Download - 7/18/2020 Chapter 4

Transcript
Page 1: 7/18/2020 Chapter 4

7/18/2020 Chapter 4. PARTIAL FRACTIONS

A project of: www.notespk.com Contact or Suggest Us: [email protected]

MATHEMATICS Science Group 10th

Page 2: 7/18/2020 Chapter 4

Contents Exercise 4.1 ............................................................................. 1

Exercise 4.2 ............................................................................. 3

Exercise 4.3 ............................................................................. 6

Exercise 4.4 ............................................................................. 9

Page 3: 7/18/2020 Chapter 4

Class 10th Chapter 4 www.notes.pk.com

Complied by Shumaila Amin 1 | P a g e

Fraction: A fraction is an indicated quotient of two numbers or algebraic expressions. Or The quotient of two numbers or algebraic expression is called a fraction. The quotient is indicated by a bar (____________). Rational Fraction:

An expression of the form 𝑁(π‘₯)

𝐷(π‘₯), π‘€π‘–π‘‘β„Ž 𝐷(π‘₯) β‰  0

and 𝑁(π‘₯)π‘Žπ‘›π‘‘ 𝐷(π‘₯)π‘Žπ‘Ÿπ‘’ π‘π‘œπ‘™π‘¦π‘›π‘œπ‘šπ‘–π‘Žπ‘™π‘  in π‘₯ expressed with real coefficients, is called a rational fraction. Every fraction expression can be expressed as a quotient of two polynomials. For example:

2π‘₯

(π‘₯ βˆ’ 1)(π‘₯ + 2)

Proper Fraction:

A rational fraction 𝑁(π‘₯)

𝐷(π‘₯), with 𝐷(π‘₯) β‰  π‘œ is called a

proper fration if degree of the polynomial 𝑁(π‘₯) in the numenator is less than the degree of the polynomial 𝐷(π‘₯) in the denominator. For example:

2

π‘₯ + 1

Improper Fraction:

A rational fraction 𝑁(π‘₯)

𝐷(π‘₯), π‘€π‘–π‘‘β„Ž 𝐷(π‘₯) β‰  0 is called

improper fraction if degree of the polynomial 𝑁(π‘₯) is greater or equal to the degree of the polynomial 𝐷(π‘₯). For example:

5π‘₯

π‘₯ + 2,

6π‘₯4

π‘₯3 + 1

Identity: An identity is an equation, which is satisfied by all the valves of the variables involved. For example

2(π‘₯ + 1) = 2π‘₯ + 2

And 2π‘₯2

2= 2π‘₯ π‘Žπ‘Ÿπ‘’ 𝑖𝑑𝑒𝑛𝑑𝑖𝑑𝑖𝑒𝑠, as these equations are

satisfied by all valves of π‘₯

Exercise 4.1 Resolve into partial fractions.

Question N0.1 πŸ•π’™ βˆ’ πŸ—

(𝒙 + 𝟏)(𝒙 βˆ’ πŸ‘)

Solution:

Let 7π‘₯βˆ’9

(π‘₯+1)(π‘₯βˆ’3)=

𝐴

(π‘₯+1)+

𝐡

(π‘₯βˆ’3)β†’ (𝑖)

Multiplying equation (𝑖)𝑏𝑦 (π‘₯ + 1)(π‘₯ βˆ’ 3)

7π‘₯ βˆ’ 9 = 𝐴(π‘₯ βˆ’ 3) + 𝐡(π‘₯ + 1) β†’ (𝑖𝑖)

πΉπ‘œπ‘Ÿ π‘‘π‘’π‘‘π‘’π‘Ÿπ‘šπ‘–π‘›π‘’ π‘‘β„Žπ‘’ π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝐴 π‘Žπ‘›π‘‘ 𝐡

π‘₯ βˆ’ 3 = 0 β‡’ π‘₯ = 3 π‘Žπ‘›π‘‘ π‘₯ + 1 = 0 β‡’ π‘₯ = βˆ’1 𝑝𝑒𝑑𝑑𝑖𝑛𝑔 π‘₯ = 3 π‘Žπ‘›π‘‘ π‘₯ = βˆ’1 𝑝𝑒𝑑 𝑖𝑛 π‘’π‘ž(𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

πΉπ‘œπ‘Ÿ π‘₯ = 3 7(3) βˆ’ 9 = 𝐡(3 + 1)

21 βˆ’ 9 = 4𝐡 12 = 4𝐡

β‡’

πΉπ‘œπ‘Ÿ π‘₯ = βˆ’1 7(βˆ’1) βˆ’ 9 = 𝐴(βˆ’1 βˆ’ 3)

βˆ’7 βˆ’ 9 = βˆ’4𝐴 βˆ’16 = βˆ’4𝐴

β‡’

𝑃𝑒𝑑𝑑𝑖𝑛𝑔 π‘‘β„Žπ‘’ π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝐴 π‘Žπ‘›π‘‘ 𝐡 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖)π‘Šπ‘’

𝑔𝑒𝑑 π‘‘β„Žπ‘’ π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘Žπ‘™ π‘“π‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘›π‘  4

(π‘₯ + 1)+

3

(π‘₯ βˆ’ 3)

Thus 7π‘₯ βˆ’ 9

(π‘₯ + 1)(π‘₯ βˆ’ 3)=

4

(π‘₯ + 1)+

3

(π‘₯ βˆ’ 3)

Question No.2 π‘₯ βˆ’ 11

(π‘₯ βˆ’ 4)(π‘₯ + 3)

Solution:

Let π‘₯βˆ’11

(π‘₯βˆ’4)(π‘₯+3)=

𝐴

(π‘₯βˆ’4)+

𝐡

(π‘₯+3)β†’ (𝑖)

Multiplying equation (𝑖)𝑏𝑦 (π‘₯ βˆ’ 4)(π‘₯ + 3) π‘œπ‘›

Both sides, we get

π‘₯ βˆ’ 11 = 𝐴(π‘₯ + 3) + 𝐡(π‘₯ βˆ’ 4) β†’ (𝑖𝑖)

β‡’π‘₯ + 3 = 0 β‡’ π‘₯ = βˆ’3 π‘Žπ‘›π‘‘ π‘₯ βˆ’ 4 = 0 β‡’ π‘₯ = 4 𝑝𝑒𝑑𝑑𝑖𝑛𝑔 π‘₯ = βˆ’3 π‘Žπ‘›π‘‘ π‘₯ = 4 𝑝𝑒𝑑 𝑖𝑛 π‘’π‘ž(𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

πΉπ‘œπ‘Ÿ π‘₯ = βˆ’3 βˆ’3 βˆ’ 11 = 𝐡(βˆ’3 βˆ’ 4)

βˆ’14 = βˆ’7𝐡 β‡’

πΉπ‘œπ‘Ÿ π‘₯ = 4 4 βˆ’ 11 = 𝐴(4 + 3)

βˆ’7 = 7𝐴 β‡’

𝑃𝑒𝑑𝑑𝑖𝑛𝑔 π‘‘β„Žπ‘’ π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝐴 π‘Žπ‘›π‘‘ 𝐡 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖)π‘Šπ‘’

𝑔𝑒𝑑 π‘‘β„Žπ‘’ π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘Žπ‘™ π‘“π‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘›π‘  βˆ’1

(π‘₯ βˆ’ 4)+

2

(π‘₯ + 3)

Hence the required partial fraction are

𝐡 = 3 𝐴 = 4

𝐡 = 2 𝐴 = βˆ’1

Page 4: 7/18/2020 Chapter 4

Class 10th Chapter 4 www.notes.pk.com

Complied by Shumaila Amin 2 | P a g e

π‘₯ βˆ’ 11

(π‘₯ βˆ’ 4)(π‘₯ + 3)=

βˆ’1

(π‘₯ βˆ’ 4)+

2

(π‘₯ + 3)

Question N0.3 πŸ‘π’™ βˆ’ 𝟏

π’™πŸ βˆ’ 𝟏

Solution: 3π‘₯ βˆ’ 1

π‘₯2 βˆ’ 1=

3π‘₯ βˆ’ 1

(π‘₯ βˆ’ 1)(π‘₯ + 1)

𝐿𝑒𝑑 3π‘₯ βˆ’ 1

(π‘₯ βˆ’ 1)(π‘₯ + 1)=

𝐴

π‘₯ βˆ’ 1+

𝐡

π‘₯ + 1β†’ (𝑖)

𝑀𝑒𝑙𝑑𝑖𝑝𝑙𝑦𝑖𝑛𝑔 π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒𝑠 𝑏𝑦(π‘₯ βˆ’ 1)(π‘₯ + 1)

𝑀𝑒 𝑔𝑒𝑑 3π‘₯ βˆ’ 1 = 𝐴(π‘₯ + 1) + 𝐡(π‘₯ βˆ’ 1) β†’ (𝑖𝑖)

𝐿𝑒𝑑 π‘₯ + 1 = 0 𝑖. 𝑒π‘₯ = βˆ’1 π‘Žπ‘›π‘‘ π‘₯ βˆ’ 1 = 0 𝑖. 𝑒 π‘₯ = 1 𝑝𝑒𝑑𝑑𝑖𝑛𝑔 π‘₯ = βˆ’1 π‘Žπ‘›π‘‘ π‘₯ = 1 𝑝𝑒𝑑 𝑖𝑛 π‘’π‘ž(𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

πΉπ‘œπ‘Ÿ π‘₯ = 1 3(1) βˆ’ 1 = 𝐴(1 + 1)

3 βˆ’ 1 = 2𝐴 2 = 2𝐴

β‡’

πΉπ‘œπ‘Ÿ π‘₯ = βˆ’1 3(βˆ’1) βˆ’ 1 = 𝐡(βˆ’1 βˆ’ 1)

βˆ’3 βˆ’ 1 = βˆ’2𝐡 βˆ’4 = βˆ’2𝐡

β‡’

Hence the required partial fraction are 3π‘₯ βˆ’ 1

(π‘₯ βˆ’ 1)(π‘₯ + 1)=

1

π‘₯ βˆ’ 1+

2

π‘₯ + 1

Question No.4 𝒙 βˆ’ πŸ“

π’™πŸ + πŸπ’™ βˆ’ πŸ‘

Solution: π‘₯ βˆ’ 5

π‘₯2 + 2π‘₯ βˆ’ 3=

π‘₯ βˆ’ 5

π‘₯2 + 3π‘₯ βˆ’ π‘₯ βˆ’ 3

=π‘₯ βˆ’ 5

π‘₯(π‘₯ + 3) βˆ’ 1(π‘₯ + 3)=

π‘₯ βˆ’ 5

(π‘₯ βˆ’ 1)(π‘₯ + 3)

