the preparation and preliminary characterisation of eight geological mpi-ding reference glasses for...

47
GEOSTANDARDS NEWSLETTER The Journal of Geostandards and Geoanalysis The Preparation and Preliminary Characterisation of Eight Geological MPI-DING Reference Glasses for In-Situ Microanalysis Vol. 24 — N°1 p.87-133 Eight silicate glasses were prepared by directly fusing and stirring 50-100 g each of basalt, andesite, komatiite, peridotite, rhyolite, and quartz-diorite. These are referred to as MPI-DING glasses and were made for the purpose of providing reference materials for geochemical, in-situ microanalytical work. Results from various analytical techniques indicate that individual glass fragments are well homogenised with respect to major and trace elements at the µm to mm scale. Heterogeneities due to quench crystallisation of olivine have been observed in small and limited areas of the two komatiitic glasses. In order to obtain concentration values for as many elements as possible, the glasses were analysed by a variety of bulk and microanalytical methods in a number of laboratories. From the analytical data, preliminary reference values for more than sixty elements were calculated. Huit verres silicatés ont été préparés directement par fusion et mélange de 50 à 100 g de basalte, andésite, komatiite, peridotite, rhyolite et diorite quartzique. Ils sont référencés sous l'appellation “verres MPI-DING” et ont été préparés pour fournir des matériaux de référence pour la micro-analyse géochimique in situ. Les résultats obtenus par différentes méthodes analytiques montrent que des fragments de verre individuels sont bien homogénéisés, tant au niveau des éléments majeurs et en traces qu'au niveau du µm au mm. Des hétérogénéités provenant de la cristallisation de l'olivine au cours de la trempe n'ont été observées que dans quelques petites zones de deux verres komatiitiques. Afin d'obtenir des valeurs de concentrations pour le plus grand nombre d'éléments, les verres ont été analysés par une grande variété de méthodes globales et de microanalyses dans 87 06 00 Klaus Peter Jochum (1), Donald B. Dingwell (2), Alexander Rocholl (11, 14), Brigitte Stoll (1), Albrecht W. Hofmann (1) and S. Becker (3), A. Besmehn (1), D. Bessette (4), H.-J. Dietze (3), P. Dulski (14), J. Erzinger (14), E. Hellebrand (1), P. Hoppe (1), I. Horn (5), K. Janssens (6), G.A. Jenner (7), M. Klein (8), W.F. McDonough (5), M. Maetz (9), K. Mezger (16), C. Münker (16), I.K. Nikogosian (10), C. Pickhardt (3), I. Raczek (1), D. Rhede (14), H.M. Seufert (1), S.G. Simakin (12), A.V. Sobolev (13), B. Spettel (1), S. Straub (15), L. Vincze (6), A. Wallianos (9), G. Weckwerth (8), S. Weyer (16), D. Wolf (8) and M. Zimmer (14) (1) Max-Planck-Institut für Chemie, Postfach 3060, D-55020 Mainz, Germany. e-mail: [email protected] (2) Bayerisches Geoinstitut, Universität Bayreuth, Postfach 101251, D-95440 Bayreuth, Germany (3) Forschungszentrum Jülich, D-52425 Jülich, Germany (4) Universität Hamburg, Grindelallee 48, D-20146 Hamburg, Germany (5) Harvard University, 20 Oxford St, Cambridge, MA 02138, USA (6) University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk-Antwerp, Belgium (7) Memorial University of Newfoundland, St. John’s NF A1B 3X5, Canada (8) Universität zu Köln, Zülpicher Str. 49, D-50674 Köln, Germany (9) Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg, Germany (10) Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands (11) Universität Heidelberg, Im Neuenheimer Feld 236, D-69120 Heidelberg, Germany (12) Institute of Microelectronics, Universitetskaya St. 21, Yaroslavl 150007, Russia (13) Vernadsky Institute of Geochemistry, Kosigin 19, Moscow 117979, Russia (14) GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany (15) GEOMAR, Wischhofstraβe 1-3, D-24148 Kiel, Germany (16) Universität Münster, Corrensstraβe 24, D-48149 Münster, Germany Received 06 Oct 99 — Accepted 04 May 00

Upload: independent

Post on 22-Apr-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

The Preparation and Preliminary Characterisation of Eight Geological MPI-DING Reference Glasses for In-Situ Microanalysis

Vol. 24 — N°1 p . 8 7 - 1 3 3

Eight silicate glasses were prepared by directlyfusing and stirring 50-100 g each of basalt, andesite,komatiite, peridotite, rhyolite, and quartz-diorite.These are referred to as MPI-DING glasses andwere made for the purpose of providing referencematerials for geochemical, in-situ microanalyticalwork. Results from various analytical techniquesindicate that individual glass fragments are wellhomogenised with respect to major and trace elements at the µm to mm scale. Heterogeneitiesdue to quench crystallisation of olivine have beenobserved in small and limited areas of the twokomatiitic glasses. In order to obtain concentrationvalues for as many elements as possible, theglasses were analysed by a variety of bulk andmicroanalytical methods in a number of laboratories.From the analytical data, preliminary referencevalues for more than sixty elements were calculated.

Huit verres silicatés ont été préparés directementpar fusion et mélange de 50 à 100 g de basalte,andésite, komatiite, peridotite, rhyolite et dioritequartzique. Ils sont référencés sous l'appellation“verres MPI-DING” et ont été préparés pour fournirdes matériaux de référence pour la micro-analysegéochimique in situ. Les résultats obtenus par différentes méthodes analytiques montrent que des fragments de verre individuels sont bien homogénéisés, tant au niveau des élémentsmajeurs et en traces qu'au niveau du µm au mm.Des hétérogénéités provenant de la cristallisationde l'olivine au cours de la trempe n'ont été observéesque dans quelques petites zones de deux verreskomatiitiques. Afin d'obtenir des valeurs de concentrations pour le plus grand nombre d'éléments,les verres ont été analysés par une grande variétéde méthodes globales et de microanalyses dans

8 7

0600

Klaus Peter Jochum (1), Donald B. Dingwell (2), Alexander Rocholl (11, 14), Brigitte Stoll (1), Albrecht W. Hofmann (1) and

S. Becker (3), A. Besmehn (1), D. Bessette (4), H.-J. Dietze (3), P. Dulski (14), J. Erzinger (14), E. Hellebrand (1), P. Hoppe (1), I. Horn (5), K. Janssens (6), G.A. Jenner (7), M. Klein (8), W.F. McDonough (5), M. Maetz (9), K. Mezger (16), C. Münker (16), I.K. Nikogosian (10), C. Pickhardt (3), I. Raczek (1), D. Rhede (14), H.M. Seufert (1), S.G. Simakin (12), A.V. Sobolev (13), B. Spettel (1), S. Straub (15), L. Vincze (6), A. Wallianos (9), G. Weckwerth (8), S. Weyer (16), D. Wolf (8) and M. Zimmer (14)

(1) Max-Planck-Institut für Chemie, Postfach 3060, D-55020 Mainz, Germany. e-mail: [email protected](2) Bayerisches Geoinstitut, Universität Bayreuth, Postfach 101251, D-95440 Bayreuth, Germany(3) Forschungszentrum Jülich, D-52425 Jülich, Germany(4) Universität Hamburg, Grindelallee 48, D-20146 Hamburg, Germany(5) Harvard University, 20 Oxford St, Cambridge, MA 02138, USA(6) University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk-Antwerp, Belgium(7) Memorial University of Newfoundland, St. John’s NF A1B 3X5, Canada(8) Universität zu Köln, Zülpicher Str. 49, D-50674 Köln, Germany(9) Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg, Germany(10) Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands(11) Universität Heidelberg, Im Neuenheimer Feld 236, D-69120 Heidelberg, Germany(12) Institute of Microelectronics, Universitetskaya St. 21, Yaroslavl 150007, Russia(13) Vernadsky Institute of Geochemistry, Kosigin 19, Moscow 117979, Russia(14) GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany(15) GEOMAR, Wischhofstraβe 1-3, D-24148 Kiel, Germany(16) Universität Münster, Corrensstraβe 24, D-48149 Münster, Germany

