double layer lectures

Upload: khaled-abeed

Post on 06-Jul-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Double Layer Lectures

    1/38

    Structure of Electrified Interfaces

    (The Electrical Double Layer)

    Types of interfaces

    Models of M/S interface

    Validation of the models

    Surface tension varies with potential and electrolyte composition

    Ideally-polariable interface (!"/Solution)

    Electrocapillary phenomena

    Lippmann e#uations

    $ibbs adsorption isotherm

    Impro%ements in the M/S model

    &hen M/S interface is mobile

    Electro'inetic () phenomena

    pplications

  • 8/17/2019 Double Layer Lectures

    2/38

    The interface

    1- Complete charge transfer from one phase to the other phase:

    M+

    M+

    M+

    M+

    M+

    M+

    M+

    M+

       M  e   t  a   l   (   M   )

       S  o   l  u   t   i  o  n   (   S   )

        M  e   t  a   l   (   M   )

       S  o   l  u   t   i  o  n   (   S   )

    X-

    X-

    X-

    X-

    X-

    X-

    2- Specific adsorption of ionic species:

    3- Oriented adsorption of polar species:

    Vacuum

    i!uid

    Vacuum

    Solution

  • 8/17/2019 Double Layer Lectures

    3/38

    "hen t#o different metals are immersed in an electrol$tic solution

    %otential difference e&ists 'et#een the terminals of the t#o metals

    "hen t#o identical metals are immersed in an electrol$tic solution

    o potential difference

    The conclusion %otential difference must e&ist at an$ M*S interface

    The electrical analogue to the M/S interface

    %arallel-plate condenser is candidate to descri'e the M*S interface

    !M + - !S

     Is the M/S interface really a parallel-plate condenser?

    The ans#er is the models of the proposed structure of the M*S interface

    The decision is 'ased on ho# capacitance of the M*S interface

    ,aries #ithpotential and electrol$te composition

    1- elmholt. Model

  • 8/17/2019 Double Layer Lectures

    4/38

    M*S interface resem'les a parallel-plate condenser of t#o charged

    la$ers

    /&ample:

    0i&ed positi,e

    charges are created

    on the metal

    surfaces

    due to

    the natural tendency

    of the deposition of 

    metal ions as metal 

    atoms

    to achie,e the electrical neutralit$

    la$er of anions in solution is arranged in a ro# close to the metal surface

    %otential difference /M*S 'et#een the metal and the solution:

    /M*S + /M  - /S

    The capacitance according to the model

    ε

    =

    /

    !)m0(C

    o

    S*M

    M2

    o + 4516-12 C2-1m-2

       S  o   l  u   t   i  o  n

       M  e   t  a   l

    /S+6

    /M

    0

    /M*S

    7istance from

    metal surface

  • 8/17/2019 Double Layer Lectures

    5/38

    ε   8 4 -9 and 8 16-16 m (the ionic radii)

    C 8 -44µ

    0cm-2

    C ,alue is close to the e&perimental ,alue o'ser,ed sometimes But 

    The model fails to e&plain the dependence of C

    on potential and electrol$te composition

    2- ou$ and Chapman ModelThe electrical dou'le la$er cannot 'e fi&ed in position due to 

    the thermal motion of the electrol$tic species instead a diffuse la$er of

    point-charge is proposed in the model

  • 8/17/2019 Double Layer Lectures

    6/38

    /M*S deca$s e&ponentiall$ as the distance from the metal surface

    increases

    The model does not reflect the general C-/M*S feature

    o'ser,ed e&perimentall$but  

    it ma$ 'e accepted #hen the electrol$te concentration is ,er$ lo#

       S  o   l  u

       t   i  o  n

       M  e   t  a   l

    /M

    /S+66

    /M*S

    7istance from

    metal surface

    3- Stern Model

    Stern model is a compromise 'et#een elmholt. and ou$-Chapman

    models

    ;ons of the first ro# are fi&ed and stuc< close to the metal surface

    and 

  • 8/17/2019 Double Layer Lectures

    7/38

    the rest of the ions are scattered in a cloud-li

  • 8/17/2019 Double Layer Lectures

    8/38

    7istance from

    metal surface

    6

    /M

       M  e   t  a   l

       S  o   l  u   t   i  o  n

    /S

    ζ

    (/:)

