Transcript
  • Acta Phys. Sin. Vol. 62, No. 20 (2013) 208202

    CL20-TNT ReaxFF/lg1) 2) 1)

    1) (,, 100081 )

    2) (, 100086 )( 2013525; 2013719 )

    ReaxFF/lg ReaxFF , , (). ReaxFF/lg CL20-TNT, , Ea (185.052kJ/mol). CL20-TNT CL20 TNT , , TNT

    ,. NO2, NO,CO2, N2, H2O, HON, HNO3. NO2 CNO2 NNO2 ,,, NO2 NO2 N N. CO,N2O, N2O5, CHO. N2O,.

    : ,, ReaxFF/lg,PACS: 82.30.Lp, 03.50.Kk, 71.15.Pd DOI: 10.7498/aps.62.208202

    1 20 90 .. ( HNIW,

    CL20),. CL20 10:95%, (HMX),

    HMX 10%15%, [1]. CL20( 1(a)) ,. CL20 HMX,,CL20 ,

    , CL20,

    . (TNT, 1(b)) , . HMX, .

    1 CL20(a) TNT(b)

    .

    . E-mail: [email protected] 2013 Chinese Physical Society http://wulixb.iphy.ac.cn

    208202-1

  • Acta Phys. Sin. Vol. 62, No. 20 (2013) 208202

    CL20 TNT 1 : 1 () (CL20-TNT)[2;3], . . 1 CL20-TNT CL20 TNT.

    1 CL20-TNT TNT CL20 [4]

    r/gcm3 /C D/ms1 p/GPaCL20-TNT 1:92=1:908 133.8 8600 35

    TNT 1.63 80.9 6900 21

    CL20 2.04 210 9500 43

    ,, , [5;6], .,, CL20 TNT [713]. Lee Jaw[7] CL20 , . Olexandr [8] abinitio cl20. : , NNO2, HONO, CL20, NO2,NO, N2O N2. TNT ,

    (< 800900 C), CH3 , (> 900 C),CNO2 [9], NO2,

    NO [10;11]. Cohen [12] TNT ,

    : CNO2NO2;, CH DNAn H2O;,

    (CNO2 ! CONO), ONO, NO.

    , ReaxFF/lg ,

    , [13] ReaxFF/lg, HMX.

    , ReaxFF/lg NPT () HMX , [14].

    , . [15;16], . ,

    . , ,

    , . , ReaxFF , . LAMMPS (large-scale atomic/molecular massivelyparallel simulator) ReaxFF [17] CL20-TNT , .

    2 ReaxFF/lg,

    . ReaxFF ,. ReaxFF , . ReaxFF,Esystem = Ebond+Elp+Eover+Eunder+Eval+Epen

    +Etors+Econj+EH-bond+EvdW

    +ECoulmb;

    , Ebond, Eval, Etors ; EvdW, ECoulmb,EH-bond,.

    ReaxFF/lg[18] ReaxFF [19] ,

    208202-2

  • Acta Phys. Sin. Vol. 62, No. 20 (2013) 208202

    ,. ReaxFF/lg EReaxFFlg = EReax+Elg, EReax ReaxFF, Elg :

    Elg =N

    i j;i< j

    clg;i jr6i j+dR

    6e j j

    ; (1)

    , ri j i j, Re j j i j vdW, Clg;i j ,d . , ReaxFF/lg.Liu [18] ReaxFF/lg ReaxFF,

    , lg.

    3 CL20-TNT 1 : 1

    X- [2]., CL20-TNT 1 : 1 48 (24 CL20, 24 TNT), 1368

    . CL20-TNT, (cook-off). 2 CL20-TNT 1 : 1 CL20 TNT.

    2 CL20 TNT CL20-TNT

    CL20-TNT,, (NPT) 5 ps, (300 K) 0, Berendsen thermostat Berend-sen barosat, 5 ps (NPT-MD), 1.838 g/cm3. ReaxFF/lg

    ReaxFF , ReaxFF

    NPT, ReaxFF/lg, 5 ps 1.513 g/cm3, 1.910 g/cm3. ReaxFF/lg

    , ReaxFF/lg., (NVE), 2000, 2500, 3000 K ,

    CJ. MD, Berendsen thermostat, ( T0),. ,, 50 fs. ,0.1 fs, 50 ps.

    ReaxFF (connect table) . , , 0.3,

    0.3,,. ReaxFF/lg.

    208202-3

  • Acta Phys. Sin. Vol. 62, No. 20 (2013) 208202

    4

    4.1 3(a) , , , . ,, ,,

    [20]:U(t;T;r) =U0(T;r)+DU(T;r)

    exp[(t tEI)=t(T;r)];, U0 , DU , tEI , t . 2 (r = 1:910 g/cm3) (T = 2000, 2500,3000 K) , (3(a)) CL20-TNT. 2,, tEI

    .