Received 06 Oct 99 — Accepted 04 May 00

In-situ microanalytical trace element techniques,such as secondary ion mass spectrometry (SIMS), laserablation inductively coupled plasma-mass spectrome-try (LA-ICP-MS) and synchrotron radiation-induced X-rayfluorescence (SR-XRF; e.g. Gill 1997), have becomeincreasingly important tools in geo- and cosmochemis-try for analyzing minerals and inclusions. One of themost serious problems with these methods is thelack of satisfactory calibration materials. Most workersuse synthetic glass certified reference materials, suchas NIST SRM 610 and SRM 612 (e.g. Hinton 1995,Ottolini et al. 1993, Jenner et al. 1994) or in-housereference samples for the primary standardisation. Atpresent, there are three major drawbacks concerningthe use of NIST SRM glasses. Firstly, it has been poin-ted out by Kane (1998) that, with the exception ofeight elements certified by NIST, the trace elementcomposition of these glasses is not yet sufficiently wellestablished to match the International Organisation forStandardisation (ISO) guidelines for certificating refer-ence materials. Secondly, the major element composi-tions of the glasses are very different from that of anygeological matrix. This may lead to severe analyticalproblems due to matrix effects (e.g. Hinton 1995).Thirdly, the sixty one trace elements added to thematrix occur at similar concentrations. Therefore, theydo not mimic natural concentration patterns, especiallythe zig-zag pattern of even/uneven atomic numberedelements. This may lead to the uncontrollable forma-tion of unwanted and interfering molecules overlap-ping the mass spectra of interest. It is therefore desi-rable to establish a set of reference glasses of naturalcomposition with respect to both major and trace ele-ment abundances, in a similar manner as it has beenperformed for the USGS reference material BCR-2G(USGS 1996).

We prepared relat ively large amounts (about50-100 g) of glass samples by fusing samples of geo-logically common rock types having different chemicalcompositions and investigated them by various bulkand microanalytical techniques. The aim of this paper

is to present these analytical results, to suggest prelimi-nary reference values and their analytical uncertainties.First est imates of reference values were previous-ly published by Jochum et al. (1995), Seufert andJochum (1997), Stol l et al . (1998) and Stol l andJochum (1999).

Samples

Eight different rock samples covering the entirespectrum from ultramafic to highly silicious compositionwere used for glass preparation. These rocks comprisetwo tholeiitic basalts from the Hawaiian volcanoesKilauea and Mauna Loa (KL2, ML3B; Newsom et al.1986), an andesitic ash from the St. Helens (USA)eruption (StHs6/80), two komatiites from GorgonaIsland (GOR128 and GOR 132; Echeverria 1980), aperidotite from the Ivrea Zone of Italy (BM90/21;Obermiller 1994), a rhyoli te from Iceland (ATHO;Hémond et al. 1993), and a quartz-diorite from theItalian Alps (T1; Klein et al. 1997).

The glasses were prepared at the BayerischesGeoinstitut, Bayreuth, by standard methods that havebeen used in the preparation of natural melts forconcentric cylinder viscometry for more than a decade(Dingwell et al. 1993). Direct fusion without alterationof the composition was performed on 50-100 g rockchips at temperatures in the range of 1400 to 1600 °C,with the exception of the peridotite sample which wasmixed 5:1 with 99.95% pure SiO2 in order to enhanceits quenchability to the glassy state. A thin-walled plati-num crucible was used to contain the melts. Potentialsources of contamination included exposure to furnacecomponents consisting of ZrO2 insulation boards andMoSi2 resistive heating elements, and remnants of pre-vious samples that were fused in the furnace. Glasseswere held at temperature for 1 hour and then remo-ved from the box furnace and placed in a secondfurnace equipped wi th a v iscometer. Dur ing thissecond fusion, the melts were stirred at the maximumrpm value permissible with this device (in the range

8 8

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

The analytical uncertainties of most elements areestimated to be between 1% and 10%.

Keywords: reference materials, geological glasses,microprobe analysis, preparation, characterisation, in-situ techniques

plusieurs laboratoires. A partir de ces données, desvaleurs de référence préliminaires ont été calculéespour plus de 60 éléments. Les incertitudes analytiques de la plupart des éléments sont estimées entre 1 et 10%.

Mots-clés : matériaux de référence, verres géologiques, analyse par microsonde, préparation, caractérisation, techniques in situ.

10-200 rpm) for up to 12 hours, using a Pt80Rh20

spindle immersed in the melt. After stirring, the spindlewas removed from the melt and the melt removedrapidly from the furnace. The melts were then quenchedby placing the bottom of the Pt crucible in water.Chips of the resulting glasses were drilled and/or bro-ken off the crucibles. For the extremely fluid ultrabasicmelts, the melts were poured directly from the crucibleonto a stainless steel plate for quenching. The cruciblewas cleaned in 40% v/v HF between successivesample fusions.

It is important to point out here that, althoughthe melts might be depleted by volatility or alloying tothe crucible and spindle, and contaminated by thevarious furnace components, the stirring of the samplesis the key to obtaining large volumes of highly homo-geneous composition.

We chose the collective name MPI-DING (Max-Planck-Institut - Dingwell) glasses for this set of referenceglasses. To distinguish the individual glass samplesfrom the original rock samples, their sample names areappended with the letter “G”.

Analytical techniques

The MPI-DING glasses were analysed by differentbulk and microanalytical methods in various laborato-ries. The procedure and the most important features ofeach analytical technique are described briefly in thefollowing section. The laboratory codes (LC) identifyinglaboratory and analysts are given in Table 1, and thecalculated or estimated analytical uncertainties of theelements analysed in Tables 2.1-2.8. The analyticaluncertainty comprises many components. Some ofthese components were evaluated from the statisticaldistribution of the results of series of measurementsand were characterized by standard deviations. Theother components, which were also characterized bystandard deviations, were evaluated from assumedprobability distributions based on experience or otherinformation. The uncertainties (Tables 2.1-2.8) are givenas relative standard deviations in percent.

Bulk techniques

These techniques generally require relatively largeamounts of sample (about 0.1-1 g), preferably in theform of powder. Approximately 10 g of small glasschips were powdered in an agate mixing mill for onehour and distributed by aliquots to the different labo-

ratories. Contamination during the powdering processwas negligible, because of the high purity of agateand the very low abrasion rate (< 0.5 mg agate duringthe powdering of a 10 g glass sample). This is alsoconfirmed in the major and trace element results inTable 2, where there is no systematic difference in thedata obtained from techniques analyzing solid glasses(e.g. EPMA, SIMS, LA-ICPMS) or glass powders (e.g.XRF, INAA, TIMS, SSMS).

Spark source mass spectrometry (SSMS, MIC-SSMS): At the Max-Planck-Institut für Chemie, Mainz, anAEI-MS702R spark source mass spectrometer was usedfor multi-element analysis (LC = 2). This instrument wasrecently equipped with a detector array consisting oftwenty separate small channeltrons for multiple ioncounting measurements (MIC-SSMS, Jochum et al.1997). All samples were investigated by MIC-SSMS;sample KL2-G was also analysed by conventionalSSMS, using photoplates for ion detection (LC = 1).

