Transcript
Page 1: cellular Transport and Signalling Student_s Copy

SAN BEDA COLLEGE OF MEDICINE Cellular Transport and Signaling BY Julianne Lopez, MD-MBA

SAN BEDA COLLEGE OF MEDICINE Page 1 of 6 Female Reproductive Physiology BY Julianne Lopez, MD-MBA

 Cellular  Transport  and  Signaling  by  Julianne  Lopez,  MD-­‐MBA  [email protected]  09178520849    

Cellular  Transport  and  Signaling    EDUCATIONAL  OBJECTIVES  At  the  end  of  the  4-­‐hour  lecture,  the  future  Bedan  Doctor  must  be  able  to:  • Illustrate  the  fluid-­‐mosaic  model  of  cell  membranes  • Describe  the  types  of  membrane  transport.  

o Differentiate  between  active  and  passive  transport.  o Describe  features  of  the  types  of  passive  transport  and  

give  their  mechanisms.  ! Simple  diffusion  ! Facilitated  diffusion  ! Osmosis  

o Name  and  give  features  of  the  types  of  active  transport.  ! Primary  active  transport  ! Secondary  active  transport    

o Explain,  using  specific  examples,  the  difference  between  primary  and  secondary  active  transport.  

o Explain  the  importance  and  characteristics  of  carrier-­‐mediated  transport.  ! Stereospecificity  ! Competition  ! Saturation  

• Describe  the  modes  of  cell  communication  and  signaling.  o Describe  the  mechanisms  of  cellular  communication  

and  regulation.  ! Endocrine  ! Neurocrine  ! Paracrine  ! Autocrine  ! Juxtacrine      

o Discuss  the  role  of  receptor  proteins  in  cell  signaling.  o Name  the  types  of  signal  transduction  pathways.  

! G-­‐Protein  mediated  ! Second  Messenger  –  dependent  ion  channels  ! Second  Messenger  –  dependent  protein  kinases  

• Calmodulin  dependent  protein  kinases  • Cyclic  AMP  –  dependent  protein  kinases  • Atrial  Natriuretic  Peptide  Receptor  –  guanylyl  

cyclases    

Cellular  Membranes    Cellular  membranes  (structure  and  composition)  -­‐ also  called  plasma  membrane  -­‐ a  thin,  pliable,  elastic  structure  that  envelops  the  cell  -­‐ 7.5  to  10  nm  thick  -­‐ composition:  

                     

FLUID  MOSAIC  MODEL:    

 -­‐ primarily  composed  of  a  ___________  and  ___________  -­‐ phospholipid  BILAYER  

 -­‐ Mosaic  "  within  the  phospholipid  bilayer  are  many  

different  types  of  embedded  proteins  and  cholesterol  molecules  

-­‐ Fluid  "the  embedded  molecules  can  move  sideways  throughout  the  membrane,  meaning  the  membrane  is  not  solid,  but  more  like  fluid  o Fluidity  of  the  membrane  is  determined  by  

temperature  and  lipid  composition  ! Temperature:  the  higher  the  temperature,  the  

more  fluid  the  membrane  ! Lipid  composition:  presence  of  unsaturated  

fatty  acyl  chains  (double  bond  "  “kink”)  increases  membrane  fuidity  

 LIPID  component  of  cell  membrane:  -­‐ lipid  bilayer  -­‐ composed  of  phospholipid  molecules  (major  lipids  of  the  

plasma  membrane)  -­‐ phospholipids  =  ______________  backbone  (hydrophilic,  

charged,  polar  head)  +  2  ___________  (hydrophobic,  uncharged,  nonpolar  tail)  o because  it  has  a  hydrophilic  and  hydrophobic  end,  a  

phospholipid  molecule  is  considered  ___________    -­‐ impermeable  to  water  soluble  substances  

(_________________________________)  -­‐ permeable  to  lipid  soluble  substances  

