Transcript
Page 1: pedd formula sheet.pdf

SHELLS

1) BASED ON INTERNAL PRESSURE

a) Cylindrical Shell

𝑑 =𝑃𝐷𝑖

2π‘“π½βˆ’π‘ƒ=

π‘ƒπ·π‘œ

2𝑓𝐽+𝑃

Circumferential stress, 𝑓𝑝 =𝑃𝐷

2𝑑

Longitudinal stress, π‘“π‘Ž =𝑃𝐷

4𝑑

Where, p – internal pressure

D – Mean dia. of shell

Under Combined Loadings:

1) Circumferential/tangential stress:

𝑓𝑑 = 𝑃𝐷𝑖+𝑑

2𝑑 (Tensile)

2) Longitudinal stress:

a) Due to the internal pressure-

𝑓1 =𝑃𝐷𝑖

4𝑑 (Tensile)

b) Due to weight of vessel and

its contents-

𝑓2 =π‘Š

πœ‹π‘‘(𝐷𝑖+𝑑) (Compressive)

c) Wind load-

𝑓3 = βˆ’+ 𝑀

𝑧 = βˆ’

+𝑀/(πœ‹π·π‘–2𝑑)

(Tensile/Compressive)

M = bending moment

π‘“π‘Ž = 𝑓1 + 𝑓2 + 𝑓3

3) Stress due to offset piping and

wind:

𝑓𝑠 = 2𝑇/(πœ‹π‘‘π·π‘–(𝐷𝑖 + 𝑑))

T = torque about vessel axis

Resultant stress –

𝑓𝑅 = (𝑓𝑑2 βˆ’ π‘“π‘‘π‘“π‘Ž + π‘“π‘Ž

2 + 3𝑓𝑠2)0.5

fc (permissible)

= 1

12βˆ—

𝐸

√3(1βˆ’ πœ‡2)βˆ—

𝑑

π·π‘œ/2

E = modulus of elasticity

Β΅ = Poisson’s ratio

b) Spherical shell

𝑑 =𝑃𝐷𝑖

4𝑓𝐽 βˆ’ 𝑃=

π‘ƒπ·π‘œ

4𝑓𝐽 + 𝑃

2) BASED ON EXTERNAL PRESSURE

Cylindrical Shell –

𝑃𝑐 =2.42𝐸 (

π‘‘π·π‘œ

)2.5

(1 βˆ’ πœ‡2)0.75 βˆ— {𝐿

π·π‘œβˆ’ 0.45 (𝑑/π·π‘œ)1/2}

π‘ƒπ‘Žπ‘™π‘™π‘œπ‘€π‘Žπ‘π‘™π‘’ =1

4βˆ— 𝑃𝑐

𝐿 = π‘’π‘›π‘ π‘ π‘’π‘π‘œπ‘Ÿπ‘‘π‘’π‘‘ π‘™π‘’π‘›π‘”π‘‘β„Ž

HEADS

1) INTERNAL PRESSURE:

I) CONICAL HEAD:

Circumferential stress: 𝑓 =𝑃𝐷

2𝑑 cos 𝑑

π‘‘β„Ž =𝑃𝐷

2𝑓𝐽 cos 𝑑+ 𝐢. 𝐴

d = half apex angle of cone

II) TORRISPHERICAL HEAD:

π‘‘β„Ž =π‘π‘…π‘π‘Š

2𝑓𝐽+ 𝐢. 𝐴

Rc = crown radius

W = stress intensity factor =

1

4βˆ— (3 + √

𝑅𝑐

π‘…π‘˜)

Rk = knuckle radius = 0.06 Rc

III) ELLIPTICAL HEAD:

π‘‘β„Ž =𝑃𝐷𝑉

2𝑓𝐽

𝐷 = πΌπ‘›π‘‘π‘’π‘Ÿπ‘›π‘Žπ‘™ π‘‘π‘–π‘Žπ‘šπ‘’π‘‘π‘’π‘Ÿ

𝑉 =1

6(2 + π‘˜2),

π‘˜ =(π‘šπ‘Žπ‘—π‘œπ‘Ÿ π‘Žπ‘₯𝑖𝑠)

π‘šπ‘–π‘›π‘œπ‘Ÿ π‘Žπ‘₯𝑖𝑠

IV) HEMISPHERICAL HEAD:

π‘‘β„Ž =𝑃𝐷𝑖

4𝑓𝐽 βˆ’ 𝑃=

π‘ƒπ·π‘œ

4𝑓𝐽 + 𝑃

Page 2: pedd formula sheet.pdf

2) EXTERNAL PRESSURE:

I) DOMED HEADS:

π‘‘β„Ž = 𝑑𝑅𝑐{3(1 βˆ’ πœ‡2)}1/4 βˆšπ‘ƒ/2𝐸

+ 𝐢. 𝐴

Where, d = 4 to 4.4

Rc = crown radius

E= young’s modulus.

