Transcript
Page 1: Nanostructured Polymer Solar Cells

Nanostructured Polymer Solar Cells

D. Xi, C. Shi, Y. Yao, Y. Yang, Q. PeiMaterials Science and EngineeringCalifornia NanoSystems InstituteUniversity of California, Los Angeles [email protected]

2008 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM

April 29, 2008

Page 2: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Polymer Solar Cell

Efficiency of inorganic solar cells: ~10–20%– Current Polymer Solar Cell: ~5%– Max Inorganic: ~40%

No clean room or high T steps needed (large-area, low cost) Flexible panels (form factor) Versatility of polymer structure and property via synthesis Nanostructural tailoring

Konarka

Page 3: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

How Does It Work?

Yu, Heeger, et al, Science, 270, 1789(1995)

Page 4: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Mechanism and Efficiency

ηIQE = ηA × ηED × ηCT × ηCCStephen R. Forrest, MRS Bulletin, 30 (2005) p.28

VOC = LUMO – HOMO – Exiton binding )

Page 5: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Mechanism and Efficiency

Stephen R. Forrest, MRS Bulletin, 30 (2005) p.28-32

RSH = Shunt resistance (quality of diode)RS = Series resistance (quality of contacts & transport in bulk of film)

OC SC

in

V I FFPCE

P

Page 6: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Main Factors Limiting the Efficiency: Low absorption

H. Hoppe & NS Sariciftci, J. Mater. Res., Vol. 19, 1926 (2004)

Page 7: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Main Factors Limiting the Efficiency: Short Exiton Lifetime

A. Haugeneder, et al, Phys. Rev. B, 59(23), 15346: 1999T. Stubinger and W. Brutting, J. APPL. PHYS., 90(7), 3632: 2001

Exciton diffusion length in ordered polymers is 5-14 nm

n

p+-+-+-

n

p+-+-+-

Page 8: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Bulk Heterojunction in Polymer Blend

Donor/Acceptor Blend (100+ nm)

ITO

Al

N.S. Sariciftci, Heeger, et al.

S. Forrest, et al.

Page 9: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Bulk Heterojunction

Stalmach U. et al, J. Am. Chem. Soc.,122, 5464 (2000)

Inganäs, et al, Adv. Mater., 13, 1871: 2001

Page 10: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Alkoxythiophene polymers?

S**

S

O

**

FETsSolar cells

??

Alkoxy PPV(MEH-PPV)

O

O

**

**

Alkyl PPV

P3HT+PCBM (200nm)

Alkoxy to alkyl:• Larger bandgap• Lower mobility• Less stable

Page 11: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Synthesis of regioregular polymers and copolymers

S

OC10H21

BrBrCH3MgBr

SBrBrMg

OC10H21

S

OC10H21

nreflux, THF

Ni(dppp)Cl2

1 2reflux P3DOT

S

OC10H21

BrBr

1

+S

C8H17

BrBrCH3MgBr

reflux, THF SBrBrMg

OC10H21

2

+S

BrBrMg

C8H17

4

Ni(dppp)Cl2

refluxS

OC10H21

*b

POT-co-DOT

S

C8H17

*a

3

S

OC10H21

BrMg/THF

30~50 C S

OC10H21

MgBr

NS

N

BrBr

Ni(dppp)Cl2/THF & reflux

NS

N

SS BrBr

OC10H21 OC10H21

BB+

C8H17C8H17 C8H17C8H17

NS

NS S

OC10H21OC10H21

n

Pd(Pph3)4/Toluene

K2CO3/H2O

PF-co-DTB

NS

N

SS

OC10H21 OC10H21

NS

NSS BrBr

OC10H21 OC10H21

NBS

5 67

8 7

O

OO

O

Shi, et al., J. AM. CHEM. SOC. 2006, 128, 8980-8986

Page 12: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

UV-Vis-NIR of spin-coated films

300 400 500 600 700 800 9000.0

0.2

0.4

0.6

0.8

1.0

N

orm

aliz

ed A

bsor

banc

e

Wavelength (nm)

P3DOT POT-co-DOT PF-co-DTB P3HT P3OOT

d

X

X

X

X

X

X

X

X

X

O

OO

O

O

O

O

O

O

OO

O

X

Page 13: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

-8

-7

-6

-5

-4

-3

-2

eV P3HT

Energy Levels of Semiconductors

Ca

PCBM

ITO

P3DOT

Al PF-co-DTB

POT-co-DOT

1.92eV1.78eV

1.64eV

P3OOT

1.91eV1.60eV

Page 14: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Solar Cell Structure

ITO/Glass

PEDOT:PSS (25 nm)

Polymer/PCBM (80-100 nm)

LiF (1 nm)

Al (80 nm)A

Page 15: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Characteristics of Bulk Heterojunction Cells

(AM 1.5G irradiation at 100 mW/cm2).

