doi: 10.1038/s41467-017-00502-x open the onset of...

55
ARTICLE The onset of widespread marine red beds and the evolution of ferruginous oceans Haijun Song 1 , Ganqing Jiang 2 , Simon W. Poulton 3 , Paul B. Wignall 3 , Jinnan Tong 1 , Huyue Song 1 , Zhihui An 1 , Daoliang Chu 1 , Li Tian 1 , Zhenbing She 1 & Chengshan Wang 4 Banded iron formations were a prevalent feature of marine sedimentation ~3.81.8 billion years ago and they provide key evidence for ferruginous oceans. The disappearance of banded iron formations at ~1.8 billion years ago was traditionally taken as evidence for the demise of ferruginous oceans, but recent geochemical studies show that ferruginous con- ditions persisted throughout the later Precambrian, and were even a feature of Phanerozoic ocean anoxic events. Here, to reconcile these observations, we track the evolution of oceanic Fe-concentrations by considering the temporal record of banded iron formations and marine red beds. We nd that marine red beds are a prominent feature of the sedimentary record since the middle Ediacaran (~580 million years ago). Geochemical analyses and thermo- dynamic modelling reveal that marine red beds formed when deep-ocean Fe-concentrations were > 4 nM. By contrast, banded iron formations formed when Fe-concentrations were much higher (> 50 μM). Thus, the rst widespread development of marine red beds con- strains the timing of deep-ocean oxygenation. DOI: 10.1038/s41467-017-00502-x OPEN 1 State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science, China University of Geosciences, Wuhan 430074, China. 2 Department of Geoscience, University of Nevada, Las Vegas, NV 89154-4010, USA. 3 School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK. 4 State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China. Correspondence and requests for materials should be addressed to H.S. (email: [email protected]) NATURE COMMUNICATIONS | 8: 399 | DOI: 10.1038/s41467-017-00502-x | www.nature.com/naturecommunications 1

Upload: others

Post on 04-Oct-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

ARTICLE

The onset of widespread marine red beds and theevolution of ferruginous oceansHaijun Song 1, Ganqing Jiang 2, Simon W. Poulton3, Paul B. Wignall3, Jinnan Tong1, Huyue Song1, Zhihui An1,

Daoliang Chu1, Li Tian1, Zhenbing She1 & Chengshan Wang4

Banded iron formations were a prevalent feature of marine sedimentation ~3.8–1.8 billion

years ago and they provide key evidence for ferruginous oceans. The disappearance of

banded iron formations at ~1.8 billion years ago was traditionally taken as evidence for the

demise of ferruginous oceans, but recent geochemical studies show that ferruginous con-

ditions persisted throughout the later Precambrian, and were even a feature of Phanerozoic

ocean anoxic events. Here, to reconcile these observations, we track the evolution of oceanic

Fe-concentrations by considering the temporal record of banded iron formations and marine

red beds. We find that marine red beds are a prominent feature of the sedimentary record

since the middle Ediacaran (~580 million years ago). Geochemical analyses and thermo-

dynamic modelling reveal that marine red beds formed when deep-ocean Fe-concentrations

were > 4 nM. By contrast, banded iron formations formed when Fe-concentrations were

much higher (> 50 μM). Thus, the first widespread development of marine red beds con-

strains the timing of deep-ocean oxygenation.

DOI: 10.1038/s41467-017-00502-x OPEN

1 State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science, China University of Geosciences, Wuhan 430074, China.2 Department of Geoscience, University of Nevada, Las Vegas, NV 89154-4010, USA. 3 School of Earth and Environment, University of Leeds, LeedsLS2 9JT, UK. 4 State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China. Correspondence andrequests for materials should be addressed to H.S. (email: [email protected])

NATURE COMMUNICATIONS |8: 399 |DOI: 10.1038/s41467-017-00502-x |www.nature.com/naturecommunications 1

Page 2: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Banded Iron Formations (BIFs) first appeared 3.85 billionyears ago (Ga) in the Archean and were particularly pre-valent around 2.6–2.4 Ga when they attained thicknesses of

hundreds of metres1, 2. BIFs are composed predominantly offerric and ferrous minerals, including hematite (Fe2O3), magne-tite (Fe3O4), and siderite (FeCO3)1. In spite of debate on theorigin of these Fe-bearing minerals, including chemical pre-cipitation under oxygen-free conditions1, photo-oxidation byultraviolet light3, and microbial oxidation4, it is clear that BIFsprovide a prominent signature of anoxic, Fe-rich oceans early inEarth’s history5, 6.

With the exception of a temporally restricted episode of BIFdeposition associated with possible ‘snowball’ Earth glaciations inthe Neoproterozoic7, BIFs ceased depositing at ~1.8 Ga2. Thischange has been used as evidence for a fundamental shift in oceanredox conditions, either to euxinic8 or to oxygenated oceans9.Recently, however, iron geochemical studies have shown thatferruginous deep oceans were prevalent throughout the mid- tolate-Proterozoic and may have persisted into the Cambrian10–13,observations which are supported by redox-sensitive trace ele-ment data14–18. By contrast, euxinic conditions appear to havebeen limited to mid-depth waters on productive continentalshelves or near shelf margins6, 12, 19.

The phanerozoic iron speciation data suggests that ferruginousconditions also occurred in certain localities, often repeatedly,during oceanic anoxic events (OAEs), such as those in the Ara-bian Margin during the Early Triassic20, the subtropical shelf ofMorocco during the Cretaceous OAE221, 22, and the centralAtlantic realm (Demerara Rise) during the Cretaceous OAE322.However, the general absence of BIFs after ~1.8 Ga raises the

question of how subsequent ferruginous episodes differed fromthose earlier in Earth history.

To address this question, we first provide a new record of thedistribution of marine red beds (MRBs) through time. Red bedsare common in sedimentary successions, but most (termed con-tinental red beds) formed in terrestrial settings where the col-ouring agent (hematite) was developed under oxygenatedatmospheric conditions23. More recently, however, MRBs havebeen documented in Cretaceous strata of worldwide extent24–26.Here we show that MRBs were geographically widespread beyondthe Cretaceous, and occurred during sporadic intervals from themiddle Ediacaran and throughout the Phanerozoic. We subse-quently consider how the genesis of MRBs reflects changes inocean chemistry after the disappearance of BIFs, and use thisinformation to estimate secular changes in Fe2+ concentrations inthe ocean throughout Earth history.

ResultsTraits and geological settings of MRBs. The first globally dis-tributed MRBs appear in middle Ediacaran (~580 million yearsago) strata (Figs. 1e, 2a, 3i). Characterized by pink-red limestones,dolostones and shales that range from <1 to 40 m thick, themiddle Ediacaran MRBs have iron concentrations of <3 wt%(Supplementary Table 1), which is much lower than BIF valuesbut high enough to impart a characteristic red colouration. Bothpalaeolatitude and geographical extent (Figs. 2a, 3j) show thatEdiacaran and Phanerozoic MRBs are not localised phenomenon,but rather, their distribution is as widespread as BIFs. Wedocument a total of five global MRB intervals from the Phaner-ozoic, including Cambrian, Late Devonian, Early Triassic, Jurassic

Red beds

a

5 cm

e

b

c d

10 cm5 cm

Fig. 1 Representative marine red beds from Ediacaran and Phanerozoic successions. a Late Cretaceous mudstone interbedded with shale (ChuangdeFormation, Tibet) containing abundant plankton foraminifers, indicating a pelagic facies. b Early Jurassic limestone (Adnet Formation, Austria) withabundant ammonites, suggesting a deep water environment. c Early Triassic, interbedded grey and red limestones (offshore facies) from the LuolouFormation, South China. d Late Devonian grey and red limestone (offshore facies) from the Wuzhishan Formation, South China. e Middle Ediacarandolostone interbedded with silty shale from Krol B, Lesser Himalaya, India

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00502-x

2 NATURE COMMUNICATIONS | 8: 399 |DOI: 10.1038/s41467-017-00502-x |www.nature.com/naturecommunications

Page 3: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

and Cretaceous episodes (Figs. 1 and 2). These PhanerozoicMRBs consist mainly of red carbonate (Fig. 1b–e) and redmudstone (Fig. 1a) that sometimes alternate with grey carbonate(Fig. 1c, d). Iron contents are <1% in carbonate and 1–6% inmudstone, which are only slightly elevated compared to adjacentrocks (Supplementary Table 1). Sedimentological, petrographicand mineralogical analyses of the Cretaceous MRBs indicate thatnanometer-scale hematite and goethite (mostly transferred tohematite during late diagenesis), instead of detrital iron, are themajor colour agents of MRBs25–27. Similar to those documentedfrom Cretaceous MRBs25, 26, high Fe3+/Fe2+ ratios are observedin Early Triassic MRBs (Supplementary Table 1).

MRBs are encountered in a broad range of depositional settings,spanning the entire spectrum from nearshore to deep basinenvironments. Ediacaran MRBs are commonly developed asoolitic and stromatolitic carbonates in shallow-water settings(Supplementary Note 1), but in the Doushantuo Formation ofSouth China and the Krol B of northern India, red dolostone and

limestone are interbedded with laminated shales, suggestingoffshore occurrences. Most Phanerozoic MRBs were formed indeeper offshore facies. For example, in the Early Triassic of theNanpanjiang Basin of South China, MRBs occur in slope andbasin settings but only rarely in shallow-water carbonate plat-forms. In contrast, Cretaceous MRBs have a wider range, fromoffshore slope to pelagic basin, although they are also encounteredin some shallow platform sections. The more common record ofdeep-water MRBs in younger (e.g., Mesozoic) successions is likelydue to better preservation of unsubducted slope-basin sediments.

Coupling between MRBs and OAEs. Each of the MRB events wehave identified follows a period of ocean anoxia. Middle Edia-caran MRBs occurred synchronously with deep-water oxygena-tion after the Gaskiers glaciation10. Cambrian MRBs occurred inthe aftermath of early, middle and late Cambrian OAEs28–30.Early Famennian (Late Devonian) MRBs appeared during the

DO

(m

ol/l)

Fe

(mol

/l)

DO

(m

ol/l)

Fe

(mol

/l)

–4

–8

–12

0

4

BIFCarbonates

MRB

10–8

10–6

10–10

Ferruginous Oxic

OAEs

10–4

10–2

10–6

10–8

10–10

10–8

10–6

10–10

10–4

10–2

10–4

10–6

10–8

10–10

a

b

c

d

N60

N30

S30

S60

S90

0

Pal

aeol

atitu

de

MRB

N60

N30

S30

S60

0

Pal

aeol

atitu

de

e

0

300

600

900

1200

BIF

MRB

N90

3.5

Archean Proterozoic PhanerozoicHadean

Eo Paleo Meso Neo Paleo Meso Neo Cam Or S Carb Per Tr J K N

Thickness

0

450

900 m

Thi

ckne

ss (

m)

4.5 4.0 3.0 2.5 2.0 1.5 1.0 0.5 0.4 0.3 0.2 0.1 0

Age (Ga, billions of years before present)

BIF

δ13C

(‰

)

D P

10–4

Fig. 2 Secular distributions and carbon isotopes of Fe-related rocks and the evolution of marine redox and iron states. a Palaeolatitudinal distribution ofbanded iron formations (BIFs) and marine red beds (MRBs). The data are compiled from Supplementary Table 2. Note that the palaeolatitude data are at alower confidence level for Archean and early Proterozoic interval. b Temporal distribution of BIFs and MRBs with thickness information (see data inSupplementary Figs. 1, 2 and Supplementary Table 2). c Carbon isotopes in iron-related sedimentary rocks and adjacent carbonates (purple circle are thedata from banded iron formations, magenta circles are the data from red beds, black circles are the data from adjacent grey carbonates; see data in Fig. 3 andSupplementary Figs. 3–7 and Supplementary Tables 1, 3). d Evolution of deep-water (below storm wave base) iron concentrations based on numericalmodel (Fig. 4) and modern analogues. The lower limit of iron concentrations for BIF and MRB are 50 μM and 4 nM, respectively (see discussion in text). eEvolution of deep ocean (below storm wave base) redox states in the Phanerozoic and Precambrian (after refs 9, 57)

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00502-x ARTICLE

NATURE COMMUNICATIONS |8: 399 |DOI: 10.1038/s41467-017-00502-x |www.nature.com/naturecommunications 3

Page 4: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

termination of the Frasnian–Famennian boundary OAE31. EarlyTriassic MRBs occurred following the Permian–Triassic boundaryOAE32. Jurassic MRBs appeared right after the regional anoxiaevent at the Triassic–Jurassic boundary33 and the Toarcian OAE34,respectively, although sporadic red beds were also reported fromMiddle-Late Jurassic strata of the Tethyan regions35, 36. With fewexceptions37, Cretaceous MRBs follow immediately after middle-late Cretaceous OAEs26, 38, including the Aptian–Albian OAE,Cenomanian-Turonian OAE, and Santonian-Campanian OAE. Redbeds have also been reported from Early Silurian (Telychian) suc-cessions39, 40, but they are mostly distributed surrounding uplifted“old lands” and are likely of detrital origin40 and so are not includedin the compilation (Supplementary Note 2).

Coupling between MRBs and negative carbon isotope shifts.We measured carbonate carbon isotopes (δ13C) in MRBsand stratigraphically adjacent rocks from the Ediacaran

and some Phanerozoic strata of North America, South China, andTibet (Supplementary Figs. 3–7). Negative δ13C shifts areidentified in all newly-studied MRB intervals (Fig. 3).The average δ13C gradients between MRBs and adjacent rocks are–8.74‰, –0.44‰, –1.53‰, and –1.25‰ for the middleEdiacaran, Late Devonian, Early Triassic, and Late Cretaceous,respectively (Fig. 3). A similar δ13C signal has also beenreported in a Middle Jurassic MRB from southern Spain41. Themagnitude of δ13C shift during the Ediacaran MRB is muchlarger than those of the Phanerozoic examples. This large δ13Cshift, the Shuram carbon isotope excursion, has been reportedglobally, but its origin remains debated (see SupplementaryNote 3). Considering that low δ13C values down to −12‰ werealso present in diagenetic carbonates in BIFs (Fig. 2c), it isconceivable that diagenetic oxidation of organic carbon, includingiron reduction (using iron oxides as electron acceptors)contributed, at least, to the heterogeneity of the Shuram δ13Cexcursion.

a

84(Ma)

Late

Cre

tace

ous

Santonian

Cam

pani

an

MR

B

0–1 1

32.5

Mid

dle

Jura

ssic

Bathonian168(Ma) M

RB

c

0 43

248(Ma)

–2

Ear

ly T

riass

ic

MR

B

Spa

thia

n

e

–8–12 0

MR

B

Mid

dle

Edi

acar

an

580(Ma)

i

31 2

MR

B

Late

Dev

onia

n

370(Ma) F

amen

nian

g

b

d

f

j

h

United States

Baj

ocia

n

0

10 m

0

20 m

0

5 m

0

20 m

0

30 m

0

5 m

–0.5

δ13C (‰)

0.5 1.5

δ13C (‰)21.5

–1δ13C (‰)

δ13C (‰)

δ13C (‰)

South China

–4

Fig. 3 Carbonate carbon isotope curves and the distribution of marine red beds. a Carbonate δ13C curve from the Late Cretaceous strata in Chuangde,Tibet, China. b Spatial distribution of Cretaceous MRBs. c Carbonate δ13C curve from the Middle Jurassic strata in Puerto Escaño, southern Spain41. dSpatial distribution of Jurassic MRBs. e Carbonate δ13C curve from the Spathian (Early Triassic) in Mingtang, South China. f Spatial distribution of EarlyTriassic MRBs. g Carbonate δ13C curve from the Famennian (Late Devonian) strata in Baisha, South China. h Spatial distribution of Late Devonian(magenta) and Cambrian (orange) MRBs. i Carbonate δ13C curves from the middle Ediacaran in Shijiahe, South China and northern Mesquite Mountains,United States. j Spatial distribution of Ediacaran MRBs

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00502-x

4 NATURE COMMUNICATIONS | 8: 399 |DOI: 10.1038/s41467-017-00502-x |www.nature.com/naturecommunications

Page 5: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

DiscussionTwo different hypotheses have been employed to explain theorigin of Cretaceous and Jurassic MRBs: microbial-induced ironoxidation during sedimentation42 and iron oxidation underoxygenated, oligotrophic conditions26. Our finding of widelydistributed MRBs following global ocean anoxia suggeststhat anoxic, ferruginous water column conditions were the pre-requisite for MRB formation. We propose that displacement ofFe2+-rich anoxic waters into oxic waters during and followingthe OAEs led to precipitation of unstable, poorly crystallinehydrous ferric oxide phases that subsequently aged tohematite.

In the modern oxic ocean, iron concentrations are extremelylow (~0.1–1 nM) and most ‘dissolved’ iron is bound to organicmolecules as iron-binding ligands (FeL). The average upper limitof Fe ligand concentration in modern oceans is about 4 nM43. Inthis case, authigenic Fe oxides only form when the dissolved Fe2+

concentration is up to 4 nM. Because iron binding to ligands is anequilibrium process, which means that more iron would be tiedup in ligands at higher dissolved iron concentrations44, the actualFe concentrations required for the formation of MRBs may behigher than 4 nM. We ascribe the extra dissolved Fe2+ (higherthan the modern ocean Fe concentration of 0.1–1 nM) requiredfor MRB formation to the build-up of water-column Fe2+ underanoxic oceanic conditions.

Both BIF and MRB record oxidation of reduced iron in theocean, but their required water-column Fe2+ concentrations varysignificantly. Iron concentrations in BIFs are generally >20 wt%1,and petrological and experimental evidence shows that the ironoxide and carbonate minerals in BIFs may not be primary pre-cipitates, but products of post-depositional alteration of precursorferric hydroxides (Fe(OH)3)2. BIFs are commonly massive, up tohundreds of metres thick, while MRBs are a few metres to tens ofmetres thick (Fig. 2b, Supplementary Table 2). Many BIFs inArchean and Paleoproterozoic form giant iron ores with iron-richdeposition over 10,000 billion tonnes2. Thermodynamic model-ling indicates that the minimum value of mFe2+ (dissolved Fe2+

concentration) required for deposition of Fe(OH)3 when Eh<–0.16 is >50 μM (Fig. 4). In this case, the lower limit of mFe2+

for BIF to form is ~50 μM. When iron concentrations are belowthis lower limit (50 μM), iron is easily exhausted by reaction withdissolved sulphide produced by sulphate reducing bacteria, evenunder the much lower sulphate concentrations of <100 μMestimated for Archean oceans45–47. This lower mFe2+ limit isclose to previous estimates of ~54 μM48 and 40–120 μM49, basedon calculations assuming seawater saturation with respect to

siderite and calcite. Alternatively, ferric hydroxides could havebeen formed by microbial oxidation4. Experimental studies showthat microbial oxidation rates increase substantially when theFe2+ concentration rises from 2 to 4 mM, suggesting that bacterialprecipitation of ferric hydroxides also requires relatively highFe2+ concentrations4. Together, these constraints suggest that forBIFs to form, iron concentrations were likely >50 μM, a valuethat is several orders higher than that required for MRBformation.