    3 (a) (b)

    2

    T /K r/gcm3 tTI U0 DU t2000 1.910 24.6784 152142 7513.91 55.81172500 1.910 19.0194 159077 14000.00 44.23943000 1.910 1.0634 153511 17000.20 15.4964

    Arrhenius CL20-TNT:

    k = 1=t = Aexp[Ea=RT ];, k , t , Ea , A, T , R. :

    ln(t) = (Ea=RT ) ln(A): 2 t ln(t)-1=T , 1.910 g/cm3 CL20-TNT Ea 185.052 kJ/mol. , 120 200 kJ/mol [14].

    4.2 4 (2000, 2500, 3000

    K) CL20-TNT 1 : 1 CL20 TNT (a) (NO, H2O,N2, HONO, OH, HON, CO2 HNO3) (NO2) (b).

    , CL20 TNT, 2000 K, TNT40 ps

    , , TNT, 3000 K ,24 TNT 7 ps,2000 K 33 ps. CL20 , ,CL20 3 ps. NO2 NO2, NO2 CL20 NNO2 TNT CNO2. NO2,NO2 , NO2

    N2 . , N2 CO2 , ,

    208202-4

  • Acta Phys. Sin. Vol. 62, No. 20 (2013) 208202

    ,,, N2 CO2 . H2O

    (20002500 K),,

    3000 K, H2O. , (NO, HONO, OH, HON, HNO3) .

    4 CL20 TNT (a) (b)

    5 NO2 CH3

    208202-5

  • Acta Phys. Sin. Vol. 62, No. 20 (2013) 208202

    6

    TNT CNO2, NO2 CH NO2. CNO2 TNT, . TNT NO2

    . ( 4(b)),NO2,. 20003000 K CL20-TNT NO2 CH3,

    208202-6

  • Acta Phys. Sin. Vol. 62, No. 20 (2013) 208202

    CL20-TNT TNT CCH3 ( 5 ). CC (bond dissociation energy, BDE) 100150 kcal/mol, CN ( 70 kcal/mol),ON ( 50 kcal/mol) CH ( 100 kcal/mol) [21], TNT.

    4.3 NO2 NO ( 6), , . NO2 NO,. , NO2 ! NO

    NO2 ! ONO ! NO + oxygen radical NO2 () NO.

    CO2 ,,, (T = 2000 K), 35 ps CO2 .

    , CO2, T = 3000 K, 5 ps CO2,

    , . 2000 3500 K, CO2 30 ps.

    , CO2 , . T = 3000 K, 35 ps, H2O, CO2 CO, CO+H2O = CO2 + H2, H2O CO2 . N2 , N2O, N2 ,.

    4.4 7 (N2O5, CHO) . N2O,. 6 7 CL20-TNT, CJ,, CL20-TNT . [2228],. ,.

    7

    208202-7

  • Acta Phys. Sin. Vol. 62, No. 20 (2013) 208202

    5 ReaxFF/lg CL20-TNT,. CL20-TNT Ea 185.052 kJ/mol, CL20 TNT .

    CL20 TNT ,, TNT . (NO2, NO, CO2, N2, H2O, HON, HNO3)(N2O5, N2O, CHO, CO). CL20-TNT

    NO2 NO2, NO2 CL20 NNO2 TNT CNO2 NO2 ,NO2.

    ,. NVT,

    . ,. CL20-TNT

    , CL20-TNT .

    [1] Ordzhonikidze O, Pivkina A, Frolov Y, Muravyev N, Monogarov K2011 J. Therm. Anal. Calorim. 105 529

    [2] Bolton O, Matzger A J 2011 Angew. Chem. Int. Ed. 50 8960[3] Yang Z W, Zhang Y L, Li H Z, Zhou X Q, Nie F D, Li J S, Huang H

    2012 Chin. J. Energ. Mater. 20 674 (in Chinese) [,,,,,, 2012 20 674]

    [4] Yang Z W, Huang H, Li H Z, Zhou X Q, Nie F D, Li J S 2012 Chin. J.Energ. Mater. 20 256 (in Chinese) [,,,,, 2012 20 256]

    [5] van Duin A C T, Zeiri Y, Dubnikova F, Kosloff R, Goddard W A 2005J. Am. Chem. Soc. 127 11053

    [6] Dubnikova F, Kosloff R, Almog J, Zeiri Y, Boese R, Itzhaky H, Alt A,Keinan E 2005 J. Am. Chem. Soc. 127 1146

    [7] Lee J S, Jaw K S 2006 J. Therm. Anal. Calorim. 85 463[8] Olexandr I, Gorb L, Qasim M, Leszczynski J 2008 J. Phys. Chem. B

    112 11005[9] Brill T B, James K J 1993 J. Phys. Chem. 97 8759[10] Fields E K, Meyerson S 1967 J. Am. Chem. Soc. 89 3224[11] Hand C W, Merritt C, Dipietro C 1977 J. Org. Chem. 42 841[12] Cohen R, Zeiri Y, Wurzberg E, Kosloff R 2007 J. Phys. Chem. A 111

    11074[13] Zhou T T, Zybin S V, Liu Y, Huang F L, Goddard W A 2012 J. Appl.

