Transcript
Page 1: 03-2 - Directional Control

11/22/2014

1

FLIGHT DYNAMICS & STABILITY

Lecture 03-2: Directional Control

Page 2: 03-2 - Directional Control

11/22/2014

2

Rudder

Page 3: 03-2 - Directional Control

11/22/2014

3

Yawing Moment Coefficient

𝒀𝒗+

π‘΅βˆ’

𝑁 = βˆ’π‘™π‘£πΆπΏπ‘£π‘„π‘£π‘†π‘£

𝑁 = βˆ’π‘™π‘£π‘Œπ‘£

π‘Œπ‘£ = 𝐢𝐿𝑣𝑄𝑣𝑆𝑣

Page 4: 03-2 - Directional Control

11/22/2014

4

Rudder Control Effectiveness

π‘ͺ𝒏 = πΆπ‘›π›Ώπ‘Ÿπ›Ώπ‘Ÿ = βˆ’πœ‚π‘£π‘‰π‘£π‘‘πΆπΏπ‘£π‘‘π›Ώπ‘Ÿπ›Ώπ‘Ÿ

π‘ͺπ’πœΉπ’“ = βˆ’πœ‚π‘£π‘‰π‘£π’…π‘ͺπ‘³π’—π’…πœΉπ’“

π‘‘πΆπΏπ‘£π‘‘π›Ώπ‘Ÿ=𝑑𝐢𝐿𝑣𝑑𝛼𝑣

π‘‘π›Όπ‘£π‘‘π›Ώπ‘Ÿ= πΆπΏπ›Όπ‘£πœ

π‘ͺπ’πœΉπ’“ = βˆ’πœ‚π‘£π‘‰π‘£πΆπΏπ›Όπ‘£πœ π‘€π‘•π‘’π‘Ÿπ‘’ 𝑉𝑣 =

𝑙𝑣𝑏

𝑆𝑣𝑆𝑀

π‘ͺπ’ŽπœΉπ’† = βˆ’πœ‚π‘‰π»π’…π‘ͺπ‘³π’•π’…πœΉπ’†= βˆ’πœ‚π‘‰π»πΆπΏπ›Όπ‘‘

𝜏 Compare with:

Page 5: 03-2 - Directional Control

11/22/2014

5

Flap Effectiveness Parameter

Page 6: 03-2 - Directional Control

11/22/2014

6

Rudder Design Requirements

β€’ Adverse Yaw

β€’ Cross Wind Takeoff/Landing

β€’ Asymmetric Power Condition

β€’ Spin Recovery

Page 7: 03-2 - Directional Control

11/22/2014

7

Adverse Yaw

The rudder must be able to overcome the adverse yaw so that a coordinated turn can be achieved. The critical condition for yaw occurs when the airplane is flying slow (high CL).

Page 8: 03-2 - Directional Control

11/22/2014

8

Cross Wind Takeoff/Landing

The rudder must be powerful enough to permit the pilot to trim the airplane for the specified cross-winds. For transport airplanes, landing may be carried out for cross-winds up to 15.5 m/s or 51 ft/s.

Page 9: 03-2 - Directional Control

11/22/2014

9

Asymmetric Power Condition

The rudder must be powerful enough to overcome the yawing moment produced when one engine fails at low flight speed

Page 11: 03-2 - Directional Control

11/22/2014

11

Example Obtain the minimum control speed in the event of an engine failure for the following airplane: 𝑆𝑀 = 65 π‘š2, 𝑆𝑣 = 6.5 π‘š2

, 𝑙𝑣 = 10.5 π‘š, 𝐡𝐻𝑃 = 880 π‘˜π‘Š (π‘π‘’π‘Ÿ 𝑒𝑛𝑔𝑖𝑛𝑒),

π‘π‘Ÿπ‘œπ‘π‘’π‘™π‘™π‘’π‘Ÿ 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = πœ‚π‘ = 75%, 𝑦𝑝 = 4.2 π‘š, 𝑑𝐢𝐿𝑣 π‘‘π›Ώπ‘Ÿ = 0.02 π‘π‘’π‘Ÿ 𝑑𝑒𝑔,

π›Ώπ‘Ÿ π‘šπ‘Žπ‘₯ = 250.

π‘Œπ‘Žπ‘€π‘–π‘›π‘” π‘šπ‘œπ‘šπ‘’π‘›π‘‘ 𝑑𝑒𝑒 π‘‘π‘œ 𝑒𝑛𝑔𝑖𝑛𝑒 = 𝑇 βˆ— 𝑦𝑝 = πœ‚π‘ βˆ— 𝐡𝐻𝑃 βˆ— 𝑦𝑝 𝑉

= 0.75 βˆ— 880 βˆ— 1000 βˆ—4.2

𝑉=2.772 βˆ— 106

𝑉

π‘Œπ‘Žπ‘€π‘–π‘›π‘” π‘šπ‘œπ‘šπ‘’π‘›π‘‘ 𝑑𝑒𝑒 π‘‘π‘œ π‘Ÿπ‘’π‘‘π‘‘π‘’π‘Ÿ

= βˆ’π‘™π‘£π‘Œπ‘£ = βˆ’π‘™π‘£πΆπ‘™π‘£π‘„π‘£π‘†π‘£ = βˆ’π‘™π‘£π‘‘πΆπΏπ‘£π‘‘π›Ώπ‘Ÿπ›Ώπ‘Ÿπœ‚π‘£π‘„π‘€π‘†π‘£

= βˆ’10.5 βˆ— 0.02 βˆ— 25 βˆ— 1.0 βˆ—1

2βˆ— 1.225 βˆ— 𝑉2 βˆ— 6.5

= βˆ’20.9 βˆ— 𝑉2

Solution:

Page 12: 03-2 - Directional Control

11/22/2014

12

𝑁𝑐𝑔 =π‘Œπ‘Žπ‘€π‘–π‘›π‘” π‘šπ‘œπ‘šπ‘’π‘›π‘‘ 𝑑𝑒𝑒 π‘‘π‘œ 𝑒𝑛𝑔𝑖𝑛𝑒 + π‘Œπ‘Žπ‘€π‘–π‘›π‘” π‘šπ‘œπ‘šπ‘’π‘›π‘‘ 𝑑𝑒𝑒 π‘‘π‘œ π‘Ÿπ‘’π‘‘π‘‘π‘’π‘Ÿ = 0

Under equilibrium condition:

2.772 βˆ— 106

π‘‰βˆ’ 20.9 βˆ— 𝑉2 = 0

𝑉 =2.772 βˆ— 106

20.9

3

= 0.51 βˆ— 102 = 51π‘š 𝑠 = 183.6 π‘˜π‘š π‘•π‘Ÿ


Top Related