π‘₯ βˆ’ 5

(π‘₯ βˆ’ 1)(π‘₯ + 3)=

𝐴

π‘₯ βˆ’ 1+

𝐡

π‘₯ + 3β†’ (𝑖𝑖)

𝑀𝑒𝑙𝑑𝑖𝑝𝑙𝑦𝑖𝑛𝑔 π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒𝑠 𝑏𝑦 (π‘₯ βˆ’ 1)(π‘₯ + 3), 𝑀𝑒 𝑔𝒆𝒕

π‘₯ βˆ’ 5 = 𝐴(π‘₯ + 3) + 𝐡(π‘₯ βˆ’ 1) β†’ (𝑖𝑖)

𝐿𝑒𝑑 π‘₯ + 3 = 0 β‡’ π‘₯ = βˆ’3 π‘Žπ‘›π‘‘ π‘₯ βˆ’ 1 = 0 β‡’ π‘₯ = 1 𝑝𝑒𝑑𝑑𝑖𝑛𝑔 π‘₯ = βˆ’3π‘Žπ‘›π‘‘ π‘₯ = 1 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘›(𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

πΉπ‘œπ‘Ÿ π‘₯ = βˆ’3 βˆ’3 βˆ’ 5 = +𝐡(βˆ’3 βˆ’ 1)

βˆ’8 = βˆ’4𝐡

𝐡 =βˆ’8

βˆ’4

β‡’

πΉπ‘œπ‘Ÿ π‘₯ = 1 1 βˆ’ 5 = 𝐴(1 + 3)

βˆ’4 = 4𝐴

𝐴 =βˆ’4

4

β‡’

Hence the required partial fractions are π‘₯ βˆ’ 5

(π‘₯ βˆ’ 1)(π‘₯ + 3)=

βˆ’1

π‘₯ βˆ’ 1+

2

π‘₯ + 3

Question No.5 3π‘₯ + 3

(π‘₯ βˆ’ 1)(π‘₯ + 2)

Solution:

𝐿𝑒𝑑 3π‘₯ + 3

(π‘₯ βˆ’ 1)(π‘₯ + 2)=

𝐴

π‘₯ βˆ’ 1+

𝐡

π‘₯ + 2 β†’ (𝑖)

𝑀𝑒𝑙𝑑𝑖𝑝𝑙𝑦𝑖𝑛𝑔 π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒𝑠 𝑏𝑦 (π‘₯ βˆ’ 1)(π‘₯ + 2)𝑀𝑒 𝑔𝑒𝑑

3π‘₯ + 3 = 𝐴(π‘₯ + 2) + 𝐡(π‘₯ βˆ’ 1) β†’ (𝑖𝑖)

𝐿𝑒𝑑 π‘₯ βˆ’ 1 = 0 𝑖. 𝑒 π‘₯ = 1 π‘Žπ‘›π‘‘ π‘₯ + 2 = 0 𝑖. 𝑒 π‘₯ = βˆ’2 𝑃𝑒𝑑𝑑𝑖𝑛𝑔 π‘₯ = 1 π‘Žπ‘›π‘‘ π‘₯ = βˆ’2 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖𝑖)

πΉπ‘œπ‘Ÿ π‘₯ = 1 3(1) + 3 = 𝐴(1 + 2)

3 + 3 = 3𝐴 6 = 3𝐴 6

3= 𝐴

β‡’

πΉπ‘œπ‘Ÿ π‘₯ = βˆ’2 3(βˆ’2) + 3 = 𝐡(βˆ’2

βˆ’ 1) βˆ’6 + 3 = 𝐡(βˆ’2) βˆ’6 + 3 = βˆ’3𝐡

𝐡 =βˆ’3

βˆ’3

β‡’

Hence the required partial fractions are 3π‘₯ + 3

(π‘₯ βˆ’ 1)(π‘₯ + 2)=

2

π‘₯ βˆ’ 1+

1

π‘₯ + 2

Question N0.6 7π‘₯ βˆ’ 25

(π‘₯ βˆ’ 4)(π‘₯ βˆ’ 3)

Solution:

𝐿𝑒𝑑 7π‘₯ βˆ’ 25

(π‘₯ βˆ’ 4)(π‘₯ βˆ’ 3)=

𝐴

π‘₯ βˆ’ 4+

𝐡

π‘₯ βˆ’ 3

Multiplying both sides by π‘₯ βˆ’ 4)(π‘₯ βˆ’ 3), 𝑀𝑒 𝑔𝑒𝑑

7π‘₯ βˆ’ 25 = 𝐴(π‘₯ βˆ’ 3) + 𝐡(π‘₯ βˆ’ 4) β†’ (𝑖𝑖)

𝐿𝑒𝑑 π‘₯ βˆ’ 3 = 0 𝑖. 𝑒 π‘₯ = 3 π‘Žπ‘›π‘‘ π‘₯ βˆ’ 4 = 0 𝑖. 𝑒 π‘₯ = 4 𝑃𝑒𝑑𝑑𝑖𝑛𝑔 π‘₯ = 3 π‘Žπ‘›π‘‘ π‘₯ = 4 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

πΉπ‘œπ‘Ÿ π‘₯ = 3 7(3) βˆ’ 25 = 𝐡(3 βˆ’ 4)

21 βˆ’ 25 = βˆ’π΅ βˆ’4 = βˆ’π΅

β‡’

πΉπ‘œπ‘Ÿ π‘₯ = 4 7(4) βˆ’ 25 = 𝐴(4 βˆ’ 3)

28 βˆ’ 25 = 1𝐴 3 = 𝐴

β‡’

Hence the required partial fractions are 7π‘₯ βˆ’ 25

(π‘₯ βˆ’ 4)(π‘₯ βˆ’ 3)=

3

π‘₯ βˆ’ 4+

4

π‘₯ βˆ’ 3

Question No.7

π’™πŸ + πŸπ’™ + 𝟏

(𝒙 βˆ’ 𝟐)(𝒙 + πŸ‘

Solution: π‘₯2+2π‘₯+1

(π‘₯βˆ’2)(π‘₯+3 𝑖𝑠 π‘Žπ‘› π‘–π‘šπ‘π‘œπ‘Ÿπ‘‘π‘Žπ‘›π‘‘ π‘“π‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘›.

First we resolve it into proper fraction.

By log division we get 1

π‘₯2 + π‘₯ βˆ’ 6√π‘₯2 + 2π‘₯ + 1

Β±π‘₯2 Β± π‘₯ βˆ“ 1

π‘₯ + 7

We haveπ‘₯2+2π‘₯+1

π‘₯62+π‘₯βˆ’6= 1 +

π‘₯+7

π‘₯2+π‘₯βˆ’6

𝐿𝑒𝑑 π‘₯ + 7

(π‘₯ βˆ’ 2)(π‘₯ + 3)=

𝐴

π‘₯ βˆ’ 2+

𝐡

π‘₯ + 3β†’ (𝑖)

Multiplying both sides by (π‘₯ βˆ’ 2)(π‘₯ + 3) 𝑀𝑒 𝑔𝑒𝑑

π‘₯ + 7 = 𝐴(π‘₯ + 3) + 𝐡(π‘₯ βˆ’ 2) β†’ (𝑖𝑖)

𝐿𝑒𝑑 π‘₯ + 3 = 0 𝑖. 𝑒 π‘₯ = βˆ’3

π‘Žπ‘›π‘‘ π‘₯ βˆ’ 2 = 0 𝑖. 𝑒 π‘₯ = 2

𝐴 = 1 𝐡 = 2

𝐡 = 2 𝐴 = βˆ’1

𝐴 = 2 𝐴 = 1

𝐡 = 4 𝐴 = 3

Page 5: 7/18/2020 Chapter 4

Class 10th Chapter 4 www.notes.pk.com

Complied by Shumaila Amin 3 | P a g e

πΉπ‘œπ‘Ÿ π‘₯ = βˆ’3 βˆ’3 + 7 = 𝐡(βˆ’3 βˆ’ 2)

4 = βˆ’5𝐡 β‡’

πΉπ‘œπ‘Ÿ π‘₯ = 2 2 + 7 = 𝐴(2 + 3)

9 = 5𝐴 β‡’

Hence the required partial fractions are

π‘₯2 + 2π‘₯ + 1

π‘₯62 + π‘₯ βˆ’ 6= 1 +

9

5(π‘₯ βˆ’ 2)βˆ’

4

5(π‘₯ + 3)

Question No.8

πŸ”π’™πŸ‘ + πŸ“π’™πŸ βˆ’ πŸ•

πŸ‘π’™πŸ βˆ’ πŸπ’™ βˆ’ 𝟏

Solution:

6π‘₯3+5π‘₯2βˆ’7

3π‘₯2βˆ’2π‘₯βˆ’1 is an improper fraction.

First we resolve in to proper fraction.