Polymer Polymer:PCBM Jsc Voc (V) FF (%) PCE (%) (w/w ratio) (mA/cm2)

P3DOT 1:1 0.14 0.02 26.5 0.0007

POT-co-DOT 1:1 0.60 0.22 41.2 0.054

PF-co-DTB 2:1 0.74 0.83 25.5 0.16

PF-co-DTB 1:1 2.92 0.78 32.8 0.74

PF-co-DTB 1:2 4.00 0.76 44.6 1.27

PF-co-DTB 1:4 4.31 0.76 48.6 1.60

Page 16: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

IPCE plot of PF-co-DTB/PCBM (1:4) BH cells

400 500 600 700 8000

5

10

15

20

25

30

35

EQE

(%)

Wavelength (nm)

EQE (%)

Shi, et al., J. AM. CHEM. SOC. 2006, 128, 8980-8986

Page 17: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

C60 PCBM vs C70 PCBM

300 400 500 600 700 8000.00.10.20.30.40.50.60.70.80.91.0

[60]PCBM [70]PCBM

[60]PCBM soltuion

[70]PCBM solution

Abso

rptio

n [a

.u.]

wavelength [nm]

Y. Yan, et al., APL 89, 153507 (2006)

Page 18: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Absorption of PF-co-DTB/[70]PCBM blends

Y. Yan, et al., APL 89, 153507 (2006)

Page 19: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

AFM of PF-co-DTB/PCBM blends

Tapping mode Phase mode

PF-co-DTB: 1[60]PCBM: 4

PF-co-DTB: 1[70]PCBM: 4

Page 20: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Cell performance vs. PCBM concentration

0

1

2

3

4

5

6

7

25

30

35

40

45

50

55

60

30 40 50 60 70 80 900.0

0.5

1.0

1.5

2.0

2.5

30 40 50 60 70 80 900.72

0.74

0.76

0.78

0.80

0.82

0.84

Polymer: [60]PCBM Polymer: [70]PCBM

Jsc (

mA cm

-2 )

FF (%

)

weight percentage acceptor [wt.-%]

PCE

(%)

Voc (

V)

weight percentage acceptor [wt.-%]

Page 21: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

IV Characteristics of polymer/PCBM BH cells

0.0 0.2 0.4 0.6 0.8 1.0-7

-6

-5

-4

-3

-2

-1

0

1Cu

rrent

Den

sity (

mA/

cm2 )

Voltage (V)

Polymer: [60] PCBM = 1:4 Polymer: [70] PCBM = 1:4

Page 22: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

EQE of polymer/PCBM BH cells

300 400 500 600 700 8000

10

20

30

40

50

60 Polymer: [60]PCBM =1:4 Polymer: [70]PCBM =1:4

EQE

(%)

wavelength [nm]

Y. Yan, et al. APL 89, 153507 (2006)

Page 23: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Other Small Eg Polymers

P1 P7 P8 P5 P6 P9 P0 P2 P3 P4-5.6

-5.2

-4.8

-4.4

-4.0

-3.6

-3.2

-2.8

-5.06 -5.1-4.92

-4.64

-5.36-5.52

-5.1 -5.02

-4.47 -4.55

-3.29 -3.32-3.14

-3.3-3.1

-3.6-3.7

-3.25

-2.87 -2.91 LUMO HOMO

Ener

gy le

vel (

eV)

Polymer type

Page 24: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Bulk Heterojunction in Nanorod/Polymer Blend

7nmx7nm

7nmx60nm(Huynh W.U., Science 295,2425, 2002)

Page 25: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Bulk Heterojunction in Porous TiO2 / Polymer

Sintering TiO2 nanocrystals + P3HT

Quantum efficiency only 6%Due to incomplete filling and random distributed inferface

Well ordered 8nm pore TiO2 film + P3HT

Incomplete PL quench due to twist of polymer into 8nm pores;optimized infiltration depth 20nm, QE, 10%, power efficiency 0.45%

(Kevin M. Coakley, Adv. Funct. Mat 13, 301, 2003)

Page 26: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Bulk Heterojunction Based on CuPc Nanowires

ITO / CuPc / PTCBI / BCP / Ag

Power efficiency 2.7%

(Fan Y., Nature Materials 4, 37, 2005)

CuPc nanowires by CVD. Scale bar: 500 nm

PCE

FF

Voc

Page 27: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Interdigitated p-n Nanohybrid

transparent electrode

top electrode Au

p-Conjugated polymer

n-semiconductor

ITO/PEDOT

Diameter ~20nm, Height ~200nm Space between rods ~20nm

Two bicontinuous phases, effectively split exciton before recombination

Carriers have straight pathway to electrodesPrevent holes from reaching the negative

electrode and electrons from positive electrodes

Page 28: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Interdigitated p-n Nanohybrid: Polymer nanotube array

a

b

c

d

e

b

100 nm

1 m

500 nm

Xi et al. Nanotechnology 18 (2007) 095602

Page 29: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Interdigitated p-n Nanohybrid: CdS Nanorod array

CdS + PT by electropolymn CdS + P3HT by infiltration

500 nm

Page 30: Nanostructured Polymer Solar Cells

Soft Materials Research Lab

Summary

• Alkoxythiophene is a useful building block for highly-conjugated, low bandgap (co)polymers.

• BH solar cells based on PF-co-DTB and [70]PCBM: Jsc: 6.34mA/cm2Voc: 0.76VFF: 50.5% PCE: 2.4%

• More work is needed to improve mobility and band edge matching (PF-co-DTB: h = 2x10-5cm2/Vs)

• Interdigitated p-n nanohybrid is a good architecture but challenging to fabricate perfect nanostructure/material


Top Related