(_________________________________)  -­‐ cholesterol  molecules  is  a  critical  component  of  the  bilayer  

o also  amphipathic  o contribute  to  the  fluidity  of  the  membrane  o prevents  the  hydrophobic  chains  from  packing  too  

closely  together  o stabilize  the  membrane  at  normal  body  temperature    

 -­‐ glycolipids  

o 2  fatty  acyl  chains  linked  to  polar  head  groups  that  consist  of  carbohydrates  

o also  amphiphatic  

55%  25%  

13%  4%  3%   protein  

phospholipids  

cholesterol  

other  lipids  

carbohydrates  

Page 2: cellular Transport and Signalling Student_s Copy

SAN BEDA COLLEGE OF MEDICINE Cellular Transport and Signaling BY Julianne Lopez, MD-MBA

SAN BEDA COLLEGE OF MEDICINE Page 2 of 6 Female Reproductive Physiology BY Julianne Lopez, MD-MBA

   Protein  Component  of  Cell  membranes  -­‐ may  either  be  integral  or  peripheral    Integral  membrane  proteins  -­‐ embedded  in,  and  anchored  to,  the  cell  membrane  by  

hydrophobic  interactions  -­‐ some  integral  proteins  are  ______________________  (span  the  

lipid  bilayer  one  or  more  times),  thus  are  in  contact  with  both  ECF  and  ICF  

-­‐ some  integral  proteins  are  embedded  but  do  not  span  it  -­‐ examples:  ligand-­‐binding  receptors  (for  hormones  or  

neurotransmitters),  transport  proteins  (i.e.  Na+-­‐K+  ATPase),  pores,  ion  channels,  G  protein-­‐coupled  receptors  

 Peripheral  membrane  proteins  -­‐ are  not  embedded  in  the  membrane    -­‐ are  not  covalently  bound  to  cell  membrane  components  

(loosely  attached  by  _________________________________)  -­‐ attached  to  either  the  intracellular  or  extracellular  side  of  

the  cell  membrane    -­‐ example:  ankyrin  –  a  peripheral  membrane  protein  that  

anchors  the  sytoskeleton  of  red  blood  cells  to  an  integral  membrane  transport  protein,  the  CL-­‐HCO3  exchanger  

 

Transport  Across  Membranes    General  Overview:    

 

 Notes:            

Simple  diffusion:  

 -­‐ process  by  which  molecules  move  spontaneously  from  an  

area  of  high  concentration  to  one  of  low  concentration  -­‐ occurs  as  a  result  of  random  thermal  motion  of  molecules      

 -­‐ only  form  of  transport  that  is  NOT  carrier-­‐mediated  -­‐ occurs  down  an  electrochemical  gradient  (“_________________”)  

(meaning  no  energy  expenditure),  therefore,  does  NOT  require  metabolic  energy  and  is  considered  PASSIVE  

-­‐ can  be  measured  using  the  following  equation  (assuming  a  nonelectrolyte  it  is  uncharged):    

J  =  -­‐PA  (C1  –  C2)    

Where:  J  =  flux  (flow)  (mmol/sec)  P  =  permeability  (cm/sec)  

A  =  area  (cm2)    C1=  concentration1  (mmol/L)  C2=  concentration2  (mmol/L)  

 -­‐ Concentration  Gradient  (C1  –  C2)  

o The  __________________________________  across  the  membrane  is  the  DRIVING  FORCE  for  net  diffusion  

 o The  larger  the  difference  in  solute  concentration  

between  the  2,  the  greater  the  driving  force,  greater  net  diffusion  

o What  happens  if  2  solutions  are  equal?  Answer:          

-­‐ Permeability:  describes  the  ease  with  which  a  solute  diffuses  through  a  membrane    

P  =  KD   Δx  

 Where:  

transport  across  

membranes  

simple  diffusion  

carrier-­‐mediated  transport  

facilitated  diffusion  

active  transport  

primary   secondary  

Page 3: cellular Transport and Signalling Student_s Copy

SAN BEDA COLLEGE OF MEDICINE Cellular Transport and Signaling BY Julianne Lopez, MD-MBA

SAN BEDA COLLEGE OF MEDICINE Page 3 of 6 Female Reproductive Physiology BY Julianne Lopez, MD-MBA

P  =  permeability  K  =  partition  coefficient  D  =  Diffusion  coefficient  X  =  membrane  thickness  

 Factors  affecting  permeability:  