2π‘₯ + 3

3π‘₯2 βˆ’ 2π‘₯ βˆ’ 1√6π‘₯3 + 5π‘₯2 βˆ’ 7

Β±6π‘₯3 Β± 4π‘₯2 βˆ“ 2π‘₯

9π‘₯2 + 2π‘₯ βˆ’ 7Β±9π‘₯2 βˆ“ 6π‘₯ βˆ“ 3 8π‘₯ βˆ’ 4

6π‘₯3 + 5π‘₯2 βˆ’ 7

3π‘₯2 βˆ’ 2π‘₯ βˆ’ 1= (2π‘₯ + 3) +

8π‘₯ βˆ’ 4

(3π‘₯ + 1)(π‘₯ βˆ’ 1)

Now, Let 8π‘₯βˆ’4

(3π‘₯+1)(π‘₯βˆ’1)=

𝐴

3π‘₯+1+

𝐡

π‘₯βˆ’1

Multiplying both sides by (3π‘₯ + 1)(π‘₯ βˆ’ 1, 𝑀𝑒 𝑔𝑒𝑑

8π‘₯ βˆ’ 4 = 𝐴(π‘₯ βˆ’ 1) + 𝐡(3π‘₯ + 1) β†’ (𝑖𝑖)

𝐿𝑒𝑑 π‘₯ βˆ’ 1 = 0 𝑖. 𝑒 π‘₯ = 1

π‘Žπ‘›π‘‘ 3π‘₯ + 1 = 0 𝑖. 𝑒 π‘₯ = βˆ’1

3

𝑝𝑒𝑑𝑑𝑖𝑛𝑔 π‘₯ = 1 π‘Žπ‘›π‘‘ π‘₯ = βˆ’1

3 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖𝑖)

𝑀𝑒 𝑔𝑒𝑑

πΉπ‘œπ‘Ÿ π‘₯ = 1 8(1) βˆ’ 4 = 𝐡[3(1) + 1]

8 βˆ’ 4 = 4𝐡 4 = 4𝐡

4𝐡 = 4

𝐡 =4

4

β‡’

πΉπ‘œπ‘Ÿ π‘₯ = βˆ’1

3

8 (βˆ’1

3) βˆ’ 4 = 𝐴 (βˆ’

1

3

βˆ’ 1)

βˆ’8

3βˆ’ 4 = 𝐴 (

βˆ’1 βˆ’ 3

3)

βˆ’8 βˆ’ 12

3=

𝐴(βˆ’4)

3

βˆ’20

3=

𝐴(βˆ’4)

3

β‡’

Hence the required of a fraction when 𝐷(π‘₯)π‘π‘œπ‘›π‘ π‘–π‘ π‘‘π‘ 

Of repeated linear factors are

6π‘₯3 + 5π‘₯2 βˆ’ 7

3π‘₯2 βˆ’ 2π‘₯ βˆ’ 1= 2π‘₯ + 3 +

5

3π‘₯ + 1+

1

π‘₯ βˆ’ 1

Resolution of a fraction when 𝐷(π‘₯) consists of repeated linear factors. Rule II: If a linear factor (π‘Žπ‘₯ + 𝑏) occurs 𝑛 times as a factor of 𝐷(π‘₯), then there are 𝑛 partial fractions of the form.

𝐴1

(π‘Žπ‘₯ + 𝑏)+

𝐴2

(π‘Žπ‘₯ + 𝑏)2+ β‹― +

𝐴𝑛

(π‘Žπ‘₯ + 𝑏)𝑛

Where 𝐴1, 𝐴2, … , 𝐴𝑛 are constant and 𝑛 β‰₯ 2 is a positive integer.

βˆ΅π‘(π‘₯)

𝐷(π‘₯)=

𝐴1

(π‘Žπ‘₯ + 𝑏)+

𝐴2

(π‘Žπ‘₯ + 𝑏)2+ β‹― +

𝐴𝑛

(π‘Žπ‘₯ + 𝑏)𝑛

Exercise 4.2 Resolve into partial fractions:

Question No.1

π’™πŸ βˆ’ πŸ‘π’™ + 𝟏

(𝒙 βˆ’ 𝟏)𝟐(𝒙 βˆ’ 𝟐)

Solution:

𝐿𝑒𝑑 π‘₯2 βˆ’ 3π‘₯ + 1

(π‘₯ βˆ’ 1)2(π‘₯ βˆ’ 2)=

𝐴

π‘₯ βˆ’ 1+

𝐡

(π‘₯ βˆ’ 1)2+

𝐢

π‘₯ βˆ’ 2

β†’ (𝑖)

Multiplying both sides by (π‘₯ βˆ’ 1)2(π‘₯ βˆ’ 2) 𝑀𝑒 𝑔𝑒𝑑

π‘₯2 βˆ’ 3π‘₯ + 1 = 𝐴(π‘₯ βˆ’ 1)(π‘₯ βˆ’ 2) + 𝐡(π‘₯ βˆ’ 2) + 𝐢(π‘₯ βˆ’ 1)2

β†’ (𝑖𝑖)

π‘₯2 βˆ’ 3π‘₯ + 1 = 𝐴(π‘₯2 βˆ’ 3π‘₯ + 2) + 𝐡(π‘₯ βˆ’ 2) + 𝐢(π‘₯2

βˆ’ 2π‘₯ + 1)

𝑃𝑒𝑑𝑑𝑖𝑛𝑔 π‘₯ βˆ’ 1 = 0 𝑖. 𝑒π‘₯ = 1 𝑖𝑛 (𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

(1)2 βˆ’ 3(1) + 1 = (1 βˆ’ 2) 1 βˆ’ 3 + 1 = 𝐡(βˆ’1)

βˆ’1 = βˆ’π΅

β‡’ 𝐡 = 1

𝑃𝑒𝑑𝑑𝑖𝑛𝑔 π‘₯ βˆ’ 2 = 0 𝑖. 𝑒 π‘₯ = 2 𝑖𝑛 (𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

(2)2 βˆ’ 3 + 1 = 𝐢(2 βˆ’ 1)2 4 βˆ’ 6 + 1 = 𝐢

βˆ’1 = 𝐢 β‡’ βˆ’1

β‡’ 𝐢 = βˆ’1

Equating the coefficient of π‘₯2 in (ii) we get

1 = 𝐴 + 𝐢

1 = 𝐴 βˆ’ 1

𝐴 = 1 + 1

β‡’ 𝐴 = 2

Hence the required partial fractions are

π‘₯2 βˆ’ 3π‘₯ + 1

(π‘₯ βˆ’ 1)2(π‘₯ βˆ’ 2)=

2

π‘₯ βˆ’ 1+

1

(π‘₯ βˆ’ 1)2+

1

π‘₯ βˆ’ 2

Question No.2

π’™πŸ + πŸ•π’™ + 𝟏𝟏

(𝒙 + 𝟐)𝟐(𝒙 + πŸ‘)

Solution:

𝐿𝑒𝑑 π‘₯2+7π‘₯+11

(π‘₯+2)2(π‘₯+3)=

𝐴

π‘₯+2+

𝐡

(π‘₯+2)2 +𝐢

π‘₯+3β†’ (𝑖)

Multiplying both sides by (π‘₯ + 2)2(π‘₯ + 3)

β‡’π‘₯2 + 7π‘₯ + 11 = 𝐴(π‘₯ + 2)(π‘₯ + 3) + 𝐡(π‘₯ + 3) +

𝐢(π‘₯ + 2)2

𝐡 = βˆ’4

5 𝐴 =

9

5

𝐡 = 1

𝐴 = 5

Page 6: 7/18/2020 Chapter 4

Class 10th Chapter 4 www.notes.pk.com

Complied by Shumaila Amin 4 | P a g e

β‡’π‘₯2 + 7π‘₯ + 11 = 𝐴(π‘₯2 + 5π‘₯ + 6) + 𝐡(π‘₯ + 3) +

𝐢(π‘₯2 + 4π‘₯ + 4) β†’ (𝑖𝑖) 𝑃𝑒𝑑𝑑𝑖𝑛𝑔 π‘₯ + 2 = 0 𝑖. 𝑒π‘₯ = βˆ’2 𝑖𝑛(𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

(βˆ’2)2 + 7(βˆ’2) + 11 = 𝐡(βˆ’2 + 3)

4 βˆ’ 14 + 11 = 𝐡

β‡’ 𝐡 = 1

Putting π‘₯ + 3 = 0 𝑖. 𝑒 π‘₯ = βˆ’3 𝑖𝑛(𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

(βˆ’3)2 + 7(βˆ’3) + 11 = 𝐢(βˆ’3 + 2)2

9 βˆ’ 21 + 11 = 𝐢(βˆ’1)2 20 βˆ’ 21 = 𝐢(1)

βˆ’1 = 𝐢

β‡’ 𝐢 = βˆ’1

Equating coefficient of π‘₯2 in (ii) we get

𝐴 + 𝐢 = 1

𝐴 βˆ’ 1 = 1

𝐴 = 1 + 1

β‡’ 𝐴 = 2

Hence the required partial fractions are

π‘₯2 + 7π‘₯ + 11

(π‘₯ + 2)2(π‘₯ + 3)=

2

π‘₯ + 2+

1

(π‘₯ + 2)2βˆ’

1

π‘₯ + 3

Question No.3 πŸ—

(𝒙 βˆ’ 𝟏)(𝒙 + 𝟐)𝟐

Solution:

𝐿𝑒𝑑9

(π‘₯ βˆ’ 1)(π‘₯ + 2)2=

𝐴

π‘₯ βˆ’ 1+

𝐡

π‘₯ + 2+

𝐢

(π‘₯ + 2)2β†’ (𝑖)

Multiplying both sides by (π‘₯ βˆ’ 1)(π‘₯ + 2)2 𝑀𝑒 𝑔𝑒𝑑

9 = 𝐴(π‘₯ + 2)2 + 𝐡(π‘₯ βˆ’ 1)(π‘₯ + 2) + 𝐢(π‘₯ βˆ’ 1) β†’ (𝑖𝑖) 𝑃𝑒𝑑𝑑𝑖𝑛𝑔 π‘₯ βˆ’ 1 = 0 𝑖. 𝑒 π‘₯ = 1 𝑖𝑛(𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

9 = 𝐴(1 + 2)2

9 = 𝐴(3)2 9 = 9𝐴

β‡’ 𝐴 = 1

𝑃𝑒𝑑𝑑𝑖𝑛𝑔 π‘₯ + 2 = 0 𝑖. 𝑒 π‘₯ = βˆ’2 𝑖𝑛 (𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

9 = 𝐢(βˆ’2 βˆ’ 1)

9 = βˆ’3𝐢

β‡’ 𝐢 = βˆ’3

Equating the coefficient of π‘₯2 in (ii) we get

𝐴 + 𝐡 = 0

𝐡 = βˆ’π΄

β‡’ 𝐡 = βˆ’1

Hence the partial fractions are 9

(π‘₯ βˆ’ 1)(π‘₯ + 2)2=

1

π‘₯ βˆ’ 1βˆ’

1

π‘₯ + 2+

3

(π‘₯ + 2)2

Question No.4

π’™πŸ’ + 𝟏

π’™πŸ(𝒙 βˆ’ 𝟏)

Solution:

π‘₯4 + 1

π‘₯2(π‘₯ βˆ’ 1)=

π‘₯4 + 1

π‘₯3 βˆ’ π‘₯2 𝑖𝑠 π‘Žπ‘› π‘–π‘šπ‘π‘Ÿπ‘œπ‘π‘’π‘Ÿ π‘“π‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘›.

πΉπ‘–π‘Ÿπ‘ π‘‘ 𝑀𝑒 π‘Ÿπ‘’π‘ π‘œπ‘™π‘£π‘’ 𝑖𝑑 π‘–π‘›π‘‘π‘œ π‘π‘Ÿπ‘œπ‘π‘’π‘Ÿ π‘“π‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘›.