About 60 mg of sample powder was mixed withultrapure graphite containing isotopic spikes and thencompressed into rod-shaped electrodes. The elementsSr, Zr, Ba, Nd, Sm, Dy, Yb, Pb and U were determinedby isotope dilution (ID; Jochum et al. 1988). Spikeswere calibrated using certified standard solutions andreference materials. The other trace elements weredetermined using suitable ID values for internal stan-dardisation (e.g. Zr for Y, Nb determination). The abun-dances were calibrated by relative sensitivity factorsobtained from the analyses of cert i f ied NIST andVentron standard solutions and international referencematerials, such as BCR-1, W-1, BHVO-1. Generally,seventy five measurements using total ion charges of1-10 nC, depending on the concentration level (corres-ponding to measuring times of about 5-50 s), wereperformed for one analysis.

Overall analytical uncertainty of the MIC-SSMStechnique (Stoll and Jochum 1999) in the µg g-1 rangewas about 3% for ID data and 5% for the results thatwere calibrated with relative sensitivity factors. Very lowconcentrations in the ng g-1 range were determinedwith an uncertainty of 5-10%.

Thermal ionisation mass spectrometry (TIMS): Theabundances of K, Rb, Sr, Ba and rare earth elements(REE) were determined at the Max-Planck-Institut fürChemie by isotope dilution (LC = 4), using a FinniganMAT 261 thermal ionisation mass spectrometer equip-ped with a multi-collector. The analytical procedure,

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

Text continues on page 114

8 9

9 0

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

Table 1.List of participating laboratories and analysts.

LC Institute - Analysts, reference

1 Max-Planck-Institut für Chemie, Mainz, Germany - Jochum

2 Max-Planck-Institut für Chemie, Mainz, Germany - Stoll and Jochum (1999)

3 Max-Planck-Institut für Chemie, Mainz, Germany - Seufert and Jochum (1997)

4 Max-Planck-Institut für Chemie, Mainz, Germany - Raczek

5 Max-Planck-Institut für Chemie, Mainz, Germany - Spettel

6 Max-Planck-Institut für Chemie, Mainz, Germany - Besmehn, Hellebrand, Hoppe

7 Universität Mainz, Germany - Jochum

8 Universität zu Köln, Germany - Weckwerth

9 Universität zu Köln, Germany - Klein

10 Universität zu Köln, Germany - Klein et al. (1997)

11 Universität zu Köln, Germany - Wolf

12 Memorial University of Newfoundland, St. John’s, Canada - Jenner

13 Institute of Microelectronics, Yaroslavl, Russia - Nikogosian, Simakin, Sobolev

14 Max-Planck-Institut für Kernphysik, Heidelberg, Germany - Maetz, Wallianos

15 Forschungszentrum Jülich, Germany - Becker, Dietze, Pickhardt

16 Harvard University, Cambridge, USA - Horn, McDonough

17 Harvard University, Cambridge, USA - Horn, McDonough, Straub

18 Hasylab (DESY), Hamburg, Germany - Amort et al. (1994)

19 Hasylab (DESY), Hamburg, Germany - Vincze et al. (1994)

20 Hasylab (DESY), Hamburg, Germany - Vincze et al. (1995)

21 Hasylab (DESY), Hamburg, Germany - Bessette, Haller, Janssens, Jochum, Radtke, Vincze

22 Universität Heidelberg (Mineralogisches Institut), Germany - Rocholl, Meier, Ludwig

23 GeoForschungsZentrum, Potsdam, Germany - Dulski

24 GeoForschungsZentrum, Potsdam, Germany - Erzinger, Zimmer

25 American Museum of National History, New York, USA - Mandeville, Straub

26 Universität Münster (Zentrallabor für Geochronologie) - Weyer, Münker, Mezger

27 GeoForschungsZentrum, Potsdam, Germany - Rocholl, Rhede, Appelt

LC laboratory code refers to the institute and the analysts.

Table 2.1.Analytical results for MPI-DING reference glass KL2-G (Kilauea tholeiitic basalt glass)

H2O (% m/m)< 0.1 - SIMS 13

Li (µg g-1)4.6 15 SIMS 135.4 15 ICP-MS 246.2 10 SIMS 22

Be (µg g-1)0.88 20 SIMS 13

B (µg g-1)2.6 15 SIMS 13

Na2O (% m/m)2.16 1 EPMA 72.16 5 INAA 82.25 4 XRF 72.31 3 INAA 52.33 2 EPMA 222.39 4 EPMA 9

MgO (% m/m)6.62 6 PIXE 147.06 2 EPMA 7

Uncert. Method LC Uncert. Method LCUncert. Method LC

P2O5 (% m/m) (cont.)0.26 7 EPMA 70.35 9 PIXE 14

Cl (µg g-1)30 15 LIMS 3

< 500 - INAA 5

K2O (% m/m)0.44 4 EPMA 70.464 3 INAA 50.465 6 PIXE 140.48 5 XRF 70.482 6 EPMA 220.4880 1 TIMS 40.6 25 LIMS 30.6 25 SR-XRF 210.9 25 SR-XRF 19

CaO (% m/m)9.94 5 SR-XRF 21

10.4 10 INAA 810.7 6 PIXE 1410.9 1 EPMA 711.0 1 EPMA 9

MgO (% m/m) (cont.)7.24 1 EPMA 227.29 1 EPMA 97.35 2 XRF 77.38 1 EPMA 27

Al2O3 (% m/m)11.8 6 PIXE 1412.9 1 EPMA 2213.0 1 EPMA 713.2 1 XRF 713.3 1 EPMA 2713.3 1 EPMA 9

SiO2 (% m/m)49.0 6 PIXE 1449.7 1 EPMA 750.0 1 EPMA 2750.0 1 EPMA 950.1 1 EPMA 2250.5 1 XRF 7

P2O5 (% m/m)0.24 10 LIMS 30.24 5 XRF 7

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

9 1

Table 2.1 (continued).Analytical results for MPI-DING reference glass KL2-G (Kilauea tholeiitic basalt glass)

Uncert. Method LC Uncert. Method LCUncert. Method LC

CaO (% m/m) (cont.)11.0 1 EPMA 2211.1 1 EPMA 2711.1 2 XRF 711.4 5 INAA 515 20 SR-XRF 19

Sc (µg g-1)30 3 INAA 831 10 ICP-MS 2431.9 3 INAA 533 15 LIMS 333.5 4 LA-ICP-MS 1534.2 10 SIMS 22

TiO2 (% m/m)2.34 7 SR-XRF 212.45 6 PIXE 142.52 3 XRF 72.55 10 SIMS 132.57 10 SIMS 132.58 2 EPMA 92.58 10 SIMS 222.60 2 EPMA 222.61 4 EPMA 72.84 20 INAA 52.98 5 LA-ICP-MS 163.3 20 SR-XRF 193.3 20 INAA 8

V (µg g-1)323 10 SIMS 22330 10 LIMS 3465 10 PIXE 14

Cr (µg g-1)200 100 EPMA 7270 10 XRF 7280 30 SR-XRF 19286 3 LA-ICP-MS 15290 10 INAA 8290 10 LIMS 3296 3 INAA 5302 7 PIXE 14330 50 EPMA 22357 15 SIMS 13362 10 SIMS 22400 35 SR-XRF 21

MnO (% m/m)0.154 10 SIMS 220.16 4 XRF 70.16 10 EPMA 90.161 10 INAA 80.164 3 INAA 50.17 15 SR-XRF 190.17 5 LA-ICP-MS 160.17 6 PIXE 140.18 20 EPMA 220.181 10 LIMS 30.21 19 EPMA 70.23 20 SR-XRF 21