 Partition  coefficient  (K)  o by  definition,  describes  the  solubility  of  a  solute  in  oil  

relative  to  its  solubility  in  water  ! the  greater  the  relative  solubility  in  oil,  the  higher  

the  partition  coefficient,  the  more  easily  the  solute  can  dissolve  in  the  cell  membrane’s  lipid  bilayer  

o Predict:  ! Non  polar  solutes:  soluble  in  oil  "  _________________  

_________________  ! Polar  solutes:  insoluble  in  oil  

__________________________________  o Can  be  measured  by  adding  the  solute  to  a  mixture  of  

olive  oil  and  water  then  measuring  its  concentration  in  the  oil  phase  relative  to  its  concentration  in  water    

K  =  concentration  in  olive  oil        concentration  in  water  

 Diffusion  coefficient  (D)  o it  is  defined  by  the  stokes-­‐einstein  equation  

D  =  KT                  6πrη  

 Where:  

D  =  diffusion  coefficient  K  =  Boltzmann’s  constant  

o it  correlates  _________________with  the  molecular  radius  of  the  solute  and  viscosity  of  the  medium  ! Predict:  

Small  solutes  "  _________________diffusion  coefficients  "  __________________________________    Viscous  solutions  "  _________________  diffusion  coefficients  "  __________________________________  

Membrane  thickness  (x)  o the  thicker  the  cell  membrane,  the  greater  the  distance  

the  solute  must  diffuse  and  the  lower  the  rate  of  diffusion,  therefore,  membrane  thickness  and  rate  of  diffusion  is  _________________________________________________    

-­‐ Surface  Area  (A)  o The  greater  the  SA,  the  _________________  the  rate  of  

diffusion,  therefore,  it  is  _________________  proportional  to  one  another  

 Diffusion  of  electrolytes  -­‐ implications:  

1. The  potential  difference  across  the  membrane  will  alter  the  rate  of  diffusion  of  a  charged  solute  /  electrolyte    

2. When  a  charged  solute  diffuses  down  a  concentration  gradient  (from  higher  concentration  to  lower  concentration)  that  diffusion  can  itself  generate  a  potential  difference  across  a  membrane  called  __________________________________    

Carrier  Mediated  Transport  -­‐ facilitated  diffusion,  primary  active  transport  and  secondary  

active  transport  all  involve  integral  membrane  proteins  and  are  considered  carrier-­‐mediated  

-­‐ characteristics  of  carrier-­‐mediated  transport:  1. Saturation  o based  on  the  concept  that  carrier  proteins  have  a  

limited  number  of  binding  sites  for  the  solute  

 o ex:  glucose  transport  in  the  proximal  tubule  of  kidney  2. Stereospecific  o binding  sites  for  solute  on  the  transport  proteins  are  

stereospecific  o can  distinguish  between  isomers  o in  contrast,  simple  diffusion,  does  not  distinguish  

between  isomers  3. Competition    o can  recognize,  bind,  and  transport  chemically  related  

solutes  o ex:  D-­‐glucose  vs  D-­‐galactose  (competitive  inhibitor  of  

D-­‐glucose)    Facilitated  Diffusion:  -­‐ characteristics:  

o occurs  down  an  electrochemical  gradient  (downhill),  similar  to  simple  diffusion  

o no  input  of  metabolic  energy,  therefore  is  passive  

 o at  low  solute  concentration  "  more  rapid  than  simple  

diffusion  o at  high  solute  concentration  "  carriers  can  become  

saturated  and  facilitated  diffusion  will  level  off    (the  rate  of  diffusion  approaches  a  maximum,  Vmax.  It  cannot  rise  greater  than  Vmax  level)  

o is  carrier-­‐mediated,  therefore,  exhibits  stereospecificity,  saturation  and  competition    

-­‐ example:    GLUT  4  transporter  o responsible  for  the  insulin-­‐mediated  transport  of  D-­‐

glucose  from  the  bloodstream  to  the  skeletal  muscles  and  adipose  tissue  

o competitive  inhibitors:  D-­‐galactose,  3-­‐O-­‐methyl  glucose,  phlorizin    

o L-­‐glucose  (non-­‐physiologic  stereoisomer)  is  NOT  recognized  by  GLUT-­‐4  

