thermodynamic properties of nonideal strongly

40
Path integral Monte Carlo simulations of equation of state of strongly coupled quark-gluon plasma 1 Joint Institute for High Temperatures, RAS, Moscow, Russia 2 Institut für Theoretische Physic und Astrophysik, Kiel, Germany 3 Gesellschaft fur Schwerionenforschung, Darmstadt, Germany 4 Russian Research Center ``Kurchatov Institute'', Moscow, Russia 5 Bogoliubov Lab. of Theoretical Physics, Joint Institue for Nuclear Reseach, Dubna, Moscow region Russia V.S. Filinov 1,2 ,M. Bonitz 2 , V.E. Fortov 1 Y.B. Ivanov 3,4 , V.V. Skokov 4,5 , P.R. Levashov 1 Joint Institute for High Temperatures, Moscow, RAS

Upload: khangminh22

Post on 10-May-2023

4 views

Category:

Documents


0 download

TRANSCRIPT

Path integral Monte Carlo simulations of equation of state

of strongly coupled quark-gluon plasma

1Joint Institute for High Temperatures, RAS, Moscow, Russia2Institut für Theoretische Physic und Astrophysik, Kiel, Germany3Gesellschaft fur Schwerionenforschung, Darmstadt, Germany

4Russian Research Center ``Kurchatov Institute'', Moscow, Russia5Bogoliubov Lab. of Theoretical Physics, Joint Institue for Nuclear Reseach,

Dubna, Moscow region Russia

V.S. Filinov1,2,M. Bonitz2 , V.E. Fortov1

Y.B. Ivanov3,4, V.V. Skokov4,5, P.R. Levashov1

Joint Institute for High Temperatures, Moscow, RAS

OUTLINE

•States of matter at high energy concentration

•Formation of quark-gluon plasma

•Conclusions from Lattice QCD simulations

•Simulation of quantum many-particle systems

• Path integral Monte Carlo method

•Applications to the quasiparticle models of the

quark-gluon plasma

Matter transformation at high energy concentration

34 /10 cmg

314 /510.2 cmg

Atom

Atomic nucleus

Nucleon

Plasma

Nuclear Matter

Quark plasma

3/1 cmg

Color

deconfinement

Phase transition

Phase transition

Relativistic collisions heavy ions, elliptic flows

Initial space anisotropy Final space anisotropy

INTRODUCTION

f

f

f mDFg

L )(Tr 1 _

2

2

Main Problems: starting from Lagrangian

(1)obtain hadron spectrum,

(2)calculate various matrix elements,

(3) describe phase transitions, and phase

diagram

(4) explain confinement of color

http://www.claymath.org/millennium/

INTRODUCTIONMethods

Imaginary time t→it

Space-time discretization

Thus we get from functional integral thepartition function for statistical theory in fourdimensions

]}[exp{ SiDZ ]}[exp{ SDZ

x

xdxD )( ]}[exp{ SdZ x

x

http://www.ihed.ras.ru/fortov/polikarpov.ppt

INTRODUCTIONThree limits

0

0

qm

L

aLattice spacing

Lattice size

Discrete quark mass

L

a

For typical lattice L=48, L4=5,308,416

We calculate integrals of dimension 32L4 =169,869,312

http://www.ihed.ras.ru/fortov/polikarpov.ppt

Conclusions from

Lattice simulations

Computer simulations a) reproduce well known hadron

properties b) predict new phenomena c) help to create new

theoretical ideas.

Low dimensional objects (regions or quasiparticles - dressed quarks and

gluons) are responsible for most interesting nonperturbative effects: chiralsymmetry breaking, topological susceptibility and confinement.

The era of traditional quantum field theory (Feynman graphs, perturbation

theory) is over, nonperturbative field theory is close in spirit to solid state

theory; we have to study dislocations, fractals, phase transitions etc.

http://www.ihed.ras.ru/fortov/polikarpov.ppt

Interaction and quantum effects in dense 3D and 2D plasma mediawith different mass ratio of charges.

Nonideality boundary:

KinCoul EU

atomes, molecules, clusters

Inside: Strong Coulomb interaction,

Many-body effects

Degeneracy boundary

re

Below: overlapping electron

Wave functions,

Quantum and spin effects

Coulomb interaction: reerU baab /)(

Schocks

Pressure dissociation and

ionization, Mott effect

CTCP

QTCP

COCP

QOCP

Classical one-component

plasma - COCP

Quantum one-component

plasma - QOCP

Classical two-component

plasma - CTCP

Quantum two-component

plasma - QTCP

13 45 3~10 , ~10T K n m

HYDROGEN, PIMC-SIMULATION, n = 1021 cm-3

Ne = Ni = 56, n = 20

T = 10 kK

= 2.7

n3 = 0.41

T = 50 kK

= 1.6710-3 g/cm3

= 0.54

n3 = 3.7 10-2

- proton

- electron

- electron

HYDROGEN, PIMC-SIMULATION, n = 1025 cm-3, T=10 000 Ko

Crystallization of protonsBloch oscillation of electron density

Theretical model of quark – gluon plasmais based on lattice simulations allowing consideration of

quark-gluon plasma as system of dressed quark, antiquark

and gluon quasiparticles (Phys. Rev. C, 74, 044909, (2006))

• All quasiparticles are heavy (m > T) and move non-relastivistically

•All quasiparticle masses are the same.

