Transcript
Page 1: Digital Communication

Introduction to Digital Communications

Midterm

3:30AM ~ 6:30PM, 4/26/2016

1. (2+3+2+3=10 points)

Given the carrier frequency fc , symbol energy E, and symbol duration T, write

down the mathematical formats of the transmitted signals of

A. M-ary PSK.

B. M-ary QAM square constellations (given the in-phase symbol ai and

quadrature symbol bi, and the energy E0 of the signal with the lowest

amplitude.)

C. M-ary FSK (supposing that fc = nc /2T).

D. Carrierless amplitude and phase modulation (CAP) (given a pulse shaping

function of g(t), with g(t) containing no symbol energy)

[A]:

A. ๐‘ ๐‘–(๐‘ก) = โˆš2๐ธ

๐‘‡cos (2๐œ‹๐‘“๐‘๐‘ก +

2๐œ‹

๐‘€(๐‘– โˆ’ 1)), 0 โ‰ค ๐‘ก < ๐‘‡, ๐‘– = 1,โ€ฆ ,๐‘€

B. ๐‘ ๐‘–(๐‘ก) = โˆš2๐ธ0

๐‘‡๐‘Ž๐‘– cos 2๐œ‹๐‘“๐‘๐‘ก โˆ’โˆš

2๐ธ0

๐‘‡๐‘๐‘– sin 2๐œ‹๐‘“๐‘๐‘ก , 0 โ‰ค ๐‘ก โ‰ค ๐‘‡ with ai and bi are

integers. Define ๐ฟ = โˆš๐‘€, then we have

{๐‘Ž๐‘–, ๐‘๐‘–} = [

(โˆ’๐ฟ + 1, ๐ฟ โˆ’ 1) (โˆ’๐ฟ + 3, ๐ฟ โˆ’ 1)(โˆ’๐ฟ + 1, ๐ฟ โˆ’ 3) (โˆ’๐ฟ + 3, ๐ฟ โˆ’ 3)

โ€ฆ (๐ฟ โˆ’ 1, ๐ฟ โˆ’ 1)

โ€ฆ (๐ฟ โˆ’ 1, ๐ฟ โˆ’ 3)โ‹ฎ โ‹ฎ

(โˆ’๐ฟ + 1,โˆ’๐ฟ + 1) (โˆ’๐ฟ + 3,โˆ’๐ฟ + 1)โ‹ฑ โ‹ฎโ€ฆ (๐ฟ โˆ’ 1,โˆ’๐ฟ + 1)

]

C. ๐‘ ๐‘–(๐‘ก) = {โˆš2๐ธ

๐‘‡cos (

๐œ‹

๐‘‡(๐‘›๐‘ + ๐‘–)๐‘ก) , 0 โ‰ค ๐‘ก โ‰ค ๐‘‡

0, elsewhere

, i = 1,2,โ€ฆ,M,

D. ๐‘ (๐‘ก) = Re{โˆ‘ (๐‘Ž๐‘˜ + ๐‘—๐‘๐‘˜)๐‘”(๐‘ก โˆ’ ๐‘˜๐‘‡)exp(๐‘—2๐œ‹๐‘“๐‘๐‘ก) โˆž๐‘˜=โˆ’โˆž }

Remember to write down your id number and your name.

Please provide detailed explanations/derivations in your answers. Correct answer without any explanations

will not be given any credits. However, wrong answers with correct reasoning will have partial credits.

Page 2: Digital Communication

2. (2+3+5=10 points)

Following the previous problem, given the carrier frequency fc , symbol energy E,

and symbol duration T, provide the basis functions and the message points of the

following modulations

A. M-ary PSK.

B. BFSK, also called Sundeโ€™s FSK, (supposing that fc = (f1 + f2)/2).

C. Carrierless amplitude and phase modulation (CAP) (given a pulse shaping

function of g(t)).

[A]:

A. The orthonormal bases for M-ary PSK ae

๐œ™1(๐‘ก) = โˆš2

๐‘‡cos 2๐œ‹๐‘“๐‘๐‘ก 0 โ‰ค ๐‘ก โ‰ค ๐‘‡

๐œ™2(๐‘ก) = โˆ’โˆš2

๐‘‡sin 2๐œ‹๐‘“๐‘๐‘ก 0 โ‰ค ๐‘ก โ‰ค ๐‘‡

The message points are given by.