 Primary  Active  transport:  -­‐ moved  against  an  electrochemical  potential  gradient  (uphill)  

"  solute  is  moved  from  an  area  of  low  concentration  to  an  area  of  high  contentration  

-­‐ there  is  input  of  metabolic  energy  in  the  form  of  ATP    -­‐ when  directly  coupled  to  the  transport  process  "  primary  

active  transport  -­‐ examples:  

 

Page 4: cellular Transport and Signalling Student_s Copy

SAN BEDA COLLEGE OF MEDICINE Cellular Transport and Signaling BY Julianne Lopez, MD-MBA

SAN BEDA COLLEGE OF MEDICINE Page 4 of 6 Female Reproductive Physiology BY Julianne Lopez, MD-MBA

__________________________________  o main  function:  maintaining  concentration  gradients  for  

Na  and  K  across  cell  membranes  (goal:  low  intracellular  Na  and  high  intracellular  K)  

o present  in  the  membranes  of  ALL  cells  o 3  Na+    out  (ICF  "  ECF)  &  2  K+    in  (ECF  "  ICF)  o because  of  this  stoichiometry,  more  positive  charge  is  

pumped  out  of  the  cell  than  is  pumped  into  the  cell  (making  ICF  more  negative)  ! sub-­‐units:  

• alpha  sub-­‐units  o contains  ATPase  activity  and  binding  

sites  of  transported  ions  • beta-­‐sub  units  

o has  2  states:  ! E1  state:  binding  site  for  Na  and  K  face  the  ICF;  

enzyme  has  high  affinity  for  Na  ! E2  state:  binding  site  for  Na  and  K  face  the  ECF;  

enzyme  has  high  affinity  for  K  ! The  cycling  between  the  2  states  is  powered  by  

ATP  hydrolysis  

 check  p.  9  for  words    ★ Clinical  correlation:    _________________________________  (i.e.  ouabain  /  digitalis)  are  a  class  of  drugs  that  inhibits  Na+-­‐K+  ATPase  by  binding  to  the  E2  ~  P  form  near  the  K  binding  site  on  ECF  side  (preventing  conversion  back  to  E1)    Result:  _________________  intracellular  Na  and  _________________  intracellular  K      __________________________________  

o Main  function:  extrude  1  Ca2+  (for  1  ATP)  from  the  cell  (ICF  "  ECF)  against  an  electrochemical  gradient,  which  is  responsible  for  maintaining  a  low  intracellular  Ca2+  

o Present  in  the  membrane  of  MOST  cells  o SERCA  (___________________________________________________)  

! Is  a  variant  of  Ca2+  ATPase  found  in  sarcoplasmic  reticulum  of  muscles  and  endoplasmic  reticulum  of  other  cells  

! Function:  2  ions  Ca2+  (for  1  ATP)  from  ICF  to  the  interior  of  sarcoplasmic  or  endoplasmic  reticulum  

 __________________________________  

o Found  in  the  _________________  of  gastric  mucosa  ! Pumps  H+  from  ICF  of  pariental  cells  into  the  

lumen  of  stomach  "  acidifies  gastric  contents  o  Also  found  in  the  ______________________________  of  renal  

collecting  duct    

★ Clinical  correlation:    ___________________________________________________,  an  inhibitor  of  gastric  H+–K+  ATPase  can  be  used  therapeutically  to  reduce  the  secretion  of  H+  in  the  treatment  of  peptic  ulcer  disease      Secondary  Active  Transport  -­‐ transport  of  2  or  more  solutes  is  coupled  

o one  of  the  solutes,  usually  _________________moves  _________________  its  electrochemical  gradient,  and  the  other  solute  moves  _________________  its  electrochemical  gradient  

o downhill  movement  of  Na+  provides  the  energy  for  the  uphill  movement  of  the  other  solute  