    /M*S

     *o specific adsorption

    /

    urther 

    The first ro# ions can 'e attracted to the metal surface

    by

    electrostatic attraction

    or/and by

    forces of specific adsorption

  • 8/17/2019 Double Layer Lectures

    9/38

    ζ

    /M*S

       S  o   l  u   t   i  o  n

       M  e   t  a   l

    /M

    6

    7istance from

    metal surface/S

    ζ

    /M*S

       S  o   l  u   t   i  o  n

       M  e   t  a   l

    67istance frommetal surface

    /S

    /M

    Specifically adsorbed anions Specifically adsorbed cations

  • 8/17/2019 Double Layer Lectures

    10/38

    Validation of models of the structure of the M*S interface

    "e should search for a surface (or an interfacial) propert$

    ;nterfacial tension of the g*solution interface responses to

    ,ariation of /M*S and the solution composition

    The phenomenon is

  • 8/17/2019 Double Layer Lectures

    11/38

    ;deall$ polari.a'le and ideall$ non-polari.a'le electrodes

    %olari.ation occurs #hene,er the current ; > 6

    The passing current causes /M*S to de,iate from its e!uili'rium ,alue

    /

          C

        u    r    r    e    n     t

    ;deall$ polari.a'le

    electrode

    ;deall$ non-polari.a'le

    electrode

    /re,

    OO

    C

    R  

    0R

    C

  • 8/17/2019 Double Layer Lectures

    12/38

    The electrocapillar$ phenomena

    %otentiometer?eference

    electrode

    g manometer

    2 gas

    g capillar$ electrode

    /lectrol$te

    g

    gra,it$ force +

    π

    r2 h d g

    surface tension force +

    2 π r γ cos θ

    height of g column

    h

    radius of the capillar$

    r

    θ

    /lectrol$te

    le,el

      + @ h r g d

  • 8/17/2019 Double Layer Lectures

    13/38

    "hat did #ippmann and other scientists find?

    -E

    γ    γ γ 

    -E -E

    KNO3KNO3 KNO3

    + amyl alcohol

    Tl+

    (C3H7)4 N+Cl

    -

    -

    !" -

     pzc (ecm)

    (a) (#) (c)

     pzc (ecm)

     pzc (ecm)

    $ualitati!e e%planation of electrocapillary cur!e

    -/

    γ

     p&c

    g

    Solutio

  • 8/17/2019 Double Layer Lectures

    14/38

    $uantitati!e e%planation of electrocapillary cur!e

    A$ anal$.ing the thermod$namics of the M*S interface

    7eduction of the electrocapillar$ cur,e ( -/ cur,e)

    Thermod$namics of M*S interface

    0undamental thermod$namic e!uation of the polari.a'le M*S interface

    The general electrocapillar$ e!uation

    µ

    iii B

     B

    M

    M   dd0n

    !d/!d

    $

    n

    $

    n oiii   −=Γ 

     'ependence of interfacial tension on electrode potential

    The first #ippmann (quation

     t constant electrol$te composition ⇒ dµi + 6 and dµ B + 6:

    Mcompconst  !)

    /(

      −

    γ

    )cmC(166!)mV(/

    )cm*d$ne(2

    M

    µ

    γ

    The second #ippmann (quation

    C/

    !

    /

    M

    2

    2

    =

    γ

     

  • 8/17/2019 Double Layer Lectures

    15/38

    )cm0(C)V(/

    )cmC(!

    /

    2

    2

    M

    2

    2

    µ

    µ

    γ

    (c)(')(a)