π‘₯3 βˆ’ π‘₯2 √π‘₯4 + 1

Β±π‘₯4 βˆ“ π‘₯3

π‘₯3 + 1Β±π‘₯3 βˆ“ π‘₯2

π‘₯3 + 1

π‘₯4 + 1

π‘₯2(π‘₯ βˆ’ 1)= (π‘₯ + 1) +

π‘₯2 + 1

π‘₯2(π‘₯ βˆ’ 1)β†’ (𝑖)

𝐿𝑒𝑑 π‘₯2 + 1

π‘₯2(π‘₯ βˆ’ 1)= (π‘₯ + 1) +

π‘₯2 + 1

π‘₯2(π‘₯ βˆ’ 1) β†’ (𝑖𝑖)

Multiplying both sides by π‘₯2(π‘₯ βˆ’ 1)we get

π‘₯2 + 1 = 𝐴(π‘₯)(π‘₯ βˆ’ 1) + 𝐡(π‘₯ βˆ’ 1) + 𝑐π‘₯2 β†’ (𝑖𝑖𝑖) 𝑃𝑒𝑑𝑑𝑑𝑖𝑛𝑔 π‘₯ = 0 𝑖𝑛 (𝑖𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

0 + 1 = 𝐡(0 βˆ’ 1)

1 = βˆ’π΅

β‡’ 𝐡 = 1

Putting π‘₯ βˆ’ 1 = 0 𝑖. 𝑒 π‘₯ = 1 𝑖𝑛 (𝑖𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

(1)2 + 1 = 𝐢(1)2 1 + 1 = 𝐢(1)

2 = 𝐢

β‡’ 𝐢 = 2

Equating the coefficient of π‘₯2 𝑖𝑛 (𝑖𝑖𝑖) we get

𝐴 + 𝐢 = 1

𝐴 + 2 = 1

𝐴 = 1 βˆ’ 2

β‡’ 𝐴 = βˆ’1

Putting the value of 𝐴, 𝐡, 𝐢 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖𝑖)

Thus required partial fraction are

π‘₯4 + 1

π‘₯2(π‘₯ βˆ’ 1)= (π‘₯ + 1) βˆ’

1

π‘₯βˆ’

1

π‘₯2+

2

π‘₯ βˆ’ 1

Question No.5 πŸ•π’™ + πŸ’

(πŸ‘π’™ + 𝟐)(𝒙 + 𝟏)𝟐

Solution:

𝐿𝑒𝑑 7π‘₯ + 4

(3π‘₯ + 2)(π‘₯ + 1)2=

𝐴

3π‘₯ + 2+

𝐡

π‘₯ + 1+

𝐢

(π‘₯ + 1)2 β†’ (𝑖)

Multiplying both sides by (3π‘₯ + 2)(π‘₯ + 1)2 𝑀𝑒 𝑔𝑒𝑑

7π‘₯ + 4 = 𝐴(π‘₯ + 1)2 + 𝐡(3π‘₯ + 2)(π‘₯ + 1) + 𝐢(3π‘₯ + 2) β†’ (𝑖𝑖)

𝑃𝑒𝑑𝑑𝑖𝑛𝑔 3π‘₯ + 2 = 0 𝑖. 𝑒 π‘₯ = βˆ’2

3 𝑖𝑛 (𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

7 (βˆ’2

3) + 4 = 𝐴 (βˆ’

2

3+ 1)

2

βˆ’14

3+ 4 = 𝐴 (

βˆ’2 + 3

3)

2

βˆ’14 + 12

3= 𝐴 (

1

3)

2

βˆ’2

3=

1

9𝐴

βˆ’18 = 3𝐴

𝐴 = βˆ’18

3

β‡’ 𝐴 = βˆ’6

Putting π‘₯ + 1 = 0 𝑖. 𝑒 π‘₯ = βˆ’1 𝑖𝑛 (𝑖𝑖) 𝑀𝑒 𝑔𝑒𝑑

7(βˆ’1) + 4 = 𝐢(3(βˆ’1) + (+2)

βˆ’7 + 4 = βˆ’πΆ

Page 7: 7/18/2020 Chapter 4

Class 10th Chapter 4 www.notes.pk.com

Complied by Shumaila Amin 5 | P a g e

βˆ’3 = βˆ’πΆ

β‡’ 𝐢 = 3

πΈπ‘žπ‘’π‘Žπ‘‘π‘–π‘›π‘” π‘‘β„Žπ‘’ π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝐴, 𝐡 π‘Žπ‘›π‘‘ 𝐢 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖)

𝑀𝑒 𝑔𝑒𝑑 π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘Žπ‘™ π‘“π‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘›π‘ . 7π‘₯ + 4

(3π‘₯ + 2)(π‘₯ + 1)2=

βˆ’6

3π‘₯ + 2+

2

π‘₯ + 1+

3

(π‘₯ + 1)2

Question No.6 𝟏

(𝒙 βˆ’ 𝟏)𝟐(𝒙 + 𝟏)

Solution:

𝐿𝑒𝑑1

(π‘₯ βˆ’ 1)2(π‘₯ + 1)=

𝐴

π‘₯ βˆ’ 1+

𝐡

(π‘₯ βˆ’ 1)2+

𝐢

π‘₯ + 1β†’ (𝑖𝑖)

Multiplying both sides by (π‘₯ βˆ’ 1)(π‘₯ βˆ’ 1)2 𝑀𝑒 𝑔𝑒𝑑

1 = 𝐴(π‘₯ βˆ’ 1)(π‘₯ + 1) + 𝐡(π‘₯ + 1) + 𝐢(π‘₯ βˆ’ 1)2 β†’ (𝑖𝑖)

𝑃𝑒𝑑𝑑𝑖𝑛𝑔 π‘₯ βˆ’ 1 = 0 𝑖. 𝑠 π‘₯ = 1 𝑖𝑛 (𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

1 = 𝐡(1 + 1)

1 = 2𝐡

β‡’ 𝐡 =

1

2

𝑃𝑒𝑑𝑑𝑖𝑛𝑔 π‘₯ + 1 = 0 𝑖. 𝑒 π‘₯ = βˆ’1 𝑖𝑛 (𝑖𝑖) 𝑀𝑒 𝑔𝑒𝑑

1 = 𝐢(βˆ’1 βˆ’ 1)2

1 = 𝐢(βˆ’1 βˆ’ 1)2

1 = 𝐢(βˆ’2)2 1 = 4𝐢

β‡’ 𝐢 =

1

4

Equating the coefficient of π‘₯2 𝑖𝑛 (𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

𝐴 + 𝐢 = 0

𝐴 = βˆ’πΆ

𝐴 = βˆ’ (1

4)

β‡’ 𝐴 = βˆ’

1

4

Putting the value of

𝐴, 𝐡, π‘Žπ‘›π‘‘ 𝐢 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖)𝑀𝑒 π‘”π‘œπ‘‘ π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘Žπ‘™

π‘“π‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘›π‘  1

(π‘₯ βˆ’ 1)2(π‘₯ + 1)

=βˆ’1

4(π‘₯ βˆ’ 1)+

1

2(π‘₯ βˆ’ 1)2+

1

4(π‘₯ + 1)

Question No.7

πŸ‘π’™πŸ + πŸπŸ“π’™ + πŸπŸ”

(𝒙 + 𝟐)𝟐

Solution:

3π‘₯2 + 15π‘₯ + 16

(π‘₯ + 2)2=

3π‘₯2 + 15π‘₯ + 16

π‘₯2 + 4π‘₯ + 4

The given fraction is improper fraction.

By long division, 3

π‘₯2 + 4π‘₯ + 4 √3π‘₯2 + 15π‘₯ + 16

Β±3π‘₯2 Β± 12π‘₯ Β± 12

3π‘₯ + 4

3π‘₯2 + 15π‘₯ + 16

(π‘₯ + 2)2= 3 +

3π‘₯ + 4

π‘₯2 + 4π‘₯ + 4β†’ (𝑖)

𝐿𝑒𝑑3π‘₯ + 4

(π‘₯ + 2)2=

𝐴

π‘₯ + 2+

𝐡

(π‘₯ + 2)2β†’ (𝑖𝑖)

Multiplying both sides by (π‘₯ + 2)2 𝑀𝑒 𝑔𝑒𝑑

3π‘₯ + 4 = 𝐴(π‘₯ + 2) + 𝐡 β†’ (𝑖𝑖𝑖)

𝑃𝑒𝑑𝑑𝑖𝑛𝑔 π‘₯ + 2 = 0 𝑖. 𝑒 π‘₯ = βˆ’2 𝑖𝑛 (𝑖𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

3(βˆ’2) + 4 = 𝐡

βˆ’6 + 4 = 𝐡

β‡’ 𝐡 = βˆ’2

Equating the coefficient of "π‘₯" we get

3 = 𝐴

β‡’ 𝐴 = 3

Putting the value of 𝐴 π‘Žπ‘›π‘‘ 𝐡 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖𝑖) and

𝑒𝑠𝑖𝑛𝑔 𝑒q.(𝑖) 𝑀𝑒 𝑔𝑒𝑑 π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘Žπ‘™ π‘“π‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘›π‘ . 3π‘₯2+15π‘₯+16

(π‘₯+2)2 = 3 +3

π‘₯+2βˆ’

2

(π‘₯+2)2

Question No.8 𝟏

(π’™πŸ βˆ’ 𝟏)(𝒙 + 𝟏)

Solution: 1

(π‘₯2 βˆ’ 1)(π‘₯ + 1)=

1

(π‘₯ βˆ’ 1)(π‘₯ + 1)(π‘₯ + 1)

=1

(π‘₯ βˆ’ 1)(π‘₯ + 1)2

𝐿𝑒𝑑 1

(π‘₯ βˆ’ 1)(π‘₯ + 1)2=

𝐴

π‘₯ βˆ’ 1+

𝐡

π‘₯ + 1+

𝐢

(π‘₯ + 1)2

Multiplying both sides by (π‘₯ βˆ’ 1)(π‘₯ + 1)2 𝑀𝑒 𝑔𝑒𝑑

1 = 𝐴(π‘₯ + 1)2 + 𝐡(π‘₯ + 1)(π‘₯ βˆ’ 1) + 𝐢(π‘₯ βˆ’ 1)β†’ (𝑖𝑖)