NOZZLES

AB = Max. horizontal distance = 2d

AD = Max. vertical distance = 6t or 3.5ts + 2.5tn

H1 = H2 = 2.5ts (by nozzle only)

Else, H1 = 2.5tn (by both ring pad and nozzle)

𝐴 = 𝑑𝑑𝑠,

𝐴𝑠 = 𝑑(𝑑𝑠 – 𝑑𝑠′ βˆ’ 𝐢. 𝐴) ,

𝐴𝑛 = 2𝐻1(𝑑𝑛 – 𝑑𝑛′ βˆ’ 𝐢. 𝐴),

𝐴1 = 2𝐻2(𝑑𝑛 – 2𝐢. 𝐴)

𝐴′ = 𝐴𝑠 + 𝐴𝑛 + 𝐴1 =

πΆπ‘œπ‘šπ‘π‘’π‘›π‘ π‘Žπ‘‘π‘–π‘œπ‘› π‘Žπ‘£π‘Žπ‘–π‘™π‘Žπ‘π‘™π‘’

𝐴 βˆ’ 𝐴′ = π΄π‘Ÿπ‘’π‘Ž π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘

FLANGES

BOLT LOAD

π‘Šπ‘šπ‘Žπ‘‘π‘š= πœ‹π‘πΊπ‘Œπ‘Ž

Where Ya = gasket seating stress

b = bo if bo < 6.3

2.5βˆšπ‘π‘œ if bo >6.3

bo=(G0-Gi)/4

π‘Šπ‘š,π‘œπ‘π‘’π‘Ÿπ‘Žπ‘‘π‘–π‘› = πœ‹2π‘πΊπ‘šπ‘ƒ +πœ‹

4𝐺2𝑃

m = gasket factor

𝐺 = (πΊπ‘œ + 𝐺𝑖)/2

π΄π‘š,π‘œπ‘π‘’π‘Ÿπ‘Žπ‘‘π‘–π‘›π‘” = π‘Šπ‘š,π‘œπ‘π‘’π‘Ÿπ‘Žπ‘‘π‘–π‘›π‘”

π‘“π‘š,π‘œπ‘π‘’π‘Ÿπ‘Žπ‘‘π‘–π‘›π‘”

π΄π‘š,π‘Žπ‘‘π‘š =π‘Šπ‘š,π‘Žπ‘‘π‘š

π‘“π‘Žπ‘‘π‘š

Tensile stress,

𝑑𝑙 = πΊβˆšπ‘ƒ

π‘˜π‘“+ 𝐢. 𝐴

π‘˜ = 1/(0.3 + 1.5π‘Šπ‘šβ„ŽπΊ

𝐻𝐺)

β„ŽπΊ = 𝐡 βˆ’ 𝐺

2

𝐻 =πœ‹

4𝐺2𝑃

f= permissible stress for flanges

Where,

Wm = total bolt load

B = Bolt circle diameter

G = diameter of gasket load

reaction

π‘Œ = 0.51𝑋2.09

Where,

Y = bolt area

X = nominal diameter

𝐴𝑏 =2πœ‹π‘Œπ‘ŽπΊπ‘

π‘“π‘Ž

SPHERICAL SHELL

Subjected to external pressure-

𝑃𝑐 = 8𝐸

√3(1 βˆ’ πœ‡2) (

𝑑

𝐷)

2

D = outside diameter

Pallowable = 1/6*Pc

SHELL WITH EXTERNAL JACKET

𝑑𝑠 = π‘‘βˆšπ‘˜1𝑃

𝑓1+ 𝐢. 𝐴

𝑑𝑐 = π‘‘βˆšπ‘˜2𝑃

𝑓2+ 𝐢. 𝐴

Where,

k1 = 0.167

k2 = 0.12

Page 3: pedd formula sheet.pdf

SHELL WITH HALF COIL JACKET

𝑓𝑃𝐢 =𝑝𝑑𝑖

2𝑑𝑐

π‘“π‘Žπ‘ =𝑝𝑑𝑖

4𝑑𝑐+2.5𝑑𝑠

𝑓𝑃𝐢 = 𝑓𝑃 + π‘“π‘Žπ‘ (total

circumferential stress)

= 𝑃𝐷𝑖

2𝑑𝑠 +

𝑝𝑑𝑖

4𝑑𝑐+2.5𝑑𝑠

Total longitudinal stress:

π‘“π‘Žπ‘  = π‘“π‘Ž + π‘“π‘Žπ‘ + 𝑓𝑏

π‘“π‘Žπ‘  = 𝑃𝐷𝑖

4𝑑𝑠 +

𝑝𝑑𝑖

2𝑑𝑠+

2Ξ”π‘ƒπ‘‘π‘œ2

3𝑑𝑠2

P= internal pressure of shell

P=internal pressure of coil

Di= shell internal diameter

d= internal diameter of coil

FLAT PLATE HEAD

𝑑 = 𝐢 βˆ— π·βˆšπ‘ƒ

𝑓

f = shear stress


Top Related