    Phys. 111 124904[14] Zhou T T, Huang F L 2012 Acta Phys. Sin. 61 246501 (in Chinese)

    [, 2012 61 246501]

    [15] Jenkins T F, Hewitt A D, Grant C L, Thiboutot S, Ampleman G, WalshM E, Ranney T A, Ramsey C A, Palazzo A J, Pennington J C 2006 J.C. Chemosphere 63 1280

    [16] Turcotte R, Vachon M, Kwok Q S M, Wang R P, Jones D E G 2005Thermochim. Acta 433 105

    [17] Plimpton S 1995 J. Comp. Phys. 117 1[18] Liu L C, Liu Y, Zybin S V, Sun H, Goddard III W A 2011 J. Phys.

    Chem. A 115 11016[19] van Duin A C T, Dasgupta S, Lorant F, Goddard III W A 2001 J. Phys.

    Chem. A 105 9396[20] Strachan A, Kober E M, van Duin A C T, Oxgaard J, Goddard W A

    2005 J. Chem. Phys. 122 054502[21] Dunning http: //wulfenite.fandm.edu/Data%20/Table 6.html. [2013-

    05][22] Ten K A, Aulchenko V M, Lukjanchikov L A, Pruuel E R, Shekhtman

    L I, Tolochko B P, Zhogin I L, Zhulanov V V 2009 Nucl. Instrum.Methods Phys. Res. A 603 102

    [23] Viecelli J A, Glosli J N 2002 J. Chem. Phys. 117 11352[24] Shaw M S, Johnson J D 1987 J. Appl. Phys. 62 2080[25] Viecelli J A, Ree F H 1999 J. Appl. Phys. 86 237[26] Ree R H, Winter N W, Glosli J N 1998 36th European High Pressure

    Research Group Meeting on Molecular and Low Dimensional Systemsunder Pressure Catalina, Italy September 711, 1998 p165

    [27] Chevrot G, Sollier A, Pineau N 2012 J. Chem. Phys. 136 084506[28] Thiel M V, Ree F H 1987 J. Appl. Phys. 62 1761

    208202-8

  • Acta Phys. Sin. Vol. 62, No. 20 (2013) 208202

    Pyrolysis of CL20-TNT cocrystal from ReaxFF/lgreactive molecular dynamics simulations

    Liu Hai1) Li Qi-Kai2) He Yuan-Hang1)

    1) ( State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China )

    2) ( School of Materials Science and Engineering, Tsinghua University, Beijing 100086, China )

    ( Received 25 May 2013; revised manuscript received 19 July 2013 )

    AbstractReaxFF/lg reactive force field is the extention of ReaxFF by adding a van der Waals attraction term. It can be used to well describe

    density and structure of crystal, moreover, the macroscopic property of detonation is significantly influenced by the density of energeticmaterial. We report on the initial thermal decomposition of condensed phase CL20-TNT cocrystal under high temperature here. Thetime evolution curve of the potential energy can be described reasonably well by a single exponential function from which we obtainthe initial equilibration and induction time, overall characteristic time of pyrolysis. Afterward, we also obtain the activation energyEa (185.052 kJ/mol) from these simulations. All the CL20 molecules are completed before TNT decomposition in our simulations.And as the temperature rises, the TNT decomposition rate is significantly accelerated. The higher the temperature at which completedecomposition occurs, the closer to each other the times needed for CL20 and TNT to be completely decomposed will be. Productidentification analysis with the limited time steps shows that the main products are NO2, NO, CO2, N2, H2O, HON, HNO3. CNO2and NNO2 bond homolysis jointly contribute to the results of the NO2. The NO2 yield rapid increases to the peak and then decreasessubsequently. This process is accompanied with NO2 participating in other reactions so that the N atom of NO2 enters into the other N-containing molecule. Secondary products are mainly CO, N2O, N2O5, CHO. N2O has a strong oxidation ability, so that the distributionhas a dramatic fluctuation characteristics.

    Keywords: cocrystal structure, pyrolysis, ReaxFF/lg potential energy, molecular dynamics

    PACS: 82.30.Lp, 03.50.Kk, 71.15.Pd DOI: 10.7498/aps.62.208202

    yCorresponding author. E-mail: [email protected]

    208202-9


Top Related