o indirect  input  of  metabolic  energy     Physio  Pearl:    Inhibition  of  _________________  (i.e.  by  treatment  of  _________________),  diminished  the  transport  of  Na+  from  ICF  to  ECF,  causing  the  intracellular  Na+  concentration  to  increase  "  _________________  the  size  of  the  transmembrane  gradient    Implication:  indirectly,  all  secondary  active  transport  processes  are  diminished  by  inhibitors  of  the  Na+-­‐K+  ATPase  because  their  energy  source,  the  Na+  gradient,  is  diminished.      -­‐ 2  types  of  secondary  active  transport:  

o Cotransport  or  symport  o Countertransport,  antiport  or  exchange  

 Cotransport  -­‐ form  of  secondary  active  transport  in  which  all  solutes  are  

transported  in  the_________________  direction  across  the  cell  membrane  

-­‐ examples:    

__________________________________  

 o found  in  the  absorbing  epithelia  of  small  intestine  and  

renal  proximal  tubule  o both  solutes  are  required  for  transport  

 __________________________________  -­‐ present  in  the  luminal  membrane  of  epithelial  cells  of  the  

thick  ascending  limb  of  the  Loop  of  Henle    -­‐  Countertransport  (antiport  or  exchange)  -­‐ form  of  active  transport  in  which  solutes  move  in  

_________________  direction  across  the  cell  membrane  -­‐ example:  

 __________________________________          __________________________________            Type  of  transport  

Active  or  Passive  

Carrier-­‐Mediated  

Uses  metabolic  energy  

Dependent  on  Na+  gradient  

Simple  diffusion   Passive;  downhill  

No   No   No  

Facilitated  diffusion  

Passive;  downhill  

Yes   No   No  

Primary  Active  Transport  

Active;  uphill  

Yes   Yes;  direct   No  

Cotransport   Secondary  Active*  

Yes   Yes;  indirect  

Yes  (solutes  move  in  SAME  direction  as  Na  across  cell  

Page 5: cellular Transport and Signalling Student_s Copy

SAN BEDA COLLEGE OF MEDICINE Cellular Transport and Signaling BY Julianne Lopez, MD-MBA

SAN BEDA COLLEGE OF MEDICINE Page 5 of 6 Female Reproductive Physiology BY Julianne Lopez, MD-MBA

membrane)  Countertransport   Secondary  

Active*  Yes   Yes;  

indirect  Yes  (solutes  move  in  OPPOSITE  direction  as  Na  across  cell  membrane)  

*Na+  is  transported  downhill  and  one  or  more  solutes  are  transported  uphill  

 Osmosis  -­‐ The  process  of  net  movement  of  water  through  a  selective  

membrane  caused  by  a  concentration      

                     Basic  Concepts  in  Osmosis    SOLUTION  -­‐ homogeneous  mixture  composed  of  two  or  more  substances  

o homogenous  means  that  components  and  properties  of  the  mixture  are  uniform  throughout  its  entire  volume  

-­‐ solute  is  the  substance  dissolved  -­‐ solvent  is  the  substance  that  dissolves  the  solute    OSMOLARITY  -­‐ concentration  of  all  osmotically  active  particles  (osmoles)  

per  liter  of  solution  (osmol/L)  -­‐ colligative  property  that  can  be  measured  by  freezing  point  

depression    

OSMOLALITY  -­‐ concentration  of  all  osmotically  active  particles  (osmoles)  

per  kilogram  of  solvent  (osmol/kg)  -­‐ determines  osmotic  pressure  between  solutions    ISOSMOTIC  -­‐ two  solutions  that  have  the  same  osmolarity    HYPEROSMOTIC  -­‐ solution  with  the  higher  osmolarity      HYPOSMOTIC  -­‐ solution  with  the  lower  osmolarity  

   Osmotic  Pressure  -­‐ The  exact  amount  of  pressure  required  to  stop  osmosis  -­‐ pressure  which  needs  to  be  applied  to  a  solution  to  prevent  

the  inward  flow  of  water  across  a  semipermeable  membrane  -­‐ calculated  using  van’t  Hoff’s  law  or  Morse  law    physiologic  implications:  -­‐ osmotic  pressure  is  HIGHER  with  higher  osmolality  -­‐ osmotic  pressure  is  HIGHER  with  higher  temperature  -­‐ the  higher  the  osmotic  pressure  of  a  solution,  the  greater  the  

tendency  for  water  to  flow  into  the  solution    TONICITY  -­‐ measure  of  the  osmotic  pressure  of  two  solutions  separated  

by  a  semipermeable  membrane  -­‐ influenced  only  by  solutes  that  cannot  cross  the  membrane              

