Transcript
Page 1: John L. Schadler Continuation€¦ · 𝑋𝑃𝐷= 𝑉1 2Ξ“ 21 2 𝑖 2𝛼+Ξ“ 22 2𝑐 2𝛼+2Ξ“ 21Ξ“22 𝑖 𝛼𝑐 𝛼𝑐 πœ™21βˆ’πœ™22 +𝑉2 2Ξ“ 22 2 𝑖 2𝛼+Ξ“ 21
Page 2: John L. Schadler Continuation€¦ · 𝑋𝑃𝐷= 𝑉1 2Ξ“ 21 2 𝑖 2𝛼+Ξ“ 22 2𝑐 2𝛼+2Ξ“ 21Ξ“22 𝑖 𝛼𝑐 𝛼𝑐 πœ™21βˆ’πœ™22 +𝑉2 2Ξ“ 22 2 𝑖 2𝛼+Ξ“ 21

β€œAntenna Technology For ATSC 3.0 – Boosting the Signal Strength”

Continuation

John L. Schadler

Page 3: John L. Schadler Continuation€¦ · 𝑋𝑃𝐷= 𝑉1 2Ξ“ 21 2 𝑖 2𝛼+Ξ“ 22 2𝑐 2𝛼+2Ξ“ 21Ξ“22 𝑖 𝛼𝑐 𝛼𝑐 πœ™21βˆ’πœ™22 +𝑉2 2Ξ“ 22 2 𝑖 2𝛼+Ξ“ 21

4KUHDTV

β€’

β€’

β€’

β€’

Page 4: John L. Schadler Continuation€¦ · 𝑋𝑃𝐷= 𝑉1 2Ξ“ 21 2 𝑖 2𝛼+Ξ“ 22 2𝑐 2𝛼+2Ξ“ 21Ξ“22 𝑖 𝛼𝑐 𝛼𝑐 πœ™21βˆ’πœ™22 +𝑉2 2Ξ“ 22 2 𝑖 2𝛼+Ξ“ 21

Outdoor reception of the Bootstrap signal

.25 Mbit Deep indoor mobile to small handheld receiver

48 dBu

95 dBu

Page 5: John L. Schadler Continuation€¦ · 𝑋𝑃𝐷= 𝑉1 2Ξ“ 21 2 𝑖 2𝛼+Ξ“ 22 2𝑐 2𝛼+2Ξ“ 21Ξ“22 𝑖 𝛼𝑐 𝛼𝑐 πœ™21βˆ’πœ™22 +𝑉2 2Ξ“ 22 2 𝑖 2𝛼+Ξ“ 21

Effect of heavy beam tilt Effect of heavy null fill

Addition of SFNs

Page 6: John L. Schadler Continuation€¦ · 𝑋𝑃𝐷= 𝑉1 2Ξ“ 21 2 𝑖 2𝛼+Ξ“ 22 2𝑐 2𝛼+2Ξ“ 21Ξ“22 𝑖 𝛼𝑐 𝛼𝑐 πœ™21βˆ’πœ™22 +𝑉2 2Ξ“ 22 2 𝑖 2𝛼+Ξ“ 21

Most effective way to design for service and provide even distribution of high signal strength – High null fill + SFNs

β€’ Saturate in the vicinity of the main antenna by increasing the null fill

β€’ Add SFN sites around coverage perimeter to boost the signal strength outside of the high null fill area

+ SFN

Page 7: John L. Schadler Continuation€¦ · 𝑋𝑃𝐷= 𝑉1 2Ξ“ 21 2 𝑖 2𝛼+Ξ“ 22 2𝑐 2𝛼+2Ξ“ 21Ξ“22 𝑖 𝛼𝑐 𝛼𝑐 πœ™21βˆ’πœ™22 +𝑉2 2Ξ“ 22 2 𝑖 2𝛼+Ξ“ 21

β€’ ATSC 3.0 MISO scheme – TDCFSβ€’ Transmitting two uncorrelated signals to a single receiverβ€’ Cost effective

β€’ Increase the complexity of the transmitter – not the receiverβ€’ ATSC 3.0 SFN sites will serve many receivers