𝑃𝑒𝑑𝑑𝑖𝑛𝑔 π‘₯ βˆ’ 1 = 0 𝑖. 𝑒 π‘₯ = 1 𝑖𝑛 (𝑖𝑖) 𝑀𝑒 𝑔𝑒𝑑

1 = 𝐴(1 + 1)2

1 = 𝐴(2)2

1 = 4𝐴

β‡’ 𝐴 =1

4

Putting π‘₯ + 1 = π‘œ 𝑖. 𝑒 π‘₯ = βˆ’1 𝑖𝑛 (𝑖𝑖) 𝑀𝑒 𝑔𝑒𝑑

1 = 𝐢(βˆ’1 βˆ’ 1)

1 = βˆ’2𝐢

β‡’ 𝐢 =βˆ’1

2

Equating the coefficient of π‘₯2 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖𝑖)

We get 𝐴 + 𝐡 = 0

𝐡 = βˆ’π΄

𝐡 = βˆ’ (1

4)

β‡’ 𝐡 = βˆ’1

4

𝑃𝑒𝑑𝑑𝑖𝑛𝑔 π‘‘β„Žπ‘’ π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝐴 π‘Žπ‘›π‘‘ 𝐡 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖𝑖)

We get required partial fractions. 1

(π‘₯ βˆ’ 1)(π‘₯ + 1)2

=1

4(π‘₯ βˆ’ 1)βˆ’

1

4(π‘₯ + 1)βˆ’

1

2(π‘₯ + 1)2

Page 8: 7/18/2020 Chapter 4

Class 10th Chapter 4 www.notes.pk.com

Complied by Shumaila Amin 6 | P a g e

Resolution of fraction when 𝑫(𝒙) consists of non-repeated irreducible quadratic factors: Rule III If a quadratic

(π’‚π’™πŸ + 𝒃𝒙 +factor 𝒄) with 𝒂 β‰  𝟎 occur once as a factor of 𝑫(𝒙). The partial fraction is of

the form 𝑨𝒙+𝑩

(π’‚π’™πŸ+𝒃𝒙+𝒄) where A and B are constants to

be found.

Exercise 4.3 Resolve into partial fraction.

Question No.1 πŸ‘π’™ βˆ’ 𝟏𝟏

(𝒙 + πŸ‘)(π’™πŸ + 𝟏)

Solution: πŸ‘π’™ βˆ’ 𝟏𝟏

(𝒙 + πŸ‘)(π’™πŸ + 𝟏)

𝐿𝑒𝑑 πŸ‘π’™ βˆ’ 𝟏𝟏

(𝒙 + πŸ‘)(π’™πŸ + 𝟏)=

𝑨

𝒙 + πŸ‘+

𝑩𝒙 + π‘ͺ

π‘₯2 + 1

Multiplying both sides (π‘₯ βˆ’ 3)(π‘₯2 + 1), 𝑀𝑒 𝑔𝑒𝑑

3π‘₯ βˆ’ 11 = 𝐴(π‘₯2 + 1) + (𝐡π‘₯ + 𝐢)(π‘₯ + 3) β†’ (𝑖)

3π‘₯ βˆ’ 11 = 𝐴(π‘₯2 + 1) + 𝐡π‘₯(π‘₯ + 3) + 𝐢(π‘₯ + 3)

β†’ (𝑖𝑖) 𝑃𝑒𝑑𝑑𝑖𝑛𝑔 π‘₯ + 3 = 0 𝑖. 𝑒 π‘₯ = βˆ’3, 𝑀𝑒 𝑔𝑒𝑑

3(βˆ’3) βˆ’ 11 = 𝐴[(βˆ’3)2 + 1]

βˆ’9 βˆ’ 11 = 𝐴(9 + 1)

βˆ’20 = 10𝐴

𝐴 =βˆ’20

10

β‡’ 𝐴 = βˆ’2

Now equating the coefficient of π‘₯2 and π‘₯ we get from

equation (𝑖𝑖𝑖)

𝐴 + 𝐡 = 0 βˆ’2 + 𝐡 = 0

𝐡 = 2

β‡’ 𝐡 = 1

3𝐡 + 𝐢 = 3 3(2) + 𝐢 = 3

6 + 𝐢 = 3 𝐢 = 3 βˆ’ 6

β‡’ 𝐢 = βˆ’3

Putting the value

π‘œπ‘“ 𝐴, 𝐡 π‘Žπ‘›π‘‘ 𝐢 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖)𝑀𝑒 𝑔𝑒𝑑

Required partial fractions. 3π‘₯ βˆ’ 11

(π‘₯ + 3)(π‘₯2 + 1)=

βˆ’2

π‘₯ + 3+

2π‘₯ βˆ’ 3

π‘₯2 + 1

Question No.2

πŸ‘π’™ + πŸ•

(π’™πŸ + 𝟏)(𝒙 + πŸ‘)

Solution:

𝐿𝑒𝑑 πŸ‘π’™ + πŸ•

(π’™πŸ + 𝟏)(𝒙 + πŸ‘)=

𝑨𝒙 + 𝑩

π’™πŸ + 𝟏+

π‘ͺ

𝒙 + πŸ‘β†’ (π’Šπ’Š)

Multiplying both sides by π‘₯2 + 1)(π‘₯ + 3)

3π‘₯ + 7 = (𝐴π‘₯ + 𝐡)(π‘₯ + 3) + 𝐢(π‘₯2 + 1)

3π‘₯ + 7 = 𝐴π‘₯(π‘₯ + 3) + 𝐡(π‘₯ + 3) + 𝐢(π‘₯2 + 1) β†’ (𝑖𝑖) 𝑃𝑒𝑑𝑑𝑖𝑛𝑔 π‘₯ + 3 = 0 𝑖. 𝑒 π‘₯ = βˆ’3 𝑖𝑛 (𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

3(βˆ’3) + 7 = 𝐢[(βˆ’3)2 + 1] βˆ’9 + 7 = 𝐢(9 + 1)

βˆ’2 = 10𝐢

𝐢 = βˆ’2

10

Now equation the coefficient of π‘₯2 π‘Žπ‘›π‘‘ π‘₯ in equation

(𝑖𝑖𝑖) we get.

𝐴 + 𝐢 = 0

𝐴 + (βˆ’1

5) = 0

𝐴 βˆ’1

5= 0

β‡’ 𝐴 =

1

5

3𝐴 + 𝐡 = 3

3 (1

5) + 𝐡 = 3

𝐡 = 3 βˆ’3

5

𝐡 = 3 βˆ’3

5

𝐡 =15 βˆ’ 3

5

𝐡 =12

5

β‡’ 𝐢 = βˆ’3

Putting the value of

𝐴, 𝐡 π‘Žπ‘›π‘‘ 𝐢 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖) 𝑀𝑒 𝑔𝑒𝑑

π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘Žπ‘™ π‘“π‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘›. 3π‘₯ + 7

(π‘₯2 + 1)(π‘₯ + 3)=

π‘₯ + 12

5(π‘₯2 + 1)βˆ’

1

5(π‘₯ + 3)

Question No.3 𝟏

(𝒙 + 𝟏)(π’™πŸ + 𝟏)

Solution:

𝐿𝑒𝑑1

(π‘₯ + 1)(π‘₯2 + 1)=

𝐴

π‘₯ + 1+

𝐡π‘₯ + 𝐢

π‘₯2 + 1β†’ (𝑖𝑖)

Multiplying both sides by (π‘₯ + 1)(π‘₯2 + 1)𝑀𝑒 𝑔𝑒𝑑

1 = 𝐴(π‘₯2 + 1) + (𝐡π‘₯ + 𝐢)(π‘₯ + 1)

1 = 𝐴(π‘₯2 + 1) + 𝐡π‘₯(π‘₯ + 1) + 𝐢(π‘₯ + 1) β†’ (𝑖𝑖)

𝑝𝑒𝑑𝑑𝑖𝑛𝑔 π‘₯ + 1 = 0 𝑖. 𝑒 π‘₯ = βˆ’1 𝑖𝑛 (𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

1 = 𝐴[(βˆ’1)2 + 1] 1 = 𝐴(1 + 1)

1 = 2𝐴

Equation the coefficients of

π‘₯2 π‘Žπ‘›π‘‘ π‘₯ 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖𝑖) We get

β‡’ 𝐢 =

βˆ’1

5

β‡’ 𝐴 =

1

2

Page 9: 7/18/2020 Chapter 4

Class 10th Chapter 4 www.notes.pk.com

Complied by Shumaila Amin 7 | P a g e

𝐴 + 𝐡 = 0 1

2+ 𝐡 = 0

𝐡 = βˆ’1

2

β‡’ 𝐡 = βˆ’

1

2

𝐡 + 𝐢 = 0

βˆ’1

2+ 𝐢 = 0

𝐢 =1

2

β‡’ 𝐢 =

1

2

Putting the value of 𝐴, 𝐡 π‘Žπ‘›π‘‘ 𝐢 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘›π‘  (𝑖)𝑀𝑒

Get required

partial

fractions. 1

(π‘₯ + 1)(π‘₯2 + 1)=

1

2(π‘₯ + 1)+

π‘₯ βˆ’ 1

2(π‘₯2 + 1)

Question No.4 πŸ—π’™ βˆ’ πŸ•

(𝒙 + πŸ‘)(π’™πŸ + 𝟏)

Solution:

𝐿𝑒𝑑 9π‘₯ βˆ’ 7

(π‘₯ + 3)(π‘₯2 + 1)=

𝐴

π‘₯ + 3+

𝐡π‘₯ + 𝐢

π‘₯2 + 1β†’ (𝑖)

Multiplying both sides by (π‘₯ + 3)(π‘₯2 + 1)𝑀𝑒 𝑔𝑒𝑑

9π‘₯ βˆ’ 7 = 𝐴(π‘₯2 + 1) + (𝐡π‘₯ + 𝐢)(π‘₯2 + 1)

9π‘₯ βˆ’ 7 = 𝐴(π‘₯2 + 1) + 𝐡π‘₯(π‘₯ + 3) + 𝐢(π‘₯ + 3) β†’ (𝑖𝑖)

Putting π‘₯ + 3 = 0 𝑖. 𝑒 π‘₯ = βˆ’3 𝑖𝑛 (𝑖𝑖) 𝑀𝑒 𝑔𝑒𝑑

9(βˆ’3) βˆ’ 7 = 𝐴[(βˆ’3)2 + 1]

βˆ’27 βˆ’ 7 = 𝐴(9 + 1) βˆ’34 = 10𝐴

𝐴 =βˆ’34

10

Equating coefficient of

π‘₯2 π‘Žπ‘›π‘‘ π‘₯ 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖𝑖)𝑀𝑒 get