Although BIFs are characteristic of the Precambrian, there is abig gap in their occurrence in the mid-Proterozoic (~1.8 to ~0.8Ga, see Fig. 2a). This is likely due to a decrease in dissolved Fe2+

concentrations, potentially coupled with removal of Fe2+ as pyriteduring upwelling onto euxinic continental shelves8, 12. A decreasein dissolved Fe2+ is also consistent with the development of thesupercontinent Columbia during the 1.8–1.3 Ga period, whichunderwent only minor modifications to form the next super-continent Rodinia at 1.1–0.9 Ga50. The unusually quiescent stateof global tectonics during the mid-Proterozoic may have resultedin reduced hydrothermal iron flux, leading to oceanic iron con-centrations lower than that required for BIF precipitation.Although it is difficult, if possible, to precisely quantify dissolvedFe2+ concentrations during the mid-Proterozoic, Fe2+ con-centrations during this period may be comparable with or higherthan that required for MRB formation (>4 nM), but low oxygencontent in atmosphere and shallow oceans51, 52 may have limitedthe formation of red beds to terrestrial and localised nearshoreenvironments.

The onset of widespread MRBs during the middle Ediacaranmay be a marker for substantial change in ocean chemistry.Numerical modelling suggests that for BIFs to form, deep-oceanFe concentrations were likely higher than 50 μM, while MRBsrequire much lower dissolved Fe concentrations (>4 nM). Thesimilarity of the iron cycle between Ediacaran and PhanerozoicMRBs suggests that anoxic Ediacaran oceans were more com-parable to Phanerozoic anoxic oceans rather than the stronglyferruginous oceans of the Archean and early Proterozoic. At othertimes in the Phanerozoic, iron concentrations were much lower,which precluded the formation of MRBs. However, we estimateiron concentrations during the formation of MRBs to be in asimilar range (possibly at the lower end) to those of the mid-Proterozoic, where MRBs did not form (Fig. 2). We suggest thatthis apparent contradiction is a consequence of the transition towidespread deep ocean oxygenation in the terminalProterozoic10, 53, 54, which promoted the formation of MRBs inthe aftermath of periods of ocean anoxia. MRBs are thus evidence

FeL Fe(OH)3

Fe2+

H2

H2O

Eh

(V)

0.6

0.4

0.2

0.0

–0.2

–0.4

–0.6

Fe2+ concentration (M, mol/l)

10–10 10–8 10–6 10–4 10–2

FeS2

FeLFe(OH)3

Fe2+

H2

H2O

Eh

(V)

0.6

0.4

0.2

0.0

–0.2

–0.4

–0.6

Fe2+ concentration (M, mol/l)

10–10 10–8 10–6 10–4 10–2

FeS2

FeL Fe(OH)3

Fe2+

H2

H2O

Eh

(V)

0.6

0.4

0.2

0.0

–0.2

–0.4

–0.6

Fe2+ concentration (M, mol/l)

10–10 10–8 10–6 10–4 10–2

FeS2

a b c

Fig. 4 Thermodynamic models interpreting required ferrous ion concentrations for the formation of BIF and MRB. a Graph of Eh vs. Fe2+ concentration forPhanerozoic oceans at T= 25 °C and P= 1 bar. The calculations are based on mSO4

2−= 15 mM, and pH= 7.5. b Graph of Eh vs. Fe2+ concentration forProterozoic oceans at T= 25 °C and P= 1 bar. The calculations are based on mSO4

2−= ~1 mM, and pH= 7.0. c Graph of Eh vs. Fe2+ concentration forArchean oceans at T= 25 °C and P= 1 bar. The calculations are based on mSO4

2−= ~100 μM, and pH= 6.5. The sulfate and pH data used here are fromrefs 45, 46, 58, 59. FeL: iron-binding ligands. The pH values of ancient seawater are consistent with the recent estimates of ~7.5–9 for Phanerozoic and~6.5–7.0 for Archean and Proterozoic60

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00502-x ARTICLE

NATURE COMMUNICATIONS |8: 399 |DOI: 10.1038/s41467-017-00502-x |www.nature.com/naturecommunications 5

Page 6: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

for anoxic episodes occurring during long-term intervals of deepocean oxygenation and their appearance in the middle Ediacaranconstrains the timing of deep-ocean ventilation.

MethodsCarbon isotope and iron chemistry analyses. The data are presented in Sup-plementary Table 1. MRB and BIF samples selected for geochemical analysesinclude both drill core and hand samples from fresh exposures. Carbonate carbonisotopes were prepared by drilling 1 mg powder from a fresh sample surface. About0.4 mg powder was placed in a 10 mL Na-glass vial, sealed with a butyl rubberseptum, and reacted with 100% phosphoric acid at 72 °C after flushing with helium.The evolved CO2 gas was analysed for δ13C using a MAT 253 mass-spectrometercoupled directly to a Finnigan Gasbench II interface (Thermo Scientific) at theState Key Lab of Biogeology and Environmental Geology (BGEG) in China Uni-versity of Geosciences (Wuhan). The carbon isotopic compositions (δ13C) arepresented as per mile (‰) relative to the Vienna Pee Dee Belemnite (V-PDB)standard. Analytical precision was better than 0.1‰, as monitored by replicateanalyses of two laboratory standards (GBW 04416 and GBW 04417). Total ironconcentrations were analysed by an XRF-1800 (Shimadzu Sequential X-RayFluorescence Spectrometer) at the State Key Lab of BGEG. Results were calibratedusing two laboratory standards (GBW07105 and GBW07109). Reproducibilitymonitored by replicate analyses of standards and unknown samples was better than95%. Fe2+ contents were determined using a titration method55. For each sample,0.5 g of power was dissolved in a hot 1:1 sulphuric acid. Potassium dichromate(K2Cr2O7) and diphenylamine sulphonic acid sodium salt were used as titrant andindicator, respectively. Fe3+ contents were calculated based on the differencebetween the Fe2+ contents and total iron concentrations.

Thermodynamic model for the formation of MRB. In oxic oceans, iron con-centration is extremely low and most dissolved iron is bound to organic moleculesas FeL with a mean maximum FeL concentration of ~4 nM43. Considering that athigher dissolved Fe2+ concentrations, FeL may be also higher (equilibriumprocess)44, the minimum requirement for the formation of authigenic hematite is> 4 nM. Eh–Fe2+ concentration diagram and the formation of MRB were generatedbased on the following equations (Standard potential and Gibbs free energy of thereactions are from ref. 56):

4Fe2þþ3O2 þ 6H2O ! 4Fe OHð Þ3

Fe2þ þ 3H2O ! Fe OHð Þ3 þ 3Hþ þ e�; Eh ¼ 0:975

�0:178pH� 0:059logmFe2þ

FeS2 þ 8H2O ! Fe2þ þ 2SO42� þ 16Hþ þ 14e�; Eh ¼ 0:368�

0:068pHþ 0:004logmFe2þ þ 0:008logmSO42�

2FeS2 þ 22H2O ! 2Fe OHð Þ3 þ 4SO2�4 þ 38Hþ

2Fe OHð Þ3 ! Fe2O3 þ 3H2O

Thermodynamic model for the formation of BIF. Eh-Fe2+ concentration diagramand the formation of BIF were generated based on the following equations(Standard potential and Gibbs free energy of the reactions are from ref 56):

Fe2þ þ 3H2O ! Fe OHð Þ3 þ 3Hþ þ e�; Eh ¼ 0:975

�0:178pH� 0:059logmFe2þ

FeS2 þ 8H2O ! Fe2þ þ 2SO42� þ 16Hþ þ 14e�; Eh ¼ 0:368

�0:068pHþ 0:004logmFe2þ þ 0:008logmSO42�

12Fe OHð Þ3 þ CH2O ! 4Fe3O4 þ 19H2Oþ CO2

2Fe OHð Þ3 ! Fe2O3 þ 3H2O

4Fe OHð Þ3 þ CH2Oþ 3HCO3� ! 4FeCO3 þ 3OH� þ 7H2O

Data availability. All data are provided in the Supplementary Information.

Received: 7 January 2017 Accepted: 3 July 2017

References1. Klein, C. Some Precambrian banded iron-formations (BIFs) from around the

world: Their age, geologic setting, mineralogy, metamorphism, geochemistry,and origins. Am. Mineral. 90, 1473–1499 (2005).

2. Bekker, A. et al. Iron formation: the sedimentary product of a complex interplayamong mantle, tectonic, oceanic, and biospheric processes. Econ. Geol. 105,467–508 (2010).

3. Braterman, P. S., Cairns-Smith, A. G. & Sloper, R. W. Photo-oxidation ofhydrated Fe2+-significance for banded iron formations. Nature 303, 163–164(1983).

4. Konhauser, K. O. et al. Decoupling photochemical Fe (II) oxidation fromshallow-water BIF deposition. Earth Planet. Sci. Lett. 258, 87–100 (2007).

5. Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans(Princeton University Press, 1984).

6. Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature ofthe ocean through Earth’s history. Elements 7, 107–112 (2011).

7. Hoffman, P. F. & Schrag, D. P. The snowball Earth hypothesis: testing the limitsof global change. Terra Nova 14, 129–155 (2002).

8. Canfield, D. A new model for Proterozoic ocean chemistry. Nature 396,450–453 (1998).

9. Holland, H. D. The oxygenation of the atmosphere and oceans. Philos. Trans. R.Soc. Lond. Ser. B, Biol. Sci. 361, 903–915 (2006).

10. Canfield, D. E. et al. Ferruginous conditions dominated later Neoproterozoicdeep-water chemistry. Science 321, 949–952 (2008).

11. Sperling, E. A. et al. Statistical analysis of iron geochemical data suggests limitedlate Proterozoic oxygenation. Nature 523, 451–454 (2015).

12. Poulton, S. W., Fralick, P. W. & Canfield, D. E. Spatial variability in oceanicredox structure 1.8 billion years ago. Nat. Geosci. 3, 486–490 (2010).

13. Planavsky, N. J. et al. Widespread iron-rich conditions in the mid-Proterozoicocean. Nature 477, 448–451 (2011).

14. Partin, C. et al. Large-scale fluctuations in Precambrian atmospheric andoceanic oxygen levels from the record of U in shales. Earth Planet. Sci. Lett.369, 284–293 (2013).

15. Reinhard, C. T. et al. Proterozoic ocean redox and biogeochemical stasis. Proc.Natl Acad. Sci. 110, 5357–5362 (2013).

16. Sahoo, S. et al. Oceanic oxygenation events in the anoxic Ediacaran ocean.Geobiology 14, 456–468 (2016).

17. Robbins, L. J. et al. Trace elements at the intersection of marine biological andgeochemical evolution. Earth-Sci. Rev. 163, 323–348 (2016).

18. Och, L. M. & Shields-Zhou, G. A. The Neoproterozoic oxygenation event:environmental perturbations and biogeochemical cycling. Earth-Sci. Rev. 110,26–57 (2012).

19. Li, C. et al. A stratified redox model for the Ediacaran ocean. Science 328, 80–83(2010).

20. Clarkson, M. et al. Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery. Nat. Commun. 7, 1223 (2016).

21. Poulton, S. W. et al. A continental-weathering control on orbitally drivenredox-nutrient cycling during Cretaceous Oceanic Anoxic Event 2. Geology 43,963–966 (2015).

22. März, C. et al. Redox sensitivity of P cycling during marine black shaleformation: dynamics of sulfidic and anoxic, non-sulfidic bottom waters.Geochim. Cosmochim. Acta 72, 3703–3717 (2008).

23. Turner, P. Continental Red Beds (Elsevier, 1980).24. Neuhuber, S., Wagreich, M., Wendler, I. & Spötl, C. Turonian oceanic red beds

in the eastern Alps: Concepts for palaeoceanographic changes in theMediterranean Tethys. Palaeogeogr. Palaeoclimatol. Palaeoecol 251, 222–238(2007).

25. Wang, C. et al. Cretaceous oceanic red beds as possible consequence of oceanicanoxic events. Sediment. Geol. 235, 27–37 (2011).

26. Hu, X. et al. Cretaceous oceanic red beds (CORBs): Different time scales andmodels of origin. Earth-Sci. Rev. 115, 217–248 (2012).

27. Wagreich, M. in Cretaceous Oceanic Red Beds: Stratigraphy, Composition,Origins, and Paleoceanographic and Paleoclimatic Significance (eds Hu, X.,Wang, C., Scott, R. W., Wagreich, M. & Jansa, L.) 235–242 (Society forSedimentary Geology, 2009).

28. Jiang, S. Y. et al. Early Cambrian ocean anoxia in south China. Nature 459,E5–E6 (2009).

29. Hough, M. et al. A major sulphur isotope event at c. 510 Ma: a possibleanoxia–extinction–volcanism connection during the Early–Middle Cambriantransition? Terra Nova 18, 257–263 (2006).

30. Gill, B. C. et al. Geochemical evidence for widespread euxinia in the LaterCambrian ocean. Nature 469, 80–83 (2011).

31. Bond, D., Wignall, P. B. & Racki, G. Extent and duration of marine anoxiaduring the Frasnian–Famennian (Late Devonian) mass extinction in Poland,Germany, Austria and France. Geol. Mag. 141, 173–193 (2004).

32. Wignall, P. B. & Twitchett, R. J. Oceanic anoxia and the end-Permian massextinction. Science 272, 1155–1158 (1996).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00502-x

6 NATURE COMMUNICATIONS | 8: 399 |DOI: 10.1038/s41467-017-00502-x |www.nature.com/naturecommunications

Page 7: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

33. Schootbrugge, B., Bachan, A., Suan, G., Richoz, S. & Payne, J. L. Microbes, mudand methane: cause and consequence of recurrent Early Jurassic anoxiafollowing the end-Triassic mass extinction. Palaeontology 56, 685–709(2013).

34. Jenkyns, H. C. The early Toarcian (Jurassic) anoxic event; stratigraphic,sedimentary and geochemical evidence. Am. J. Sci. 288, 101–151 (1988).

35. Tyszka, J. Response of middle jurassic benthic foraminiferal morphogroups todysoxic/anoxic conditions in the Pieniny Klippen Basin, Polish Carpathians.Palaeogeogr. Palaeoclimatol. Palaeoecol. 110, 55–81 (1994).

36. Raiswell, R., Newton, R. & Wignall, P. An indicator of water-column anoxia:resolution of biofacies variations in the Kimmeridge Clay (Upper Jurassic, UK).J. Sediment. Res. 71, 286–294 (2001).

37. Hasegawa, T. et al. Carbon isotope stratigraphy and depositional oxia throughCenomanian/Turonian boundary sequences (Upper Cretaceous) in NewZealand. Cretaceous Res. 40, 61–80 (2013).

38. Jenkyns, H. Cretaceous anoxic events: from continents to oceans. J. Geol. Soc.137, 171–188 (1980).

39. Ziegler, A. & McKerrow, W. Silurian marine red beds. Am. J. Sci. 275, 31–56(1975).

40. Liu, J., Wang, Y., Zhang, X. & Rong, J. Early Telychian (Silurian) marinesiliciclastic red beds in the Eastern Yangtze platform, South China: distributionpattern and controlling factors. Can. J. Earth Sci. 53, 712–718 (2016).

41. O’Dogherty, L. et al. Carbon isotope stratigraphy and ammonite faunalturnover for the Middle Jurassic in the Southern Iberian palaeomargin.Palaeogeogr. Palaeoclimatol. Palaeoecol. 239, 311–333 (2006).

42. Préat, A. R., de Jong, J. T., Mamet, B. L. & Mattielli, N. Stable iron isotopes andmicrobial mediation in red pigmentation of the Rosso Ammonitico (Mid-LateJurassic, Verona area, Italy). Astrobiology 8, 841–857 (2008).

43. Gledhill, M. & Buck, K. N. The organic complexation of iron in the marineenvironment: a review. Front. Microbiol. 3, 1–17 (2012).

44. Wu, J., Boyle, E., Sunda, W. & Wen, L. S. Soluble and colloidal iron inthe oligotrophic North Atlantic and North Pacific. Science 293, 847–849(2001).

45. Canfield, D. E. & Farquhar, J. Animal evolution, bioturbation, and the sulfateconcentration of the oceans. Proc. Natl Acad. Sci. 106, 8123–8127 (2009).

46. Planavsky, N. J., Bekker, A., Hofmann, A., Owens, J. D. & Lyons, T. W. Sulfurrecord of rising and falling marine oxygen and sulfate levels during theLomagundi event. Proc. Natl Acad. Sci. 109, 18300–18305 (2012).

47. Crowe., S. A. et al. Sulfate was a trace constituent of Archean seawater. Science346, 735–739 (2014).

48. Holland, H. D. The oceans; a possible source of iron in iron-formations. Econ.Geol. 68, 1169–1172 (1973).

49. Canfield, D. E. The early history of atmospheric oxygen: homage to Robert M.Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005).

50. Roberts, N. M. The boring billion?–Lid tectonics, continental growth andenvironmental change associated with the Columbia supercontinent. Geosci.Front 4, 681–691 (2013).

51. Planavsky, N. J. et al. Low Mid-Proterozoic atmospheric oxygen levels and thedelayed rise of animals. Science 346, 635–638 (2014).

52. Tang, D., Shi, X., Wang, X. & Jiang, G. Extremely low oxygen concentration inmid-Proterozoic shallow seawaters. Precambrian Res. 276, 145–157 (2016).

53. Canfield, D. E., Poulton, S. W. & Narbonne, G. M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315, 92–95 (2007).

54. Fike, D., Grotzinger, J., Pratt, L. & Summons, R. Oxidation of the Ediacaranocean. Nature 444, 744–747 (2006).

55. Bai, J. F., He., X. H., Zhang, Q. & Hu, W. Y. Evaluation of uncertainty fordetermination results of iron protoxide in geological samples by K2Cr2O7

titrimetry. Metall. Anal. 4, 77–80 (2008).56. Brookins, D. G. Eh-pH Diagrams for Geochemistry (Springer, 1988).57. Meyer, K. M. & Kump, L. R. Oceanic euxinia in Earth history: causes and

consequences. Annu. Rev. Earth Planet. Sci. 36, 251–288 (2008).58. Ridgwell, A. A mid Mesozoic revolution in the regulation of ocean chemistry.

Mar. Geol 217, 339–357 (2005).59. Grotzinger, J. P. & Kasting, J. F. New constraints on Precambrian ocean

composition. J. Geol. 101, 235–243 (1993).60. Halevy, I. & Bachan, A. The geologic history of seawater pH. Science 355,

1069–1071 (2017).

AcknowledgementsWe thank Z. Qiu, E. Jia, and Y. Ke for laboratory assistance, H. Yin, X. Hu, H. Dong,S. Zhang, X. Shi, and S. Yuan for discussions. This study is supported by State Key R&Dproject of China (2016YFA0601100), the National Natural Science Foundation of China(41622207, 41530104, 41661134047), and the 111 Project (B08030). This study is acontribution to the international IMBER project.

Author contributionsHa.S., G.J., and P.B.W. conceived the study. Ha.S., G.J., Hu.S., Z.A., D.C., L.T., and Z.S.collected samples, Ha.S., Hu.S., and D.C. completed geochemical measurements, Ha.S.,G.J., S.W.P., P.B.W., J.T., and C.W. participated in discussion and interpretation. Ha.S.wrote the paper with input from all co-authors.

Additional informationSupplementary Information accompanies this paper at doi:10.1038/s41467-017-00502-x.

Competing interests: The authors declare no competing financial interests

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims inpublished maps and institutional affiliations.