•We do not distiguish between quark flavors.

•Interparticle interaction is domonated by a color Coulomb potential.

•The color operators are substitured by their average values

– classical color vectors.

•Numbers of quarks, antiquarks and gluons are equal.

The model input requires :•The temperature dependence of the quasiparticle mass.

•The temperature dependence of the quasiparticle density.

•The temperature dependence of the coupling constant.

All the input quantiries should be deduced

from lattice QCD calculations.

Quark-gluon plasma in canonical ensemble

•NEW:Mixture of quasiparticles: Nq quarks, Nq’ antiquarks, and Ng gluons,

• Q are color coordinates of each quasiparticle - vector on unit 3D sphere

!!!,,,,, ''' gqqgqqgqq NNNNNNQVNNNZ

V

gqq QQ rdrdNNNQ ;,,,,, '

•Our modification of [ Phys.Rev. C, 74, 044909, (2006)] :

Temperature decomposition of N-particle density matrix:

HHH ˆexpˆexpˆexp

n+1

1 nkT1

||4

|

2

ˆˆ22

rr

QQgC

m

pH

ab

PATH INTEGRALS

MONTE-CARLO METHOD

gqq

P

gqq

PPPP V

nn

N

g

N

q

N

q

dQdQdrdrQr,,

11

33

'

3

'

'1

1;,,

PSQPrP;QrQrQr nnnn ˆ;ˆ,ˆ,;,;, 11)()1(1

spinmatrix

parity ofpermutations

q’b

Qb ,rb

antiquark

gqqgqq m ,',,', 2 qa

quark, antiquark, gluon

Qa,ra,

q

r

gqqm ,',2

r(1) = r + (1)

r(2)

r(n)

r(n+1) r’

Qc,rc

gluon

gc

),;,()(),;,( )1()1()()()1()()1()1()()( llllllllll QrQrQQQrQr

Density matrix

q q g

gqq

N

s

N

s

N

s

sssNNNrQQr

0 0' 0''

'''333

'

',

1,,

n

l

lgqq

l

n

QrUrQU

0

)(

1

,,

gqq

g

g

q

q

q

q

N

ps

n

ab

l

pp

N

ps

n

ab

l

pp

n

l

N

ps

n

ab

l

pp

N

s

N

N

s

N

N

s

N

sss

per

rQUCCC

rQ

1''

1,

1'

1,

1 1

1,

'''