𝐴 + 𝐡 = 0 βˆ’17

5+ 𝐡 = 0

𝐡 =17

5

β‡’ 𝐡 =

βˆ’17

5

3𝐡 + 𝐢 = 9

3 (17

2) + 𝐢 = 9

51

5+ 𝐢 = 9

𝐢 = 9 βˆ’51

5

𝐢 =45 βˆ’ 51

5

β‡’ 𝐢 =

βˆ’6

5

Putting the value

π‘œπ‘“ 𝐴, 𝐡 π‘Žπ‘›π‘‘ 𝐢 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖)𝑀𝑒 𝑔𝑒𝑑

π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘Žπ‘™ π‘“π‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘›. 9π‘₯ βˆ’ 7

(π‘₯ + 3)(π‘₯2 + 1)=

βˆ’17

5(π‘₯ + 3)+

17π‘₯ βˆ’ 6

5(π‘₯2 + 1)

Question No.5 πŸ‘π’™ + πŸ•

(𝒙 + πŸ‘)(π’™πŸ + πŸ’)

Solution:

𝐿𝑒𝑑 3π‘₯ + 7

(π‘₯ + 3)(π‘₯2 + 4)=

𝐴

π‘₯ + 3+

𝐡π‘₯ + 𝐢

π‘₯2 + 4β†’ (𝑖)

Multiplying both sides by (π‘₯ + 3)(π‘₯2 + 4)𝑀𝑒 𝑔𝑒𝑑

3π‘₯ + 7 = 𝐴(π‘₯2 + 4) + (𝐡π‘₯ + 𝐢)(π‘₯ + 3)

3π‘₯ + 7 = 𝐴(π‘₯2 + 4) + 𝐡π‘₯(π‘₯ + 3) + 𝐢(π‘₯ + 3) β†’ (𝑖𝑖) 𝑃𝑒𝑑𝑑𝑖𝑛𝑔 π‘₯ + 3 = 0 𝑖. 𝑒 π‘₯ = βˆ’3 𝑖𝑛 (𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

3(βˆ’3) + 7 = 𝐴((βˆ’3)2 + 4) βˆ’9 + 7 = 𝐴(9 + 4)

βˆ’2 = 13𝐴

Equating the coefficient π‘œπ‘“ π‘₯2 π‘Žπ‘›π‘‘ π‘₯ 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖𝑖)

we get

𝐴 + 𝐡 = 0 βˆ’2

13+ 𝐡 = 0

𝐡 =2

13

β‡’ 𝐡 =

2

13

3𝐡 + 𝐢 = 3

3 (2

13) + 𝐢 = 3

6

13+ 𝐢 = 9

𝐢 = 3 βˆ’6

13

𝐢 =39 βˆ’ 6

13

β‡’ 𝐢 =

33

13

Putting the value of 𝐴, 𝐡 π‘Žπ‘›π‘‘ 𝐢 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖)𝑀𝑒 𝑔𝑒𝑑

Required partial fractions. 3π‘₯ + 7

(π‘₯ + 3)(π‘₯2 + 4)=

βˆ’2

13(π‘₯ + 3)+

2π‘₯ + 33

13(π‘₯2 + 4)

Question No.6

π’™πŸ

(𝒙 + 𝟐)(π’™πŸ + πŸ’)

Solution:

𝐿𝑒𝑑π‘₯2

(π‘₯ + 2)(π‘₯2 + 4)=

𝐴

π‘₯ + 2+

𝐡π‘₯ + 𝐢

π’™πŸ + πŸ’β†’ (𝑖)

Multiplying both sides by (π‘₯ + 2)(π‘₯2 + 4) 𝑀𝑒 𝑔𝑒𝑑

π‘₯2 = 𝐴(π‘₯2 + 4) + (𝐡π‘₯ + 𝐢)(π‘₯ + 2)

π‘₯2 = 𝐴(π‘₯2 + 4) + 𝐡π‘₯(π‘₯ + 2) + 𝐢(π‘₯ + 2) β†’ (𝑖𝑖) Putting π‘₯ + 2 = 0 𝑖. 𝑒 π‘₯ = βˆ’2 𝑖𝑛 (𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

(βˆ’2)2 = 𝐴[(βˆ’2)2 + 4]

4 = 𝐴(4 + 𝐴)

4 = 8 + 𝐴

Equating the coefficients of

π‘₯3 π‘Žπ‘›π‘‘ π‘₯ 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖𝑖) We get

β‡’ 𝐴 =

βˆ’17

5

β‡’ 𝐴 =

βˆ’2

13

β‡’ 𝐴 =

1

2

Page 10: 7/18/2020 Chapter 4

Class 10th Chapter 4 www.notes.pk.com

Complied by Shumaila Amin 8 | P a g e

𝐴 + 𝐡 = 1 1

2+ 𝐡 = 1

𝐡 = 1 βˆ’1

2

β‡’ 𝐡 =

1

2

2𝐡 + 𝐢 = 0

2 (1

2) + 𝐢 = 0

1 + 𝐢 = 0 𝐢 = 0 βˆ’ 1 = βˆ’1

β‡’ 𝐢 = βˆ’1

Putting the value of

𝐴, 𝐡 π‘Žπ‘›π‘‘ 𝐢 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖)𝑀𝑒 𝑔𝑒𝑑

Required partial fractions.

π‘₯2

(π‘₯ + 2)(π‘₯2 + 4)=

1

2(π‘₯ + 2)+

π‘₯ βˆ’ 2

2(π‘₯2 + 4)

Question No.7 𝟏

π’™πŸ‘ + 𝟏 [π‘―π’Šπ’π’•:

𝟏

π’™πŸ‘ + 𝟏

=𝟏

(𝒙 + 𝟏)(π’™πŸ βˆ’ 𝒙 + 𝟏)]

Solution:

𝐿𝑒𝑑 1

(π‘₯ + 1)(π‘₯2 βˆ’ π‘₯ + 1)=

𝐴

π‘₯ + 1+

𝐡π‘₯ + 𝐢

π‘₯2 βˆ’ π‘₯ + 1β†’ (𝑖)

Multiplying both sides by (π‘₯ βˆ’ 1)(π‘₯2 βˆ’ π‘₯ +

1), 𝑀𝑒 𝑔𝑒𝑑

1 = 𝐴(π‘₯2 βˆ’ π‘₯ + 1) + (𝐡π‘₯ + 𝐢)(π‘₯ + 1)

1 = 𝐴(π‘₯2 βˆ’ π‘₯ + 1) + 𝐡π‘₯(π‘₯ + 1) + 𝑐(π‘₯ + 1) β†’ (𝑖𝑖)

Putting π‘₯ + 1 = 0 𝑖. 𝑒 π‘₯ = βˆ’1 𝑖𝑛 (𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

1 = 𝐴[(βˆ’1)2 βˆ’ (βˆ’1) + 1]

1 = 𝐴[(βˆ’1)2 βˆ’ 1(βˆ’1) + 1]

1 = 𝐴(1 + 1 + 1)

1 = 3𝐴

Comparing the coefficients of

π‘₯2 π‘Žπ‘›π‘‘ π‘₯ 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

𝐴 + 𝐡 = 0 1

3+ 𝐡 = 0

𝐡 =βˆ’1

3

β‡’ 𝐡 =

βˆ’1

3

βˆ’π΄ + 𝐡 + 𝐢 = 0

(βˆ’1

3) βˆ’

1

3+ 𝐢 = 0

βˆ’2

3+ 𝐢 = 0

β‡’ 𝐢 =

2

3

Putting the value of

𝐴, π‘Žπ‘›π‘‘ 𝐡 π‘Žπ‘›π‘‘ 𝐢 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖)𝑀𝑒 𝑔𝑒𝑑

Required partial fractions. 1

(π‘₯ + 1)(π‘₯2 βˆ’ π‘₯ + 1)=

1

3(π‘₯ + 1)βˆ’

π‘₯ βˆ’ 2

3(π‘₯2 βˆ’ π‘₯ + 1)

Question No.8

π’™πŸ + 𝟏

π’™πŸ‘ + 𝟏

Solution:

π‘₯2 + 1

[π‘₯3 + 1=

π‘₯2 + 1

(π‘₯ + 1)(π‘₯2 βˆ’ π‘₯ + 1)

𝐿𝑒𝑑 π‘₯2 + 1

(π‘₯ + 1)(π‘₯2 βˆ’ π‘₯ + 1)=

𝐴

π‘₯ + 1+

𝐡π‘₯ + 𝐢

π‘₯2 βˆ’ π‘₯ + 1β†’ (𝑖)

Multiplying both sides by (π‘₯ + 1)(π‘₯2 βˆ’ π‘₯ +

1), 𝑀𝑒 𝑔𝑒𝑑

π‘₯2 + 1 = 𝐴(π‘₯2 βˆ’ π‘₯ + 1) + (𝐡π‘₯ + 𝐢)(π‘₯ + 1)

π‘₯2 + 1 = 𝐴(π‘₯2 βˆ’ π‘₯ + 1) + 𝐡π‘₯(π‘₯ + 1) + 𝐢(π‘₯ + 1)

β†’ (𝑖𝑖)

Putting π‘₯ + 1 = 0 𝑖. 𝑒 π‘₯ = βˆ’1 𝑖𝑛 (𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

(βˆ’1)2 + 1 = 𝐴[(βˆ’1)2 βˆ’ (βˆ’1) + 1] 1 + 1 = 𝐴(1 + 1 + 1)

2 = 3𝐴

Equating the coefficients of

π‘₯2 π‘Žπ‘›π‘‘ π‘₯ 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

𝐴 + 𝐡 = 1 2

3+ 𝐡 = 1

𝐡 = 1 βˆ’2

3

β‡’ 𝐡 =

1

3

βˆ’π΄ + 𝐡 + 𝐢 = 0

(βˆ’2

3) +

1

3+ 𝐢 = 0

βˆ’1

3+ 𝐢 = 0

β‡’ 𝐢 =

1

3

Putting the value of

𝐴, 𝐡 π‘Žπ‘›π‘‘ 𝐢 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖) 𝑀𝑒 𝑔𝑒𝑑

π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘Žπ‘™ π‘“π‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘›π‘ .