Open Access This article is licensed under a Creative CommonsAttribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you giveappropriate credit to the original author(s) and the source, provide a link to the CreativeCommons license, and indicate if changes were made. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unlessindicated otherwise in a credit line to the material. If material is not included in thearticle’s Creative Commons license and your intended use is not permitted by statutoryregulation or exceeds the permitted use, you will need to obtain permission directly fromthe copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00502-x ARTICLE

NATURE COMMUNICATIONS |8: 399 |DOI: 10.1038/s41467-017-00502-x |www.nature.com/naturecommunications 7

Page 8: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Description of Supplementary Files File Name: Supplementary Information Description: Supplementary Notes, Supplementary Figures, Supplementary Tables and Supplementary References File Name: Peer Review File

Page 9: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 1 of 47

Supplementary Note 1︱The middle Ediacaran MRBs

The first appearance of widespread MRBs in middle Ediacaran successions is of particular

importance. Typical examples include the Rainstorm Member of Johnnie Formation in the

Death Valley region of western USA66, the upper Doushantuo Formation in South China135,

the Krol B interval of the Lesser Himalaya, northern India68, 136, the Chenchinskaya and

Alyanchskaya formations in southeast Siberia, Russia69, the Tikhfist Formation in Morocco 64,

and the Lubudi Formation in central Africa70. In this study, we examined the MRBs of the

Johnnie Formation, the Doushantuo Formation, and the Krol Group.

The pink limestones of the Rainstorm Member (Johnnie Formation) in the Death Valley

region rest above the Johnnie oolite and consists of microcrystalline limestone with siltstone

and fine-grained sandstone interbeds. They were deposited from shallow subtidal to deep

subtidal environments. Ooids, stromatolites, and crystal fans are observed in some of the

sections such as in the northern Mesquite Mountains and southern Nopah Range. Carbon

isotope analyses have been conducted multiple times for the Rainstorm Member in this

region and the data show negative δ13C values down to –12‰66, 137, 138, which were correlated

with the Shuram excursion. Our carbon isotope analyses of the pink limestones from the

northern Mesquite Mountains have δ13C values of –9.5‰ to –12‰ (Supplementary Table 1

and Fig. 7), consistent with previous studies. The unusually low δ13C values (down to –12‰)

from the pink limestones raised concerns about diagenetic alteration of primary carbon

isotope signature, but the consistent spatial and temporal δ13C pattern66 and the

well-preserved radial fabrics in ooids, stromatolites and crystal fans67, 139, 140 suggest an

overall preservation of primary features.

The pink-red dolostones of the upper Doushantuo Formation in South China is exemplified

by the sections in the Yangtze Gorges area. The thinly bedded dolostones are interbedded

with shale laminae and are composed of micritic or microcrystalline dolomite suggestive of

Page 10: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 2 of 47

deposition from deep subtidal environments below fair-weather wave base. Carbon isotope

analyses reveal δ13C values of –6‰ to –9‰ (Supplementary Table 1 and Fig. 6), which is

consistent with the upper Doushantuo negative δ13C excursion documented from the region135.

The upper Doushantuo δ13C excursion has also been correlated to the Shuram excursion141,

142.

The red beds of the Krol B interval in the Lesser Himalaya, northern India are present in all

of the five synclines examined68, 143. They are composed of red siltstone, shale and micritic

dolostone. The presence of some gypsum pseudomorphs in proximal sections led to the

interpretation of intertidal to supratidal environments143, but our new observations indicate

that at least in the distal sections such as in Solan and Korgai synclines, they were likely

deposited below the fair-weather wave base. Carbon isotopes of the red dolostones in Krol B

vary from –2‰ to –12‰136, but overall the negative δ13C shift is apparent at correlative

intervals throughout the Krol platform, which has also been correlated with the Shuram

excursion136.

Field and petrographic observations show that the middle Ediacaran MRBs share similar

attributes with those of the Triassic and Cretaceous MRBs examined in this study: they are all

composed of fine-grained carbonates and shales and have almost no organic matter content or

organic-rich interbeds; their red colour is homogenous and does not show patchy staining

suggestive of oxidation from reduced iron. Their bulk rock Fe2O3 contents are identical (≤1%

in carbonates and 1–6% in shales). Petrographic and SEM observations reveal no framboidal

or euhedral pyrite precursors. Therefore, we believe that the middle Ediacaran MRBs had the

same origin as those of the Triassic and Cretaceous MRBs.

Supplementary Note 2︱Compilation of Phanerozoic MRBs

We document a total of five global MRB intervals from the Phanerozoic, including Cambrian,

Late Devonian, Early Triassic, Jurassic and Cretaceous episodes (Supplementary Table 2).

Marine red beds are also found in Early Silurian (Telychian) successions in many places

including Europe, North America144, 145 and South China146, but they are mostly found

Page 11: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 3 of 47

distributed around uplifted “old lands” and consist predominately of red sandstone, siltstone

and shales without carbonates. The iron source of these Silurian red beds are thought to be of

detrital origin146. Therefore, we think that these red beds may have been formed differently

from the five intervals we have described. However, if future studies indicate that they were

formed by similar processes like the ones in Cretaceous and Triassic, the Telychian red beds

could be another representative Phanerozoic MRB.

Most of the Phanerozoic MRBs slightly postdate oceanic anoxic events (OAEs), but in a few

cases red beds are also found within the interval of oceanic anoxia. One of the examples is

the thin red beds within OAE2 in New Zealand147. Further study may reveal if this type of red

beds records episodic oxidation within a broad anoxic event or a local phenomenon.

Red-pink carbonates of MRBs all have δ13C values that are lower than temporally adjacent

strata, creating “negative” δ13C excursions (Figs. 2c and 3; Supplementary Figs. 3–7). This is

conceivable because oxidation of reduced iron from anoxic waters would inevitably involve

oxidation of organic carbon and incorporation of 13C-depleted HCO3- during carbonate

precipitation, adding 13C-depleted carbon to carbonate. This process may have resulted in

negative δ13C shifts in the range of –0.5‰ to –2‰, as seen in the Phanerozoic MRBs (Figs.

2c and 3; Supplementary Figs. 3–5). The negative δ13C excursion associated with the middle

Ediacaran MRB, or the Shuram δ13C excursion, however, has a magnitude of ≥ 12‰. While

13C-depleted carbon from oxidation of organic carbon and 13C-depleted HCO3- certainly made

contributions to the Shuram excursion, the amount of oxidants148 and reduced carbon

source149 required for the Shuram excursion is enormous and has been highly debated.

Supplementary Note 3︱Debates on the origin of the Shuram δ13C excursion

The negative δ13C excursion associated with the middle Ediacaran MRB, or the Shuram

excursion, has a magnitude of ≥ 12‰ (ranging from ≥ 4‰ to ≤ –8‰) and a duration of ≥ 5

million years (Myr)150, 151, 152, 153, 154. The large magnitude and long duration of this δ13C

excursion make it difficult to interpret using the Phanerozoic carbon cycle models. Early

interpretations invoked the upwelling of 13C-depleted deep water155, 156, but the enormous

Page 12: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 4 of 47

amount of 13C-depleted carbon required for accommodating a > 5 Myr δ13C excursion with a

magnitude of ≥ 12‰ is difficult to reconcile. This led to the proposal of a large oceanic

dissolved organic carbon (DOC) pool (100–1000 times that of the modern ocean DOC) and

perhaps a relatively smaller (than modern) dissolved inorganic carbon pool that was more

susceptible to carbon isotope changes149. Evidence supporting a large DOC pool came from

the decoupled carbonate and organic carbon isotopes prior to and across the Shuram

excursion152, 157. This hypothesis, however, is challenged by the equally large amount of

oxidants required for remineralizing the large DOC pool148. Even with the oxidant budget

available in the modern surface environments (including atmosphere and ocean) and with an

unlimited organic carbon source, it is difficult to support a 12‰ negative δ13C excursion for

more than 3 Myr148. In addition, more recent paired carbonate-organic carbon isotope

analyses documented decoupled–coupled δ13Ccarb–δ13Corg patterns from multiple intervals of

Ediacaran-Cambrian strata158, 159, 160, suggesting that even if a large DOC existed in the

Precambrian ocean, it was not large enough to buffer the organic carbon isotopes and the

evolution of the DOC reservoir was not unidirectional159, 161.

The shortage of 13C-depleted carbon source or oxidants required for the Shuram excursion led

to alternative meteoric162, 163 and burial164 diagenetic interpretations. However, both meteoric

and burial diagenesis have difficulties of explaining the globally consistent δ13C excursion

across different continents (sedimentary basins) with varying burial history. In addition, most

if not all Shuram-age negative δ13C values are produced in transgressive units above an

unconformity where influence from meteoric water should be relatively less significant. The

preservation of primary sedimentary structures and fabrics such as crystal fans, radial fabrics

of ooids, and microbial laminae in stratigraphic units that host the Shuram excursion also

argue against complete recrystallization of carbonate minerals and resetting of isotope

signature through burial diagenesis.

A more recent hypothesis invokes authigenic carbonate precipitation in porewater as a

possible origin of the Shuram excursion165. Due to anoxic bottom waters, authigenic

carbonate precipitation in porewaters in Precambrian oceans may have been much more

pervasive than in the modern ocean and might be a major 13C-depleted carbon flux. This has

Page 13: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 5 of 47

two implications: (1) the cutoff or decline in the global flux of authigenic carbonate would

result in a negative δ13C excursion and (2) the addition of authigenic carbonate into primary

marine carbonate would result in localized/regional δ13C shift. This hypothesis explains some

of the spatial variations of the Shuram excursion such as the large isotope gradients141, 161 and

local isotope extremes166 documented from the Doushantuo Formation in South China, but it

cannot explain a global δ13C excursion with minimum values down to ≤ –12‰ because even

a complete cutoff of the authigenic carbonate flux would not result in ocean seawater δ13C

values lower than the riverine (or average crust) δ13C value of ca. –5‰, unless additional

evidence confirm that the Shuram excursion is not globally synchronous.

The debate on the origin of the Shuram excursion (and its correlatives) will continue until

better constraints on its magnitude, duration, and spatial variations can be achieved, and our

findings by no means solve this debate. However, the coincidence of the Phanerozoic-like,

middle Ediacaran MRB and the Shuram excursion does confirm that (1) similar to the

negative δ13C shift associated with the Phanerozoic MRBs, oxidation of organic carbon and

incorporation of 13C-depleted HCO3- from anoxic waters during carbonate precipitation likely

contributed to the Shuram excursion, (2) the larger magnitude of the Shuram excursion may

be related to the longer period of anoxia prior to the middle Ediacaran MRB, during which

more 13C-depleted carbon may have accumulated through remineralization of organic matter,

and (3) iron reduction (using iron oxides as electron acceptors) may have contributed, at least

locally, to the heterogeneity of the Shuram excursion.

Page 14: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 6 of 47

Supplementary Figure 1︱ Marine red bed occurrences in the Phanerozoic and

Ediacaran. Data are based on Supplementary Table 2.

Page 15: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 7 of 47

Supplementary Figure 2︱Banded Iron Formation occurrences in the Archean and

Proterozoic. Data are based on Supplementary Table 2.

Page 16: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 8 of 47

Supplementary Figure 3︱Carbonate δ13C curve from the Late Cretaceous strata in

Chuangde, Tibet, China.

Page 17: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 9 of 47

Supplementary Figure 4︱Carbonate δ13C curve from the Spathian (Early Triassic) in

Mingtang, South China.

Page 18: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 10 of 47

Supplementary Figure 5︱Carbonate δ13C curve from the Famennian (Late Devonian)

strata in Baisha, South China.

Page 19: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 11 of 47

Supplementary Figure 6︱Carbonate δ13C curves from the middle Ediacaran in

Shijiahe, South China.

Page 20: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 12 of 47

Supplementary Figure 7︱Carbonate δ13C curves from the middle Ediacaran in

northern Mesquite Mountains, United States.

Page 21: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 13 of 47

Supplementary Table 1︱Carbon and oxygen isotope values of carbonate and iron

geochemical data in marine red beds, banded iron formations, and adjacent rocks.

Age

(Ma)

Period Stage

Sample

No.

Sample

postion (m)

δ13C (‰) δ18O (‰) Fe2O3(%) Fe2+(%) Fe3+(%) Fe3+/Fe2+ Type

~83 Cretaceous Campanian CD001 0 -0.38 -13.03 red mudstone

~83 Cretaceous Campanian CD002 1.5 -0.4 -12.31 0.53 red mudstone

~83 Cretaceous Campanian CD003 3.6 -0.67 -13.43 red mudstone

~83 Cretaceous Campanian CD004 3.6 -0.67 -13.42 red mudstone

~83 Cretaceous Campanian CD005 5.1 0.03 -13.2 red mudstone

~83 Cretaceous Campanian CD006 6.5 0.69 -13 5.2 red mudstone

~83 Cretaceous Campanian CD007 7.7 0.37 -13.27 red mudstone

~83 Cretaceous Campanian CD008 8.9 -0.86 -15.87 red mudstone

~83 Cretaceous Campanian CD009 9.9 0 -14.43 9.23 red mudstone

~83 Cretaceous Campanian CD010 10.6 0.13 -11.99 red mudstone

~83 Cretaceous Campanian CD011 11.4 0.48 -12.17 red mudstone

~83 Cretaceous Campanian CD012 12.4 0.15 -12.22 red mudstone

~83 Cretaceous Campanian CD013 14.3 0.25 -11.86 red mudstone

~83 Cretaceous Campanian CD014 15.2 0.46 -11.9 6.1 red mudstone

~83 Cretaceous Campanian CD015 16.2 0.5 -11.96 red mudstone

~83 Cretaceous Campanian CD016 16.7 0.21 -12.4 red mudstone

~83 Cretaceous Campanian CD017 16.7 0.17 -12.41 red mudstone

~83 Cretaceous Campanian CD018 18.1 0.67 -12.55 red mudstone

~83 Cretaceous Campanian CD019 19 0.23 -11.81 2.26 red mudstone

~83 Cretaceous Campanian CD020 20.1 0.77 -11.77 red mudstone

~83 Cretaceous Campanian CD021 21.3 0.91 -11.95 red mudstone

~83 Cretaceous Campanian CD022 22.4 1.1 -11.73 grey mudstone

~83 Cretaceous Campanian CD023 23.4 1.35 -11.67 4.15 grey mudstone

~83 Cretaceous Campanian CD024 24.8 1.49 -11.65 grey mudstone

~83 Cretaceous Campanian CD025 25.8 1.55 -11.7 grey mudstone

~83 Cretaceous Campanian CD026 26.7 1.53 -11.79 1.32 grey mudstone

~83 Cretaceous Campanian CD027 26.7 1.54 -11.79 grey mudstone

~83 Cretaceous Campanian CD028 27.8 1.63 -11.7 grey mudstone

~83 Cretaceous Campanian CD029 28.8 1.65 -11.67 1.03 grey mudstone

~83 Cretaceous Campanian CD030 29.9 1.61 -11.76 grey mudstone

~83 Cretaceous Campanian CD031 31 1.43 -11.91 0.63 grey mudstone

83 Cretaceous Campanian CD032 32.1 1.14 -11.91 0.7 grey mudstone

~83 Cretaceous Campanian CD033 33.1 0.7 -11.93 grey mudstone

~248 Triassic Spathian TL001 11.25 -1.75 -9.69 0.41 0.14 0.14 1.03 grey limestone

~248 Triassic Spathian TL002 11.55 -2.32 -12.24 0.32 0.14 0.09 0.62 grey limestone

~248 Triassic Spathian TL003 11.95 -1.65 -10.33 0.4 0.16 0.12 0.72 grey limestone

~248 Triassic Spathian TL004 12.15 -1.2 -10.16 0.54 0.25 0.13 0.51 grey limestone

Page 22: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 14 of 47

~248 Triassic Spathian TL005 12.55 -1.46 -10.75 0.45 0.21 0.1 0.48 grey limestone

~248 Triassic Spathian TL006 13.4 -1.16 -10.64 0.59 0.22 0.2 0.91 grey limestone

~248 Triassic Spathian TL007 13.8 0.02 -11.03 0.68 0.25 0.23 0.9 grey limestone

~248 Triassic Spathian TL008 14.4 0.63 -10.57 0.66 0.3 0.16 0.55 grey limestone

~248 Triassic Spathian TL009 14.6 3.14 1.78 0.42 0.24 grey limestone

~248 Triassic Spathian TL010 14.9 0.72 -12.48 2.62 1.2 0.65 0.54 grey limestone

~248 Triassic Spathian TL011 15.02 1.76 -12.35 3.42 1.98 0.41 0.2 grey limestone

~248 Triassic Spathian TL012 16.22 -0.45 -13.01 10.19 2.9 4.24 1.46 grey limestone

~248 Triassic Spathian TL013 18.62 -0.1 -11.52 1.03 0.29 0.43 1.49 red limestone

~248 Triassic Spathian TL014 18.62 -0.09 -11.54 0.79 0.12 0.43 3.53 red limestone

~248 Triassic Spathian TL015 19.02 -0.12 -11.71 0.93 0.15 0.51 3.4 red limestone

~248 Triassic Spathian TL016 19.54 -0.44 -12.12 0.53 0.11 0.26 2.44 red limestone

~248 Triassic Spathian TL017 20.28 -0.46 -11.74 0.56 0.11 0.28 2.56 red limestone

~248 Triassic Spathian TL018 21.38 -0.18 -12.11 0.76 0.16 0.37 2.25 red limestone

~248 Triassic Spathian TL019 21.68 0.06 -12.09 1.07 0.21 0.54 2.62 red limestone

~248 Triassic Spathian TL020 21.98 0.19 -11.89 1.11 0.2 0.57 2.81 red limestone

~248 Triassic Spathian TL021 22.48 0.27 -12.15 0.55 0.21 0.18 0.83 grey limestone

~248 Triassic Spathian TL022 23.33 0.35 -12.24 0.6 0.26 0.16 0.61 grey limestone

~248 Triassic Spathian TL023 23.63 1.52 -12.5 0.77 0.31 0.5 1.61 grey limestone

~248 Triassic Spathian TL024 24.33 0.26 -12.66 1.17 0.44 0.82 1.85 grey limestone

~248 Triassic Spathian TL025 24.73 0.02 -12.68 0.59 0.24 0.29 1.23 grey limestone

~248 Triassic Spathian TL026 25.13 2.36 -11.62 0.76 0.33 0.19 0.58 grey limestone

~248 Triassic Spathian TL027 26.63 0.18 -12.71 0.75 0.31 0.57 1.82 grey limestone