   

Cell  Communication  and  Signaling    Signaling  Pathways  

! multiple,  hierarchical  steps  ! amplification  of  the  hormone-­‐receptor  binding  event  ! activation  of  multiple  pathways  and  regulation  of  

multiple  cellular  functions  ! antagonism  by  constitutive  and  regulated  feedback  

mechanisms,  Signaling  Molecules    

! peptides  and  proteins    Iinsulin)  ! catecholamines    (epinephrine  and  norepinephrine)  ! steroid  hormones    (aldosterone,  estrogen)  ! iodothyronines    ! eicosanoids  (prostaglandins,  leukotrienes,  

thromboxanes,  and  prostacyclins)  ! small  molecules  

– amino  acids,  nucleotides,  ions  (e.g.,  Ca++),  and  gases,  such  as  nitric  oxide  (NO)  and  carbon  dioxide  (CO2  

 Mechanisms  of  Cellular  Communication  

! endocrine  ! neurocrine  ! paracrine  ! autocrine  ! juxtacrine  

Endocrine  Signaling  ! transport  of  hormones  along  the  blood  stream  to  a  

distant  target  organ  ! EXAMPLES:  

– thyroid  hormone  – insulin    – glucagon  

Neurocrine  Signaling  ! also  called  synaptic  transmission  ! transport  of  neuro-­‐transmitters  from  a  presynaptic  cell  

to  a  postsynaptic  cell  ! EXAMPLE:  

– neuromuscular  junction  Paracrine  Signaling  

! release  and  diffusion  of  local  hormones  with  regulatory  action  on  neighboring  target  cells  

! EXAMPLE:  – testosterone  in  spermatogenesis  – retinoic  acid  on  retina  

Autocrine  Signaling  ! a  cell  secretes  hormones  or  chemical  messengers  that  

binds  to  the  same  cell    ! EXAMPLE:  

– IL-­‐1  on  monocytes  Juxtacrine  Signaling  

! also  called  contact-­‐dependent  signaling  ! transmitted  via  oligosaccharide,  lipid  or  protein  

components  of  a  cell  membrane  ! occurs  between  adjacent  cells  linked  by  gap  junctions  

 

A SOLVENT (water) undergoes osmosis from an area of low solute concentration to an area of high solute concentration. A SOLUTE undergoes diffusion from an area of high solute concentration to an area of low solute concentration.

OSMOLARITY ≠ TONICITY OSMOLARITY accounts for all solutes.

TONICITY accounts for only non-permeating solutes

Page 6: cellular Transport and Signalling Student_s Copy

SAN BEDA COLLEGE OF MEDICINE Cellular Transport and Signaling BY Julianne Lopez, MD-MBA

SAN BEDA COLLEGE OF MEDICINE Page 6 of 6 Female Reproductive Physiology BY Julianne Lopez, MD-MBA

Receptors  ! Signal  transducers  ! Membrane  receptors  ! Nuclear  receptors  

 Plasma  Membrane  Receptors  

! Ion-­‐channel  linked  ! G-­‐protein  coupled  receptors  ! Catalytic  receptors  ! Transmembrane  receptors    

Nuclear  Receptors  ! Long  biological  half-­‐life  ! Diffuse  across  the  plasma  membrane  ! Bind  to  nuclear  receptors    ! hormone-­‐receptor  complex  binds  to  DNA  and  regulates  

the  transcription  of  specific  genes  ! Early  primary  response  -­‐-­‐"  gene  activation  to  stimulate  

other  genes  "  biological  effect    Signal  Transduction  

! Second  messengers  ! Involves  small  molecules  in  complicated  networks  

within  the  cell  ! Signal  amplification  ! Molecular  switches  

Types  of  Signal  Transduction  Pathways  ! g  proteins  ! ion  channels  ! protein  kinases  