FeO (% m/m)10.3 5 INAA 810.5 1 EPMA 910.5 6 PIXE 1410.7 3 EPMA 710.7 2 EPMA 2710.7 2 EPMA 2210.8 2 XRF 711.0 3 INAA 511.6 7 LIMS 3

Co (µg g-1)39.3 10 SIMS 2240 7 LIMS 341 3 INAA 843 5 LA-ICP-MS 1543 10 ICP-MS 2443.3 3 INAA 5

Ni (µg g-1)106 10 LIMS 3109 6 PIXE 14111 10 ICP-MS 24115 10 INAA 5117 15 SR-XRF 19124 20 SR-XRF 21125 20 INAA 8131 10 LA-ICP-MS 15

Cu (µg g-1)83 10 LIMS 396 6 PIXE 1497 10 ICP-MS 24

104 10 LA-ICP-MS 15< 300 - INAA 5< 400 - INAA 8

Zn (µg g-1)102 6 PIXE 14103 10 LIMS 3106 10 INAA 8116 10 ICP-MS 24120 10 INAA 5120 25 LA-ICP-MS 15123 11 SR-XRF 21

Ga (µg g-1)18 10 LIMS 319 10 INAA 819.4 4 LA-ICP-MS 1520 5 INAA 521.2 7 PIXE 1422 10 ICP-MS 2423 40 SR-XRF 21

Ge (µg g-1)1 40 PIXE 14

As (µg g-1)< 0.12 - INAA 5< 0.2 - INAA 8

Se (µg g-1)< 0.2 - INAA 5< 3 - INAA 8

Br (µg g-1)< 0.2 - INAA 5< 0.7 - INAA 8

Rb (µg g-1)5 50 SR-XRF 197.0 20 LIMS 38.34 10 ICP-MS 238.60 5 LA-ICP-MS 158.69 1 TIMS 48.7 10 ICP-MS 249.41 5 LA-ICP-MS 169.68 6 LA-ICP-MS 129.8 20 INAA 8

10 15 SSMS 110 40 SR-XRF 2111 10 INAA 511.6 10 PIXE 14

Sr (µg g-1)339 7 LIMS 3340 10 INAA 8342 3 SR-XRF 19350 10 SIMS 22350 10 ICP-MS 23350 5 ICP-MS 24354 15 SIMS 13356 5 LA-ICP-MS 16361.5 1 TIMS 4364 10 SIMS 13373 5 SSMS 1385 10 INAA 5391 8 SR-XRF 21395 6 PIXE 14407 6 LA-ICP-MS 12

Y (µg g-1)22 30 SR-XRF 2124.2 7 LIMS 324.2 10 ICP-MS 2324.3 10 SIMS 1324.8 5 LA-ICP-MS 1625.5 7 PIXE 1426.4 6 LA-ICP-MS 1526.8 6 LA-ICP-MS 1227 25 SR-XRF 1929 7 SSMS 129.4 10 SIMS 2233.6 5 MIC-SSMS 2

Zr (µg g-1)143 5 LA-ICP-MS 16145 15 INAA 5148 15 SIMS 13148 10 ICP-MS 24151 15 SR-XRF 19151 7 LIMS 3

9 2

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

Uncert. Method LC

Zr (µg g-1) (cont.)154 3 MC-ICP-MS 26158 6 LA-ICP-MS 12158 6 LA-ICP-MS 15158 6 PIXE 14159 5 SSMS 1160 10 ICP-MS 23163 10 SIMS 13163 10 SIMS 22177 15 SR-XRF 21185 3 MIC-SSMS 2185 20 INAA 8

Nb (µg g-1)13 40 SR-XRF 2113.6 7 LIMS 314 40 SR-XRF 1914.4 5 LA-ICP-MS 1614.5 9 PIXE 1415 10 SIMS 1315 10 ICP-MS 2415.1 15 SIMS 1315.1 6 LA-ICP-MS 1515.8 10 MC-ICP-MS 2616.1 10 SSMS 116.9 10 SIMS 2217.9 6 LA-ICP-MS 1220.7 5 MIC-SSMS 2

Mo (µg g-1)3.6 15 INAA 53.6 10 ICP-MS 244 40 PIXE 145 15 INAA 8

Rh (µg g-1)37 20 LIMS 3

Pd (µg g-1)< 6 - INAA 8

Ag (µg g-1)< 0.5 - INAA 8

Cd (µg g-1)< 0.4 - INAA 8

In (µg g-1)< 0.25 - INAA 5

Sn (µg g-1)1.4 15 LIMS 31.6 10 ICP-MS 241.9 10 SSMS 12.0 20 LA-ICP-MS 15

< 15 - INAA 8

Sb (µg g-1)0.12 10 SSMS 10.15 20 INAA 50.15 20 INAA 80.16 20 ICP-MS 240.19 20 LIMS 3

Uncert. Method LC Uncert. Method LC

Pr (µg g-1)4.4 10 LIMS 34.50 7 LA-ICP-MS 154.6 5 LA-ICP-MS 164.63 5 MIC-SSMS 24.67 10 ICP-MS 234.69 10 SIMS 224.7 7 SSMS 14.9 5 ICP-MS 245 80 SR-XRF 215.28 6 LA-ICP-MS 12

Nd (µg g-1)19.4 15 SIMS 1320 10 LIMS 320.4 5 SSMS 120.8 10 ICP-MS 2320.9 15 SIMS 1321.1 6 LA-ICP-MS 1521.5 3 MIC-SSMS 221.8 5 LA-ICP-MS 1621.9 7 INAA 522 5 ICP-MS 2422.16 1 TIMS 423.6 10 SIMS 2224 6 LA-ICP-MS 1224 10 INAA 827 25 SR-XRF 1929 40 SR-XRF 21

Sm (µg g-1)4.88 15 SIMS 135.2 10 LIMS 35.26 10 ICP-MS 235.32 10 SIMS 135.36 4 INAA 55.51 3 MIC-SSMS 25.54 7 LA-ICP-MS 155.58 5 SSMS 15.58 5 LA-ICP-MS 165.721 1 TIMS 45.8 15 INAA 85.8 5 ICP-MS 245.95 10 SIMS 226.2 6 LA-ICP-MS 12

10 90 SR-XRF 21

Eu (µg g-1)1.73 15 SIMS 131.8 10 LIMS 31.8 7 SSMS 11.89 10 ICP-MS 231.9 5 INAA 51.9 25 INAA 81.9 5 LA-ICP-MS 161.92 8 LA-ICP-MS 151.985 1 TIMS 42.02 5 MIC-SSMS 22.1 5 ICP-MS 242.17 15 SIMS 132.18 8 LA-ICP-MS 12

Cs (µg g-1)0.10 20 LA-ICP-MS 150.10 20 SSMS 10.113 10 ICP-MS 230.12 20 LIMS 30.13 9 LA-ICP-MS 120.13 11 LA-ICP-MS 160.13 20 ICP-MS 24

< 0.2 - INAA 5< 0.3 - INAA 8

Ba (µg g-1)102 25 SR-XRF 19106 15 SIMS 13108 10 LIMS 3117 7 LA-ICP-MS 15119 10 SIMS 22120 10 INAA 5121 5 LA-ICP-MS 16122 10 ICP-MS 23124.0 1 TIMS 4128 5 SSMS 1130 10 INAA 8130 15 SIMS 13145 6 LA-ICP-MS 12150 30 SR-XRF 21170 20 PIXE 14

La (µg g-1)8 60 SR-XRF 19

12 10 LIMS 312 60 SR-XRF 2112.5 7 LA-ICP-MS 1512.5 15 SIMS 1312.9 10 ICP-MS 2313 7 SSMS 113 10 ICP-MS 2413.1 5 INAA 813.2 5 MIC-SSMS 213.2 3 INAA 513.29 1 TIMS 413.4 5 LA-ICP-MS 1613.6 10 SIMS 2214 15 SIMS 1314.8 6 LA-ICP-MS 12

