down and bottom up source studies to evaluate and co benefits · gurgaon faridabad greater noida...

28
@ www.urbanemissions.info Using Topdown and Bottomup Source Apportionment Studies to Evaluate Benefits and CoBenefits Dr. Sarath Guttikunda Founder @ UrbanEmissions.Info, New Delhi, India Affiliate Assistant Research Professor, Desert Research Institute, Reno, USA Workshop on Vehicular Air Pollution and Its Impact on Human Health Jointly Organized by MOEF / CPCB / EPCA / ICCT New Delhi, India September 2 nd , 2011

Upload: others

Post on 20-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • @ www.urbanemissions.info

    Using Top‐down and Bottom‐up Source Apportionment Studies to Evaluate 

    Benefits and Co‐Benefits

    Dr. Sarath Guttikunda

    Founder @ UrbanEmissions.Info, New Delhi, IndiaAffiliate Assistant Research Professor, Desert Research Institute, Reno, USA

    Workshop on Vehicular Air Pollution and Its Impact on Human HealthJointly Organized by MOEF / CPCB / EPCA / ICCT

    New Delhi, IndiaSeptember 2nd, 2011

  • @ www.urbanemissions.info

    • the sources of air pollution

    • the source apportionment methods

    • using results for evaluations and decisions

    Let’s talk about..

  • @ www.urbanemissions.info

    Sources?

    ….. what we need to know for better 

    evaluations and efficient decision making

    Impacts

  • @ www.urbanemissions.info

    Sources and their Contributions

    industries

    vehicle exhaust

    power plants

    road dust

    domestic fuels

    garbage burning

    construction

  • @ www.urbanemissions.info

    CO2 H2O CH4 CO CO2 SO2

    Hydrosphere Human Activity

    N2OCFCs

    Stratosphere

    H2SO4H2SO4

    BCBC

    OHO(1D)

    OH

    HNO3HNO3

    O3

    HO2

    OH

    NO2

    NOUV O2

    O2

    O2

    UV

    OH

    Greenhouse GasesPrimary PollutantsAbsorbing Aerosols (BC)

    Reactive Free RadicalsLess Reactive RadicalsReflective Aerosols

    Courtesy : John Reilly, MIT

    VOC

    Lightning

    PM

  • @ www.urbanemissions.info

    NOx

    Ammonia

    VOCs

    Primary Particles(directly emitted)

    Secondary Particles(from precursor gases)

    Other(sea salt)

    Other(sea salt)

    Crustal(soil,dust)

    Crustal(soil,dust)

    OrganicCarbonOrganicCarbonCarbon(Soot)

    Carbon(Soot)

    SO2

    AmmoniumSulfate

    AmmoniumSulfate

    AmmoniumNitrate

    AmmoniumNitrate

    MetalsMetals

    Chemical composition gives an indication of the sources

    Gas

    ParticleParticle

    PM

    Source: J. Chow, DRI

  • @ www.urbanemissions.info

    Results, using..Monitoring dataChemistry of the pollutantsGeographical knowledgeMeteorology Modeling

    industries

    vehicle exhaust

    power plants

    road dust

    domestic fuels

    garbage burning

    construction

    %

    %%

    %

    %%

    %

    Consolidated decisions

  • @ www.urbanemissions.info

    60 km

    % Emissions ≠ % Ambient Pollution

    A simulation of sulfur dioxide emissions from power plant stacks

    monitorcarpower plant

    more

    less

    more

  • @ www.urbanemissions.info

    Source Apportionment

    • Top‐down approach• Bottom‐up approach

    Reference:

    Johnson TM, Guttikunda SK, Wells G, Artaxo P, Bond T, Russell T, Watson J, and West J (2011)

    “Tools for Improving Air Quality Management – A Review of Top‐Down Source Apportionment Techniques and their Applications in the Developing World”

    ESMAP publications, The World Bank, Washington DC, USAhttp://www.esmap.org/esmap/node/1159