– calmodulin-­‐dependent  protein  kinases  – camp-­‐dependent  protein  kinases  – anp-­‐guanylyl  cyclases  

Ion  Channel  Linked  Signal  Transduction  Pathway  ! mediate  direct  and  rapid  synaptic  signaling  between  

electrically  excitable  cells  ! neurotransmitters  bind  to  the  receptors  and  either  

open  or  close  the  ion  channel  ! Chemical  "electrical  signal"  response  ! Examples:  Voltage  gated-­‐channels  in  NMJ,  ryanodine  

receptor,  Arachidonic  acid,  caffeine    G  Protein-­‐Coupled  Signal  Transduction  Pathways  

! Heterotimeric  complexes  -­‐  α,  β,  and  γ  subunits  ! are  linked  with  more  than  1000  diferent  receptors  ! family  of  integral  transmembrane  proteins  that  possess  

seven  transmembrane  domains    ! EXAMPLES:  

! adrenergic  receptors  ! chemokine  receptors  ! TSH  receptors  

! Active  ! GTP  with  alpha  subunit  ! Activation  via  guanine  nucleotide  exchange  

factors  (GEFs)  [facilitates  the  dissociation  of  GDP  and  binding  of  GTP]  

! Inactive  ! GDP  ! Inactivation  via  GTPase-­‐accelerating  

proteins  (GAPS)  and  RGS  proteins  (regulation  of  G  protein  signaling),    

! Desensitization  and  endocytic  removal  (β-­‐arrestins  )  

! Signals  ! adenylyl  cyclase,  phosphodiesterases,  and  

phospholipases    Catalytic  Receptors  

! Many,  many,  many  types!  ! Receptor  gunaylyl  cyclases  

– Atrial  natriuretic  peptide  and  NO  ! Threonine/serine  kinases  

– Transforming  growth  factor  Beta  ! Tyrosine  kinases  

– insulin    Protein  Kinases  

! kinase  is  an  enzyme  that  modifies  other  proteins  by  phosphorylation  

! phosphorylation  usually  results  in  a  functional  change  of  the  target  protein  

– changing  enzyme  activity  – modifying  cellular  location  – associating  with  other  proteins  

 Calmodulin-­‐dependent  Protein  Kinases  

! calcium  (Ca2+)  binding  causes  conformational  alterations  in  calmodulin  

– binds  to  and  regulates  other  signaling  proteins  (cAMP  phosphodiesterase)  

– binds  to  calmodulin-­‐dependent  protein  kinases    

• phosphorylates  specific  serine  and  threonine  residues  in  many  proteins  (myosin  light-­‐chain  kinase)  

! EXAMPLE:  muscle  cells    cGMP-­‐dependent  Kinases  

! binding  of  ANP  causes  dimerization  and  activation  of  guanylyl  cyclase,  which  metabolizes  GTP  to  cGMP    

! cGMP  activates  cGMP-­‐dependent  protein  kinases    – phosphorylates  proteins  on  specific  serine  and  

threonine  residues  – in  the  kidney,  ANP  inhibits  sodium  and  water  

reabsorption  by  the  collecting  duct  ! EXAMPLES:  ANP,  NO  

     

       SOURCES:  

1. Guyton  &  Hall  Textbook  of  Medical  Physiology  12th  Edition  by  Hall,  John  &,  Guyton,  Arthur  C.  ,  ,  Published  in  Philadelphia,  Pensylvania:  Saunders/Elsevier,  2011  

2. Berne  &  Levy  Physiology  6th  Edition  bby  Berne,  Robert  M.,  1918-­‐2001.,  Koeppen,  Bruce  M.,  Published:  Philadelphia  :  Mosby/Elsevier,  2008  

3. BRS  Physiology  5th  Edition  by  Linda  Constanzo,  2011,  Published:  Lippincott  and  Williams  &  Wilkins  

4. Harper’s  Illustrated  Biochemistry  27th  Edition  by  Murray,  Robert  K.  by  Lange  

5. Basic  and  Clinical  Pharmacology  11th  Edition  by  by  Katzung,  Bertram  G.  ,  Published:  New  York  :  McGraw-­‐Hill  Medical,  2009  

6. Various  Internet  Websites          


Top Related