Ce (µg g-1)27 30 SR-XRF 1929 10 LIMS 329.9 15 SIMS 1331 5 ICP-MS 2431.7 10 ICP-MS 2332.8 5 MIC-SSMS 232.9 4 INAA 533.21 1 TIMS 433.4 5 LA-ICP-MS 1633.7 15 SIMS 1334 7 SSMS 134 5 INAA 834 40 SR-XRF 2134.1 10 SIMS 2237.4 6 LA-ICP-MS 12

Table 2.1 (continued).Analytical results for MPI-DING reference glass KL2-G (Kilauea tholeiitic basalt glass)

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

9 3

Table 2.1 (continued).Analytical results for MPI-DING reference glass KL2-G (Kilauea tholeiitic basalt glass)

Gd (µg g-1)5.5 10 SSMS 15.81 5 LA-ICP-MS 165.91 7 LA-ICP-MS 155.93 6 LA-ICP-MS 126.070 1 TIMS 46.09 10 ICP-MS 236.15 10 SIMS 226.20 5 MIC-SSMS 26.3 10 LIMS 36.8 5 ICP-MS 247.8 15 INAA 5

Tb (µg g-1)0.86 10 SSMS 10.86 5 LA-ICP-MS 160.887 10 ICP-MS 230.90 10 INAA 80.93 4 INAA 50.96 7 LA-ICP-MS 120.96 7 LA-ICP-MS 150.986 10 SIMS 221.00 5 MIC-SSMS 21.0 10 ICP-MS 241.3 20 LIMS 3

Dy (µg g-1)3.9 30 INAA 84.5 10 LIMS 34.8 15 SIMS 135.06 10 ICP-MS 235.2 5 SSMS 15.2 5 INAA 55.22 9 LA-ICP-MS 155.22 10 SIMS 225.368 1 TIMS 45.42 15 SIMS 135.5 10 ICP-MS 245.63 5 MIC-SSMS 25.68 8 LA-ICP-MS 12

Ho (µg g-1)0.8 30 INAA 80.92 10 LIMS 30.946 10 ICP-MS 230.98 5 LA-ICP-MS 160.985 10 SIMS 220.99 7 SSMS 10.995 5 MIC-SSMS 21.0 10 LA-ICP-MS 151.0 10 ICP-MS 241.01 5 INAA 51.03 9 LA-ICP-MS 12

Er (µg g-1)2.2 10 LIMS 32.44 8 LA-ICP-MS 152.46 10 SIMS 132.51 10 ICP-MS 232.60 7 SSMS 12.635 1 TIMS 42.66 15 SIMS 132.74 5 MIC-SSMS 22.78 6 LA-ICP-MS 122.8 10 ICP-MS 242.81 10 SIMS 22

Re (µg g-1)< 0.01 - INAA 8

Os (µg g-1)< 0.3 - INAA 8

Ir (µg g-1)0.104 4 INAA 5

Pt (µg g-1)7.3 10 INAA 59 40 PIXE 14

38 20 LIMS 3

Au (µg g-1)0.118 3 INAA 51.2 20 LIMS 3

Hg (µg g-1)< 0.25 - INAA 5

Pb (µg g-1)2.0 10 LIMS 32.12 5 SSMS 12.12 6 LA-ICP-MS 162.2 10 ICP-MS 242.24 5 MIC-SSMS 22.67 7 LA-ICP-MS 153 40 PIXE 14

Bi (µg g-1)0.039 20 MIC-SSMS 2

Th (µg g-1)0.84 15 SIMS 130.93 10 LA-ICP-MS 150.96 15 SIMS 131.0 10 INAA 81.00 5 LA-ICP-MS 161.00 10 ICP-MS 231.02 5 MIC-SSMS 21.04 7 INAA 51.06 10 ICP-MS 241.1 7 SSMS 11.1 10 LIMS 31.16 9 LA-ICP-MS 121.22 6 MIC-SSMS 2

U (µg g-1)0.499 4 MIC-SSMS 20.519 3 MIC-SSMS 20.53 10 ICP-MS 230.54 9 LA-ICP-MS 150.55 15 INAA 80.56 6 LA-ICP-MS 120.57 5 SSMS 10.57 15 ICP-MS 240.60 10 INAA 50.60 7 LA-ICP-MS 160.78 10 LIMS 3

Tm (µg g-1)0.32 7 SSMS 10.32 15 LIMS 30.33 5 LA-ICP-MS 150.33 6 LA-ICP-MS 160.334 10 ICP-MS 230.36 6 LA-ICP-MS 120.36 10 ICP-MS 24

< 0.8 - INAA 8

Yb (µg g-1)1.8 10 LIMS 32.01 10 ICP-MS 232.05 12 LA-ICP-MS 152.05 3 MIC-SSMS 22.08 5 INAA 52.093 1 TIMS 42.1 5 INAA 82.11 5 SSMS 12.15 5 LA-ICP-MS 162.2 10 ICP-MS 242.22 10 SIMS 132.29 8 LA-ICP-MS 122.29 10 SIMS 132.32 10 SIMS 22

Lu (µg g-1)0.24 20 LIMS 30.26 15 LA-ICP-MS 150.26 7 MIC-SSMS 20.28 5 INAA 80.285 10 ICP-MS 230.29 7 SSMS 10.2931 1 TIMS 40.297 6 LA-ICP-MS 160.30 15 ICP-MS 240.312 5 INAA 50.32 8 LA-ICP-MS 120.35 10 SIMS 22

Hf (µg g-1)3.5 15 LIMS 33.85 5 LA-ICP-MS 163.97 3 MC-ICP-MS 264.03 11 LA-ICP-MS 154.19 10 SIMS 224.2 20 INAA 84.20 7 SSMS 14.22 4 INAA 54.26 10 ICP-MS 234.3 10 ICP-MS 24

Ta (µg g-1)0.91 20 LIMS 30.910 3 MC-ICP-MS 260.94 30 INAA 80.95 7 LA-ICP-MS 150.96 5 LA-ICP-MS 160.96 10 ICP-MS 241.0 10 SSMS 11.02 5 INAA 51.10 7 LA-ICP-MS 12

W (µg g-1)< 0.1 - INAA 8< 0.4 - INAA 5

0.3 15 SSMS 10.9 30 LIMS 3

Uncert. Method LC Uncert. Method LC Uncert. Method LC

Analytical uncertainties are given as relative standard deviation in percent (see text).