β€’ Economical to add equipment cost at the transmit site rather than the receiver

β€’ Receiver remains small and affordable

Page 8: John L. Schadler Continuation€¦ · 𝑋𝑃𝐷= 𝑉1 2Ξ“ 21 2 𝑖 2𝛼+Ξ“ 22 2𝑐 2𝛼+2Ξ“ 21Ξ“22 𝑖 𝛼𝑐 𝛼𝑐 πœ™21βˆ’πœ™22 +𝑉2 2Ξ“ 22 2 𝑖 2𝛼+Ξ“ 21

β€’ TDCFS can be deployed in either a co-located or distributed configuration

β€’ Does not require any new RF equipment within the existing SFN

Co-located Distributed

β€’ Diversity gain throughout the coverage area

Page 9: John L. Schadler Continuation€¦ · 𝑋𝑃𝐷= 𝑉1 2Ξ“ 21 2 𝑖 2𝛼+Ξ“ 22 2𝑐 2𝛼+2Ξ“ 21Ξ“22 𝑖 𝛼𝑐 𝛼𝑐 πœ™21βˆ’πœ™22 +𝑉2 2Ξ“ 22 2 𝑖 2𝛼+Ξ“ 21

Diversity gain Boosting the RSS≑

Max diversity gain is based on the total number of independent signal paths

M transmit antennas N receive antennas

1 ≀ 𝐺𝑑 ≀ πΊπ‘šπ‘Žπ‘₯ = 𝑀 βˆ— 𝑁

3 dB improvement in RSS can be achieved when 2 x 1 MISO diversity is applied

Page 10: John L. Schadler Continuation€¦ · 𝑋𝑃𝐷= 𝑉1 2Ξ“ 21 2 𝑖 2𝛼+Ξ“ 22 2𝑐 2𝛼+2Ξ“ 21Ξ“22 𝑖 𝛼𝑐 𝛼𝑐 πœ™21βˆ’πœ™22 +𝑉2 2Ξ“ 22 2 𝑖 2𝛼+Ξ“ 21

β€’ Traditionallyβ€’ Spatial diversity

β€’ Separate antennasβ€’ Difficult to implement

β€’ Space limitationsβ€’ Polarization diversity

β€’ Co-located antenna elementsβ€’ Orthogonal polarizationsβ€’ Modes of operation

β€’ Slant linearβ€’ RH / LH CP

Which mode of polarization diversity operation is best for ATSC 3.0 MISO?

Dual input broadcast antenna array

X

Page 11: John L. Schadler Continuation€¦ · 𝑋𝑃𝐷= 𝑉1 2Ξ“ 21 2 𝑖 2𝛼+Ξ“ 22 2𝑐 2𝛼+2Ξ“ 21Ξ“22 𝑖 𝛼𝑐 𝛼𝑐 πœ™21βˆ’πœ™22 +𝑉2 2Ξ“ 22 2 𝑖 2𝛼+Ξ“ 21

β€’ Max diversity gain depends on spreading the power evenly between the polarizationsβ€’ Figure of merit

β€’ Cross Polarization Discrimination (XPD)β€’ The ratio between the available power in the vertical and horizontal polarizations

𝑋𝑃𝐷 =𝑅𝑣

2

π‘…β„Ž2 For optimal diversity gain XPD=0dB

Compare the static response XPD for slant linear and RH/LH CP

Page 12: John L. Schadler Continuation€¦ · 𝑋𝑃𝐷= 𝑉1 2Ξ“ 21 2 𝑖 2𝛼+Ξ“ 22 2𝑐 2𝛼+2Ξ“ 21Ξ“22 𝑖 𝛼𝑐 𝛼𝑐 πœ™21βˆ’πœ™22 +𝑉2 2Ξ“ 22 2 𝑖 2𝛼+Ξ“ 21