π‘₯2 + 1

(π‘₯ + 1)(π‘₯2 βˆ’ π‘₯ + 1)=

2

3(π‘₯ + 1)+

π‘₯ + 1

3(π‘₯2 βˆ’ π‘₯ + 1)

Resolution of a fraction when 𝐷(π‘₯) has repeated irreducible quadratic factor: Rule IV If a quadratic factor (π‘Žπ‘₯2 + 𝑏π‘₯ + 𝑐) with π‘Ž β‰  0 occures twice in the denominator the corresponding partial fractions are,

𝐴π‘₯ + 𝐡

π‘Žπ‘₯2 + 𝑏π‘₯ + 𝑐+

𝐢π‘₯ + 𝐷

(π‘Žπ‘₯2 + 𝑏π‘₯ + 𝑐)2

The constants 𝐴, 𝐡, π‘Žπ‘›π‘‘ 𝐢 π‘Žπ‘Ÿπ‘’ π‘“π‘œπ‘’π‘›π‘‘ in the usual.

β‡’ 𝐴 =1

3

β‡’ 𝐴 =

2

3

Page 11: 7/18/2020 Chapter 4

Class 10th Chapter 4 www.notes.pk.com

Complied by Shumaila Amin 9 | P a g e

Exercise 4.4 Resolve into Partial Fractions.

Question No.1

π’™πŸ‘

(π’™πŸ + πŸ’)𝟐

Solution:

𝐿𝑒𝑑π‘₯3

(π‘₯2 + 4)2=

𝐴π‘₯ + 𝐡

π‘₯2 + 4+

𝐢π‘₯ + 𝐷

(π‘₯2 + 4)2β†’ (𝑖)

𝑀𝑒𝑙𝑑𝑖𝑝𝑙𝑦𝑖𝑛𝑔 π‘π‘œπ‘‘β„Žπ‘ π‘–π‘‘π‘’π‘  𝑏𝑦 (π‘₯2 + 4)2, 𝑀𝑒 𝑔𝑒𝑑

π‘₯3 = (𝐴π‘₯ + 𝐡)(π‘₯2 + 4) + (𝐢π‘₯ + 𝐷)

π‘₯3 = 𝐴π‘₯(π‘₯2 + 4) + 𝐡(π‘₯2 + 4) + (𝐢π‘₯ + 𝐷) β†’ (𝑖𝑖𝑖)

Equating the coefficients of π‘₯3, π‘₯2, π‘₯ π‘Žπ‘›π‘‘ π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘, we

get

Coefficients π‘œπ‘“ π‘₯3: 𝐴 = 1

Coefficients of π‘₯2: 𝐡 = 0

Coefficients of π‘₯: 4𝐴 + 𝐢 = 0

𝐢 = βˆ’4

Constants:4𝐡 + 𝐷 = 0

4(0) + 𝐷 = 0

𝐷 = 0

Putting the value of 𝐴, 𝐡, π‘Žπ‘›π‘‘ 𝐢 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖)

We get required partial fractions.

π‘₯3

(π‘₯2 + 4)2=

π‘₯

π‘₯2 + 4βˆ’

4π‘₯

(π‘₯2 + 4)2

Question No.2

π’™πŸ’ + πŸ‘π’™πŸ + 𝒙 + 𝟏

(𝒙 + 𝟏)(π’™πŸ + 𝟏)𝟐

Solution:

𝐿𝑒𝑑 π‘₯4 + 3π‘₯2 + π‘₯ + 1

(π‘₯ + 1)(π‘₯2 + 1)2=

𝐴

π‘₯ + 1+

𝐡π‘₯ + 𝐢

π‘₯2 + 1+

𝐷π‘₯ + 𝐸

(π‘₯2 + 1)2

β†’ (π’Š)

Multiplying both sides by (𝒙 + 𝟏)(π’™πŸ + 𝟏)𝟐

π’˜π’† π’ˆπ’†π’•

π‘₯4 + 3π‘₯2 + π‘₯ + 1

= 𝐴(π‘₯2 + 1)2 + (𝐡π‘₯ + 𝐢)(π‘₯ + 1)(π‘₯2 + 1) +(𝐷π‘₯ + 𝐸)(π‘₯ + 1) β†’ (𝑖𝑖)

π‘₯4 + 3π‘₯2 + π‘₯ + 1 = 𝐴(π‘₯4 + 2π‘₯2 + 1)

+𝐡π‘₯(π‘₯3 + π‘₯2 + π‘₯ + 1) + 𝐢(π‘₯3 + π‘₯2 + π‘₯ + 1) +𝐷π‘₯(π‘₯ + 1) + 𝐸(π‘₯ + 1)

π‘₯4 + 3π‘₯2 + π‘₯ + 1 = 𝐴(π‘₯4 + 2π‘₯2 + 1)

+𝐡(π‘₯4 + π‘₯3 + π‘₯2 + π‘₯) + 𝐢(π‘₯3 + π‘₯2 + π‘₯ + 1)

𝐷(π‘₯2 + π‘₯) + 𝐸(π‘₯ + 1) β†’ (𝑖𝑖𝑖) Putting π‘₯ + 1 = 0 𝑖. 𝑒 π‘₯ = βˆ’1 𝑖𝑛 π‘’π‘ž(𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

(βˆ’1)4 + 3(βˆ’1)2 + (βˆ’1) + 1 = 𝐴[(βˆ’1)2 + 1]2

1 + 3(1) βˆ’ 1 + 1 = 𝐴(1 + 1)2 4 = 4𝐴

𝐴 = 1

Now equating the coefficients of π‘₯4, π‘₯3, π‘₯2, π‘₯ π‘Žπ‘›π‘‘

π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘π‘ , 𝑀𝑒 𝑔𝑒𝑑 π‘“π‘Ÿπ‘œπ‘š π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖𝑖𝑖)

π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘œπ‘“ π‘₯4: 𝐴 + 𝐡 = 1

1 + 𝐡 = 1

𝐡 = 1 βˆ’ 1

β‡’ 𝐡 = 0

Coefficients of π‘₯3: 𝐡 + 𝐢 = 0

0 + 𝐢 = 0

β‡’ 𝐢 = 0

Coefficients of π‘₯2: 2𝐴 + 𝐡 + 𝐢 + 𝐷 = 3

2(1) + 0 + 0 + 𝐷 = 3

𝐷 = 3 βˆ’ 2

𝐷 = 1

πΆπ‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘œπ‘“ π‘₯: 𝐡 + 𝐢 + 𝐷 + 𝐸 = 1

0 + 0 + 1 + 𝐸 = 1

𝐸 = 1 βˆ’ 1

β‡’ 𝐸 = 0

Putting the value π‘œπ‘“ 𝐴, 𝐡, 𝐢 π‘Žπ‘›π‘‘ 𝐷 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖)

We get required partial fractions.

𝐿𝑒𝑑 π‘₯4 + 3π‘₯2 + π‘₯ + 1

(π‘₯ + 1)(π‘₯2 + 1)2=

1

π‘₯ + 1+

π‘₯

(π‘₯2 + 1)2

Question No.3

π’™πŸ

(𝒙 + 𝟏)(π’™πŸ + 𝟏)𝟐

Solution:

𝐿𝑒𝑑 π’™πŸ

(𝒙 + 𝟏)(π’™πŸ + 𝟏)𝟐=

𝐴

π‘₯ + 1+

𝐡π‘₯ + 𝐢

π‘₯2 + 1+

𝐷π‘₯ + 𝐸

(π‘₯2 + 1)2

β†’ (π’Š)

Multiplying both sides by (𝒙 + 𝟏)(π’™πŸ + 𝟏)𝟐

π’˜π’† π’ˆπ’†π’•

π‘₯2 = 𝐴(π‘₯2 + 1)2 + (𝐡π‘₯ + 𝐢)(π‘₯ + 1)(π‘₯2 + 1) +(𝐷π‘₯ + 𝐸)(π‘₯ + 1) β†’ (𝑖𝑖)

π‘₯2 = 𝐴(π‘₯4 + 2π‘₯2 + 1) + 𝐡π‘₯(π‘₯3 + π‘₯2 + π‘₯ + 1) +

𝐢(π‘₯3 + π‘₯2 + π‘₯ + 1) +𝐷π‘₯(π‘₯ + 1) + 𝐸(π‘₯ + 1)

π‘₯2 = 𝐴(π‘₯4 + 2π‘₯2 + 1) +𝐡(π‘₯4 + π‘₯3 + π‘₯2 + π‘₯)

+𝐢(π‘₯3 + π‘₯2 + π‘₯ + 1)+𝐷(π‘₯2 + π‘₯) + 𝐸(π‘₯ + 1) β†’ (𝑖𝑖𝑖)

Putting π‘₯ + 1 = 0 𝑖. 𝑒 π‘₯ = βˆ’1 𝑖𝑛 π‘’π‘ž(𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

(βˆ’1)2 = 𝐴[(βˆ’1)2 + 1]2

1 = 𝐴(1 + 1)2 1 = 4𝐴

β‡’

𝐴 =1

4

Now equating the coefficients of π‘₯4, π‘₯3, π‘₯2, π‘₯ π‘Žπ‘›π‘‘

π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘π‘ , 𝑀𝑒 𝑔𝑒𝑑 π‘“π‘Ÿπ‘œπ‘š π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖𝑖𝑖)

π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘œπ‘“ π‘₯4: 𝐴 + 𝐡 = 0 1

4+ 𝐡 = 1

β‡’ 𝐡 = βˆ’

1

4

Coefficients of π‘₯3: 𝐡 + 𝐢 = 0

βˆ’1

4+ 𝐢 = 0

β‡’ 𝐢 =

1

4

Coefficients of π‘₯2: 2𝐴 + 𝐡 + 𝐢 + 𝐷 = 1

Page 12: 7/18/2020 Chapter 4

Class 10th Chapter 4 www.notes.pk.com

Complied by Shumaila Amin 10 | P a g e

2 (1

4) βˆ’

1

4+

1

4+ 𝐷 = 1

1

2+ 𝐷 = 1

𝐷 = 1 βˆ’1

2

β‡’ 𝐷 =2 βˆ’ 1

2

β‡’ 𝐷 =

1

2

πΆπ‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘œπ‘“ π‘₯: 𝐡 + 𝐢 + 𝐷 + 𝐸 = 0

βˆ’1

4+

1

2+

1

2+ 𝐸 = 0

1

2+ 𝐸 = 0

β‡’ 𝐸 = βˆ’

1

2

Putting the value π‘œπ‘“ 𝐴, 𝐡, 𝐢 π‘Žπ‘›π‘‘ 𝐷 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖)

We get required partial fractions.