~248 Triassic Spathian GD001 0.4 0.33 0.14 0.09 0.67 grey limestone

~248 Triassic Spathian GD002 1.3 2.34 0.95 0.69 0.72 grey limestone

~248 Triassic Spathian GD003 3.8 0.56 0.26 0.13 0.48 grey limestone

~248 Triassic Spathian GD004 4.9 0.73 0.37 0.14 0.39 grey limestone

~248 Triassic Spathian GD005 6.1 2.71 1.44 0.45 0.31 grey limestone

~248 Triassic Spathian GD006 8 0.08 0.05 0.01 0.19 grey limestone

~248 Triassic Spathian GD007 9.7 0.17 0.11 0.01 0.11 grey limestone

~248 Triassic Spathian GD008 12.4 0.35 0.22 0.02 0.1 grey limestone

~248 Triassic Spathian GD009 14.2 1.27 0.5 0.39 0.79 grey limestone

~248 Triassic Spathian GD010 39 2.41 1.17 0.51 0.44 grey limestone

~248 Triassic Spathian GD011 40.3 2.96 1.17 0.91 0.78 grey limestone

~248 Triassic Spathian GD012 41 4.81 1.2 2.17 1.81 red limestone

~248 Triassic Spathian GD013 41.5 2.96 0.82 1.26 1.54 red limestone

~248 Triassic Spathian GD014 43 3.51 0.87 1.59 1.82 red limestone

~248 Triassic Spathian GD015 44 0.12 0.02 0.06 2.51 red limestone

~248 Triassic Spathian GD016 45.1 2.43 0.88 0.82 0.92 red limestone

~248 Triassic Spathian GD017 45.9 2.92 0.66 1.38 2.08 red limestone

~248 Triassic Spathian GD018 46.2 2.12 0.47 1.02 2.16 red limestone

~248 Triassic Spathian GD019 47 2.71 0.64 1.26 1.99 red limestone

Page 23: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 15 of 47

~248 Triassic Spathian GD020 47.4 1.73 0.44 0.78 1.79 red limestone

~248 Triassic Spathian GD021 48 0.35 0.16 0.08 0.53 red limestone

~248 Triassic Spathian GD022 48.9 2.69 0.61 1.27 2.08 red limestone

~248 Triassic Spathian GD023 49.8 1.84 0.44 0.86 1.96 red limestone

~248 Triassic Spathian GD024 50.3 2.36 0.54 1.11 2.08 red limestone

~248 Triassic Spathian GD025 51.3 1.58 0.39 0.71 1.8 red limestone

~248 Triassic Spathian GD026 52.5 1.43 0.34 0.66 1.96 red limestone

~248 Triassic Spathian GD027 53.3 1.01 0.19 0.52 2.72 red limestone

~248 Triassic Spathian GD028 53.7 1.31 0.36 0.56 1.56 red limestone

~248 Triassic Spathian GD029 54.15 0.41 0.09 0.19 2.08 red limestone

~248 Triassic Spathian GD030 54.95 1.66 0.48 0.68 1.43 red limestone

~248 Triassic Spathian GD031 55.75 1.73 0.42 0.79 1.9 red limestone

~248 Triassic Spathian GD032 56.35 0.22 0.1 0.06 0.56 red limestone

~248 Triassic Spathian GD033 57.55 1.7 0.51 0.69 1.36 red limestone

~248 Triassic Spathian GD034 60.6 0.08 0.03 0.02 0.76 grey limestone

~248 Triassic Spathian GD035 64.3 0.06 0.02 0.02 0.84 grey limestone

~248 Triassic Spathian GD036 66.3 0.28 0.1 0.1 0.96 grey limestone

~248 Triassic Spathian GD037 67.6 0.38 0.2 0.07 0.34 grey limestone

~248 Triassic Spathian GD038 68.4 0.14 0.04 0.06 1.5 grey limestone

~248 Triassic Spathian MT001 14.4 1.77 -5.32 light grey dolomite

~248 Triassic Spathian MT002 15.5 1.57 -9.96 light grey dolomite

~248 Triassic Spathian MT003 15.5 1.57 -10.32 light grey dolomite

~248 Triassic Spathian MT004 16.3 1.85 -5.6 light grey dolomite

~248 Triassic Spathian MT005 17.8 1.81 -6.26 light grey dolomite

~248 Triassic Spathian MT006 18.6 1.98 -7.24 light grey dolomite

~248 Triassic Spathian MT007 21 1.61 -8.12 light grey dolomite

~248 Triassic Spathian MT008 22 1.6 -8.07 light grey dolomite

~248 Triassic Spathian MT009 22.5 1.56 -7.47 light grey dolomite

~248 Triassic Spathian MT010 23.3 0.67 -8.77 light grey dolomite

~248 Triassic Spathian MT011 24.5 1.7 -7.6 light grey dolomite

~248 Triassic Spathian MT012 25.7 1.67 -8.09 light grey dolomite

~248 Triassic Spathian MT013 29.8 2.57 -4.34 light grey dolomite

~248 Triassic Spathian MT014 32 1.91 -4.32 light grey dolomite

~248 Triassic Spathian MT015 34.8 1.95 -5.77 light grey dolomite

~248 Triassic Spathian MT016 39 2.36 -4.44 light grey dolomite

~248 Triassic Spathian MT017 42 2 -4.9 light grey dolomite

~248 Triassic Spathian MT018 44 2.05 -9.03 light grey dolomite

~248 Triassic Spathian MT019 47.2 2.11 -5.43 light grey dolomite

~248 Triassic Spathian MT020 50.6 3.11 -4.73 light grey dolomite

~248 Triassic Spathian MT021 53.5 2.06 -4.95 light grey dolomite

~248 Triassic Spathian MT022 55.8 2.04 -5.69 light grey dolomite

~248 Triassic Spathian MT023 57.2 1.33 -3.93 grey limestone

Page 24: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 16 of 47

~248 Triassic Spathian MT024 57.6 1.45 -3.45 grey limestone

~248 Triassic Spathian MT025 51.8 0.59 -7 grey limestone

~248 Triassic Spathian MT026 58.1 0.81 -7.56 grey limestone

~248 Triassic Spathian MT027 58.4 0.71 -7.81 grey limestone

~248 Triassic Spathian MT028 58.7 0.14 -10.69 grey limestone

~248 Triassic Spathian MT029 60 -0.12 -10.91 grey limestone

~248 Triassic Spathian MT030 60.4 0.75 -5.63 grey limestone

~248 Triassic Spathian MT031 60.8 -0.37 -8.15 grey limestone

~248 Triassic Spathian MT032 61.3 0.44 -3.71 grey limestone

~248 Triassic Spathian MT033 61.3 0.44 -3.52 grey limestone

~248 Triassic Spathian MT034 61.8 0.28 -4.29 grey limestone

~248 Triassic Spathian MT035 62 0.24 -4.33 grey limestone

~248 Triassic Spathian MT036 62.4 -0.65 -8.71 red limestone

~248 Triassic Spathian MT037 64.2 0.16 -5.34 red limestone

~248 Triassic Spathian MT038 64.6 -0.01 -6.49 red limestone

~248 Triassic Spathian MT039 65 0.02 -6.16 red limestone

~248 Triassic Spathian MT040 65.5 -0.05 -5.96 red limestone

~248 Triassic Spathian MT041 65.8 -0.03 -5.88 red limestone

~248 Triassic Spathian MT042 66.4 -0.56 -6.69 red limestone

~248 Triassic Spathian MT043 68 0.01 -4.41 red limestone

~248 Triassic Spathian MT044 70.5 -0.64 -6.49 red limestone

~248 Triassic Spathian MT045 72 -0.2 -5.03 red limestone

~248 Triassic Spathian MT046 74.5 0.1 -3.57 red limestone

~248 Triassic Spathian MT047 74.5 0.09 -3.56 red limestone

~248 Triassic Spathian MT048 75.5 -1.06 -8.12 red limestone

~248 Triassic Spathian MT049 76 -0.79 -8.2 red limestone

~248 Triassic Spathian MT050 76.5 -0.78 -5.79 red limestone

~248 Triassic Spathian MT051 77.4 -0.81 -6.46 red limestone

~248 Triassic Spathian MT052 78.3 -0.58 -4.77 red limestone

~248 Triassic Spathian MT053 79.4 -1.25 -6.89 red limestone

~248 Triassic Spathian MT054 80 -0.19 -3.91 red limestone

~248 Triassic Spathian MT055 82 -0.27 -4.45 red limestone

~248 Triassic Spathian MT056 82.2 -0.29 -4.43 red limestone

~248 Triassic Spathian MT057 82.5 -0.39 -4.85 red limestone

~248 Triassic Spathian MT058 84 -0.44 -5.24 red limestone

~248 Triassic Spathian MT059 85 0.38 -4.78 red limestone

~248 Triassic Spathian MT060 85.5 -0.18 -5.69 grey limestone

~248 Triassic Spathian MT061 86 0.63 -4.04 grey limestone

~248 Triassic Spathian MT062 86.8 0.83 -5.57 grey limestone

~248 Triassic Spathian MT063 87.8 0.04 -5.11 grey limestone

~248 Triassic Spathian MT064 90 0.04 -5.49 grey limestone

~248 Triassic Spathian MT065 90.4 0.06 -5.58 grey limestone

Page 25: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 17 of 47

~248 Triassic Spathian MT066 92.4 0.72 -4.72 grey limestone

~248 Triassic Spathian MT067 93.6 0.62 -2.23 grey limestone

~248 Triassic Spathian MT068 94.3 0.71 -2.17 grey limestone

~248 Triassic Spathian MT069 95 0.97 -2.95 grey limestone

~248 Triassic Spathian MT070 96.8 1.17 -2.37 grey limestone

~248 Triassic Spathian MT071 97.5 1.16 -3.47 grey limestone

~248 Triassic Spathian MT072 98 1.14 -3.35 grey limestone

~248 Triassic Spathian MT073 99 1.77 -2.02 grey limestone

~248 Triassic Spathian MT074 100.4 1.8 -2.92 grey limestone

~248 Triassic Spathian MT075 102.3 2.65 -1.93 grey limestone

~370 Devonian Famennian BS001 118 1.89 -5.71 grey limestone

~370 Devonian Famennian BS002 120 2 -6.56 2.81 grey limestone

~370 Devonian Famennian BS003 122 1.3 -4.95 grey limestone

~370 Devonian Famennian BS004 124 1.44 -5.48 grey limestone

~370 Devonian Famennian BS005 126 1.33 -5.93 red limestone

~370 Devonian Famennian BS006 128 1.17 -6 red limestone

~370 Devonian Famennian BS007 130 1.35 -5.78 red limestone

~370 Devonian Famennian BS008 130 1.34 -5.9 red limestone

~370 Devonian Famennian BS009 132 1.55 -5.61 0.3 red limestone

~370 Devonian Famennian BS010 133 1.51 -5.68 red limestone

~370 Devonian Famennian BS011 134 1.63 -5.87 red limestone

~370 Devonian Famennian BS012 135 1.55 -5.87 0.86 red limestone

~370 Devonian Famennian BS013 136 0.98 -6.06 red limestone

~370 Devonian Famennian BS014 136 1.58 -6.26 red limestone

~370 Devonian Famennian BS015 137 1.69 -6.25 red limestone

~370 Devonian Famennian BS016 139 1.75 -4.59 red limestone

~370 Devonian Famennian BS017 140 1.37 -8.81 0.3 red limestone

~370 Devonian Famennian BS018 142 1.98 -6.36 red limestone

~370 Devonian Famennian BS019 144 1.98 -6.48 red limestone

~370 Devonian Famennian BS020 145.5 2.21 -5.92 red limestone

~370 Devonian Famennian BS021 147.5 2.05 -6.08 red limestone

~370 Devonian Famennian BS022 149.5 1.96 -6.64 0.65 red limestone

~370 Devonian Famennian BS023 151.5 1.9 -6.39 grey limestone

~370 Devonian Famennian BS024 156.5 1.95 -6.49 grey limestone

~370 Devonian Famennian BS025 161 1.73 -6.15 grey limestone

~370 Devonian Famennian BS026 163 1.97 -6.9 0.31 grey limestone

~370 Devonian Famennian BS027 163 2.01 -6.82 grey limestone

~370 Devonian Famennian BS028 167.5 2.09 -6.5 grey limestone

~370 Devonian Famennian BS029 169.5 2.49 -6.4 grey limestone

~370 Devonian Famennian BS030 173 2.17 -5.69 grey limestone

~370 Devonian Famennian BS031 175 2.18 -6.25 grey limestone

~370 Devonian Famennian BS032 179 2.2 -5.69 grey limestone

Page 26: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 18 of 47

~370 Devonian Famennian BS033 182 2.59 -5.42 grey limestone

~370 Devonian Famennian BS034 185 2.46 -5.5 grey limestone

~370 Devonian Famennian BS035 188 2.41 -4.98 grey limestone

~580 Ediacaran NM001 64.8 -9.83 -10.09 red dolomite

~580 Ediacaran NM002 63 -9.7 -10.2 red dolomite

~580 Ediacaran NM003 61 -9.9 -9.65 red dolomite

~580 Ediacaran NM004 59.5 -10.1 -8.63 red dolomite

~580 Ediacaran NM005 58.5 -9.73 -9.65 red dolomite

~580 Ediacaran NM006 57 -9.72 -9.06 red dolomite

~580 Ediacaran NM007 56 -10.06 -8.61 red dolomite

~580 Ediacaran NM008 55 -9.52 -7.58 red dolomite

~580 Ediacaran NM009 53.5 -9.76 -9.73 red dolomite

~580 Ediacaran NM010 50 -10.32 -9.56 red dolomite

~580 Ediacaran NM011 49 -10.31 -9.09 red dolomite

~580 Ediacaran NM012 46 -10.54 -9.09 red dolomite

~580 Ediacaran NM013 45 -10.38 -10.35 red dolomite

~580 Ediacaran NM014 43 -10.63 -7.65 red dolomite

~580 Ediacaran NM015 42 -10.53 -9.71 red dolomite

~580 Ediacaran NM016 41 -10.78 -8.3 red dolomite

~580 Ediacaran NM017 40 -10.42 -7.73 red dolomite

~580 Ediacaran NM018 39.5 -10.78 -7.72 red dolomite

~580 Ediacaran NM019 38 -10.88 -8.34 red dolomite

~580 Ediacaran NM020 37 -11.09 -6.68 red dolomite

~580 Ediacaran NM021 36 -12.12 -7.75 red dolomite

~580 Ediacaran NM022 35 -10.67 -7.95 red dolomite

~580 Ediacaran NM023 34 -10.15 -8.35 red dolomite

~580 Ediacaran NM024 33.5 -10.44 -8.01 red dolomite

~580 Ediacaran NM025 33.5 -10.55 -8.12 red dolomite

~580 Ediacaran NM026 32.5 -10.82 -6.07 red dolomite

~580 Ediacaran NM027 31.5 -11.92 -8.11 red dolomite

~580 Ediacaran NM028 30.3 -11.99 -8.09 red dolomite

~580 Ediacaran NM029 29.5 -11.94 -8.26 red dolomite

~580 Ediacaran NM030 21 -10.84 -10.92 light grey dolomite

~580 Ediacaran NM031 17 -10.25 -8.17 light grey dolomite

~580 Ediacaran NM032 16.5 -10.92 -7.51 light grey dolomite

~580 Ediacaran NM033 16 -10.87 -8.82 light grey dolomite

~580 Ediacaran NM034 15.5 -8.94 -7.72 light grey dolomite

~580 Ediacaran NM035 2.4 -6.1 -8.14 oolitic dolomite

~580 Ediacaran NM036 2.1 -5.36 -7.58 oolitic dolomite

~580 Ediacaran NM037 1.8 -5.12 -8.25 oolitic dolomite

~580 Ediacaran NM038 1.5 -5.26 -8.34 oolitic dolomite

~580 Ediacaran NM039 1.2 -5.1 -9.97 oolitic dolomite

Page 27: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 19 of 47

~580 Ediacaran NM040 0.8 -4.47 -8.2 oolitic dolomite

~580 Ediacaran NM041 0.8 -4.49 -8.28 oolitic dolomite

~580 Ediacaran NM042 0.5 -4.63 -9.93 oolitic dolomite

~580 Ediacaran NM043 0.3 -4.96 -10.16 oolitic dolomite

~580 Ediacaran NM044 0 -4.55 -7.85 oolitic dolomite

~580 Ediacaran SJH001 0.5 -0.69 -6.3 light grey dolomite

~580 Ediacaran SJH002 1 0.22 -4.81 light grey dolomite

~580 Ediacaran SJH003 1.3 -0.53 -4.87 light grey dolomite

~580 Ediacaran SJH004 1.7 0.9 -2.64 light grey dolomite

~580 Ediacaran SJH005 1.9 0.17 -2.38 light grey dolomite

~580 Ediacaran SJH006 2 0.34 -2.03 light grey dolomite

~580 Ediacaran SJH007 2.2 0.8 -1.51 light grey dolomite

~580 Ediacaran SJH008 2.5 0.95 -2.43 light grey dolomite

~580 Ediacaran SJH009 2.8 0.92 -2.48 light grey dolomite

~580 Ediacaran SJH010 2.9 0.16 -4.28 light grey dolomite

~580 Ediacaran SJH011 3 0.31 -3.42 light grey dolomite

~580 Ediacaran SJH012 3.2 2.1 -2.68 light grey dolomite

~580 Ediacaran SJH013 3.6 1.84 -2.96 light grey dolomite

~580 Ediacaran SJH014 4 2.43 -1.92 light grey dolomite

~580 Ediacaran SJH015 4.4 2.22 -2.4 light grey dolomite

~580 Ediacaran SJH016 4.8 2.82 -2.17 light grey dolomite

~580 Ediacaran SJH017 5.2 2.36 -3.65 0.58 light grey dolomite

~580 Ediacaran SJH018 5.5 2.83 -2.45 light grey dolomite

~580 Ediacaran SJH019 5.7 2.79 -2.59 light grey dolomite

~580 Ediacaran SJH020 5.9 2.61 -3.43 0.44 light grey dolomite

~580 Ediacaran SJH021 5.9 2.62 -2.96 light grey dolomite

~580 Ediacaran SJH022 6.7 2.63 -4.31 0.27 light grey dolomite

~580 Ediacaran SJH023 11 -7.64 -6.87 red dolomite

~580 Ediacaran SJH024 11.8 -7.38 -7.37 red dolomite

~580 Ediacaran SJH025 13 -7.38 -7.33 red dolomite

~580 Ediacaran SJH026 13.8 -7.48 -7.21 3.99 red dolomite

~580 Ediacaran SJH027 14.6 -7.7 -7.83 3.66 red dolomite

~580 Ediacaran SJH028 15.3 -8.09 -7.75 red dolomite

~580 Ediacaran SJH029 16.2 -8.78 -8.42 2.46 red dolomite

~580 Ediacaran SJH030 17.1 -8.36 -7.83 red dolomite

~580 Ediacaran SJH031 18 -8.01 -7.95 0.22 red dolomite

~580 Ediacaran SJH032 18.8 -9.03 -8.4 red dolomite

~580 Ediacaran SJH033 19.8 -8.65 -8.6 1.98 red dolomite

~580 Ediacaran SJH034 22.4 -8.45 -9.14 grey limestone

~580 Ediacaran SJH035 22.8 -8.32 -8.29 0.49 grey limestone

~580 Ediacaran SJH036 23 -6.69 -5.52 grey limestone

~580 Ediacaran SJH037 23.2 -8.14 -9 grey limestone

Page 28: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 20 of 47

~580 Ediacaran SJH038 23.6 -7.8 -7.13 3.19 grey limestone

~580 Ediacaran SJH039 23.8 -8.23 -9.31 grey limestone

~580 Ediacaran SJH040 24.5 -7.49 -7.42 grey limestone

~580 Ediacaran SJH041 25.1 -6.76 -9.28 grey limestone

~580 Ediacaran SJH042 25.7 -7.9 -8.94 grey limestone

~580 Ediacaran SJH043 26.2 -7.48 -8.16 grey limestone

~580 Ediacaran SJH044 26.8 -7.84 -8.17 grey limestone

~580 Ediacaran SJH045 27.5 -8.02 -8.06 grey limestone

~580 Ediacaran SJH046 28 -7.38 -7.38 grey limestone

~580 Ediacaran SJH047 28.2 -7.78 -8.54 grey limestone

~580 Ediacaran SJH048 28.5 -7.49 -8.49 grey limestone

~580 Ediacaran SJH049 28.8 -7.8 -3.11 grey limestone

~730 Tonian SYB001 4 -6.01 -23.13 10.02 marble