Pair of orthogonal crossed dipoles oriented in space by a tilt angle Ξ±

Dipole modeling Channel modeling

Four channel links between the transmitter and receiver

π‘…β„Žπ‘…π‘£

=Ξ“11𝑒

π‘—πœ™11 Ξ“12π‘’π‘—πœ™12

Ξ“21π‘’π‘—πœ™21 Ξ“22𝑒

π‘—πœ™22

π‘‰β„Žπ‘‰π‘£

π‘‰β„Žπ‘‰π‘£

=𝑠𝑖𝑛𝛼 βˆ’π‘π‘œπ‘ π›Όπ‘π‘œπ‘ π›Ό 𝑠𝑖𝑛𝛼

𝑉1𝑉2𝑒

βˆ’π‘—πœƒ

Ξ“ – random variable used to model the multipath fading

Ξ¦- random phase introduced by the channel

Page 13: John L. Schadler Continuation€¦ · 𝑋𝑃𝐷= 𝑉1 2Ξ“ 21 2 𝑖 2𝛼+Ξ“ 22 2𝑐 2𝛼+2Ξ“ 21Ξ“22 𝑖 𝛼𝑐 𝛼𝑐 πœ™21βˆ’πœ™22 +𝑉2 2Ξ“ 22 2 𝑖 2𝛼+Ξ“ 21

𝑋𝑃𝐷 =

𝑉12 Ξ“21

2𝑠𝑖𝑛2𝛼 + Ξ“222π‘π‘œπ‘ 2𝛼 + 2Ξ“21Ξ“22π‘ π‘–π‘›π›Όπ‘π‘œπ‘ π›Όπ‘π‘œπ‘  πœ™21 βˆ’ πœ™22 + 𝑉2

2 Ξ“222𝑠𝑖𝑛2𝛼 + Ξ“21

2π‘π‘œπ‘ 2𝛼 + 2Ξ“21Ξ“22π‘ π‘–π‘›π›Όπ‘π‘œπ‘ π›Όπ‘π‘œπ‘  πœ™21 βˆ’ πœ™22

+2𝑉1𝑉2π‘π‘œπ‘ πœƒ Ξ“21Ξ“22 𝑠𝑖𝑛2𝛼 βˆ’ π‘π‘œπ‘ 2𝛼 π‘π‘œπ‘  πœ™21 βˆ’ πœ™22 + Ξ“222 βˆ’ Ξ“21

2 π‘ π‘–π‘›π›Όπ‘π‘œπ‘ π›Ό

𝑉12 Ξ“11

2𝑠𝑖𝑛2𝛼 + Ξ“122π‘π‘œπ‘ 2𝛼 + 2Ξ“11Ξ“12π‘ π‘–π‘›π›Όπ‘π‘œπ‘ π›Όπ‘π‘œπ‘  πœ™11 βˆ’ πœ™12 + 𝑉2

2 Ξ“122𝑠𝑖𝑛2𝛼 + Ξ“11

2π‘π‘œπ‘ 2𝛼 + 2Ξ“11Ξ“12π‘ π‘–π‘›π›Όπ‘π‘œπ‘ π›Όπ‘π‘œπ‘  πœ™11 βˆ’ πœ™12

+2𝑉1𝑉2π‘π‘œπ‘ πœƒ Ξ“11Ξ“12 𝑠𝑖𝑛2𝛼 βˆ’ π‘π‘œπ‘ 2𝛼 π‘π‘œπ‘  πœ™11 βˆ’ πœ™12 + Ξ“122 βˆ’ Ξ“11

2 π‘ π‘–π‘›π›Όπ‘π‘œπ‘ π›Ό

The definition yields 𝑋𝑃𝐷 =𝑅𝑣

2

π‘…β„Ž2=𝐴 Ξ“21

2 + 𝐡 Ξ“222

𝐴 Ξ“112 + 𝐡 Ξ“12

2

𝐴 = 𝑉12𝑠𝑖𝑛2𝛼 + 𝑉2

2π‘π‘œπ‘ 2𝛼 βˆ’ 2𝑉1𝑉2π‘ π‘–π‘›π›Όπ‘π‘œπ‘ π›Όπ‘π‘œπ‘ πœƒ

𝐡 = 𝑉12π‘π‘œπ‘ 2𝛼 + 𝑉2

2𝑠𝑖𝑛2𝛼 + 2𝑉1𝑉2π‘ π‘–π‘›π›Όπ‘π‘œπ‘ π›Όπ‘π‘œπ‘ πœƒwhere

The different types of polarization diversity can be described by the coefficients A and B