  • @ www.urbanemissions.info

    MonitoringConcentrations

    Receptor Modeling

    Contributions

    Source Profiles

    Impacts

    Evaluation

    Decisions

    EconomicTechnicalPolicy

    Costs & BenefitsPollution 

    Control

    Top‐Down Approach

  • @ www.urbanemissions.info

    Emissions

    Dispersion Modeling

    Concentrations

    PM, SO2, NOx, CO, 

    Ozone, VOC

    Monitoring

    Impacts

    Evaluation

    Decisions

    EconomicTechnicalPolicy

    Costs & BenefitsPollution 

    Control

    Contributions

    Bottom‐Up Approach

  • @ www.urbanemissions.info

    PM2.5 Delhi 2001D

    18%

    G4%

    RD21%

    CB3%

    BB20%

    O19%

    SA15%

    PM2.5 Mumbai 2001D

    19%

    G4%

    RD22%

    C B4%

    BB21%

    O14%

    SA16%

    PM2.5 Ko lkata 2001

    D20%

    G5%

    RD21%

    CB4%

    BB21%

    O12%

    SA17%

    PM2.5 Beijing 2002

    BB11%

    SA31%

    CB19%

    MV6%

    RD9%

    I6%

    O18%

    PM10 Sao Paulo 1998

    T26%

    RD28%

    O L20%

    I6%

    SA20%

    PM10 Santiago 2000

    SD42% SA

    11%

    BC9%

    T36%

    O2%

    PM2.5 Mex ico C ity 2000

    O L2%

    Cu6%

    SD39%

    BB8%

    SA33%

    I9%

    H3%

    PM2.5 Qalabotjha 1997

    RS61%

    BB14%

    SD1%

    SA9%

    I1%

    O14%

    PM2.5 Xian Winter 2003

    G44%

    D3%

    CB44%

    BB9%

    PM2.5 Hanoi 1999- 01

    LRT45%

    CB28%

    SD4%

    T5%SA

    10%

    MA8%

    PM2.5 Cairo Summer 2002SD8%

    I12%

    T31%

    O B29%

    MA2%

    SA18%

    PM2.5 Shanghai 2000-01

    I32%

    PP22%

    RD3%

    T16%

    FD1%

    MA26%

    2002 PM2.5 Dhaka (Univ ersity)

    MA1%

    2StE9%

    MV39%

    BB/BK12% I

    10%

    SD10%

    RD19%

    PM2.5 Bangkok 2002

    T35%BB

    29%

    OL2%

    SD7%

    SA25%

    C2%

    PM2.5 Manila 2001-02

    T32%

    I22%

    COM20%

    MIX16%

    LRT10%

    Top‐down Case Studies

    Johnson & Guttikunda et al., 2011

  • @ www.urbanemissions.info

    Top‐down vs. Bottom‐up

    Rohini

    Gurgaon

    Faridabad

    GreaterNoida

    NOIDA

    Ghaziabad

    Outer Ring Road

    Inner ring road

    SouthDelhi

    An example over Delhi, India

    Top‐down results are limited to sampling locations 

    B20%

    D20%

    E20%A

    20%

    C20%

    B25%

    D10%

    E25%A

    10%

    C30%E

    45%

    D10%

    B5%

    A30%

    C10%

    E5%

    D30%

    B45%

    A10%

    C10%

    50 km

  • @ www.urbanemissions.info

    0 5 10 15 20 25 30 35 40 45 500

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    PM2.5 Emissionsper grid

    0.00 to 0.06 0.06 to 0.28 0.28 to 1.47 1.47 to 10.88 10.88 to 104.10

    BK3%IND

    11%

    VEH57%

    DOM6%

    WST5%

    GS8%

    CON0.5%

    DST10%

    IND =  industries; PP = power plants; DOM = domestic; VEH = transport; DST = road dust; WST = waste burning; CON = construction activities; BK = brick kilns; GS = generator sets

    gridded transport emissions only % PM2.5 ground emissionsin the box

    Top‐down vs. Bottom‐up

    Bottom‐up results for all areas 

  • @ www.urbanemissions.info

    0 5 10 15 20 25 30 35 40 45 500

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    PM2.5 Emissionsper grid

    0.00 to 0.06 0.06 to 0.28 0.28 to 1.47 1.47 to 10.88 10.88 to 104.10

    BK1%

    IND23%

    DST8%

    CON3.6%

    GS8%

    WST7%

    DOM4%

    VEH45%

    gridded transport emissions only % PM2.5 ground emissionsin the box

    Top‐down vs. Bottom‐up

    IND =  industries; PP = power plants; DOM = domestic; VEH = transport; DST = road dust; WST = waste burning; CON = construction activities; BK = brick kilns; GS = generator sets

    Bottom‐up results for all areas 

  • @ www.urbanemissions.info

    0 5 10 15 20 25 30 35 40 45 500

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    PM2.5 Emissionsper grid

    0.00 to 0.06 0.06 to 0.28 0.28 to 1.47 1.47 to 10.88 10.88 to 104.10

    BK46%

    IND8%

    DST6%

    CON1.5%

    GS2%

    WST4%DOM

    3%

    VEH30%

    gridded transport emissions only % PM2.5 ground emissionsin the box

    Top‐down vs. Bottom‐up

    IND =  industries; PP = power plants; DOM = domestic; VEH = transport; DST = road dust; WST = waste burning; CON = construction activities; BK = brick kilns; GS = generator sets

    Bottom‐up results for all areas 

  • @ www.urbanemissions.info

    0 5 10 15 20 25 30 35 40 45 500

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    PM2.5 Emissionsper grid

    0.00 to 0.06 0.06 to 0.28 0.28 to 1.47 1.47 to 10.88 10.88 to 104.10

    BK3%

    VEH45%

    DOM5%

    WST8%

    GS4%

    CON1.3%

    DST9%

    IND25%

    gridded transport emissions only % PM2.5 ground emissionsin the box

    Top‐down vs. Bottom‐up

    IND =  industries; PP = power plants; DOM = domestic; VEH = transport; DST = road dust; WST = waste burning; CON = construction activities; BK = brick kilns; GS = generator sets