๐‘ฅ๐ผ = โˆš๐ธcos (2๐œ‹

๐‘€(๐‘– โˆ’ 1)) ๐‘ฅ๐‘„ = โˆš๐ธsin (

2๐œ‹

๐‘€(๐‘– โˆ’ 1))

B. The orthonormal bases functions for Sundeโ€™s FSK are

๐œ™๐‘–(๐‘ก) = {โˆš

2

๐‘‡๐‘cos(2๐œ‹๐‘“๐‘–๐‘ก), 0 โ‰ค ๐‘ก < ๐‘‡๐‘

0, elsewhere

The two message points on are

๐‘บ1 = [โˆš๐ธ๐‘0

] and ๐’”๐Ÿ = [0

โˆš๐ธ๐‘],

C. The passband in-phase pulse is ๐‘(๐‘ก) = ๐‘”(๐‘ก) cos(2๐œ‹๐‘“๐‘๐‘ก), and

the passband quadrature pulse is ๏ฟฝฬ‚๏ฟฝ(๐‘ก) = ๐‘”(๐‘ก) sin(2๐œ‹๐‘“๐‘๐‘ก).

The message points are {๐‘Ž๐‘˜, ๐‘๐‘˜}

Page 3: Digital Communication

3. (4+8+4+4=20 points)

Given the carrier frequency fc , symbol energy Eb, and symbol duration Tb, for

Minimum shift keying (MSK).

A. Provide the mathematical format of the transmitted signal

B. Provide the basis functions and the message points

C. Show the phase trellis of the MSK signals for a sequence of binary waves:

1 1 0 1 0 0 1 0

D. For Gaussian-filtered MSK (GMSK), given the pulse shaping function

๐‘”(๐‘ก) =1

2[erfc (๐œ‹โˆš

2

log2๐‘Š๐‘‡๐‘ (

๐‘ก

๐‘‡๐‘โˆ’

1

2)) โˆ’ erfc (๐œ‹โˆš

2

log2๐‘Š๐‘‡๐‘ (

๐‘ก

๐‘‡๐‘+

1

2))]

with W being the 3 dB baseband bandwidth of the pulse shaping filter.

Explain how GMSK might affect the phase trellis for the cases of ๐‘Š๐‘‡๐‘=

and ๐‘Š๐‘‡๐‘

[A]:

A. ๐‘ (๐‘ก) = โˆš2๐ธ๐‘

๐‘‡๐‘cos ๐œƒ(๐‘ก) cos(2๐œ‹๐‘“๐‘๐‘ก) โˆ’ โˆš

2๐ธ๐‘

๐‘‡๐‘sin ๐œƒ(๐‘ก) sin(2๐œ‹๐‘“๐‘๐‘ก)

With ๐œƒ(๐‘ก) = ๐œƒ(0) ยฑ๐œ‹

2๐‘‡๐‘๐‘ก, 0 โ‰ค ๐‘ก โ‰ค ๐‘‡๐‘

B. The in-phase term for โˆ’๐‘‡๐‘ โ‰ค ๐‘ก โ‰ค ๐‘‡๐‘ is

๐œ™1(๐‘ก) = โˆš2

๐‘‡๐‘๐‘๐‘œ๐‘  (

๐œ‹

2๐‘‡๐‘๐‘ก) ๐‘๐‘œ๐‘  2๐œ‹๐‘“๐‘๐‘ก

The message point is ๐‘ 1 = โˆซ ๐‘ (๐‘ก)๐œ™1(๐‘ก)๐‘‡๐‘โˆ’๐‘‡๐‘

๐‘‘๐‘ก = โˆš๐ธ๐‘cos ๐œƒ(0).

On the other hand, the quadrature term for 0 โ‰ค ๐‘ก โ‰ค 2๐‘‡๐‘ is

๐œ™2(๐‘ก) = โˆš2

๐‘‡๐‘๐‘ ๐‘–๐‘› (

๐œ‹

2๐‘‡๐‘๐‘ก) ๐‘ ๐‘–๐‘› 2๐œ‹๐‘“๐‘๐‘ก

The message point is ๐‘ 2 = โˆซ ๐‘ (๐‘ก)๐œ™2(๐‘ก)2๐‘‡๐‘0

๐‘‘๐‘ก = โˆ’โˆš๐ธ๐‘sin ๐œƒ(๐‘‡๐‘)

D. Phase transitions in the phase diagram become smoother.

Page 4: Digital Communication

4. (5+5+10+5=25 points)

Given that the bit energy is Eb and the noise density is N0,

A. Show the observation vectors of the received QPSK signals, and accordingly

provide the decision rule and its corresponding decision boundaries in the

signal space of QPSK

B. Suppose the input dibits are Gray-encoded, derive the bit error rate of

QPSK given that 1

โˆš๐œ‹โˆซ exp[โˆ’๐‘ง2]๐‘‘๐‘งโˆž

๐‘ฅ=

1

2erfc(๐‘ฅ)

C. Show the observation vectors of the received MSK signals, and accordingly

provide the detection rule and its corresponding decision boundaries in the

signal space of MSK.