Page 14: John L. Schadler Continuation€¦ · 𝑋𝑃𝐷= 𝑉1 2Ξ“ 21 2 𝑖 2𝛼+Ξ“ 22 2𝑐 2𝛼+2Ξ“ 21Ξ“22 𝑖 𝛼𝑐 𝛼𝑐 πœ™21βˆ’πœ™22 +𝑉2 2Ξ“ 22 2 𝑖 2𝛼+Ξ“ 21

Since the A and B coefficients are the same in all 6 cases, the equations that describe the XPD are identical in all 6 cases

Slant linear and circularly polarized antennas transmit the same average performance in a static MISO system. The expected diversity gain of SL / SR linear and RH / LH CP are on average the same.

Page 15: John L. Schadler Continuation€¦ · 𝑋𝑃𝐷= 𝑉1 2Ξ“ 21 2 𝑖 2𝛼+Ξ“ 22 2𝑐 2𝛼+2Ξ“ 21Ξ“22 𝑖 𝛼𝑐 𝛼𝑐 πœ™21βˆ’πœ™22 +𝑉2 2Ξ“ 22 2 𝑖 2𝛼+Ξ“ 21

β€’ Analysis assumesβ€’ For CP we increased the transmitter power 3dB to maintain the same ERPβ€’ The receiver is stationaryβ€’ Independent of any margin improvement observed by transmitting CP to a

linearly polarized receive antenna in motion

Page 16: John L. Schadler Continuation€¦ · 𝑋𝑃𝐷= 𝑉1 2Ξ“ 21 2 𝑖 2𝛼+Ξ“ 22 2𝑐 2𝛼+2Ξ“ 21Ξ“22 𝑖 𝛼𝑐 𝛼𝑐 πœ™21βˆ’πœ™22 +𝑉2 2Ξ“ 22 2 𝑖 2𝛼+Ξ“ 21

𝑀𝐼 = 𝑆𝑁𝑅𝑐𝑝 βˆ’ π‘†π‘π‘…π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ

Page 17: John L. Schadler Continuation€¦ · 𝑋𝑃𝐷= 𝑉1 2Ξ“ 21 2 𝑖 2𝛼+Ξ“ 22 2𝑐 2𝛼+2Ξ“ 21Ξ“22 𝑖 𝛼𝑐 𝛼𝑐 πœ™21βˆ’πœ™22 +𝑉2 2Ξ“ 22 2 𝑖 2𝛼+Ξ“ 21

Starting over a decade ago – extensive testing to quantify the benefit of transmitting CP to a linearly polarized receiver in motion

β€’ Controlled environmentsβ€’ Field tests in ME and FLβ€’ Indoor / Outdoor / Vehicleβ€’ Measurements based on RSS

and BERβ€’ Different amounts of VPOL

Page 18: John L. Schadler Continuation€¦ · 𝑋𝑃𝐷= 𝑉1 2Ξ“ 21 2 𝑖 2𝛼+Ξ“ 22 2𝑐 2𝛼+2Ξ“ 21Ξ“22 𝑖 𝛼𝑐 𝛼𝑐 πœ™21βˆ’πœ™22 +𝑉2 2Ξ“ 22 2 𝑖 2𝛼+Ξ“ 21

All measurements have confirmed that transmitting circular polarization to a linearly polarized receiver in motion in a heavy scatter environment provides 5 to 7 dB of margin improvement (MI) over transmitting a linearly polarized signal to the same receiver.

Page 19: John L. Schadler Continuation€¦ · 𝑋𝑃𝐷= 𝑉1 2Ξ“ 21 2 𝑖 2𝛼+Ξ“ 22 2𝑐 2𝛼+2Ξ“ 21Ξ“22 𝑖 𝛼𝑐 𝛼𝑐 πœ™21βˆ’πœ™22 +𝑉2 2Ξ“ 22 2 𝑖 2𝛼+Ξ“ 21

β€’ Gd and MI are independentβ€’ 5-7dB MI is observed when transmitting a single CP signal to a linear

receiver in motionβ€’ Adding a second independent path (MISO) does not change this but

adds 3dB of Gd

The total system gain of dual RH / LH CP MSIO diversity system transmitting to a linearly polarized mobile receiver in motion in a heavy scatter environment is as high as 8-10dB.