'''

~~~~~det~

det

,exp222

,'

'

Color Kelbgpotentials

1

2,1 1 |

exp2

nn n a aab a b as

s

Q Qr r y

Color Coulomb and Color Kelbg potential

abababx rabab 22

ab

ba

r

ee

abab r

abab

x

abab

baabab

ab xerfxex

QQgCx ab

11

4

|,

22

ab

baee

0abr

Richardson, Gelman, Shuryak, Zahed, Harmann, Donko, Leval, Kalman

Objects Q are color coordinates

of quarks and gluons

There is no divergence at small

interparticle distances and

it has a true asymptotics (T, xab )

Our suggestion: Color Kelbg potential

Ha -> kBTc , Tc =175 Mev,

Tc < T, ma~5kBTc/c2 ,

Lo ~ hc/kBTc , rs= <r>/Lo<0.1,

Lo~7 10-15 m, xab ~1

EQUATION OF STATE

17

Line 1 – Lattice calculations.

Two models – lines 2, 3: g2(T)=6.28, Mall (T) [Liao,Shuryak]:

Line 2 – PIMC, density variation n/T3=0.244 [Shuryak]

Line 3 – PIMC, fixed density n=3 fm-3,

Upper rhomb relates to density n=0.37 fm-3

Pair distribution functions

Color correlation functions

!!!,,,,, ''' gqqgqqgqq NNNNNNQVNNNZ

V

gqq QQ rdrdNNNQ ;,,,,, '

||4

|

2

ˆˆ22

rr

QQgC

m

pH

ab

),;,,()()(

),,(

1),()(

2211

'

2121

QQ rrRrRdrd

NNNQRRgRRg

V

ba

gqq

abab

);,,(|)()(

),,(

1)(

212211

'

21

QQQ

Q

rrRrR

drdNNNQ

RRc

baba

Vgqq

Defab

PAIR DISTRIBUTION FUNCTIONS

COLOR CORRELATION FUNCTIONS

e-e

h-h

e-h

(e-e) r2

(e-h) r2

n=3 fm-3, T = 3 Tc

19

Canonical ensemble

1

1 1 2 2 1 1 2 22

1 1 2 2

1

1 1 2 2

ˆ( ) { exp( ) exp( )};

1, , ,

2

{exp( )}

1( ) ( , ) ( , )*

(2 )

( , ; , ; ; ),

( , ) exp( ) | |2 2

( , ; , ; ; )

c cFA

c

FA

Ht HtC t Z Tr F i A i

h h

hH K V t t i

kT

Z Tr H

C t dp dq dp dq F p q A p qh

W p q p q t i h

pA p q d i q A q

h

W p q p q t i h Z

1 1 2 21 2

1 2 2 11 2 2 1

exp( )exp( )*

| exp( ) | | exp( ) |2 2 2 2

c c

p pd d i i

h h

Ht Htq i q q i q

h h

Green-Kubo relations

Integral equation

222222

222222

111111

111111

2121

212211

0

20

20

10

10

2211

),,(,2

1

),,(),(2

1

),,(,2

1

),,(),(2

1

)()()

'2()'('

)2(

4),(

)()()},(),()(),({2

1),;,(

),,;,();;,;,(

);0;,;,();;,;,(

qqptqpmdt

dq

pqptpqFdt

dp

qqptqpmdt

dq

pqptpqFdt

dp

ds

sdqF

h

sqSinqqVdq

hhq

qVqFsqqsqqs

qqshiqpqspWddsd

hiqpqpWhitqpqpW

ttt

ttt

ttt

ttt

t

[

[

- positive time direction

- negative time direction

Iterations

Initial conditions

,2

2),

2

~|

~

exp()~,,(

),~,(|)exp(|~))~(exp())...~(exp(

~|)exp(|~))~(exp(~|)exp(|

*)~,,(|)exp(|))(exp())...(exp(

|)exp(|))(exp(|)exp(|

};~...~,~;...,;,;,{

},;~...~,~;...,;,;,{

*~...~~...);0;,;,(

)...,2

],[exp()exp()exp()exp(

2/),exp()...exp()exp()2

exp(

22

1112

21112

1222

21111

1

21212211

21212211

21212211

2

Mm

h

qqi

h

pqqi

h

p

qqp

qqpqKqqVqV

qKqqVqKq

qqpqKqqVqV

qKqqVqKqZ

hiqqqqqqqpqp

hiqqqqqqqpqp

qdqdqdqdqdqdhiqpqpW

VKVKH

MHHHH

MMM

MMM

MM

MM

MM

Schematic snapshot

Mqqq ...21

e

p1q1

p2q2

exp(-K) exp(-V)

Mqqq ~...~~21

~

t=0

-t/2

+t/2

<p(-t/2)p(t/2)>

0h

positive time direction

negative time direction

How to add color dynamics ?

Classical color molecular dynamics

( , , )

( , , )c

q

aabc b

Q

dq p

dt m

dpU p q Q

dt

dQf Q U p q Q

dt

( (0), (0), (0)) ~ exp( ( (0), (0), (0))W p q Q H p q Q

( ) (0)

( ) (0)xy xy

p t p

t

(0), (0), (0)p q Q

( ), ( ), ( )p t q t Q t

H(p,q,Q,t)=const, Energy is integral of motion

[ , ]a b abc c

c

Q Q f Q

f – structure constants

of the color group ,

U - sum of the color

interparticle potentials

Phys. Rev. C, 74, 044909, (2006)

Schematic snapshot

for color Wigner dynamics

Mqqq ...21

e

Qp1q1

Qp2q2

exp(-K) exp(-V)