D. Derive the approximate bit error rate (BER) of MSK.

[A]:

A. See lecture note

B. The average probability of symbol error is

๐‘ƒ๐‘’ = 1 โˆ’ ๐‘ƒ๐‘ = erfc (โˆš๐ธ

2๐‘0) โˆ’

1

4erfc2 (โˆš

๐ธ

2๐‘0)

๐‘ƒ๐‘’ โ‰… erfc (โˆš๐ธ

2๐‘0) = erfc (โˆš

๐ธ๐‘๐‘0) , when

๐ธ

2๐‘0โ‰ซ 1

For Gray coded symbols, the most probable number of bit errors is one as a

symbol is most likely to be taken as adjacent symbols. As a result

โˆด BER =๐‘ƒ๐‘’2=1

2erfc (โˆš

๐ธ๐‘๐‘0)

C. For the optimum detection of ๐œƒ(0), we project x(t) onto ๐œ™1(๐‘ก)

๐‘ฅ1 = โˆซ ๐‘ฅ(๐‘ก)๐œ™1(๐‘ก)๐‘‡๐‘

โˆ’๐‘‡๐‘

๐‘‘๐‘ก = โˆš๐ธ๐‘cos ๐œƒ(0) + ๐‘ค1, โˆ’ ๐‘‡๐‘ โ‰ค ๐‘ก โ‰ค ๐‘‡๐‘

If ๐‘ฅ1 > 0, then ๐œƒ(0) = 0, otherwise ๐œƒ(0) = ๐œ‹.

For the optimum detection of ๐œƒ(๐‘‡๐‘), we project x(t) onto ๐œ™2(๐‘ก)

๐‘ฅ2 = โˆซ ๐‘ฅ(๐‘ก)๐œ™2(๐‘ก)2๐‘‡๐‘

0

๐‘‘๐‘ก = โˆ’โˆš๐ธ๐‘sin ๐œƒ(๐‘‡๐‘) + ๐‘ค2, 0 โ‰ค ๐‘ก โ‰ค 2๐‘‡๐‘

If ๐‘ฅ2 > 0, then ๐œƒ(๐‘‡๐‘) = โˆ’๐œ‹

2, otherwise ๐œƒ(๐‘‡๐‘) =

๐œ‹

2.

D. The average correction I s

Page 5: Digital Communication

๐‘ƒ๐‘ = (1 โˆ’ ๐‘ƒโ€ฒ)2 = 1 โˆ’ erfc (โˆš๐ธ๐‘๐‘0) +

1

4erfc2 (โˆš

๐ธ๐‘๐‘0)

Thus the probability of wrong decision for one message points is โ‰…

erfc (โˆš๐ธ๐‘

๐‘0) which yields the BER of ๐‘ƒ๐‘’ =

1

2erfc (โˆš

๐ธ๐‘

๐‘0)

Page 6: Digital Communication

5. (10+5+5=20 points)

For M-ary QAM with square constellations, i.e. M=4, 16, 64,โ€ฆ, suppose the

energy of the signal with the lowest amplitude is E0,

A. Derive the symbol error rate of M-ary QAM.

B. Define the bandwidth efficiency as Rb/B, where Rb = 1/Tb is the bit rate, and

B=2/T with T being the symbol duration. Show the bandwidth efficiency of

M-ary QAM.

C. Compare the bandwidth efficiency of M-ary QAM with that of M-ary FSK

supposed that the adjacent frequencies of M-ary FSK are separated from

each other by 1/2T

[A]:

A. See the lecture for the details. Given the average symbol energy

๐ธ๐‘Ž๐‘ฃ =2(๐ฟ2 โˆ’ 1)๐ธ0

3=2(๐‘€ โˆ’ 1)๐ธ0

3

The average symbol error rate is

๐‘ƒ๐‘’ โ‰… 2(1 โˆ’1

โˆš๐‘€) erfc (โˆš

๐ธ0๐‘0) = 2(1 โˆ’

1

โˆš๐‘€) erfc (โˆš

3๐ธ๐‘Ž๐‘ฃ2(๐‘€ โˆ’ 1)๐‘0

)

B. The symbol duration T of M-ary QAM is ๐‘‡๐‘ log2๐‘€. Since ๐‘…๐‘ =1

๐‘‡๐‘, and B =

2

T=

2๐‘…๐‘

log2๐‘€, then ๐œŒ =

๐‘…๐‘

๐ต=

log2๐‘€

2

C. For M-ary FSK, the bandwidth is B = M / 2T , then ๐œŒ =๐‘…๐‘

๐ต=

2๐‘™๐‘œ๐‘”2๐‘€

๐‘€

Page 7: Digital Communication

6. (5+5+5=15 points)