π’™πŸ

(𝒙 + 𝟏)(π’™πŸ + 𝟏)𝟐

=𝐴

4(π‘₯ + 1)+

π‘₯ βˆ’ 1

4(π‘₯2 + 1)+

π‘₯ βˆ’ 1

2(π‘₯2 + 1)2

Question No.4

π’™πŸ

(𝒙 βˆ’ 𝟏)(π’™πŸ + 𝟏)𝟐

Solution:

π’™πŸ

(𝒙 βˆ’ 𝟏)(π’™πŸ + 𝟏)𝟐=

𝐴

π‘₯ βˆ’ 1+

𝐡π‘₯ + 𝐢

π‘₯2 + 1+

𝐷π‘₯ + 𝐸

(π‘₯2 + 1)2

β†’ (π’Š)

Multiplying both sides by (π‘₯ + 1)(π‘₯2 + 1)2 𝑀𝑒 𝑔𝑒𝑑

π‘₯2 = 𝐴(π‘₯2 + 1)2 + (𝐡π‘₯ + 𝐢)(π‘₯ βˆ’ 1)(π‘₯2 + 1) +(𝐷π‘₯ + 𝐸)(π‘₯ βˆ’ 1) β†’ (𝑖𝑖)

π‘₯2 = 𝐴(π‘₯4 + 2π‘₯2 + 1) + 𝐡π‘₯(π‘₯ βˆ’ 1)(π‘₯2 + 1) +

𝐢(π‘₯ βˆ’ 1)(π‘₯2 + 1) +𝐷π‘₯(π‘₯ βˆ’ 1) + 𝐸(π‘₯ βˆ’ 1)

π‘₯2 = 𝐴(π‘₯4 + 2π‘₯2 + 1) +𝐡(π‘₯4 βˆ’ π‘₯3 + π‘₯2 βˆ’ π‘₯)

+𝐢(π‘₯3 βˆ’ π‘₯2 + π‘₯ βˆ’ 1)+𝐷(π‘₯2 βˆ’ π‘₯) + 𝐸(π‘₯ βˆ’ 1) β†’ (𝑖𝑖𝑖)

Putting π‘₯ βˆ’ 1 = 0 𝑖. 𝑒 π‘₯ = 1 𝑖𝑛 π‘’π‘ž(𝑖𝑖)𝑀𝑒 𝑔𝑒𝑑

(1)2 = 𝐴[(1)2 + 1]2

1 = 𝐴(1 + 1)2 1 = 4𝐴

β‡’

𝐴 =1

4

Now equating the coefficients of π‘₯4, π‘₯3, π‘₯2, π‘₯ π‘Žπ‘›π‘‘

π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘π‘ , 𝑀𝑒 𝑔𝑒𝑑 π‘“π‘Ÿπ‘œπ‘š π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖𝑖𝑖)

π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘œπ‘“ π‘₯4: 𝐴 + 𝐡 = 0 1

4+ 𝐡 = 1

β‡’ 𝐡 = βˆ’

1

4

Coefficients of π‘₯3: 𝐡 + 𝐢 = 0

βˆ’ (βˆ’1

4) + 𝐢 = 0

β‡’ 𝐢 = βˆ’

1

4

Coefficients of π‘₯2: 2𝐴 + 𝐡 βˆ’ 𝐢 + 𝐷 = 1

2 (1

4) βˆ’

1

4βˆ’ (βˆ’

1

4) + 𝐷 = 1

1

2βˆ’

1

4+

1

4+ 𝐷 = 1

𝐷 = 1 βˆ’1

2

β‡’ 𝐷 =2 βˆ’ 1

2

β‡’ 𝐷 =

1

2

πΆπ‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘œπ‘“ π‘₯: βˆ’ 𝐡 + 𝐢 βˆ’ 𝐷 + 𝐸 = 0

βˆ’ (βˆ’1

4) βˆ’

1

4βˆ’

1

2+ 𝐸 = 0

1

4βˆ’

1

4βˆ’

1

2+ 𝐸 = 0

βˆ’1

2+ 𝐸 = 0

β‡’ 𝐸 =

1

2

Putting the value π‘œπ‘“ 𝐴, 𝐡, 𝐢 π‘Žπ‘›π‘‘ 𝐷 𝑖𝑛 π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (𝑖)

We get required partial fractions.

π’™πŸ

(𝒙 βˆ’ 𝟏)(π’™πŸ + 𝟏)𝟐

=1

4(π‘₯ + 1)+

π‘₯ + 1

4(π‘₯2 + 1)+

π‘₯ + 1

2(π‘₯2 + 1)2

Question No.5

π’™πŸ’

(π’™πŸ + 𝟐)𝟐

Solution:

π‘₯4

(π‘₯2 + 2)2=

π‘₯4

π‘₯4 + 4π‘₯2 + 4 𝑖𝑠 π‘Žπ‘› π‘–π‘šπ‘π‘Ÿπ‘œπ‘π‘’π‘Ÿ π‘“π‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘›

πΉπ‘–π‘Ÿπ‘ π‘‘ 𝑀𝑒 π‘Ÿπ‘’π‘ π‘œπ‘™π‘£π‘’ 𝑖𝑑 π‘–π‘›π‘‘π‘œ π‘π‘Ÿπ‘œπ‘π‘’π‘Ÿ π‘“π‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘›

1

π‘₯4 + 4π‘₯2 + 4√π‘₯4

Β±π‘₯4 Β± 4π‘₯2 Β± 4

βˆ’4π‘₯2 βˆ’ 4

π‘₯4

(π‘₯2 + 2)2= 1 +

βˆ’4π‘₯2 βˆ’ 4

(π‘₯2 + 2)2

𝐿𝑒𝑑 βˆ’4π‘₯2 βˆ’ 4

(π‘₯2 + 2)2=

𝐴π‘₯ + 𝐡

π‘₯2 + 2+

𝐢π‘₯ + 𝐷

(π‘₯2 + 2)2β†’ (𝑖)

Multiplying both sides by (π‘₯2 + 2)2 𝑀𝑒 𝑔𝑒𝑑

βˆ’4π‘₯2 βˆ’ 4 = (𝐴π‘₯ + 𝐡)(π‘₯2 + 2) + (𝐢π‘₯ + 𝐷)

βˆ’4π‘₯2 βˆ’ 4 = 𝐴(π‘₯3 + 2π‘₯) + 𝐡(π‘₯2 + 2) + 𝐢π‘₯ + 𝐷→ (𝑖𝑖)

Equating the coefficients of π‘₯3, π‘₯2, π‘₯ π‘Žπ‘›π‘‘ π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘π‘ 

In equation (ii) we get

Coefficients of π‘₯2: 𝐡 = βˆ’4

πΆπ‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘œπ‘“ π‘₯: 2𝐴 + 𝐢 = 0

2(0) + 𝐢 = 0

Constants : 2𝐡 + 𝐷 = βˆ’4

2(βˆ’4) + 𝐷 = βˆ’4

Page 13: 7/18/2020 Chapter 4

Class 10th Chapter 4 www.notes.pk.com

Complied by Shumaila Amin 11 | P a g e

βˆ’8 + 𝐷 = βˆ’4

𝐷 = 8 βˆ’ 4

𝐷 = 4

Putting the value of A, B, C and D in equation (i) we

get required partial fractions.

π‘₯4

(π‘₯2 + 2)2= 1 +

βˆ’4

π‘₯2 + 2+

4

(π‘₯2 + 2)2

π‘₯4

(π‘₯2 + 2)2= 1 βˆ’

4

π‘₯2 + 2+

4

(π‘₯2 + 2)2

Question No.6

π’™πŸ“

(π’™πŸ + 𝟏)𝟐

Solution:

π‘₯5

(π‘₯2 + 1)2=

π‘₯5

π‘₯4 + 2π‘₯2 + 1 𝑖𝑠 π‘Žπ‘› π‘–π‘šπ‘π‘Ÿπ‘œπ‘π‘’π‘Ÿ π‘“π‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘›.

πΉπ‘–π‘Ÿπ‘ π‘‘ 𝑀𝑒 π‘Ÿπ‘’π‘ π‘œπ‘™π‘£π‘’ 𝑖𝑑 π‘–π‘›π‘‘π‘œ π‘π‘Ÿπ‘œπ‘π‘’π‘Ÿ π‘“π‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘›.

π‘₯

π‘₯4 + 2π‘₯2 + 1√π‘₯5

Β±π‘₯5 Β± 2π‘₯3 Β± π‘₯

βˆ’2π‘₯3 βˆ’ π‘₯

π‘₯5

(π‘₯2 + 1)2= π‘₯ +

βˆ’2π‘₯3 βˆ’ π‘₯

(π‘₯2 + 1)2

𝐿𝑒𝑑 βˆ’2π‘₯3 βˆ’ π‘₯

(π‘₯2 + 1)2=

𝐴π‘₯ + 𝐡

π‘₯2 + 1+

𝐢π‘₯ + 𝐷

(π‘₯2 + 1)2β†’ (𝑖)

Multiplying both sides by (π‘₯2 + 1)2 𝑀𝑒 𝑔𝑒𝑑

βˆ’2π‘₯3 βˆ’ π‘₯ = (𝐴π‘₯ + 𝐡)(π‘₯2 + 1) + (𝐢π‘₯ + 𝐷)

βˆ’2π‘₯ βˆ’ π‘₯ = 𝐴(π‘₯3 + π‘₯) + 𝐡(π‘₯2 + 1) + 𝐢π‘₯ + 𝐷

Equating the coefficients of π‘₯3, π‘₯2, π‘₯ π‘Žπ‘›π‘‘ π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘π‘ 

We get

Coefficients of π‘₯3: 𝐴 = βˆ’2

Coefficients of π‘₯2: 𝐡 = 0

Coefficients of π‘₯: 𝐴 + 𝐢 = βˆ’1

βˆ’2 + 𝐢 = βˆ’1

𝐢 = βˆ’1 + 2

β‡’ 𝐢 = 1

Constants: 𝐡 + 𝐷 = 0

0 + 𝐷 = 0

β‡’ 𝐷 = 0

Hence the required partial fractions are

π‘₯5

(π‘₯2 + 1)2= π‘₯ +

βˆ’2π‘₯

π‘₯2 + 1+

π‘₯

(π‘₯2 + 1)2

π‘₯5

(π‘₯2 + 1)2= π‘₯ βˆ’

2π‘₯

π‘₯2 + 1+

π‘₯

(π‘₯2 + 1)2

www.notespk.com Complied By Shumaila Amin


Top Related