~730 Tonian SYB002 12 -6.5 -22.89 marble

~730 Tonian SYB003 19.5 -6.31 -22.93 marble

~730 Tonian SYB004 21 -5.76 -22.3 5.65 marble

~730 Tonian SYB005 28 -6.81 -21.79 marble

~730 Tonian SYB006 36 -11.06 -19.28 22.45 banded iron formation

~730 Tonian SYB007 43.6 -8.62 -19.73 8.06 marble

~730 Tonian SYB008 52.5 -11.94 -19.22 1.67 marble

~730 Tonian SYB009 55 -8.51 -17.97 9.17 marble

~730 Tonian SYB010 57.5 -6.52 -24.16 marble

~730 Tonian SYB011 60.6 -5.83 -24.96 1.67 marble

~730 Tonian SYB012 63.5 -6.41 -24.52 marble

~730 Tonian SYB013 67.5 -4.78 -16.45 marble

~730 Tonian SYB014 71.5 -4.72 -16.29 marble

~730 Tonian SYB015 77 -3.78 -11.41 4.72 marble

~730 Tonian SYB016 83.5 -1.86 -13.86 marble

~2500 Siderian KJG001 170 -2.98 -19.65 14.4 calcareous schist

~2500 Siderian KJG002 160 -3.06 -19.8 calcareous schist

~2500 Siderian KJG003 150 -3.46 -10.86 calcareous schist

~2500 Siderian KJG004 145 0.13 -5.21 16.23 calcareous schist

~2500 Siderian KJG005 140 -3.03 -19.85 calcareous schist

~2500 Siderian KJG006 130 -5.37 -9.37 banded iron formation

~2500 Siderian KJG007 128 -2.62 -7.88 banded iron formation

~2500 Siderian KJG008 126 -4.43 -8.48 banded iron formation

~2500 Siderian KJG009 122 -5.32 -8.39 23.81 banded iron formation

~2500 Siderian KJG010 120 -3.83 -8.66 banded iron formation

~2500 Siderian KJG011 118 -3.68 -18.48 banded iron formation

~2500 Siderian KJG012 118 -3.68 -18.47 41.98 banded iron formation

~2500 Siderian KJG013 116 -3.94 -8.56 banded iron formation

Page 29: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 21 of 47

~2500 Siderian KJG014 114 -4.06 -17.14 banded iron formation

~2500 Siderian KJG015 108 -3.45 -16.91 banded iron formation

~2500 Siderian KJG016 107 -3.69 -16.93 41.92 banded iron formation

~2500 Siderian KJG017 106 -3.58 -16.67 banded iron formation

~2500 Siderian KJG018 104.5 -1.39 -8.33 banded iron formation

~2500 Siderian KJG019 102.5 -3.39 -9.6 37.02 banded iron formation

~2500 Siderian KJG020 101 -3.58 -17.47 banded iron formation

~2500 Siderian KJG021 100.3 -3.42 -16.88 banded iron formation

~2500 Siderian KJG022 100.3 -3.32 -16.81 banded iron formation

~2500 Siderian KJG023 100.3 -3.67 -17.25 30.02 banded iron formation

~2500 Siderian KJG024 99.8 -2.02 -18.59 calcareous schist

~2500 Siderian KJG025 99.3 -2.21 -16.81 calcareous schist

~2500 Siderian KJG026 99.3 -2.5 -16.93 calcareous schist

~2500 Siderian KJG027 99 -1.98 -16.46 calcareous schist

~2500 Siderian KJG028 98.8 -2.05 -18.52 18.05 calcareous schist

~2500 Siderian KJG029 98.8 -1.97 -18.59 calcareous schist

~2500 Siderian KJG030 98.8 -1.81 -18.32 calcareous schist

~2500 Siderian KJG031 80 -1.9 -19.81 calcareous schist

~2500 Siderian KJG032 77 -2.08 -19.61 calcareous schist

~2500 Siderian KJG033 77 -1.94 -19.72 calcareous schist

~2500 Siderian KJG034 65 -1.27 -19.64 18.77 calcareous schist

~2500 Siderian KJG035 60 -1.46 -19.12 calcareous schist

~2500 Siderian KJG036 50 -2.15 -19.19 calcareous schist

~2500 Siderian KJG037 40 -1.72 -19.76 17.68 calcareous schist

Page 30: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 22 of 47

Supplementary Table 2︱MRBs and BIFss in the Phanerozoic and Precambrian.

Age (Ma) Period/Stage Formation Lithology Thickness Locations

References of

MRB and BIF

Paleolatitude

References of

Paleolatitude

70 Maastrichtian claystone 10 m ODP-Leg 149-Site 899,

North Atlantic

1 N0-30 2

70 Maastrichtian claystone 10 m ODP-Leg 171B-Site

1049C, North Atlantic

1 N0-30 2

70 Maastrichtian limestone 20 m ODP-Leg 207-Site 1258,

South Atlantic

1 S0-30 2

80 Campanian Globally distribution 3 N30-60 2

80 Campanian Globally distribution 3 N0-30 2

80 Campanian Globally distribution 3 S0-30 2

80 Campanian Globally distribution 3 S30-60 2

80 Campanian Chuangde

Formation

shale,

limestone

25 m Gyangze Chuangde section,

Tibet

4 S0-30 2

83 Santonian-Lower

Campanian

Chuangde

Formation

limestone,

shale

30 m Chuangde section, Tibet This study S0-30 2

83.6-66 Campanian-Maastrichti

an

claystone 23 m ODP-Leg 171B-Site 1050,

North Atlantic

1 N0-30 2

83.6-66 Campanian-Maastrichti

an

limestone,

claystone

30-80 m South Atlantic 5 S30-60 2

83.6-66 Campanian-Maastrichti

an

limestone,

claystone

0.7-150 m Pacific 5 S0-30 2

83.6-66 Campanian-Maastrichti

an

claystone 13-115 m Indian Ocean 5 S30-60 2

83.6-70 Campanian-early

Maastrichtian

Chuangde

Formation

limestone,

shale

125 m Tianba section, Tibet 6 S0-30 2

84-72.1 upper

Santonian-Campanian

limestone,

claystone

10-600 m Tethys 5 S0-30 2

84 late Santonian Dicarinella

asymetrica zone

limestone 5 m Çavuşdere section, Turkey 7 N0-30 2

84 late Santonian Dicarinella

asymetrica zone

limestone 7 m Değirmenözü section,

Turkey

7 N0-30 2

84 late Santonian Dicarinella

asymetrica zone

limestone 6 m Samsaçavuş section,

Turkey

7 N0-30 2

84 late Santonian Dicarinella

asymetrica zone

limestone 3 m Mudurnu section, Turkey 7 N0-30 2

84 late Santonian Dicarinella

asymetrica zone

limestone 9 m Göynük-Sünnet section,

Turkey

7 N0-30 2

84 late Santonian Dicarinella

asymetrica zone

limestone 13 m İsmailler section, Turkey 7 N0-30 2

89.8-83.6 Coniacian-Santonian limestone 42 m ODP-Leg 192-Site 1183,

Indian Ocean

1 S30-60 2

Page 31: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 23 of 47

93.5-65 Turonian-early

Paleocene

Scaglia Rossa limestone 260 m Bottaccione section, Italy 8 N0-30 2

93.9-66 Turonian-

Maastrichtian

claystone 30-60 m North Atlantic 5 N0-30 2

93.9-83.6 Turonian-Santonian claystone 45 m ODP-Leg 210-Site 1276,

North Atlantic

1 N0-30 2

93.9-86.3 Turonian-Coniacian claystone 19 m ODP-Leg 171B-Site 1050,

North Atlantic

1 N0-30 2

95-86.3 late Cenomanian-

Coniacian

claystone 10-20 m New Zeland 5 S60-90 2

95-90 late Cenomanian,

middle Turonian

Sohlde Formation limestone 35 m Boreal realm 5 N30-60 2

97-95 Cenomanian Mazak Formation shale Outer Western Carpathians,

Czech

9 N30-60 2

93 Turonian Helvetotruncana

helvetica Zone

mudstone 5 m Buchberg, Switzerland 10 N30-60 2

95 late Cenomanian Wheitenella arche

ocretcea Zone

shale 2 m Çavuşdere section, Turkey 7 N0-30 2

95 late Cenomanian Wheitenella arche

ocretcea Zone

shale 2 m Göynük-Sünnet section,

Turkey

7 N0-30 2

95 late Cenomanian Wheitenella arche

ocretcea Zone

shale 3 m İsmailler section, Turkey 7 N0-30 2

100-88 Cenomanian-Turonian Bota-Botita

Formation

shale 120 m Audia Nappe, Romania 11 N30-60 2

100-88 Cenomanian-Turonian Carnu-Siclau

Formation

shale 60 m Tarcau Nappe, Romania 11 N30-60 2

100-88 Cenomanian-Turonian claystone 19.3 m DSDP-Leg 11-Site 105,

Atlantic Ocean

1 N30-60 2

101-95 late

Albian-Cenomanian

Skalski Marl

Member

Mudstone,

shale

Pieniny Klippen Basin,

Poland

9 N30-60 2

101-99 late Albian Untere Bunte

Schiefer

shale Rhenodanubian Flysch,

Austria

9 N30-60 2

101-99 late Albian East Carpathians, Romania 9 N30-60 2

101-99 late Albian Fatu La Formation limestone Zanskar Himalaya 9 S0-30 2

105 mid-Cretaceous Globally distribution 3 N0-30 2

105 mid-Cretaceous Globally distribution 3 S0-30 2

105 mid-Cretaceous Globally distribution 3 S30-60 2

105 late Albian Biticinella breggie

nsis Zone

shale 8 m Samsaçavuş section,

Turkey

7 N0-30 2

105 late Albian Biticinella breggie

nsis Zone

shale 3 m Mudurnu section, Turkey 7 N0-30 2

108-100 Albian Red Chalk

Formation

chalk Northeastern England 9 N30-60 2

Page 32: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 24 of 47

110 Albian claystone 10 m ODP-Leg 171B-Site

1049C, North Atlantic

1 N0-30 2

110 Albian claystone 65 m ODP-Leg 159-Site 962,

South Atlantic

1 S30-60 2

113-93.9 Albian-Cenomanian claystone 13 m ODP-Leg 171B-Site 1050,

North Atlantic

1 N0-30 2

113 late Aptian-early

Albian

Paraticinella eub

ejaouaensis Zone

mudstone 10 m North Atlantic 12 N0-30 2

115 late Aptian Planomalina

cheniourensis

Zone

limestone 3 m Soǧukçam section, Turkey 7 N0-30 2

115 late Aptian Planomalina

cheniourensis

Zone

limestone 15 m Değirmenözü section,

Turkey

7 N0-30 2

115 late Aptian Planomalina

cheniourensis

Zone

limestone 1 m Mudurnu section, Turkey 7 N0-30 2

115 late Aptian Globigerinelloids

algerianus Zone

limestone 4 m Sünnetgölü section, Turkey 7 N0-30 2

116-112 Aptian Schrambach

Formation

limestone North Calcareous Alps,

Austria

9 N30-60 2

116-112 Aptian Medoveevskaya

Formation

mudstone Caucasus 9 N60-90 2

118-108 Aptian-Albian claystone Atlantic 9 N0-30 2

118-108 Aptian-Albian claystone Atlantic 9 S0-30 2

118-108 Aptian-Albian claystone Atlantic 9 S30-60 2

120 early Aptian Leupoldina cabri

Zone

shale 3 m Samsaçavuş section,

Turkey

7 N0-30 2

120 Aptian claystone 10 m ODP-Leg 171B-Site

1049C, North Atlantic

1 N0-30 2

120 Aptian claystone 5 m ODP-Leg 192-Site 1187,

Indian Ocean

1 S30-60 2

125-100 Aptian and Albian Marnea Fucoidi limestone,

claystone

~30 m Piobbico Core, Italy 9 N0-30 2

125-100.5 Aptian-Albian claystone 78 m ODP-Leg 198-Site 1213,

Pacific Ocean

5 N0-30 2

125-100.5 Aptian-Albian claystone 60 m ODP-Leg 198-Site 1214,

Pacific Ocean

5 S0-30 2

125-100.5 Aptian-Albian claystone 22 m ODP-Leg 192-Site 1184,

Indian Ocean

1 S30-60 2

125-100.5 Aptian-Albian claystone 3.3 m DSDP-Leg 41-Site 367,

Atlantic Ocean

1 N0-30 2

133 late Valanginian-early

Hauterivian

Rosso

Ammonitico

limestone 5 m Trento Plateau, Italy 13 N0-30 2

Page 33: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 25 of 47

Puezzese

150 Tithonian limestone 15 m Subbetic Cordillera, Spain 14 N0-30 2

163.5-145 Oxfordian-Tithonian limestone 9-13 m Betic Cordillera, Spain 15 N0-30 2

165 middle Callovian Dalichai

Formation

limestone 6 m east Alborz, Iran 16 N30-60 2

165 Callovian Tabanos

Formation

limestone,

mudstone

Neuquén Basin, Argentina 17 S30-60 2

166.1-139

.6

Callovian-late

Berriasian

Rosso

Ammonitico

limestone 35 m Monte Inici, Sicily 18 N0-30 2

166.1-145 Callovian-Tithonian Ammonitico

Rosso Veronese

limestone Trento Plateau, Italy 19 N0-30 2

169-145 late Bajocian-Tithonian Rosso

Ammonitico

Veronese

limestone < 30 m Verona, Italy 20 N0-30 2

169-145 late Bajocian-Tithonian Rosso

Ammonitico

Inferiore

limestone 18 m Asiago, Italy 20 N0-30 2

168.3 late Bajocian Dalichai

Formation

limestone 15 m east Alborz, Iran 16 N30-60 2

170.3-145 Bajocian-Tithonian Rosso

Ammonitico

Veronese

limestone 28 m Northeastern Italy 21 N0-30 2

170.3-145 Bajocian-Tithonian Rosso

Ammonitico

Veronese

limestone 12 m Luznic Lake area, Slovenia 22 N30-60 2

~170 Bajocian Rosso

Ammonitico

Veronese

limestone ~3 m Triglav Lake Valley,

Slovenia

22 N30-60 2

~170 Bajocian shale Central Japan 23 N30-60 2

174.1-145

.0

late Toarcian-Tithonian Rosso

Ammonitico

Veronese

limestone 16 m Julian Alps, Slovenia 22 N30-60 2

174.1-145

.0

late Toarcian-Tithonian Rosso

Ammonitico

limestone 16 m Western Sicily, Italy 24 N0-30 2

174.1-157

.3

Toarcian-Oxfordian Rosso

Ammonitico

limestone 4 m MonteKumeta, Sicily 25 N0-30 2

175-163.5 late Toarcian-Callovian Rosso

Ammonitico

limestone ~50 m Ankara, Turkey 26 N30-60 2

175 late Toarcian Polymorphum

Zone

limestone 15 m Iznalloz, Spain 27 N0-30 2

175 late Toarcian Rosso

Ammonitico

limestone ValdMRBia, Italy 28 N0-30 2

175 Toarcian Rosso

Ammonitico

limestone 27 m Ticino, Switzerland 29 N30-60 2

Page 34: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 26 of 47

182.7-170

.3

Toarcian-Aalenian Rosso

Ammonitico

limestone 35 m Ionian Basin, Greece 30, 31 N0-30 2

182.7-170

.3

Toarcian-Aalenian Rosso

Ammonitico

limestone 30 m Ionian Basin, Greece 32 N0-30 2

~189 Pliensbachian Lower Senkoy

Formation

limestone,

mudstone

~18 m Senkoy, Turkey 33 N30-60 2

~189 Pliensbachian Lower Senkoy

Formation

limestone ~22 m Gokdere, Turkey 33 N30-60 2

189 early Pliensbachian Ammonitico

Rosso

limestone Anatolia, Turkey 34 N30-60 2

195 Sinemurian Ammonitico

Rosso

limestone ~16 m Montecatini, Italy 35 N0-30 2

195 Sinemurian Ammonitico

Rosso

limestone,

mudstone

~26 m La Spezia, Italy 35 N0-30 2

199-185 late Hettangian-early

Pliensbachian

Ammonitico

Rosso

limestone Transdanubian Central

Range, Hungary

36 N30-60 2

199-185 Hettangian-

Pliensbachian

Pisznice

Limestone

Formation

limestone ~20 m Transdanubian Central

Range, Hungary

37 N30-60 2

199-185 Hettangian-

Pliensbachian

Lower Senkoy

Formation

limestone ~20 m Canayurdu, Turkey 33 N30-60 2

199-185 Hettangian-

Pliensbachian

Lower Senkoy

Formation

limestone ~29 m Tersun, Turkey 33 N30-60 2

199-185 Hettangian-

Pliensbachian

Lower Senkoy

Formation

limestone ~60 m Kirikli, Turkey 33 N30-60 2

199-185 Hettangian-

Pliensbachian

Lower Senkoy

Formation

limestone ~50 m Duragiza, Turkey 33 N30-60 2

199 Hettangian Ammonitico

Rosso

limestone Transdanubian Central

Range, Hungary

38 N30-60 2

~248 Olenekian Nanlinghu

Formation

limestone,

mudstone

20 m Chaohu, South China This study N0-30 2

~248 Spathian Jialingjiang

Formation

limestone 16 m Wulong, South China This study S0-30 2

~248 Spathian Luolou Formation limestone 15 m Lalaichao, South China This study S0-30 2

~248 Spathian Luolou Formation limestone 15 m Guandao, South China This study S0-30 2

~248 Spathian Luolou Formation limestone 15 m Mingtang, South China This study S0-30 2

~248 Spathian Luolou Formation limestone 2 m Bianyang, South China This study S0-30 2

~248 Spathian Luolou Formation limestone 2 m Qingyan, South China This study S0-30 2

~248 Spathian Jialingjiang

Formation

limestone 2 m Zunyi, South China This study S0-30 2

~248 Spathian Kangshare

Formation

limestone,

shale

10 m Tulong, Tibet This study S30-60 2

~248 Spathian Kangshare limestone, 9 m Yalai, Tibet This study S30-60 2

Page 35: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 27 of 47

Formation shale

~248 Spathian Neospathodus

homeri Zone

claystone 2 m Aichi Prefecture, Japan 39 N0-30 2

~248 Spathian Moenkopi

Formation

limestone,

shale

< 1 m California, USA This study N0-30 2

~370 Famenian Lower Three

Forks Formation

limestone 33 m Montana and Wyoming,

USA

40 S0-30 2

~370 Famenian Upper Shetianqiao

Formation

limestone 4.3 m Baqi, South China 41 N0-30 2

~370 Famenian Wuzhishan

Formation

limestone 66 m Baisha, South China This study N0-30 2

~370 Famenian Wuzhishan

Formation

limestone 12 m Lengshuihe, South China This study N0-30 2

~370 Famenian Nullara Limestone limestone 5.5 m Canning basin, Western

Australia

42 S0-30 2

~370 Famenian Marginifer Zone,

Trachytera Zone

limestone 1.5 m Enkenberg, Germany 43 N0-30 2

~370 Frasnian-Famenian limestone 2 m Vogelsberg, Germany 44 N0-30 2

~370 Famenian Cheiloceras beds limestone 2 m Casey Falls, Western

Australia

45 S0-30 2

~370 Famenian Cheiloceras beds limestone 2 m McWhae Ridge, Western

Australia

45 S0-30 2

~370 Famenian Sulcifer Formation limestone 20-120 m Central Kazakhstan 46 N30-60 2