    -/-/

    !C

    -/

    +

    ,

    -

    ecm

    ecm ecm

    ;deal

    %ara'ola

    7ifferentiation 7ifferentiation

     dγ /dE-#M

    The differential capacitance

  • 8/17/2019 Double Layer Lectures

    16/38

    -/ V

       C 1 

       0

     pzc

    /&perimental cur,es

    6661M

    661M

    61M

    16M a0

     p&c

       C 1 

       0

    -/ V -/ V

       C 1 

       0

     p&c

    :ou$-Chapman

    model

    elmholt. model

    661M a0

    6661M

     'ependence of surface tension on the solution composition

    )ibbs adsorption isotherm

  • 8/17/2019 Double Layer Lectures

    17/38

    "e use one and the same electrol$te for 'oth electrodes:

    g*solution electrode and the reference electrode

    The electrocapillar$ cur,es at different electrol$te concentrations are recorded

    using the same electrol$te concentration for the reference electrode

    ;n order to remem'er that the reference electrode contains the same electrol$te

    used in the cell for g* electrol$te interface

    we will use

    the s$m'ol /= (#hen = ions used in the h$drogen electrode for e&ample)

    and 

    /- (#hen Cl- ions used in the calomel electrode for e&ample)

    The surface e%cess of an anion

    /=(V !s ?/)

    γ

    3%0 N HCl

    0%& N HCl

    &%0 N HCl

    0%0& N HCl

    Consider the e&ample of g*Cl interface and #e #ant to calculate the surface

    e&cess of Cl- ions at the g*Cl interface

  • 8/17/2019 Double Layer Lectures

    18/38

    µ

    iii B

     B

    MM dd

    0n

    !d/!d

    µ

      ClCl

    M

    M ddd0

    !d/!d

    t constant /=

    µ

    ClCl

    M ddd0

    !d

    A$ definition: −µClCl

    µ

    Cl--Cl  ddd

    )dd(dd0

    !d

    ClCl

    µ

     

    µ ClM

    ClCld)

    0!(dd

    ;t can 'e pro,ed that: 60

    !Cl

    M=

    This is 'ecause: !M + - !S + -(!= = !-) + -(   −ΓCl 00 )

    "here != + n=0  = and  !- + n-0  -

    n= + 1 and n- + -1

    ;e != + !  + -0  and !- + −Cl! + -   −Cl0

    Thus: − 

    Γ

    µ

    γ

    Cl/

    -Cl

    )(

    '"om th( #a)i) o* th("mo+ynamic),

    CloClCl aln?T

    Aut: 2 ClCl aa±

    CloClCl an?T2 ±

    ClCl an?Td2d ±

     

    Γ

    γ

    ±

    Cl

    /-Clan?T2  

  • 8/17/2019 Double Layer Lectures

    19/38

    The last e!uation is the i''s adsorption isotherm

    The unit of ? in i''s isotherm + 315169 erg mol-1 D -1

    The surface e%cess of a cation

     

    Γ

    γ

    ±

    -

    /-Clan?T2  

    The surface e%cess of a neutral molecule

    i

    1/i  Ban?T2

    Γ

    γ

    µ

     (!idences of specific adsorption

      !M + - !S + - (!= = !-) + 0  = - 0  - 

  • 8/17/2019 Double Layer Lectures

    20/38

    66

       C   h  a  r  g  e   d  e  n  s   i   t  $ 1  m   C  c  m

      -   2

    -/ V

    =,e

    -,e

     p&c

    !S

    !=

    !-

    electrode is -,el$ charged

      e   l  e  c

      t  r  o  d  e

        i  s   =  ,  e   l  $

       c   h  a

      r  g   e  d

    ' a c

    7ependence of the charge densities on the cell ,oltage

    for the g*16 M aCl interface

     *oint +a, is at p&c +ecm, where .g surface is neutral 

    != > 6 and !- > 6

    although

    !M + 6 and !S + 6

    "h$E

    The reasona'le e&planation is that

    one ionic form (either anion or cation) is held at g*S interface

    '$ a different

  • 8/17/2019 Double Layer Lectures

    21/38

    (specific adsorption forcesE)

    The counter ions are also included

    to achie,e the electrical neutralit$ (!- + !=)

    "hich is the ion specificall$ adsor'ed hereE *oint +b, when .g is positi!ely charged 