9 4

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

Table 2.2.Analytical results for MPI-DING reference glass ML3B-G (Mauna Loa tholeiitic basalt glass)

H2O (% m/m)< 0.1 - SIMS 13

Li (µg g-1)3.8 15 SIMS 134.31 10 SIMS 224.5 15 ICP-MS 24

Be (µg g-1)0.75 20 SIMS 13

B (µg g-1)2.2 15 SIMS 13

Na2O (% m/m)2.29 2 EPMA 72.3 4 XRF 72.37 3 INAA 52.37 4 XRF 112.37 2 EPMA 222.39 4 EPMA 9

MgO (% m/m)5.89 6 PIXE 146.48 3 XRF 116.52 1 EPMA 96.52 1 EPMA 226.54 1 EPMA 76.64 1 EPMA 276.64 3 XRF 7

Al2O3 (% m/m)12.4 6 PIXE 1413.0 1 XRF 1113.0 2 EPMA 2213.4 1 EPMA 713.6 1 XRF 713.7 1 EPMA 2713.7 1 EPMA 9

SiO2 (% m/m)48.9 1 XRF 1150.1 6 PIXE 1450.8 1 EPMA 751.1 1 EPMA 2251.4 1 EPMA 951.9 1 EPMA 2752.0 1 XRF 7

P2O5 (% m/m)0.21 5 XRF 70.21 5 XRF 110.24 6 EPMA 70.30 9 PIXE 14

Cl (µg g-1)< 920 - INAA 5

K2O (% m/m)0.375 8 XRF 110.377 6 PIXE 14

Uncert. Method LC Uncert. Method LC Uncert. Method LC

K2O (% m/m) (cont.)0.381 3 INAA 50.383 6 EPMA 220.3857 1 TIMS 40.39 4 EPMA 70.39 5 XRF 70.4 40 SR-XRF 20

CaO (% m/m)9.1 6 SR-XRF 20

10.2 6 PIXE 1410.3 2 XRF 1110.4 1 EPMA 710.4 1 EPMA 910.5 2 XRF 710.5 1 EPMA 2210.6 1 EPMA 2710.7 7 INAA 5

Sc (µg g-1)30 10 ICP-MS 2430.8 5 LA-ICP-MS 1530.9 4 INAA 533.7 10 SIMS 22

TiO2 (% m/m)1.67 10 SR-XRF 201.97 3 XRF 112.02 6 PIXE 142.05 10 SIMS 222.06 3 XRF 72.07 10 SIMS 132.08 2 EPMA 92.10 2 EPMA 72.10 3 EPMA 222.1 15 SIMS 62.40 5 LA-ICP-MS 162.5 30 INAA 5

V (µg g-1)188 6 XRF 11230 1 SIMS 6291 10 SIMS 22

Cr (µg g-1)140 5 XRF 7143 6 LA-ICP-MS 15145 4 XRF 11170 3 INAA 5176 7 PIXE 14176 15 SIMS 6200 80 EPMA 22200 10 SIMS 22224 15 SIMS 13400 40 EPMA 7600 50 SR-XRF 20

MnO (% m/m)0.147 20 EPMA 90.156 10 SIMS 220.167 4 XRF 11

MnO (% m/m) (cont.)0.17 4 XRF 70.17 3 INAA 50.17 25 EPMA 220.173 6 PIXE 140.18 5 LA-ICP-MS 160.23 8 EPMA 70.52 25 SR-XRF 20

FeO (% m/m)10.6 2 XRF 1110.7 1 EPMA 910.7 6 PIXE 1410.8 2 EPMA 711.0 2 EPMA 2711.0 2 EPMA 2211.1 2 XRF 711.6 3 INAA 5

Co (µg g-1)28 8 XRF 1138.2 4 LA-ICP-MS 1540.2 10 SIMS 2243 10 ICP-MS 2444.1 3 INAA 5

Ni (µg g-1)70 40 SR-XRF 2097 6 PIXE 14

104 8 XRF 11105 10 ICP-MS 24108 10 LA-ICP-MS 15110 10 INAA 5160 10 XRF 7

Cu (µg g-1)108 7 LA-ICP-MS 15117 6 PIXE 14121 10 ICP-MS 24

< 300 - INAA 5

Zn (µg g-1)77 20 LA-ICP-MS 15

105 3 XRF 11108 6 PIXE 14116 10 ICP-MS 24117 15 INAA 5120 20 SR-XRF 20

Ga (µg g-1)14.7 5 LA-ICP-MS 1519 10 INAA 520.5 6 PIXE 1421 10 ICP-MS 2426 40 SR-XRF 20

Ge (µg g-1)0.9 40 PIXE 14

As (µg g-1)< 0.15 - INAA 5

2 40 PIXE 14

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

9 5

Table 2.2 (continued).Analytical results for MPI-DING reference glass ML3B-G (Mauna Loa tholeiitic basalt glass)

Uncert. Method LC Uncert. Method LC

Se (µg g-1)< 0.3 - INAA 5

Br (µg g-1)< 0.18 - INAA 53 30 PIXE 14

Rb (µg g-1)5.1 10 LA-ICP-MS 155.64 8 LA-ICP-MS 125.7 14 PIXE 145.73 10 ICP-MS 235.8 10 ICP-MS 245.81 1 TIMS 46.52 5 LA-ICP-MS 167.6 12 INAA 5

10 50 SR-XRF 20

Sr (µg g-1)299 10 SIMS 22305 5 ICP-MS 24306 10 ICP-MS 23307 10 SIMS 13307 4 XRF 11310 5 LA-ICP-MS 16315 5 LA-ICP-MS 12315.4 1 TIMS 4324 15 SIMS 6327 4 SR-XRF 20330 10 INAA 5339 6 PIXE 14

Y (µg g-1)21 20 SR-XRF 2022.3 5 LA-ICP-MS 1222.6 10 SIMS 1322.9 10 ICP-MS 2323.1 15 SIMS 623.3 5 LA-ICP-MS 1624.0 6 LA-ICP-MS 1525.8 2 PIXE 1426.8 10 SIMS 2227.6 5 MIC-SSMS 2

Zr (µg g-1)113 5 LA-ICP-MS 12114 5 LA-ICP-MS 16118 10 SIMS 13120 10 ICP-MS 24124 15 SIMS 6125 3 MC-ICP-MS 26126 4 LA-ICP-MS 15128 10 SIMS 22130 10 ICP-MS 23131 7 SR-XRF 20131 6 PIXE 14133 3 MIC-SSMS 2140 15 INAA 5

Nb (µg g-1)5 60 SR-XRF 208.16 5 LA-ICP-MS 16

Nb (µg g-1) (cont.)8.5 4 LA-ICP-MS 158.6 10 SIMS 138.8 10 ICP-MS 248.9 5 LA-ICP-MS 128.96 10 MC-ICP-MS 269.03 5 MIC-SSMS 29.29 15 SIMS 69.32 10 SIMS 22

10.3 9 PIXE 14

Mo (µg g-1)17.3 10 PIXE 1418 10 ICP-MS 2418 7 INAA 5

Ag (µg g-1)< 0.65 - INAA 5

In (µg g-1)< 0.33 - INAA 5

Sn (µg g-1)0.67 9 LA-ICP-MS 151.1 10 ICP-MS 24

Sb (µg g-1)0.13 20 ICP-MS 24

< 0.15 - INAA 5

Cs (µg g-1)0.12 10 LA-ICP-MS 150.139 10 ICP-MS 230.15 9 LA-ICP-MS 120.15 9 LA-ICP-MS 160.15 20 ICP-MS 241.0 15 SIMS 6

< 0.25 - INAA 5

Ba (µg g-1)69.9 10 SIMS 1375.8 10 SIMS 2277.4 5 LA-ICP-MS 1579 5 LA-ICP-MS 1679.9 10 ICP-MS 2380.1 15 SIMS 680.84 1 TIMS 482 10 INAA 587.2 5 LA-ICP-MS 1289 7 SR-XRF 20

120 50 PIXE 14

La (µg g-1)8.68 15 SIMS 138.73 10 ICP-MS 238.74 15 SIMS 68.79 10 SIMS 228.80 3 LA-ICP-MS 158.87 5 MIC-SSMS 29 30 SR-XRF 209.036 1 TIMS 4

La (µg g-1) (cont.)9.05 5 LA-ICP-MS 169.3 3 INAA 59.3 10 ICP-MS 249.3 5 LA-ICP-MS 12

Ce (µg g-1)21 10 SIMS 1322.3 10 ICP-MS 2322.9 10 SIMS 2223 15 SR-XRF 2023.2 15 SIMS 623.41 1 TIMS 423.5 5 LA-ICP-MS 1623.8 4 INAA 524 5 ICP-MS 2424.3 5 LA-ICP-MS 1224.7 5 MIC-SSMS 2