Page 20: John L. Schadler Continuation€¦ · 𝑋𝑃𝐷= 𝑉1 2Ξ“ 21 2 𝑖 2𝛼+Ξ“ 22 2𝑐 2𝛼+2Ξ“ 21Ξ“22 𝑖 𝛼𝑐 𝛼𝑐 πœ™21βˆ’πœ™22 +𝑉2 2Ξ“ 22 2 𝑖 2𝛼+Ξ“ 21

β€’ A new antenna specification to considerβ€’ So far we have assumed the transmit signals are completely uncorrelatedβ€’ Imperfect antennas couple energy

SR/SL Linear RH/LH circular

𝐼 = 𝑓 π‘π‘Ÿπ‘œπ‘ π‘  π‘π‘œπ‘™π‘Žπ‘Ÿπ‘–π‘§π‘Žπ‘‘π‘–π‘œπ‘› 𝐼 = 𝑓 π‘Žπ‘₯π‘–π‘Žπ‘™ π‘Ÿπ‘Žπ‘‘π‘–π‘œ

β€’ Studies : 17 dB of cross pol isolation is sufficient to reach 99% of desired data rate

All waves can be decomposed into two components with orthogonal polarization states

Page 21: John L. Schadler Continuation€¦ · 𝑋𝑃𝐷= 𝑉1 2Ξ“ 21 2 𝑖 2𝛼+Ξ“ 22 2𝑐 2𝛼+2Ξ“ 21Ξ“22 𝑖 𝛼𝑐 𝛼𝑐 πœ™21βˆ’πœ™22 +𝑉2 2Ξ“ 22 2 𝑖 2𝛼+Ξ“ 21

𝐼 = 10π‘™π‘œπ‘”

12 +

𝐴𝑅𝐴𝑅2 + 1

12

1

𝐴𝑅 + 1𝐴𝑅 βˆ’ 1

2 + 1 +𝐴𝑅

𝐴𝑅2 + 11

𝐴𝑅 + 1𝐴𝑅 βˆ’ 1

2 βˆ’ 1

SpecificationAR<1.7dB for RH/LH CP MISO

Page 22: John L. Schadler Continuation€¦ · 𝑋𝑃𝐷= 𝑉1 2Ξ“ 21 2 𝑖 2𝛼+Ξ“ 22 2𝑐 2𝛼+2Ξ“ 21Ξ“22 𝑖 𝛼𝑐 𝛼𝑐 πœ™21βˆ’πœ™22 +𝑉2 2Ξ“ 22 2 𝑖 2𝛼+Ξ“ 21

β€’ Employing MISO diversity gain can add up to 3 dB in the system gainβ€’ On average slant linear and circularly polarized antennas transmit the same

average performance in a stationary MISO diversity systemβ€’ This is independent of any margin improvement observed by transmitting CP to

a linearly polarized receive antenna in motionβ€’ Transmitting CP to a linearly polarized receiver in motion in a heavy scatter

environment can add 5 to 7 dB of margin improvementβ€’ Total ATSC 3.0 system gains employing RH/LH CP diversity can be 8 to 10dB if

you choose to increase your TPO by 3dB.β€’ The axial ratio specification of a RH / LH co-located system considered for

diversity should be < 1.7dB.

* The use of LH CP will require an FCC rule change

Page 23: John L. Schadler Continuation€¦ · 𝑋𝑃𝐷= 𝑉1 2Ξ“ 21 2 𝑖 2𝛼+Ξ“ 22 2𝑐 2𝛼+2Ξ“ 21Ξ“22 𝑖 𝛼𝑐 𝛼𝑐 πœ™21βˆ’πœ™22 +𝑉2 2Ξ“ 22 2 𝑖 2𝛼+Ξ“ 21

Come visit us at Booth # C2613


Top Related