    ;f onl$ the electrostatic forces #ould operate

    !S + !- + 0   −Cl

    Aut the figure sho#s that != + 0  a  > 6

    This means that some a= cations are in,ol,ed

    to partiall$ neutrali.e the specificall$ adsor'ed Cl- ions

    This means accumulation of Cl- ions in the interface relati,e to the 'ul

  • 8/17/2019 Double Layer Lectures

    22/38

    C is lo#er than C

    C F C

     'iffuse layer dominates the structure of M/S interface near p&c

    Since ζ potential is a significant part of /M*S

    ;n concentrated solutions

    C is larger than C

    C F C

    elmholt. model #or

  • 8/17/2019 Double Layer Lectures

    23/38

    ;t is not the charges an$#a$

    Capacitance can also originate due to adsorption of dipole molecules

    such as #ater molecules

    ;t is assumed that Metal is full$ co,ered '$ a monola$er of #ater dipolein electrol$tic solutions

    ;n the presence of some specificall$ adsor'ed species

    some #ater dipoles are replaced

    The center of this monola$er of oriented #ater molecules

    form #hat is called inner elmholt. plane (;%)

    1- The hydration of ions

    %racticall$ all ions are h$drated in #ater

    The result is that an increase in the radius of the 'are ion

    due to the hydration

    The center of the h$drated ion is called the outer elmholt. plane (O%)

    Capacitance at more significantl$ negati,e potentials than p.c

    sho#s a little dependence on the nature of electrol$te

  • 8/17/2019 Double Layer Lectures

    24/38

    This is because the ion radius is a small fraction

    of the +M 23.*, distance

    o specific adsorption

       M  e  a   l

    ;% O%

       7   i   f   f  u  s  e     a  $  e  r

    Specific adsorption of anions

       M  e  a   l

    ;% O%

       7   i   f   f  u  s  e     a  $  e  r

    #ater molecules

    M*S interface consists of t#o partsG

    The dense part H(MI;%) = (;%IO%)J = diffuse part

    ;n concentrated electrol$tes (diffuse part ,anishes)

    M*S interface K The dense part H(MI;%) = (;%IO%)J

    The M*S capacitance in concentrated electrol$te is gi,en '$:

  • 8/17/2019 Double Layer Lectures

    25/38

     O-%;-%;-%M

      C

    1

    C

    1

    C

    1

     

    ;n the presence of specific adsorption of organic molecules

    CMI;% is significantl$ reduced and hence

     C F CMI;%

    "h$E

    since ε  decreases sharpl$

    C F CMI;%

    The decrease of CMI;% increases #ith surface co,erage #ith the

    adsor'ed organic molecules θ

    The /lectro

  • 8/17/2019 Double Layer Lectures

    26/38

    nother condition to o'ser,e these phenomena in practice

    is The tin$ si.e of the mo'ile dou'le la$er

    "hen large mo'ile dou'le la$ers are in,ol,ed⇩

    the electro

  • 8/17/2019 Double Layer Lectures

    27/38

    STA;;T

     .ow do the particles create the repulsion forces?

    Colloid particles are charged particles surrounded '$ counter ions toachie,e the electrical neutralit$

    Onl$ #hen the cloud of the counter ions is large in si.e

    the repulsion of the clouds 'eat the forces of attraction

    that wants particles to aggregate

    arge si.e cloud of counter ions is fulfilled

    #hen the .eta potential predominates /M*S

    .eta potential is connected #ith the sta'ilit$ of the colloid

  • 8/17/2019 Double Layer Lectures

    28/38

    "hen #e add a concentrated electrol$te

    or in the presence of strong specificall$ adsor'ed species

    .eta potential diminishes or ,anishes

    and the dou'le la$er of according to elmholt. model predominates

    The cloud of the counter ions is so small that

    the aggregation forces (attraction) 'eat the repulsion forces

    due to the dense thin dou'le la$er

       %  o   t  e  n   t   i  a   l  e  n  e  r  g  $

    d

    0

    repulsion force due to

    the dou'le la$er

    attraction forces

    total otntial n".y / 0no coagulation

    d

       %  o   t  e  n   t   i  a   l  e  n  e  r  g  $

    0

    total otntial n".y 0

    coagulation occurs

    minimum distance 'et#eent#o coagulated particles

    d

  • 8/17/2019 Double Layer Lectures

    29/38

    The 0our /lectro

  • 8/17/2019 Double Layer Lectures

    30/38

    %ore (capillar$) in the porous 'arrier

    -,e electrode=,e electrode

    charged li!uid la$er

    charged inner surface

    T#o phenomena are o'ser,ed

    /lectroosmosis and Streaming %otential

     (lectrophoresis

    Mo,ement of charged (colloidal or suspension) particles

    under the influence of an electric field

    Aatter$

    7ispersed

    particles

    7ispersion

    medium

  • 8/17/2019 Double Layer Lectures

    31/38

     Sedimentation potential 

    Creation of a potential difference on sedimentation (precipitation) of 

    charged particles (colloidal or suspension)