372-370 Frasnian-Famenian Coumiac

carbonate

limestone 10 m Coumiac, France 47 S0-30 2

494 Jiangshangian Wilberns

Limestone

limestone 4 m White Creek, Texas, USA 48 S0-30 2

494 Jiangshangian Wilberns

Limestone

limestone 33 m Lion Mountain, Texas,

USA

48 S0-30 2

~506 Stage 5 Olenek Formation limestone North-Central Siberia 49 S0-30 2

~509 Stage 5 Mantou Formation mudstone,

shale

Shandong, North China 50 N30-60 2

~509 Stage 5 Koruk Formation limestone,

mudstone

17 m Southeast Turkey 51 S30-60 2

~509 Stage 5 upper Cal Tepe

Formation

limestone 47 m Southwestern Turkey 52 S30-60 2

~509 Stage 5 upper Lancara

Formation

limestone Cantabrian, Spain 53 S30-60 2

~509 Stage 5 Lancara Formation limestone Spain 54 S30-60 2

~509 Stage 5 upper Cal Tepe

Formation

limestone Southwestern Turkey 54 S30-60 2

~510 Stage 4 middle Montejinni

Limestone

limestone,

mudstone

Northern Territory,

Australia

55 S0-30 2

Page 36: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 28 of 47

~516 Stage 3 Botomian

Wilkawillina

Limestone

limestone Flinders Ranges, South

Australia

56 S0-30 2

~520 Stage 3 Salaany Gol

Formation

limestone 15 m Zavkhan Basin, Mongolia 57 S0-30 2

~520 Stage 3 Little Hollow

Formation

limestone Nova Scotia, Canada 58 N0-30 2

520 Stage 3 early Atdabanian limestone 12 m Ulakhan-Kyyry-Taas,

Siberian

59 S0-30 2

524-521 Stage 2 Tommotian limestone 22 m Zhurinskii Mys, Siberian 59 S0-30 2

524-521 Stage 2 Tommotian limestone 75 m Dvortsy, Siberian 59 S0-30 2

524 Stage 2 early Tommotian limestone Sukharikha River, Siberian 59 S0-30 2

~526 Stage 2 Member 4 of

Chapel Island

Formation

limestone,

shale

Dantzic Cove,

Newfoundland, Canada

60, 61 S0-30 2

~526 Stage 2 Member 4 of

Chapel Island

Formation

mudstone ~40 m Dantzic Cove,

Newfoundland, Canada

62 S0-30 2

~526 Stage 2 Member 4 of

Chapel Island

Formation

mudstone ~50 m Fortune North,

Newfoundland, Canada

62 S0-30 2

~526 Stage 2 Member 4 of

Chapel Island

Formation

mudstone ~50 m Fortune North,

Newfoundland, Canada

63 S0-30 2

571 ± 8 middle Ediacaran Tikhfist Formation limestone >1 m Anti-Atlas, Morocco 64 S30-60 65

580-550 middle Ediacaran Johnnie Formation limestone < 1 m northern Spring Mountains,

USA

66 S30-60 65

580-550 middle Ediacaran Johnnie Formation limestone < 1 m Resting Spring Range,

USA

66 S30-60 65

580-550 middle Ediacaran Johnnie Formation limestone 15 m southern Nopah Range,

USA

66, 67 S30-60 65

580-550 middle Ediacaran Johnnie Formation limestone 10 m Johnson Canyon, USA 66 S30-60 65

580-550 middle Ediacaran Johnnie Formation limestone 4 m Old Dad Mountains, USA 66 S30-60 65

580-550 middle Ediacaran Johnnie Formation sandy

limestone

40 m northern Mesquite

Mountains, USA

This Study S30-60 65

580-550 middle Ediacaran Krol B (or Jarashi

Formation)

shale,

dolostone

≤40 m Lesser Himalaya, India 68 S0-30 65

600-560 middle Ediacaran Chenchinskaya

Formation

limestone 30-50 m Zhuya, Siberian 69 S0-30 65

600-560 middle Ediacaran Alyanchskaya

Formation

limestone 40 m Bol'shoy Patom, Siberian 69 S0-30 65

620-550 middle Ediacaran Lubudi Formation limestone 3-10 m Lubudi and Lukafu, Congo 70 S0-30 65

632-551 middle Ediacaran Doushantuo dolomite, 8 m Yichang, South China This Study N30-60 65

Page 37: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 29 of 47

Formation limestone

790-660 Tonian Braemar Ironstone ironstone South Australia 71 N0-30 65

767 ± 15 Tonian Erzin BIF ironstone 9 m Erzin basin, Tuva 72 N30-60 65

>717 ± 3 Tonian Pocatello

Formation

ironstone 25 m Idaho, North America 73 S0-30 65

730 Tonian Fulu Formation ironstone 3.4 m Sanjiang, South China This study N30-60 65

730 Tonian Fulu Formation ironstone 25 m Zhongjiajiang, South China 74 N30-60 65

730 Tonian Fulu Formation ironstone 50 m Lanyang, South China 74 N30-60 65

730 Tonian Fulu Formation ironstone 30 m Jinzhai, South China 74 N30-60 65

730 Tonian Fulu Formation ironstone 10 m Changanbao, South China 74 N30-60 65

730 Tonian Fulu Formation ironstone 35 m Longjia, South China 74 N30-60 65

730 Tonian Fulu Formation ironstone 15 m Lijiapo, South China 74 N30-60 65

730 Tonian Fulu Formation ironstone 50 m Yihuang, South China This study N30-60 65

730 Tonian Rapitian Group ironstone 150 m Snake River, Canada 75 N0-30 65

730 Tonian Rapitian Group ironstone 30 m Tatonduk River, Canada 75 N0-30 65

730 Tonian Rapitian Group ironstone 25 m Backbone Range, Canada 75 N0-30 65

730 Tonian Rapitian Group ironstone 20 m Thundercloud Range,

Canada

75 N0-30 65

730 Tonian Santa Cruz

Formation

ironstone Urucum, Brazil 76 S30-60 65

730 Tonian Banda Alta

Formation

ironstone ~300 m Urucum, Brazil 77 S30-60 65

731 ± 4 Tonian Wadi Kareim BIF ironstone 6 m Eastern Desert, Egypt 78 S0-30 65

734 ± 7 Tonian Wadi El Dabbah

BIF

ironstone 50 m Eastern Desert, Egypt 78 S0-30 65

~750 Tonian Chuos Formation ironstone 50 m Owambo Basin, Namibia 79 S0-30 65

1738.5 ±

0.5

Statherian Cleopatra Rhyolite ironstone 15 m central Arizona, USA 80 N30-60 81

1874 ± 9 Orosirian Vulcan Iron

Formation,

Menominee Group

ironstone Great Lake, North America 82, 83 N30-60 81

1877.8 ±

1.3

Orosirian Sokoman Iron

Formation

ironstone Labrador Trough, North

America

84 N30-60 81

1878 ± 2 Orosirian Gunflint Iron

Formation,

Animikie Group

ironstone 120 m Lake Superior, North

America

85 N30-60 81

1880 Orosirian Sokoman Iron

Formation

ironstone 150 m Labrador Trough, North

America

86 N30-60 81

1891± 8 Orosirian Frere Formation ironstone 600 m Earahedy Basin, Western

Australia

87, 88 N30-60 81

1910 ± 10 Orosirian Fence River

Formation,

Menominee Group

ironstone Lake Superior, North

America

85 N30-60 81

Page 38: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 30 of 47

1914 ±

120

Orosirian Morar Formation,

Gwalior Group

ironstone 600 m Gwalior basin, India 89 S0-30 90

2460 ± 5 Siderian Griquatown BIF,

Kuruman BIF,

Ghaap Group

ironstone 250 m Transvaal basin, South

Afirca

91, 92, 93, 94 S0-30 81

~2460 Siderian Cauê Formation ironstone 350 m Minas Gerais, Brazil 95, 96 S0-30 81

2480 ± 6 Siderian Penge BIF,

Chuniespoort

Group

ironstone Transvaal basin, South

Afirca

93 S0-30 81

2481 ± 4 Siderian Brockman Iron

Formation

ironstone 600 m Western Australia 97, 98, 99, 100 S30-60 81

2533 ± 11 Neoarchean Anshan Group ironstone 140 m Gongchangling, North

China

101 S60-90 102

2534 ± 8 Neoarchean Luanxian Group ironstone 161 m Miyun, North China 103, 104, 105 S60-90 102

2545 ± 7 Neoarchean Xinghe Group ironstone Guyang, North China 105 S60-90 102

2549 ± 7 Neoarchean Proto BIF, Nauga

Formation

ironstone 30 m Prieska, South Afirca 106 S60-90 102

~2550 Neoarchean Baizhiyan

Formation

ironstone 38 m Lvliang, North China This study S60-90 102

~2550 Neoarchean Yuanjiacun

Formation

ironstone 500 m Wutai, North China This study S60-90 102

~2550 Neoarchean Rio Das Velhas

Supergroup

ironstone 200 m Minas Gerais, Brazil 96 S0-30 81

2554 ± 10 Neoarchean Kolar Group ironstone Kolar, India 107, 108 S60-90 109

2555 ± 7 Neoarchean Jianping Group ironstone Jianping, North China 110 S60-90 102

2629 ± 4 Neoarchean Wittenoom

Formation

ironstone 150 m Western Australia 97, 98, 99, 100,

111, 112

S30-60? 113

2677 ± 2 Neoarchean Chitradurga Group ironstone Chitradurga, India 108, 114 S30-60?

2691 ± 9 Neoarchean Koolyanobbing

Greenstone Belt

ironstone 200 m Western Australia 115, 116, 117,

118

S30-60? 113

2718 ± 6 Neoarchean Bababudan Group ironstone Karnataka, India 114, 119 S30-60?

2731 ± 2 Neoarchean North Spirit Lake

greenstone belt

ironstone northwestern Ontario,

Canada

120 S0-30?

2747 ± 1 Neoarchean Carajás BIF ironstone 250 m Carajás, Brazil 121 S0-30?

2847 ± 4 Mesoarchean Itilliarsuup

Qaqqaa BIF

ironstone 400 m Disko Bay, West

Greenland

122 S30-60?

2914 ± 8 Mesoarchean West Rand Group ironstone minor Witwatersrand basin, South

Afirca

123 S60-90? 113

2990 ± 7 Mesoarchean Mosquito Creek

Formation

ironstone Western Australia 124 S30-60? 113

3014 ± 13 Mesoarchean Western Gneiss

Terrain

ironstone Western Australia 125 S30-60? 113

3112 ± 6 Mesoarchean Cleaverville ironstone Western Australia 124, 126 S30-60? 113

Page 39: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 31 of 47

Formation

3235 ± 3 Paleoarchean Nimmingarra

Iron Formation

ironstone 50 m Western Australia 100, 127 S30-60? 113

3243 ± 4 Paleoarchean Jaspilite BIF ironstone 40 m Barberton, South Afirca 100, 128 S60-90? 113

3298 ± 7 Paleoarchean Sardur Group ironstone Karnataka, India 114, 129 S30-60?

3506.8 ±

2.3

Paleoarchean Iron Ore Group ironstone 120 m Singhbhum, India 130 S30-60?

3689 ± 5 Eoarchean Isua Supracrustal

Belt

ironstone 5 m Nuuk, West Greenland 131, 132 S30-60?

3802 ± 12 Eoarchean Nuvvuagittuq

Supracrustal Belt

ironstone 35 m Quebec, Canada 133 S30-60?

3850 Eoarchean Itsaq Gneiss

Complex

ironstone 20 m Akilia, West Greenland 134 S30-60?

Page 40: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 32 of 47

Supplementary Table 3︱Carbon isotope data used in Figure 2c.

Age (Ma) Era Period Stage Strata unite Section Region References

84 Mesozoic Cretaceous Campanian Chuangde Formation Chuangde Tibet This study

94 Mesozoic Cretaceous Turonian Red beds Buchberg Austria 10

94 Mesozoic Cretaceous Turonian Scaglia Rossa Formation Gubbio Italy 167

94 Mesozoic Cretaceous Turonian Scaglia Rossa Formation Gubbio Italy 168

94 Mesozoic Cretaceous Turonian Red beds Buchberg Austria 169

94 Mesozoic Cretaceous Turonian Red beds Eglish Chalk UK 170

113 Mesozoic Cretaceous Aptian Scisti a Fucoidi Formation Gorge a Cerbara Italy 171

113 Mesozoic Cretaceous Aptian Red beds Yenicesihlar Turkey 172

152 Mesozoic Jurassic Tithonian Rosso Ammonitico Monte Inici Sicily 18

157 Mesozoic Jurassic

Oxfordian-Kim

meridgian Rosso Ammonitico Monte Inici Sicily 18

168 Mesozoic Jurassic

Bajocian-Batho

nian Rosso Ammonitico Puerto Escano Spain 173

199 Mesozoic Jurassic

Hettangian-Sine

murian Ammonitico Rooso Montecatini Italy 35

199 Mesozoic Jurassic

Hettangian-Sine

murian

Moltrasio Formation and

Sedrina limestone Pozzo Glaciale Italy 174

248 Mesozoic Triassic Spathian Luolou Formation Mingtang South China This study

370 Paleozoic Devonian Famennian Wuzhishan Formation Baisha South China This study

509 Paleozoic Cambrian Stage 5 La Tanque Formation Ferrals-les-Montagnes South France 175

520 Paleozoic Canbrian Tommotian Pestrotsvet Formation Dvortsy Siberian 176

580 Neoproterozoic Ediacarian Doushantuo Formation Shijiahe South China This study

580 Neoproterozoic Ediacarian Johnnie Formation

North Mesquite

Mountains USA This study

730 Neoproterozoic Tonian Fulu Formation Sangyuan South China This study

730 Neoproterozoic Tonian Santa Cruz Formation Urucum District Brazil 76

1900 Paleoproterozoic Orosirian Gunflint Iron Formation Thunder Bay Canada 177

2460 Paleoproterozoic Siderian Kuruman Iron Formation Adelaide Pomfret South Africa 178

2500 Neoarchean Baizhiyan Formation Kangjiagou North China This study

2500 Neoarchean Brockman Iron Formation Hamersley Range

Western

Australia 111

2600 Neoarchean Mount Sylvia Iron

Formation Hamersley Range

Western

Australia 179

3000 Mesoarchean Swaziland Sequence

Barberton Mountain

Land South Africa 180

3800 Eoarchean Isua Supracrustal Belt

Southwest

Greenland 181

Page 41: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 33 of 47

Supplementary References

1. Zeng X. The temporal and spatial evolution of CORBs. Chengdu University of Technology, Chengdu,

2006.

2. Scotese CR. Atlas of earth history, Volume 1, Paleogeography. PALEOMAP Project: Arlington, 2001.

3. Wang CS, Hu XM, Huang Y, Scott RW, Wagreich M. Overview of Cretaceous Oceanic Red Beds

(CORBs): a window on global oceanic and climate change. In: Hu XM, Wang CS, Scott RW, Wagreich

M, Jansa L (eds). Cretaceous Oceanic Red Beds: Stratigraphy, Composition, Origins and

Paleoceanographic and Paleoclimatic Significance: SEPM Special Publication, vol. 91, 2009, pp

13-33.

4. Wan X, Lamolda MA, Si J, Li G. Foraminiferal stratigraphy of Late Cretaceous red beds in southern

Tibet. Cretaceous Research 2005, 26(1): 43-48.

5. Chen X. Ages, lithofacies and depositional environments of Cretaceous Oceanic Red Beds: review and

a case study in Gyangze Basin, southern Tibet. China University of Geosciences, Beijing, 2009.

6. Li G, Jiang G, Wan X. The age of the Chuangde Formation in Kangmar, southern Tibet of China:

Implications for the origin of Cretaceous oceanic red beds (CORBs) in the northern Tethyan Himalaya.

Sedimentary Geology 2011, 235(1–2): 111-121.

7. Yilmaz İÖ. Cretaceous pelagic red beds and black shales (Aptian-Santonian), NW Turkey: Global

oceanic anoxic and oxic events. Turkish Journal of Earth Sciences 2008, 17(2): 263-296.

8. Hu X, Jansa L, Wang C, Sarti M, Bak K, Wagreich M, et al. Upper Cretaceous oceanic red beds

(CORBs) in the Tethys: occurrences, lithofacies, age, and environments. Cretaceous Research 2005,

26(1): 3-20.

9. Hu X, Jansa L, Sarti M. Mid-Cretaceous oceanic red beds in the Umbria–Marche Basin, central Italy:

constraints on paleoceanography and paleoclimate. Palaeogeography, Palaeoclimatology,

Palaeoecology 2006, 233(3–4): 163-186.

10. Neuhuber S, Wagreich M, Wendler I, Spötl C. Turonian Oceanic Red Beds in the Eastern Alps:

concepts for palaeoceanographic changes in the Mediterranean Tethys. Palaeogeography,

Palaeoclimatology, Palaeoecology 2007, 251(2): 222-238.

11. Melinte-Dobrinescu MC, Roban R-D. Cretaceous anoxic–oxic changes in the Moldavids (Carpathians,

Romania). Sedimentary Geology 2011, 235(1–2): 79-90.

12. Li X, Hu X, Cai Y, Han Z. Quantitative analysis of iron oxide concentrations within Aptian–Albian

cyclic oceanic red beds in ODP Hole 1049C, North Atlantic. Sedimentary Geology 2011, 235(1–2):

Page 42: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 34 of 47

91-99.

13. Lukeneder A. The Biancone and Rosso Ammonitico facies of the northern Trento Plateau (Dolomites,

Southern Alps, Italy). Annelan des Naturhistorischen Museum Wien A 2011, 113: 9-33.

14. Mamet B, Préat A. Jurassic microfacies, Rosso Ammonitico limestone, Subbetic Cordillera, Spain.

Revista Española de Micropaleontología 2006, 38: 219.

15. Coimbra R, Immenhauser A, Olóriz F. Matrix micrite δ13C and δ18O reveals synsedimentary marine

lithification in Upper Jurassic Ammonitico Rosso limestones (Betic Cordillera, SE Spain). Sedimentary

Geology 2009, 219(1): 332-348.

16. Seyed-Emami K, Schairer G, Raoufian A, Shafeizad M. Middle and Late Jurassic ammonites from the

Dalichai Formation west of Shahrud (East Alborz, North Iran). Neues Jahrbuch für Geologie und

Paläontologie-Abhandlungen 2013, 267(1): 43-66.

17. Zavala C. Tracking sea bed topography in the Jurassic. The Lotena Group in the Sierra de la Vaca

Muerta (Neuquén Basin, Argentina). Geologica Acta 2005, 3(2): 107-118.

18. Cecca F, Savary B, Bartolini A, Remane J, Cordey F. The Middle Jurassic-Lower Cretaceous Rosso

Ammonitico succession of Monte Inici (Trapanese Domain, western Sicily); sedimentology,

biostratigraphy and isotope stratigraphy. Bulletin de la Societe Geologique de France 2001, 172(5):

647-659.

19. Mamet B, Préat A. On the bacterial and fungal origin of the Ammonitico Rosso red pigmentation

(Jurassic, Verone area, northern Italy). Revue de Micropaleontologie 2003, 46(1): 35-46.

20. Préat A, Morano S, Loreau J-P, Durlet C, Mamet B. Petrography and biosedimentology of the Rosso

Ammonitico Veronese (middle-upper Jurassic, north-eastern Italy). Facies 2006, 52(2): 265-278.