Given that the bit energy is Eb and the noise density is N0,

A. Show the baseband power spectral density (PSD) of the BFSK signal

B. Show the baseband PSD of the MSK signal

C. Compare the baseband PSDs with that of the QPSK signal

Notice that sinc (๐‘ฅ) =sin (๐œ‹๐‘ฅ)

๐‘ฅ

[A]:

A. The in-phase component of BFSK is completely independent of the input

binary wave, and is equal to โˆš2๐ธ๐‘/๐‘‡๐‘ cos(๐œ‹๐‘ก/๐‘‡๐‘). The PSD of the in-phase

component is, thus, equal to

๐ธ๐‘2๐‘‡๐‘

[๐›ฟ (๐‘“ โˆ’1

2๐‘‡๐‘) + ๐›ฟ (๐‘“ +

1

2๐‘‡๐‘)]

Depending on the input value, the quadrature component is equal to g(t) or

-g(t) where

g(๐‘ก) = {โˆš2๐ธ๐‘๐‘‡๐‘

sin (๐œ‹๐‘ก

๐‘‡๐‘) , 0 โ‰ค ๐‘ก โ‰ค ๐‘‡๐‘

0, otherwise

The ESD of g(t) is obtained by F(g(t)) F*(g(t)), yielding

๐›นg(๐‘“) =8๐ธ๐‘๐‘‡๐‘cos

2(๐œ‹๐‘“๐‘‡๐‘)

๐œ‹2(4๐‘‡๐‘2๐‘“2 โˆ’ 1)

2

The PSD thus equals to

๐‘†๐ต(๐‘“) =๐ธ๐‘2๐‘‡๐‘

[๐›ฟ (๐‘“ โˆ’1

2๐‘‡๐‘) + ๐›ฟ (๐‘“ +

1

2๐‘‡๐‘)] +

8๐ธ๐‘cos2(๐œ‹๐‘“๐‘‡๐‘)

๐œ‹2(4๐‘‡๐‘2๐‘“2 โˆ’ 1)

2

B. Depending on the value of ๐œƒ(0), the in-phase component equals g(t) or -g(t)

where

g(๐‘ก) = {โˆš2๐ธ๐‘๐‘‡๐‘

cos (๐œ‹๐‘ก

2๐‘‡๐‘) , โˆ’๐‘‡๐‘ โ‰ค ๐‘ก โ‰ค ๐‘‡๐‘

0, otherwise

The ESD of g(t) is obtained by F(g(t)) F*(g(t)), yielding

๐›นg(๐‘“) =32๐ธ๐‘๐‘‡๐‘cos

2(2๐œ‹๐‘“๐‘‡๐‘)

๐œ‹2(16๐‘‡๐‘2๐‘“2 โˆ’ 1)

2

The PSD equals ๐›นg(๐‘“)/2๐‘‡๐‘

Page 8: Digital Communication

Similarly, depending on the value of ๐œƒ(๐‘‡๐‘), the quadrature component is

equal to g(t) or โ€“g(t) where

g(๐‘ก) = {โˆš2๐ธ๐‘๐‘‡๐‘

sin (๐œ‹๐‘ก

2๐‘‡๐‘) , 0 โ‰ค ๐‘ก โ‰ค 2๐‘‡๐‘

0, otherwise

The PSD is the same to that of the in-phase component

Since the in-phase and the quadrature components of MSK are statically

independent, the baseband PSD of the MSK equals

๐‘†B(๐‘“) = 2๐›นg(๐‘“)

2๐‘‡๐‘=

32๐ธ๐‘cos2(2๐œ‹๐‘“๐‘‡๐‘)

๐œ‹2(16๐‘‡๐‘2๐‘“2 โˆ’ 1)

2

C. For QPSK, the in-phase and quadrature components are statically

independent. The baseband PSD is thus equal to

๐‘†๐ต(๐‘“) = 2๐ธsinc2 (๐‘“๐‘‡) = 2๐ธ๐‘ ๐‘–๐‘›2 (๐œ‹๐‘“๐‘‡๐‘)

(๐œ‹๐‘“๐‘‡๐‘)2= 2๐ธ๐‘ ๐‘™๐‘œ๐‘”2๐‘€๐‘ ๐‘–๐‘›๐‘2 (๐‘“๐‘‡๐‘ ๐‘™๐‘œ๐‘”2๐‘€)

with M=4.


Top Related