    under the influence of the gra,it$

    Voltmeter

    7ispersed

    particles

    7ispersion

    medium

     (lectroosmosis

  • 8/17/2019 Double Layer Lectures

    32/38

    Mo,ement of thin charged li!uid la$ers through

    capillaries or pores of a solid phase (porous 'arrier la$er)

    under the influence of an electric field

    Aatter$

    %orous 'arrier

     Streaming potential 

    Creation of a potential difference on forcing thin li!uid la$ers to mo,e

    through capillaries or pores of a solid phase (porous 'arrier la$er)

    '$ appl$ing an e&ternal pressure

    Voltmeter

    pplied pressure

    %orous 'arrier

  • 8/17/2019 Double Layer Lectures

    33/38

    pplications of /lectro

  • 8/17/2019 Double Layer Lectures

    34/38

    nal$sis of the cell potential

    M M1

    /M

    /S

    /Cell

    /S1*M1

    /P

    /MQ

    /M1

    /MQ

    /S1

    S1

    S

    M

    M1

    MQ

    MQ

    /M*S

    P

    /M1*MQ

    /MQ*M

    a ' c d e

    S S1

    Pa e

    dc

    '

    V

    a- b- c- d- and e are the interfacial regions that determining the cell potential- ( Cell 

    /Cell

     + /MQ(a)*MQ(e)

    + /MQ*M

     = /M*S

     = /P

    = /S1*M1

    = /M1*MQ

    /Cell + /M*S = /P = /S1*M11"actically2 EMM an EM&M 5"o V

    n th a#nc o* th li6ui unction otntial2 E89/Cell + /M*S = /S1*M1

    * M : M& an S : S& /Cell + .ero V 

    /MQ /M  /S  and /S1 are the internal potentilas of MQ M S and S1

    /MQ*M  /M*S  /P /S1*M1  and /M1*MQ are the interfacial potential differences

  • 8/17/2019 Double Layer Lectures

    35/38

    %ro'lems

    1- Outline #ith dra#ing elmholt. model for the dou'le la$er structure

    ?efer to the applica'ilit$ of the model

    2- Outline #ith dra#ing ou$-Chapman model for the dou'le la$er

    structure ?efer to the applica'ilit$ of the model

    3- Outline #ith dra#ing Stern model for the dou'le la$er structure

    - Mention the factors missed in elmholt. and ou$-Chapman models

    4- S

  • 8/17/2019 Double Layer Lectures

    36/38

    13- %ro,e diagrammaticall$ that the .eta potential is essential for the

    sta'ilit$ of a colloid

    1- Sho# ho# the .eta potential can 'e estimated from the electro

  • 8/17/2019 Double Layer Lectures

    37/38

    26- C + !M * /M*S 

    !M + C 5 /M*S  + 194516-R 5 6946 + 131 5 16-R C cm-2

    21- The electrocapillar$ measurements in Cl solutions #ith h$drogen

    electrode in the same electrol$te as the reference electrode $ield thefollo#ing at 24 oC and a constant potential:

      * d$ne cm-1 24 19 6 39

    aUCl 663 61 69 1

     0ind the surface e&cess of the Cl- ion at the studied potential

    21- − 

    Γ

    γ

    ±

    Cl/Cl

    )an?T2

    (

    Slope of cur,e (  ,ersus ln a) + -R934 d$ne cm-1

    Cl + -(slope* 2?T) + R934 * 2 5 31 5 169 5 2 + 13R 5 16-16 mol cm-2

    0or another (appro&imate) solution t#o points ma$ 'e used as follo#s:

     

    Γ

    ±

    ±

    Cl/

    1Cl

    2Cl

    12 )

    JaH

    JaHn?T2

    (

     

    216

    9

    cmmol1631

    636

    16n216312

    2419   −×

    ×

  • 8/17/2019 Double Layer Lectures

    38/38