21. Martire L. Stratigraphy, facies and synsedimentary tectonics in the Jurassic Rosso Ammonitico

Veronese (Altopiano di Asiago, NE Italy). Facies 1996, 35(1): 209-236.

22. Šmuc A, Rožič B. The Jurassic Prehodavci Formation of the Julian Alps: easternmost outcrops of

Rosso Ammonitico in the Southern Alps (NW Slovenia). Swiss Journal of Geosciences 2010, 103(2):

241-255.

23. Minoura K, Nakaya SHU, Takemura A. Origin of manganese carbonates in Jurassic red shale, central

Japan. Sedimentology 1991, 38(1): 137-152.

24. Preat A, Mamet B, Di Stefano P, Martire L, Kolo K. Microbially-induced Fe and Mn oxides in

condensed pelagic sediments (Middle-Upper Jurassic, Western Sicily). Sedimentary Geology 2011,

237(3): 179-188.

Page 43: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 35 of 47

25. Di Stefano P, Mindszenty A. Fe–Mn-encrusted “Kamenitza" and associated features in the Jurassic of

Monte Kumeta (Sicily): subaerial and/or submarine dissolution? Sedimentary Geology 2000, 132(1–2):

37-68.

26. Varol B, Gökten E. The facies properties and depositional environments of nodular limestones and red

marly limestones (Ammonitico Rosso) in the Ankara Jurassic sequence, central Turkey. Terra Nova

1994, 6(1): 64-71.

27. Galbrun B, Baudin F, Fourcade E, Rivas P. Magnetostratigraphy of the Toarcian ammonitico rosso

limestone at Iznalloz, Spain. Geophysical Research Letters 1990, 17(13): 2441-2444.

28. Sabatino N, Neri R, Bellanca A, Jenkyns HC, Baudin F, Parisi G, et al. Carbon‐isotope records of the

Early Jurassic (Toarcian) oceanic anoxic event from the Valdorbia (Umbria-Marche Apennines) and

Monte Mangart (Julian Alps) sections: Palaeoceanographic and stratigraphic implications.

Sedimentology 2009, 56(5): 1307-1328.

29. Horner F, Heller F. Lower Jurassic magnetostratigraphy at the Breggia Gorge (Ticino, Switzerland) and

Alpe Turati (Como, Italy). Geophysical Journal International 1983, 73(3): 705-718.

30. Karakitsios V. Evolution and Petroleum Potential of the Ionian Basin (Northwest Greece).

International Conference & Exhibition, AAPG; 2003; 2003. p. 21-24.

31. Karakitsios V. The influence of preexisting structure and halokinesis on organic matter preservation and

thrust system evolution in the Ionian Basin, Northwest Greece. AAPG bulletin 1995, 79(7): 960-980.

32. Rigakis N, Karakitsios V. The source rock horizons of the Ionian Basin (NW Greece). Marine and

Petroleum Geology 1998, 15(7): 593-617.

33. Kandemir R, Yılmaz C. Lithostratigraphy, facies, and deposition environment of the lower Jurassic

Ammonitico Rosso type sediments (ARTS) in the Gümüşhane area, NE Turkey: implications for the

opening of the northern branch of the Neo-Tethys Ocean. Journal of Asian Earth Sciences 2009, 34(4):

586-598.

34. Cope J. Ammonite faunas of the Ammonitico Rosso of the Pontide Mountains, northern Anatolia.

Geologica Romana 1991, 27: 303-325.

35. Van de Schootbrugge B, Payne J, Tomasovych A, Pross J, Fiebig J, Benbrahim M, et al. Carbon cycle

perturbation and stabilization in the wake of the Triassic‐Jurassic boundary mass‐extinction event.

Geochemistry, Geophysics, Geosystems 2008, 9(4): 1-16.

36. Gorog Á. Early Jurassic planktonic foraminifera from Hungary. Micropaleontology 1994, 40(3):

255-260.

37. Haas J, Hámor G. Geological garden in the neighborhood of Budapest, Hungary. Episodes 2001, 24(4):

Page 44: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 36 of 47

257-261.

38. Blau J, Haas Á. Lower Liassic involutinids (foraminifera) from the Transdanubian Central Range,

Hungary. Paläontologische Zeitschrift 1991, 65(1-2): 7-23.

39. Takahashi S, Oba M, Kaiho K, Yamakita S, Sakata S. Panthalassic oceanic anoxia at the end of the

Early Triassic: A cause of delay in the recovery of life after the end-Permian mass extinction.

Palaeogeography Palaeoclimatology Palaeoecology 2009, 274(3-4): 185-195.

40. Sandberg CA. Nomenclature and correlation of lithologic subdivisions of the Jefferson and Three Forks

Formations of southern Montana and northern Wyoming. Geological Survery Bulletin 1965, 1194:

1-18.

41. Wang K, Bai S. Faunal changes and events near the Frasnian-Famennian boundary of South China.

Canadian Society of Petroleum Geologists 1988, 14: 71-78.

42. Hurley N, Van der Voo R. Paleomagnetism of Upper Devonian reefal limestones, Canning basin,

western Australia. Geological Society of America Bulletin 1987, 98(2): 138-146.

43. Korn D, Ziegler W. The ammonoid and conodont zonation at Enkenberg (Famennian, Late Devonian;

Rhenish Mountains). Senckenbergiana lethaea 2002, 82(2): 453-462.

44. Joachimski MM, Buggisch W. Anoxic events in the late Frasnian—Causes of the Frasnian-Famennian

faunal crisis? Geology 1993, 21(8): 675-678.

45. Becker RT, House MR, Kirchgasser WT, Playford PE. Sedimentary and faunal changes across the

Frasnian/Famennian boundary in the Canning Basin of Western Australia. Historical Biology 1991,

5(2-4): 183-196.

46. Veimarn A, Vorontzova T, Martynova M. Stratigraphy, paleogeography and iron-manganese ores of the

Famennian of central Kazakhstan. Proceedings of the 2nd International Symposium on the Devonian

System 1988, 14: 681-689.

47. Preat A, Mamet B, Devleeschouwer X. Sédimentologie du stratotype de la limite Frasnien-Famennien

(Coumiac, Montagne Noire, France). Bulletin de la Societe Geologique de France 1998, 169(3):

331-342.

48. Wilson JL. The trilobite fauna of the Elvinia Zone in the basal Wilberns Limestone of Texas. Journal of

Paleontology 1949: 25-44.

49. Lazarenko NP. Middle and Upper Cambrian Strata of North-Central Siberia. Regional Arctic Geology

of the USSR 1973: 291-295.

50. Chough SK, Lee HS, Woo J, Chen J, Choi DK, Lee S-b, et al. Cambrian stratigraphy of the North

Page 45: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 37 of 47

China Platform: revisiting principal sections in Shandong Province, China. Geosciences Journal 2010,

14(3): 235-268.

51. Dean WT. Cambrian Stratigraphy and Trilobites of the Samur Da¤ Area, South of Hakkâri,

Southeastern Turkey. Turkish Journal of Earth Sciences (Turkish J Earth Sci) 2006, 15: 225-257.

52. Dean WT. Trilobites from the Çal Tepe Formation (Cambrian), near Seydişehir, Central Taurides,

southwestern Turkey. Turkish Journal of Earth Sciences 2005, 14(1): 1-71.

53. Sdzuy K, Liñán E, Gozalo R. The Leonian Stage (early Middle Cambrian): a unit for Cambrian

correlation in the Mediterranean subprovince. Geological Magazine 1999, 136(01): 39-48.

54. Fernández-Remolar DC. Latest Neoproterozoic to Middle Cambrian body fossil record in Spain

(exclusive of trilobites and archaeocyaths) and their stratigraphic significance. GFF 2001, 123(2):

73-80.

55. Luck G. The palaeomagnetism of some Cambrian and Ordovician sediments from the Northern

Territory, Australia. Geophysical Journal International 1970, 20(1): 31-39.

56. James NP, Gravestock DI. Lower Cambrian shelf and shelf margin buildups, Flinders Ranges, South

Australia1. Sedimentology 1990, 37(3): 455-480.

57. Kruse PD, Gandin A, Debrenne F, Wood R. Early Cambrian bioconstructions in the Zavkhan Basin of

western Mongolia. Geological Magazine 1996, 133(04): 429-444.

58. Landing E, Nowlan GS, Fletcher TP. A microfauna associated with Early Cambrian trilobites of the

Callavia Zone, norther Antigonish Highlands, Nova Scotia. Canadian Journal of Earth Sciences 1980,

17(3): 400-418.

59. Rozanov AY, Khomentovsky V, Shabanov YY, Karlova G, Varlamov A, Luchinina V, et al. To the

problem of stage subdivision of the Lower Cambrian. Stratigraphy and geological correlation 2008,

16(1): 1-19.

60. Landing E. Lower Cambrian of eastern Massachusetts: stratigraphy and small shelly fossils. Journal of

Paleontology 1988: 661-695.

61. McIlroy D, Szaniawski H. A lower Cambrian protoconodont apparatus from the Placentian of

southeastern Newfoundland. Lethaia 2000, 33(2): 95-102.

62. Myrow PM. Mixed siliciclastic-carbonate deposition in an Early Cambrian oxygen-stratified basin,

Chapel Island Formation, southeastern Newfoundland. Journal of Sedimentary Research 1992, 62(3).

63. Strauss H, Bengtson S, Myrow PM, Vidal G. Stable isotope geochemistry and palynology of the late

Precambrian to Early Cambrian sequence in Newfoundland. Canadian Journal of Earth Sciences 1992,

Page 46: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 38 of 47

29(8): 1662-1673.

64. Álvaro JJ, Ezzouhairi H, Ayad NA, Charif A, Solá R, Ribeiro ML. Alkaline lake systems with

stromatolitic shorelines in the Ediacaran volcanosedimentary Ouarzazate Supergroup, Anti-Atlas,

Morocco. Precambrian research 2010, 179(1–4): 22-36.

65. Li Z-X, Bogdanova S, Collins AS, Davidson A, De Waele B, Ernst R, et al. Assembly, configuration,

and break-up history of Rodinia: a synthesis. Precambrian research 2008, 160(1): 179-210.

66. Bergmann KD, Zentmyer RA, Fischer WW. The stratigraphic expression of a large negative carbon

isotope excursion from the Ediacaran Johnnie Formation, Death Valley. Precambrian research 2011,

188(1–4): 45-56.

67. Pruss SB, Corsetti FA, Fischer WW. Seafloor-precipitated carbonate fans in the Neoproterozoic

Rainstorm Member, Johnnie Formation, Death Valley Region, USA. Sedimentary Geology 2008,

207(1–4): 34-40.

68. Jiang G, Christie-Blick N, Kaufman AJ, Banerjee DM, Rai V. Sequence Stratigraphy of the

Neoproterozoic Infra Krol Formation and Krol Group, Lesser Himalaya, India. Journal of Sedimentary

Research 2002, 72(4): 524-542.

69. Melezhik VA, Pokrovsky BG, Fallick AE, Kuznetsov AB, Bujakaite MI. Constraints on 87Sr/86Sr of

Late Ediacaran seawater: insight from Siberian high-Sr limestones. Journal of the Geological Society

2009, 166(1): 183-191.

70. Batumike MJ, Cailteux JLH, Kampunzu AB. Lithostratigraphy, basin development, base metal deposits,

and regional correlations of the Neoproterozoic Nguba and Kundelungu rock successions, central

African Copperbelt. Gondwana Research 2007, 11(3): 432-447.

71. Preiss WV, Gostin VA, McKirdy DM, Ashley PM, Williams GE, Schmidt PW. Chapter 69 The glacial

succession of Sturtian age in South Australia: the Yudnamutana Subgroup. Geological Society, London,

Memoirs 2011, 36(1): 701-712.

72. Ilyin A. Neoproterozoic banded iron formations. Lithology and Mineral Resources 2009, 44(1): 78-86.

73. Fanning CM, Link PK. U-Pb SHRIMP ages of Neoproterozoic (Sturtian) glaciogenic Pocatello

Formation, southeastern Idaho. Geology 2004, 32(10): 881-884.

74. Lin S, Xiao J, Lu D, Liu A, Mou S, Cheng R, et al. Re-division about Fulu Formation and Fulu

interglacial epoch in Hunan-Guizhou-Guangxi border area in South China. Geological Bulletin of

China 2010, 29(2-3): 195-204.

75. Klein C, Beukes NJ. Sedimentology and geochemistry of the glaciogenic late Proterozoic Rapitan

iron-formation in Canada. Economic Geology 1993, 88(3): 542-565.

Page 47: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 39 of 47

76. Klein C, Ladeira EA. Geochemistry and mineralogy of Neoproterozoic banded iron-formations and

some selected, siliceous manganese formations from the Urucum District, Mato Grosso do Sul, Brazil.

Economic Geology 2004, 99(6): 1233-1244.

77. Freitas BT, Warren LV, Boggiani PC, De Almeida RP, Piacentini T. Tectono-sedimentary evolution of

the Neoproterozoic BIF-bearing Jacadigo Group, SW-Brazil. Sedimentary Geology 2011, 238(1–2):

48-70.

78. Ali KA, Stern RJ, Manton WI, Kimura J-I, Khamees HA. Geochemistry, Nd isotopes and U–Pb

SHRIMP zircon dating of Neoproterozoic volcanic rocks from the Central Eastern Desert of Egypt:

New insights into the ∼750 Ma crust-forming event. Precambrian research 2009, 171(1–4): 1-22.

79. Le Heron DP, Busfield ME, Le Ber E, Kamona AF. Neoproterozoic ironstones in northern Namibia:

Biogenic precipitation and Cryogenian glaciation. Palaeogeography, Palaeoclimatology,

Palaeoecology 2013, 369: 48-57.

80. Slack JF, Grenne T, Bekker A, Rouxel OJ, Lindberg PA. Suboxic deep seawater in the late

Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal

sulfide deposits, central Arizona, USA. Earth and Planetary Science Letters 2007, 255(1–2): 243-256.

81. Pesonen L, Elming S-Å, Mertanen S, Pisarevsky S, D'Agrella-Filho M, Meert J, et al. Palaeomagnetic

configuration of continents during the Proterozoic. Tectonophysics 2003, 375(1): 289-324.

82. Schneider D, Bickford M, Cannon W, Schulz K, Hamilton M. Age of volcanic rocks and

syndepositional iron formations, Marquette Range Supergroup: implications for the tectonic setting of

Paleoproterozoic iron formations of the Lake Superior region. Canadian Journal of Earth Sciences

2002, 39(6): 999-1012.

83. Bekker A, Karhu JA, Kaufman AJ. Carbon isotope record for the onset of the Lomagundi carbon

isotope excursion in the Great Lakes area, North America. Precambrian research 2006, 148(1–2):

145-180.

84. Findlay JM, Parrish RR, Birkett TC, Watanabe DH. U-Pb ages from the Nimish Formation and

Montagnais glomeroporphyritic gabbro of the central New Québec Orogen, Canada. Canadian Journal

of Earth Sciences 1995, 32(8): 1208-1220.

85. Ojakangas RW, Morey GB, Southwick DL. Paleoproterozoic basin development and sedimentation in

the Lake Superior region, North America. Sedimentary Geology 2001, 141–142: 319-341.

86. Klein C. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic

setting, mineralogy, metamorphism, geochemistry, and origins. American Mineralogist 2005, 90(10):

1473-1499.

Page 48: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 40 of 47

87. Pirajno F, Hocking RM, Reddy SM, Jones AJ. A review of the geology and geodynamic evolution of

the Palaeoproterozoic Earaheedy Basin, Western Australia. Earth-Science Reviews 2009, 94(1): 39-77.

88. Rasmussen B, Fletcher IR, Bekker A, Muhling JR, Gregory CJ, Thorne AM. Deposition of

1.88-billion-year-old iron formations as a consequence of rapid crustal growth. Nature 2012, 484(7395):

498-501.

89. Absar N, Raza M, Roy M, Naqvi SM, Roy AK. Composition and weathering conditions of

Paleoproterozoic upper crust of Bundelkhand craton, Central India: Records from geochemistry of

clastic sediments of 1.9 Ga Gwalior Group. Precambrian research 2009, 168(3–4): 313-329.

90. Pradhan VR, Meert JG, Pandit MK, Kamenov G, Gregory LC, Malone SJ. India's changing place in

global Proterozoic reconstructions: A review of geochronologic constraints and paleomagnetic poles

from the Dharwar, Bundelkhand and Marwar cratons. Journal of Geodynamics 2010, 50(3–4):

224-242.

91. Horstmann UE, Hälbich IW. Chemical composition of banded iron-formations of the Griqualand West

Sequence, Northern Cape Province, South Africa, in comparison with other Precambrian iron

formations. Precambrian research 1995, 72(1–2): 109-145.

92. Pickard AL. SHRIMP U–Pb zircon ages for the Palaeoproterozoic Kuruman Iron Formation, Northern

Cape Province, South Africa: evidence for simultaneous BIF deposition on Kaapvaal and Pilbara

Cratons. Precambrian research 2003, 125(3–4): 275-315.

93. Bekker A, Holland H, Wang P-L, Rumble D, Stein H, Hannah J, et al. Dating the rise of atmospheric

oxygen. Nature 2004, 427(6970): 117-120.

94. Heimann A, Johnson CM, Beard BL, Valley JW, Roden EE, Spicuzza MJ, et al. Fe, C, and O isotope

compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron

reduction in ~2.5 Ga marine environments. Earth and Planetary Science Letters 2010, 294(1–2): 8-18.

95. Klein C, Ladeira E. Geochemistry and petrology of some Proterozoic banded iron-formations of the

Quadrilátero Ferrífero, Minas Gerais, Brazil. Economic Geology 2000, 95(2): 405-427.

96. Spier CA, de Oliveira SMB, Sial AN, Rios FJ. Geochemistry and genesis of the banded iron formations

of the Cauê Formation, Quadrilátero Ferrífero, Minas Gerais, Brazil. Precambrian research 2007,

152(3–4): 170-206.

97. Trendall A, Compston W, Nelson D, De Laeter J, Bennett V. SHRIMP zircon ages constraining the

depositional chronology of the Hamersley Group, Western Australia. Australian Journal of Earth

Sciences 2004, 51(5): 621-644.

98. Trendall AF. The significance of iron-formation in the Precambrian stratigraphic record. Precambrian

Sedimentary Environments: A Modern Approach to Ancient Depositional Systems, Special Publication

Page 49: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 41 of 47

2002, 33: 33-66.

99. Pickard AL, Barley ME, Krapež B. Deep-marine depositional setting of banded iron formation:

sedimentological evidence from interbedded clastic sedimentary rocks in the early Palaeoproterozoic

Dales Gorge Member of Western Australia. Sedimentary Geology 2004, 170(1–2): 37-62.

100. Glikson A. Asteroid impact ejecta units overlain by iron-rich sediments in 3.5–2.4 Ga terrains, Pilbara

and Kaapvaal cratons: Accidental or cause–effect relationships? Earth and Planetary Science Letters

2006, 246(3–4): 149-160.

101. Dai Y, Zhang L, Wang C, Liu L, Cui M, Zhu M, et al. Genetic type, formation age and tectonic setting

of the Waitoushan banded iron formation, Benxi, Liaoning Province. Acta Petrologica Sinica 2012,

28(11): 3574-3594.

102. Zhao G, Sun M, Wilde SA. Correlations between the eastern block of the North China Craton and the

South Indian block of the Indian shield: an Archaean to Palaeoproterozoic link. Precambrian research

2003, 122(1): 201-233.