    Bottom‐up results for all areas 

  • @ www.urbanemissions.info

    Information

    monitoring

    data collection

    Analysis

    hot spots

    apportionment

    emissions

    dispersion

    impacts

    Options

    institutional

    policy

    technical

    economic

    impacts

    Dialogue

    stakeholders

    options

    cost & benefits

    prioritization

    Evaluating Benefits & Co‐Benefits

  • @ www.urbanemissions.info

    August 31st 2008, API = 24

    Photo Diary of Air Pollution in Beijing

    August 24th 2009, API = 97

    August 13th 2010, API = 83

    50% drop in the NOx concentrations, during the 2 months of Olympic interventions. 

    Beijing’s Olympic Effort, 2008

  • @ www.urbanemissions.info

    - PM

    - C

    + PM

    + C

    Public transportNon‐motorized transportEnergy efficiencyRenewables

    Natural gas buses (leaks)

    Increased motorizationIncreased fuel use

    Generator sets

    Using biomass

    Co‐benefits approach

    Cornie Huizenga, CAI‐Asia

  • @ www.urbanemissions.info

    Coal Unloading onto Conveyor BeltNorth Chennai PP

    Freight activity

    Brick Kilns

    Landfill

    DOM4%

    BK6%

    IND2%

    CON6%

    WB5%

    RD36%

    GS2%

    TR18%

    PP21%

    DOM6%

    BK8%

    GS5%

    TR61%

    IND20%

    2010 ‐ PM10~56,000 tons/yr

    2010 ‐ CO2~25 mil tons/yr

    Chennai, India, 2010

  • @ www.urbanemissions.info

    80 80.05 80.1 80.15 80.2 80.25 80.3 80.35 80.4

    12.9

    12.95

    13

    13.05

    13.1

    13.15

    13.2

    13.25 g/m3Brick Kilns

    Brick Kilns

    Bay

    of B

    enga

    l

    Chennai Port

    Power Plant

    IITAirport

    Industries

    Industries

    0

    10

    20

    30

    40

    50

    60

    70

    80

    100

    80 80.05 80.1 80.15 80.2 80.25 80.3 80.35 80.4

    12.9

    12.95

    13

    13.05

    13.1

    13.15

    13.2

    13.25

    2010 Annual Average PM10 Concentrations

    VEH9%

    DST15%

    DOM4%

    WST3%

    GEN1%

    IND3%

    BK60%

    CON4%

    OTH0%PP1%

    VEH9%

    DST14%

    DOM6%

    WST4%

    GEN1%

    IND19%

    BK4%

    CON8%

    OTH1%

    PP34%

    VEH10%

    DST16%

    DOM5%

    WST3%

    GEN1%

    IND7%

    BK54%

    CON4%

    OTH0%PP0%

    VEH14%

    DST19%

    DOM9%

    WST7% GEN

    5%

    IND22%

    BK13%CON

    4%OTH1%

    PP6%

    VEH16%

    DST24%

    DOM11%

    WST8%

    GEN11%

    IND12%

    BK6%

    CON5%

    OTH2%

    PP5%

    VEH18%

    DST27%

    DOM10%

    WST7%

    GEN6%

    IND8%

    BK15%CON

    5%

    OTH4%

    PP0%

    56 g/m3

    73 g/m3

    89 g/m3

    37 g/m3

    76 g/m3

    40 g/m3

    Chennai, India, 2010

  • @ www.urbanemissions.info

    Health Impacts in 6 Cities

  • @ www.urbanemissions.info

    • What is the role of domestic and construction sectors?

    • What is the role of sustainable transport interventions?

    • How can we improve monitoring?• Where are the co‐benefits?

    • Urban vs. Rural• Outdoor vs. Indoor• Sector by Sector

    • How to raise public awareness?

    Questions to ask?

  • @ www.urbanemissions.info

    Co‐Benefits in 6 Cities

  • @ www.urbanemissions.info

    Reconciling Approaches

    • Validating emission factors with measurements during source profiling

    • Identifying missing sources using top‐down results

    • Identifying hot‐spots for monitoring via dispersion modeling

    • Using monitoring data for validating dispersion modeling results 

    • Establishing an pollution control strategy

  • @ www.urbanemissions.info

    October 10th, 2010Mobile lidar monitoring provided spatial and temporal evolution of pollution during the games.

    Pollution due to high congestion is reflected in the results

    Emissions

    Concentrations

    Delhi, India, 2010

  • @ www.urbanemissions.info

    Thank you

    Questions?Dr. Sarath Guttikunda

    @ www.urbanemissions.infoNew Delhi, India

    September, 2011