Pr (µg g-1)3.35 10 SIMS 223.37 5 MIC-SSMS 23.37 5 LA-ICP-MS 163.43 10 ICP-MS 233.48 4 LA-ICP-MS 153.5 5 ICP-MS 243.54 5 LA-ICP-MS 123.73 15 SIMS 6

Nd (µg g-1)15 15 SIMS 1315.9 10 ICP-MS 2316 30 SR-XRF 2016.5 5 LA-ICP-MS 1616.6 5 INAA 516.9 5 LA-ICP-MS 1217.0 3 MIC-SSMS 217.0 3 LA-ICP-MS 1517 5 ICP-MS 2417.01 1 TIMS 417.1 15 SIMS 617.3 10 SIMS 22

Sm (µg g-1)4.08 15 SIMS 134.47 10 ICP-MS 234.65 6 LA-ICP-MS 164.67 3 MIC-SSMS 24.803 1 TIMS 44.84 10 SIMS 224.85 15 SIMS 64.88 5 LA-ICP-MS 124.89 5 INAA 54.9 5 ICP-MS 244.91 5 LA-ICP-MS 15

< 7 - SR-XRF 20

Eu (µg g-1)1.62 6 LA-ICP-MS 161.63 4 INAA 51.64 10 ICP-MS 231.66 3 MIC-SSMS 2

Uncert. Method LC

9 6

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

Table 2.2 (continued).Analytical results for MPI-DING reference glass ML3B-G (Mauna Loa tholeiitic basalt glass)

Eu (µg g-1) (cont.)

1.68 6 LA-ICP-MS 15

1.7 5 ICP-MS 24

1.707 1 TIMS 4

1.71 15 SIMS 13

1.73 6 LA-ICP-MS 12

1.74 15 SIMS 6

Gd (µg g-1)

4.92 5 LA-ICP-MS 12

5.08 15 SIMS 6

5.10 7 MIC-SSMS 2

5.12 10 SIMS 22

5.13 6 LA-ICP-MS 16

5.26 10 ICP-MS 23

5.29 6 LA-ICP-MS 15

5.392 1 TIMS 4

5.8 5 ICP-MS 24

8 75 SR-XRF 20

Tb (µg g-1)

0.77 3 LA-ICP-MS 16

0.79 15 SIMS 6

0.81 6 LA-ICP-MS 12

0.811 10 ICP-MS 23

0.815 4 INAA 5

0.819 10 SIMS 22

0.83 7 MIC-SSMS 2

0.87 3 LA-ICP-MS 15

0.89 10 ICP-MS 24

Dy (µg g-1)

4.44 15 SIMS 13

4.62 5 MIC-SSMS 2

4.68 10 ICP-MS 23

4.71 5 LA-ICP-MS 15

4.82 10 SIMS 22

4.85 5 LA-ICP-MS 12

4.87 15 SIMS 6

4.945 1 TIMS 4

5.04 4 INAA 5

5.1 10 ICP-MS 24

Ho (µg g-1)

0.882 10 SIMS 22

0.886 10 ICP-MS 23

0.90 5 LA-ICP-MS 12

0.90 5 LA-ICP-MS 16

0.91 7 INAA 5

0.91 15 SIMS 6

0.922 5 MIC-SSMS 2

0.93 6 LA-ICP-MS 15

0.96 10 ICP-MS 24

Er (µg g-1)2.18 15 SIMS 13

2.38 10 ICP-MS 23

2.40 15 SIMS 6

2.44 5 LA-ICP-MS 12

2.44 6 LA-ICP-MS 15

2.45 5 MIC-SSMS 2

2.508 1 TIMS 4

2.6 10 ICP-MS 24

2.74 10 SIMS 22

Tm (µg g-1)0.315 10 ICP-MS 23

0.32 8 LA-ICP-MS 12

0.32 7 LA-ICP-MS 16

0.33 5 LA-ICP-MS 15

0.33 15 SIMS 6

0.34 7 ICP-MS 24

Yb (µg g-1)1.94 10 ICP-MS 23

1.96 8 LA-ICP-MS 12

2.00 7 LA-ICP-MS 15

2.04 15 SIMS 13

2.041 1 TIMS 4

2.05 6 LA-ICP-MS 16

2.07 15 SIMS 6

2.1 10 ICP-MS 24

2.12 5 INAA 5

2.13 10 SIMS 22

2.18 3 MIC-SSMS 2

Lu (µg g-1)0.26 6 LA-ICP-MS 15

0.27 7 MIC-SSMS 2

0.281 10 ICP-MS 23

0.2867 1 TIMS 4

0.29 6 LA-ICP-MS 12

0.29 6 LA-ICP-MS 16

0.29 15 SIMS 6

0.293 10 SIMS 22

0.30 15 ICP-MS 24

0.306 7 INAA 5

Hf (µg g-1)3.1 6 LA-ICP-MS 16

3.15 20 SIMS 6

3.19 5 LA-ICP-MS 15

3.25 3 MC-ICP-MS 26

3.34 10 SIMS 22

3.40 10 ICP-MS 23

3.44 6 LA-ICP-MS 12

3.5 10 ICP-MS 24

3.51 4 INAA 5

Ta (µg g-1)

0.525 3 MC-ICP-MS 26

0.53 10 LA-ICP-MS 15

0.533 7 LA-ICP-MS 16

0.56 15 ICP-MS 24

0.563 5 INAA 5

0.58 7 LA-ICP-MS 12

W (µg g-1)

< 0.3 - INAA 5

Ir (µg g-1)

0.0276 7 INAA 5

Pt (µg g-1)

6.81 7 INAA 5

10 25 PIXE 14

Au (µg g-1)

0.0674 5 INAA 5

Hg (µg g-1)

< 0.3 - INAA 5

Pb (µg g-1)

1.4 10 ICP-MS 24

1.40 5 MIC-SSMS 2

1.44 5 LA-ICP-MS 16

1.56 14 LA-ICP-MS 15

12 20 PIXE 14

Bi (µg g-1)

0.010 20 MIC-SSMS 2

Th (µg g-1)

0.45 20 SIMS 13

0.49 4 LA-ICP-MS 15

0.53 10 ICP-MS 23

0.54 6 LA-ICP-MS 16

0.55 7 INAA 5

0.56 6 LA-ICP-MS 12

0.56 10 ICP-MS 24

0.58 6 MIC-SSMS 2

U (µg g-1)

0.39 5 LA-ICP-MS 15

0.406 4 MIC-SSMS 2

0.419 10 ICP-MS 23

0.44 9 LA-ICP-MS 16

0.46 15 ICP-MS 24

0.47 15 INAA 6

0.52 9 LA-ICP-MS 12

Uncert. Method LC Uncert. Method LC Uncert. Method LC

Analytical uncertainties are given as relative standard deviation in percent (see text).