103. Nutman AP, Wan Y, Du L, Friend CRL, Dong C, Xie H, et al. Multistage late Neoarchaean crustal

evolution of the North China Craton, eastern Hebei. Precambrian research 2011, 189(1–2): 43-65.

104. Li H-m, Wang D-h, Li L-x, Chen J, Yang X-q, Liu M-j. Metallogeny of iron deposits and resource

potential of major iron minerogenetic units in China. Geology in China 2012, 3: 559-580.

105. Wan Y, Dong C, Xie H, Wang S, Song M, Xu Z, et al. Formation ages of early Precambrian BIFs in the

North China Craton: SHRIMP zircon U–Pb dating. Acta Geol Sin 2012, 86(12): 1447-1478.

106. Kazmierczak J, Altermann W, Kremer B, Kempe S, Eriksson PG. Mass occurrence of benthic coccoid

cyanobacteria and their role in the production of Neoarchean carbonates of South Africa. Precambrian

research 2009, 173(1–4): 79-92.

107. Dey S. Evolution of Archaean crust in the Dharwar craton: The Nd isotope record. Precambrian

research 2013, 227: 227-246.

108. Jayananda M, Peucat JJ, Chardon D, Rao BK, Fanning CM, Corfu F. Neoarchean greenstone volcanism

and continental growth, Dharwar craton, southern India: Constraints from SIMS U–Pb zircon

geochronology and Nd isotopes. Precambrian research 2013, 227: 55-76.

109. Halls H, Kumar A, Srinivasan R, Hamilton M. Paleomagnetism and U–Pb geochronology of easterly

trending dykes in the Dharwar craton, India: feldspar clouding, radiating dyke swarms and the position

of India at 2.37 Ga. Precambrian research 2007, 155(1): 47-68.

110. Liu S, Santosh M, Wang W, Bai X, Yang P. Zircon U–Pb chronology of the Jianping Complex:

implications for the Precambrian crustal evolution history of the northern margin of North China

Page 50: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 42 of 47

Craton. Gondwana Research 2011, 20(1): 48-63.

111. Becker RH, Clayton RN. Carbon isotopic evidence for the origin of a banded iron-formation in Western

Australia. Geochimica et Cosmochimica Acta 1972, 36(5): 577-595.

112. Morris RC. Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton,

Western Australia. Precambrian research 1993, 60(1–4): 243-286.

113. Wingate M. A palaeomagnetic test of the Kaapvaal-Pilbara (Vaalbara) connection at 2.78 Ga. South

African Journal of Geology 1998, 101(4): 257-274.

114. Manikyamba C, Balaram V, Naqvi SM. Geochemical signatures of polygenetic origin of a banded iron

formation (BIF) of the Archaean Sandur greenstone belt (schist belt) Karnataka nucleus, India.

Precambrian research 1993, 61(1–2): 137-164.

115. Dalstra H, Bloem E, Ridley J, Groves D. Diapirism synchronous with regional deformation and gold

mineralisation, a new concept for granitoid emplacement in the Southern Cross Province, Western

Australia. Geologie en Mijnbouw 1998, 76(4): 321-338.

116. Qiu Y, McNaughton N, Groves D, Dalstra H. Ages of internal granitoids in the Southern Cross region,

Yilgarn Craton, Western Australia, and their crustal evolution and tectonic implications*. Australian

Journal of Earth Sciences 1999, 46(6): 971-981.

117. Mueller AG, McNaughton NJ. U-Pb Ages Constraining Batholith Emplacement, Contact

Metamorphism, and the Formation of Gold and W-Mo Skarns in the Southern Cross Area, Yilgarn

Craton, Western Australia. Economic Geology 2000, 95(6): 1231-1257.

118. Angerer T, Kerrich R, Hagemann SG. Geochemistry of a komatiitic, boninitic, and tholeiitic basalt

association in the Mesoarchean Koolyanobbing greenstone belt, Southern Cross Domain, Yilgarn

craton: Implications for mantle sources and geodynamic setting of banded iron formation. Precambrian

research 2013, 224: 110-128.

119. Trendall A, De Laeter J, Nelson D, Mukhopadhyay D. A precise zircon U-Pb age for the base of the

BIF of the Mulaingiri Formation,(Bababudan Group, Dharwar Supergroup) of the Karnataka Craton.

Geological Society of India Journal 1997, 50: 161-170.

120. Corfu F, Wood J. U-Pb zircon ages in supracrustal and plutonic rocks; North Spirit Lake area,

northwestern Ontario. Canadian Journal of Earth Sciences 1986, 23(7): 967-977.

121. Ribeiro da Luz B, Crowley JK. Morphological and chemical evidence of stromatolitic deposits in the

2.75 Ga Carajás banded iron formation, Brazil. Earth and Planetary Science Letters 2012, 355–356:

60-72.

122. Haugaard R, Frei R, Stendal H, Konhauser K. Petrology and geochemistry of the 2.9 Ga Itilliarsuk

Page 51: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 43 of 47

banded iron formation and associated supracrustal rocks, West Greenland: Source characteristics and

depositional environment. Precambrian research 2013, 229: 150-176.

123. Armstrong RA, Compston W, Retief EA, Williams IS, Welke HJ. Zircon ion microprobe studies

bearing on the age and evolution of the Witwatersrand triad. Precambrian research 1991, 53(3–4):

243-266.

124. Krapez B. Sequence stratigraphy of the Archaean supracrustal belts of the Pilbara Block, Western

Australia. Precambrian research 1993, 60(1–4): 1-45.

125. Pidgeon RT, Wilde SA. The distribution of 3.0 Ga and 2.7 Ga volcanic episodes in the Yilgarn Craton

of Western Australia. Precambrian research 1990, 48(3): 309-325.

126. Horwitz R, Pidgeon R. 3.1 Ga tuff from the Sholl Belt in the West Pilbara: further evidence for d

diachronous volcanism in the Pilbara Craton of Western Australia. Precambrian research 1993, 60(1):

175-183.

127. Van Kranendonk MJ. Geology of the North Shaw 1: 100 000 Sheets: Sheets 2755. Geological Survey of

Western Australia: Perth, 2000.

128. Bontognali TRR, Fischer WW, Föllmi KB. Siliciclastic associated banded iron formation from the 3.2

Ga Moodies Group, Barberton Greenstone Belt, South Africa. Precambrian research 2013, 226: 116-124.

129. Peucat J, Bouhallier H, Fanning C, Jayananda M. Age of the Holenarsipur greenstone belt,

relationships with the surrounding gneisses (Karnataka, South India). The Journal of Geology 1995,

103(6): 701-710.

130. Mukhopadhyay J, Beukes N, Armstrong R, Zimmermann U, Ghosh G, Medda R. Dating the oldest

greenstone in India: a 3.51-Ga precise U-Pb SHRIMP zircon age for dacitic lava of the southern Iron

Ore Group, Singhbhum craton. The Journal of Geology 2008, 116(5): 449-461.

131. Rosing MT. 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West

Greenland. Science 1999, 283(5402): 674-676.

132. Nutman AP, Friend CRL, Paxton S. Detrital zircon sedimentary provenance ages for the Eoarchaean

Isua supracrustal belt southern West Greenland: Juxtaposition of an imbricated ca. 3700 Ma juvenile

arc against an older complex with 3920–3760 Ma components. Precambrian research 2009, 172(3–4):

212-233.

133. Mloszewska AM, Pecoits E, Cates NL, Mojzsis SJ, O'Neil J, Robbins LJ, et al. The composition of

Earth's oldest iron formations: The Nuvvuagittuq Supracrustal Belt (Québec, Canada). Earth and

Planetary Science Letters 2012, 317–318: 331-342.

134. Nutman AP, McGregor VR, Shiraishi K, Friend CRL, Bennett VC, Kinny PD. ≥3850 Ma BIF and

Page 52: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 44 of 47

mafic inclusions in the early Archaean Itsaq Gneiss Complex around Akilia, southern West Greenland?

The difficulties of precise dating of zircon-free protoliths in migmatites. Precambrian research 2002,

117(3–4): 185-224.

135. An Z, Jiang G, Tong J, Tian L, Ye Q, Song H, et al. Stratigraphic position of the Ediacaran Miaohe

biota and its constrains on the age of the upper Doushantuo δ13C anomaly in the Yangtze Gorges area,

South China. Precambrian research 2015, 271: 243-253.

136. Kaufman AJ, Jiang G, Christie-Blick N, Banerjee DM, Rai V. Stable isotope record of the terminal

Neoproterozoic Krol platform in the Lesser Himalayas of northern India. Precambrian Research 2006,

147(1): 156-185.

137. Kaufman AJ, Corsetti FA, Varni MA. The effect of rising atmospheric oxygen on carbon and sulfur

isotope anomalies in the Neoproterozoic Johnnie Formation, Death Valley, USA. Chemical Geology

2007, 237(1): 47-63.

138. Macdonald FA, Prave AR, Petterson R, Smith EF, Pruss SB, Oates K, et al. The Laurentian record of

Neoproterozoic glaciation, tectonism, and eukaryotic evolution in Death Valley, California. Geological

Society of America Bulletin 2013, 125(7-8): 1203-1223.

139. James N, Wray J, Ginsburg R. Calcification of encrusting aragonitic algae (Peyssonneliaceae):

implications for the origin of Late Paleozoic reefs and cements. Journal of Sedimentary Research 1988,

58(2): 291-303.

140. Trower EJ, Grotzinger JP. Sedimentology, diagenesis, and stratigraphic occurrence of giant ooids in the

Ediacaran Rainstorm Member, Johnnie Formation, Death Valley region, California. Precambrian

Research 2010, 180(1): 113-124.

141. Jiang G, Kaufman AJ, Christie-Blick N, Zhang S, Wu H. Carbon isotope variability across the

Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean δ13C

gradient. Earth and Planetary Science Letters 2007, 261(1): 303-320.

142. Zhu M, Lu M, Zhang J, Zhao F, Li G, Aihua Y, et al. Carbon isotope chemostratigraphy and

sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei, South China.

Precambrian Research 2013, 225: 7-28.

143. Jiang G, Christie‐Blick N, Kaufman AJ, Banerjee DM, Rai V. Carbonate platform growth and

cyclicity at a terminal Proterozoic passive margin, Infra Krol Formation and Krol Group, Lesser

Himalaya, India. Sedimentology 2003, 50(5): 921-952.

144. Ziegler A, McKerrow W. Silurian marine red beds. American Journal of Science 1975, 275(1): 31-56.

145. Kiipli E, Kallaste T, Kiipli T. Hematite and goethite in Telychian marine red beds of the East Baltic.

GFF 2000, 122(3): 281-286.

Page 53: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 45 of 47

146. Liu J, Wang Y, Zhang X, Rong J. Early Telychian (Silurian) marine siliciclastic red beds in the Eastern

Yangtze Platform, South China: distribution pattern and controlling factors. Canadian Journal of Earth

Sciences 2016, 53(7): 712-718.

147. Hasegawa T, Crampton JS, Schiøler P, Field B, Fukushi K, Kakizaki Y. Carbon isotope stratigraphy and

depositional oxia through Cenomanian/Turonian boundary sequences (Upper Cretaceous) in New

Zealand. Cretaceous research 2013, 40: 61-80.

148. Bristow TF, Kennedy MJ. Carbon isotope excursions and the oxidant budget of the Ediacaran

atmosphere and ocean. Geology 2008, 36(11): 863-866.

149. Rothman DH, Hayes JM, Summons RE. Dynamics of the Neoproterozoic carbon cycle. Proceedings of

the National Academy of Sciences 2003, 100(14): 8124-8129.

150. Guerroué E, Allen PA, Cozzi A, Etienne JL, Fanning M. 50 Myr recovery from the largest negative

δ13C excursion in the Ediacaran ocean. Terra Nova 2006, 18(2): 147-153.

151. Halverson GP, Hoffman PF, Schrag DP, Maloof AC, Rice AHN. Toward a Neoproterozoic composite

carbon-isotope record. GSA Bulletin 2005, 117: 1181-1207.

152. Fike D, Grotzinger J, Pratt L, Summons R. Oxidation of the Ediacaran ocean. Nature 2006, 444(7120):

744-747.

153. Grotzinger JP, Fike DA, Fischer WW. Enigmatic origin of the largest-known carbon isotope excursion

in Earth's history. Nature Geoscience 2011, 4(5): 285-292.

154. Husson JM, Maloof AC, Schoene B, Chen CY, Higgins JA. Stratigraphic expression of Earth's deepest

δ13C excursion in the Wonoka Formation of South Australia. American Journal of Science 2015, 315(1):

1-45.

155. Knoll A, Hayes J, Kaufman A, Swett K, Lambert I. Secular variation in carbon isotope ratios from

Upper Proterozoic successions of Svalbard and East Greenland. Nature 1986, 321: 832-838.

156. Grotzinger JP, Knoll AH. Anomalous carbonate precipitates; is the Precambrian the key to the Permian?

Palaios 1995, 10(6): 578-596.

157. McFadden KA, Huang J, Chu X, Jiang G, Kaufman AJ, Zhou C, et al. Pulsed oxidation and biological

evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences

2008, 105(9): 3197-3202.

158. Johnston DT, Macdonald FA, Gill B, Hoffman P, Schrag DP. Uncovering the Neoproterozoic carbon

cycle. Nature 2012, 483(7389): 320-323.

Page 54: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 46 of 47

159. Jiang G, Wang X, Shi X, Xiao S, Zhang S, Dong J. The origin of decoupled carbonate and organic

carbon isotope signatures in the early Cambrian (ca. 542–520 Ma) Yangtze platform. Earth and

Planetary Science Letters 2012, 317: 96-110.

160. Jiang G, Wang X, Shi X, Zhang S, Xiao S, Dong J. Organic carbon isotope constraints on the dissolved

organic carbon (DOC) reservoir at the Cryogenian–Ediacaran transition. Earth and Planetary Science

Letters 2010, 299(1): 159-168.

161. Wang X, Jiang G, Shi X, Xiao S. Paired carbonate and organic carbon isotope variations of the

Ediacaran Doushantuo Formation from an upper slope section at Siduping, South China. Precambrian

Research 2016, 273: 53-66.

162. Swart P, Kennedy M. Does the global stratigraphic reproducibility of δ13C in Neoproterozoic

carbonates require a marine origin? A Pliocene–Pleistocene comparison. Geology 2012, 40(1): 87-90.

163. Knauth LP, Kennedy MJ. The late Precambrian greening of the Earth. Nature 2009, 460(7256):

728-732.

164. Derry LA. A burial diagenesis origin for the Ediacaran Shuram–Wonoka carbon isotope anomaly. Earth

and Planetary Science Letters 2010, 294(1): 152-162.

165. Schrag DP, Higgins JA, Macdonald FA, Johnston DT. Authigenic carbonate and the history of the

global carbon cycle. Science 2013, 339(6119): 540-543.

166. Cui H, Kaufman AJ, Xiao S, Zhou C, Liu X-M. Was the Ediacaran Shuram Excursion a globally

synchronized early diagenetic event? Insights from methane-derived authigenic carbonates in the

uppermost Doushantuo Formation, South China. Chemical Geology 2017, 450: 59-80.

167. Tsikos H, Karakitsios V, Van Breugel Y, Walsworth-Bell B, Bombardiere L, Petrizzo MR, et al.

Organic-carbon deposition in the Cretaceous of the Ionian Basin, NW Greece: the Paquier Event (OAE

1b) revisited. Geological Magazine 2004, 141(04): 401-416.

168. Stoll HM, Schrag DP. Sr/Ca variations in Cretaceous carbonates; relation to productivity and sea level

changes. Palaeogeography, Palaeoclimatology, Palaeoecology 2001, 168: 311-336.

169. Wendler I, Wendler J, Neuhuber S, Wagreich M. Productivity fluctuations and orbital cyclicity during

onset of Early to Middle Turonian marine red-bed formation (Austrian Eastern Alps). SEPM Special

Publication 2009, 91: 209-221.

170. Jarvis I, Gale AS, Jenkyns HC, Pearce MA. Secular variation in Late Cretaceous carbon isotopes: a

new δ13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma). Geological

Magazine 2006, 143(05): 561-608.

171. Stein M, Föllmi KB, Westermann S, Godet A, Adatte T, Matera V, et al. Progressive

Page 55: DOI: 10.1038/s41467-017-00502-x OPEN The onset of ...ganqing.faculty.unlv.edu/Publications/Song-ETAL-2017-Nature-Communications.pdfARTICLE The onset of widespread marine red beds and

Song et al., Supplementary Information, Page 47 of 47

palaeoenvironmental change during the late Barremian–early Aptian as prelude to Oceanic Anoxic

Event 1a: Evidence from the Gorgo a Cerbara section (Umbria-Marche basin, central Italy).

Palaeogeography, Palaeoclimatology, Palaeoecology 2011, 302(3): 396-406.

172. Hu X, Scott RW, Cai Y, Wang C, Melinte-Dobrinescu MC. Cretaceous oceanic red beds (CORBs):

Different time scales and models of origin. Earth-Science Reviews 2012, 115(4): 217-248.

173. O'Dogherty L, Sandoval J, Bartolini A, Bruchez S, Bill M, Guex J. Carbon isotope stratigraphy and

ammonite faunal turnover for the Middle Jurassic in the Southern Iberian palaeomargin.

Palaeogeography, Palaeoclimatology, Palaeoecology 2006, 239(3): 311-333.

174. Bachan A, Schootbrugge B, Fiebig J, McRoberts CA, Ciarapica G, Payne JL. Carbon cycle dynamics

following the end‐Triassic mass extinction: Constraints from paired δ13Ccarb and δ13Corg records.

Geochemistry, Geophysics, Geosystems 2012, 13(9): 1-24.

175. Wotte T, Strauss H, Fugmann A, Garbe-Schönberg D. Paired δ34S data from carbonate-associated

sulfate and chromium-reducible sulfur across the traditional Lower–Middle Cambrian boundary of

W-Gondwana. Geochimica et Cosmochimica Acta 2012, 85: 228-253.

176. Brasier M, Khomentovsky V, Corfield R. Stable isotopic calibration of the earliest skeletal fossil

assemblages in eastern Siberia (Precambrian‐Cambrian boundary). Terra Nova 1993, 5(3): 225-232.

177. Winter BL, Knauth LP. Stable isotope geochemistry of cherts and carbonates from the 2.0 Ga Gunflint

Iron Formation: implications for the depositional setting, and the effects of diagenesis and

metamorphism. Precambrian Research 1992, 59(3): 283-313.

178. Beukes NJ, Klein C, Kaufman AJ, Hayes J. Carbonate petrography, kerogen distribution, and carbon

and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation

deposition, Transvaal Supergroup, South Africa. Economic geology and the bulletin of the Society of

Economic Geologists 1990, 85(4): 663-690.

179. Baur M, Hayes J, Studley S, Walter M. Millimeter-scale variations of stable isotope abundances in

carbonates from banded iron-formations in the Hamersley Group of Western Australia. Economic

Geology 1985, 80(2): 270-282.

180. Perry E, Tan F. Significance of oxygen and carbon isotope variations in early Precambrian cherts and

carbonate rocks of southern Africa. Geological Society of America Bulletin 1972, 83(3): 647-664.

181. Craddock PR, Dauphas N. Iron and carbon isotope evidence for microbial iron respiration throughout

the Archean. Earth and Planetary Science Letters 2011, 303(1): 121-132.