Mqqq ~...~~21

~

t=0

-t/2

+t/2

<p(-t/2)p(t/2)>

0h

positive time direction

negative time direction

Temporal momentum-momentum

correlation functions of

quark –gluon plasma

1/3

15

/

3( )4

~ 1 10

s

B c

B

r r

rn

Units

hcfm m

k T

h

k T

Electrodynamical plasma

Quantum Monte Carlo method

Canonical ensemble

• Binary mixture of Ne electrons and Ni protons

!!,,,,, ieieie NNNNQVNNZ

• Partition function:

V

ie rdrNNQ ;,,,

• N-particle density matrix:

HHH expexpexp

n+1

1 nkT1

ACCURACY OF DIRECT PIMC

HHH eeeˆˆˆ

ˆ

n+1UKH ˆˆˆ TkB1 1 n

UKUKH eeee

ˆ,ˆ2ˆˆˆ

2

ˆ

Error ~ ( / n)2 for every multiplier

Total error ~ 2 / n 0 at n

potfreeHigh-temperature

pseudopotential

1+O(1/ n)2 for every multiplier

at n

PATH INTEGRAL

MONTE-CARLO METHOD

P V

nΝN

i

drdrrq P

ei

133

11

;,,

,;,,;,, 11 PSrPrqrrq nn

permutationoperator

spinmatrix

thermalwavelengths ofelectron and ion

parity ofpermutation

Pa

qa

proton

ee m 2eb

electron

rb

e

r

em 2

r(1) = r + (1)

r(2)

r(n)

r(n+1) r’

RELATIVE VARIATION IN PRESSURE

FAR AND NEAR THE CONFINEMENT PHASE TRANSITION

e-e

h-h

e-h

(e-e) r2

(e-h) r2

31

Canonical ensemble

2|)exp(|

22|)exp(|

2

*)exp()exp();;,;,(

2||

2)exp(),(

),;;,;,(

*),(),()2(

1)(

)}{exp(

,1

,2

,

)};exp()exp({)(

11

22

22

11

221121

1

2211

2211

221122112

1

qh

Htiqq

h

Htiq

h

pi

h

piddZhitqpqpW

qAqh

pidqpA

hitqpqpW

qpAqpFdqdpdqdph

tC

HTrZ

kT

hittVKH

h

HtiA

h

HtiFTrZtC

cc

FA

c

ccFA

Classical dynamics in phase space

m

tp

dt

qd

tqFdt

pd

)(

))((

))0(),0((exp(~))0(),0(( qpHqpW

)0()( ptp

)0(),0( qp

)(),( tqtp

Wigner approach to quantum

mechanics

)(2

~

);()0,(

);,(~),(

2

QVm

hH

QQ

tQHt

tQih

o

',2

'

)exp(),2

(),2

(),,(

),(),(),,(

*

'*'

QQQQ

q

dh

pitqtqtpqf

tQtQtQQ

N-particle functions

Wigner – Liouville equation

dh

pitqtqtpqf

qsqspfsddqpftqpf

pqptpqFdt

pd

qqptqm

p

dt

qd

VFs

sFqd

h

qsSinqqV

hhqs

hsdqsspfq

fF

q

f

m

p

t

f

t

t

t

)exp(),2

(),2

(),,(

),(),,()0,,(),,(

),,(),(

),,(,

,)(

')'2

()'()(

4),(

0,),()(

*

000

0

000

t

p

qf

0f

p

q

s

0f

Klimontovich equation

or Tatarskii condition

3N-dimensional vectors

Iteration series. Quantum averages.

100

0

00

0

000

|!

`|),()|,,(|

....),()|,,()0,,(),,(

n

nt

t

n

Qtqsqspfsdd

qsqspfsddqpftqpf

s),( 000 qpf

0),,,( htqpf

2||

2)exp(),(

),,(),(||

qAq

h

pidqpA

tqpfqpdpdqAA tt

t

q

p

0 ),( 000 qpf

f

SU(2) glue SU(3) glue 2qQCD (2+1)QCD

Quark-Gluon Plasma at Finite Temperature

Plasma thermodynamics, example: pressure

F. Karsch (2001-2005)

APPROACHES TO QUANTUM

THERMODYNAMICS

• Thomas-Fermi method

• Hartree-Fock(-Slater) method

• Density Functional Theory

• Monte Carlo methods (variational, diffusion, path-ingegral)

Temporal momentum-momentum

correlation functions and

frequency dependent conductivity

T = 100 000 K

0 20 40 60 80 100 120 140-5

-4

-3

-2

-1

0

1

p(t

)p(0

)/[p

(0)p

(0)]

t

T=1 105 K

0

rs=10

rs=6

rs=3

0 5 101

10

100

1

05

Re

{

p}

p

T=1 105 K

0 r

s=30

1

2

3

0 2 4 6 8 10 12 141

10

100

T=1 105 K

0 r

s=20

1

2

3

1

05

Re

{

p}

p

0 5 10 15 20

1

10

100

T=1 105 K

0 r

s=10

1

2

3

p

10

5 R

e{

p}

rs = 30

rs = 20

rs = 10

1 – Quantum Dynamics2 – Bornath T. et al., LPB, 18, 535 (2000)3 – Silin V.P., ZhETF 47 2254 (1964)

0 100 200 300 400

162

163

164

165

Т

, М

эВ

B, МэВ

Quark-gluon plasma

Hadronization

Phase transition of 1st order

Critical point

Phase diagram of quark-gluon plasma