMAN RPPRKSEEDGKEYHFISTEEMTRNISANEFLEFGSYQGNMFGTKFETVHQIHKQNKIAILCSKP_HUMAN RPPKKDEENGKNYYFVSHDQMMQDISNNEYLEYGSHEDAMYGTKLETIRKIHEQGLIAILKAPB_MOUSE KVRFPSHF-----SSDLKDLLRNLLQVDLTKRFGNLKNGVSDIKTHKWFATTDWIAIYQRNRC2_NEUCR DIPFPDHAGAPQISNLCKSLIRKLLIKDENRRLG-ARAGASDIKTHPFFRTTQWALI--R

EM55_HUMAN NNGVDETLKKLQEAFDQACSSPQWVPVSWVYCSKP_HUMAN NNEIDETIRHLEEAVELVCTAPQWVPVSWVYKAPB_MOUSE EKCGKEFCEF---------------------NRC2_NEUCR ENAVDPFEEFNSVTLHHDGDEEYHSDAYEKR

Profile HMM’s Insertion

Deletion

Conserved

Page 28: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Profile HMM’s

All M/D pairs must be visited once

Page 29: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

TMHMM (trans-membrane HMM)

(Sonnhammer, von Heijne, and Krogh)

Model TM length distribution.Power of HMM.Difficult in alignment.

Page 30: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Combination of HMM’s -Gene finding

x cccxxxxxxxxATGccc cccTAAxxxxxxxx

Inter-genicregion

Region aroundstart codon

Coding region

Region aroundstop codon

Start codon

Stop codon

Page 31: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

HMM packages

• HMMER (http://hmmer.wustl.edu/)– S.R. Eddy, WashU St. Louis. Freely available.

• SAM (http://www.cse.ucsc.edu/research/compbio/sam.html)– R. Hughey, K. Karplus, A. Krogh, D. Haussler and others, UC Santa

Cruz. Freely available to academia, nominal license fee for commercial users.

• META-MEME (http://metameme.sdsc.edu/)– William Noble Grundy, UC San Diego. Freely available. Combines

features of PSSM search and profile HMM search.

• NET-ID, HMMpro (http://www.netid.com/html/hmmpro.html)– Freely available to academia, nominal license fee for commercial users.– Allows HMM architecture construction.

Page 32: Sequence motifs, information content, logos, and HMM’s

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Simple Hmmer command

hmmbuild --gapmax 0.0 --fast A2.hmmer A2.fsa

hmmbuild - build a hidden Markov model from an alignmentHMMER 2.2g (August 2001)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Alignment file: A2.fsa

File format: a2mSearch algorithm configuration: Multiple domain (hmmls)

Model construction strategy: Fast/ad hoc (gapmax 0.0)Null model used: (default)

Sequence weighting method: G/S/C tree weights- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Alignment: #1Number of sequences: 232

Number of columns: 9Determining effective sequence number ... done. [192]

Weighting sequences heuristically ... done.Constructing model architecture ... done.Converting counts to probabilities ... done.

Setting model name, etc. ... done. [A2.fasta]Constructed a profile HMM (length 9)

Average score: -6.42 bitsMinimum score: -15.47 bitsMaximum score: -0.84 bits

Std. deviation: 2.72 bits

>HLA-A.0201 16 Example_for_LigandSLLPAIVEL>HLA-A.0201 16 Example_for_LigandYLLPAIVHI>HLA-A.0201 16 Example_for_LigandTLWVDPYEV>HLA-A.0201 16 Example_for_LigandSXPSGGXGV>HLA-A.0201 16 Example_for_LigandGLVPFLVSV


Top Related