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

9 7

Table 2.3.Analytical results for MPI-DING reference glass StHs6/80-G (St. Helens andesitic ash glass)

H2O (% m/m)< 0.1 - SIMS 13

Li (µg g-1)2.09 10 SIMS 22

18.6 10 SIMS 1319 10 ICP-MS 24

Be (µg g-1)1.36 15 SIMS 13

B (µg g-1)12.5 15 SIMS 13

Na2O (% m/m)4.17 2 EPMA 74.45 3 INAA 84.47 2 EPMA 224.56 3 INAA 54.57 5 EPMA 254.60 2 EPMA 94.62 4 XRF 74.72 4 XRF 11

MgO (% m/m)1.82 8 PIXE 141.90 2 EPMA 71.96 2 EPMA 91.96 2 EPMA 222.00 2 XRF 112.01 1 EPMA 252.01 2 XRF 72.02 2 EPMA 27

Al2O3 (% m/m)16.3 6 PIXE 1417.2 1 EPMA 717.4 1 EPMA 2217.5 1 XRF 717.7 1 EPMA 2517.8 1 XRF 1117.9 1 EPMA 2718.2 1 EPMA 9

SiO2 (% m/m)62.9 6 PIXE 1463.1 1 EPMA 763.3 1 EPMA 2263.6 1 XRF 763.7 1 EPMA 964.0 1 EPMA 2564.3 1 XRF 1165.0 1 EPMA 27

P2O5 (% m/m)0.06 15 EPMA 70.16 5 XRF 70.16 6 XRF 110.18 12 PIXE 140.19 15 LIMS 3

Uncert. Method LC Uncert. Method LC Uncert. Method LC

Cr (µg g-1)11 40 PIXE 1414 10 LIMS 314 25 XRF 1115 5 INAA 515.2 10 SIMS 2215.9 15 SIMS 617.0 3 LA-ICP-MS 1529 15 SIMS 1330 20 INAA 860 90 SR-XRF 20

MnO (% m/m)0.0576 10 SIMS 220.07 30 EPMA 250.0704 3 INAA 50.0721 6 PIXE 140.0736 10 INAA 80.075 7 XRF 110.078 30 EPMA 90.078 7 LA-ICP-MS 160.078 50 EPMA 220.080 7 XRF 70.0865 5 LIMS 30.093 6 SR-XRF 200.096 20 EPMA 7

FeO (% m/m)4.19 6 PIXE 144.22 3 EPMA 94.24 5 INAA 84.27 3 INAA 54.31 3 EPMA 224.34 2 XRF 74.41 3 EPMA 74.44 2 EPMA 274.47 2 EPMA 254.63 2 XRF 11

Co (µg g-1)8.43 10 SIMS 22

12.6 3 INAA 812.7 3 INAA 513 10 ICP-MS 2415 7 LIMS 316.8 6 LA-ICP-MS 1528 8 XRF 11

Ni (µg g-1)16.4 8 PIXE 1422 10 ICP-MS 2423 20 INAA 523 10 LIMS 336 20 XRF 1141.4 6 LA-ICP-MS 15

< 100 - INAA 8

Cu (µg g-1)39.5 6 PIXE 1440 10 ICP-MS 2441 10 LIMS 3

Cl (µg g-1)240 12 PIXE 14290 15 LIMS 3

< 650 - INAA 5

K2O (% m/m)1.2 10 SR-XRF 201.21 3 INAA 51.28 3 XRF 71.28 6 PIXE 141.29 3 INAA 81.29 2 EPMA 221.29 3 EPMA 251.302 1 TIMS 41.31 3 XRF 111.34 2 EPMA 7

CaO (% m/m)4.48 5 SR-XRF 204.9 10 INAA 85.12 5 INAA 55.12 1 EPMA 255.18 6 PIXE 145.22 1 EPMA 75.31 3 XRF 75.31 2 EPMA 225.39 2 EPMA 95.42 3 XRF 115.50 2 EPMA 27

Sc (µg g-1)9.6 3 INAA 59.6 10 ICP-MS 249.9 3 INAA 8

11.3 5 LA-ICP-MS 1511.5 10 SIMS 2212.0 7 LIMS 3

TiO2 (% m/m)0.63 13 SR-XRF 200.652 10 SIMS 130.654 6 PIXE 140.675 10 SIMS 220.678 2 EPMA 90.680 3 XRF 70.685 15 SIMS 60.694 5 EPMA 220.695 3 XRF 110.710 1 EPMA 70.77 6 LA-ICP-MS 160.81 7 LA-ICP-MS 17

< 0.83 - INAA 8< 1.2 - INAA 5

V (µg g-1)76 15 SIMS 693.0 5 LIMS 394.9 10 SIMS 22

120 13 PIXE 14352 4 XRF 11

9 8

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

Table 2.3 (continued).Analytical results for MPI-DING reference glass StHs6/80-G (St. Helens andesitic ash glass)

Uncert. Method LC Uncert. Method LC Uncert. Method LC

Cu (µg g-1) (cont.)68 9 LA-ICP-MS 15

< 200 - INAA 8< 400 - INAA 5

Zn (µg g-1)59 10 INAA 560 13 SR-XRF 2064 10 INAA 864 10 ICP-MS 2464.4 6 PIXE 1471 5 XRF 1173 10 LIMS 3

Ga (µg g-1)17 15 INAA 818 7 INAA 520 45 SR-XRF 2021 10 LIMS 321 10 ICP-MS 2421.3 6 PIXE 1429.8 6 LA-ICP-MS 15

Ge (µg g-1)1.4 15 PIXE 141.4 30 LIMS 3

As (µg g-1)2 20 INAA 82.2 7 INAA 52.8 15 LIMS 33.3 11 PIXE 14

Se (µg g-1)< 0.2 - INAA 8< 0.7 - INAA 5

Br (µg g-1)0.7 30 PIXE 140.74 10 INAA 50.9 30 INAA 8

Rb (µg g-1)23 7 LIMS 327.7 10 ICP-MS 2328.8 10 INAA 829 10 ICP-MS 2429.2 5 INAA 529.54 1 TIMS 431 13 SR-XRF 2031.0 6 PIXE 1431.2 6 LA-ICP-MS 1733.8 7 LA-ICP-MS 1234.8 6 LA-ICP-MS 1643 7 LA-ICP-MS 15

Sr (µg g-1)458 10 SIMS 13466 4 XRF 11469 5 LA-ICP-MS 17472 4 SR-XRF 20

Sr (µg g-1) (cont.)474 5 LA-ICP-MS 16480 7 INAA 5480 7 LIMS 3482 10 ICP-MS 23482 5 ICP-MS 24491 10 SIMS 22492 5 LA-ICP-MS 12500 10 INAA 8503 15 SIMS 6505.8 1 TIMS 4540 6 PIXE 14

Y (µg g-1)9.9 15 SIMS 13

10.5 15 SIMS 610.6 5 MIC-SSMS 210.8 5 LA-ICP-MS 1210.9 6 LA-ICP-MS 1611 7 LIMS 311.4 10 ICP-MS 2311.4 3 LA-ICP-MS 1511.7 6 LA-ICP-MS 1712.6 10 SIMS 2213.1 8 PIXE 14

Zr (µg g-1)104 10 SIMS 13110 5 LA-ICP-MS 16111 5 LA-ICP-MS 12115 6 LA-ICP-MS 17116 15 SIMS 6118 10 ICP-MS 24119 3 LA-ICP-MS 15120 15 INAA 5120 5 SR-XRF 20120 7 LIMS 3123 10 SIMS 22124 3 MIC-SSMS 2125 3 MC-ICP-MS 26129 10 ICP-MS 23130 30 INAA 8131 6 PIXE 14

Nb (µg g-1)4 50 SR-XRF 205.8 7 LIMS 36.45 6 LA-ICP-MS 176.6 15 SIMS 136.6 10 ICP-MS 246.62 10 MC-ICP-MS 266.63 5 LA-ICP-MS 167.40 9 PIXE 147.4 3 LA-ICP-MS 157.43 15 SIMS 67.54 5 LA-ICP-MS 127.77 10 SIMS 228.06 5 MIC-SSMS 2

Mo (µg g-1)1.8 20 INAA 51.8 10 ICP-MS 243 30 INAA 8

Pd (µg g-1)< 6 - INAA 8

Ag (µg g-1)< 0.35 - INAA 5< 0.5 - INAA 8

Cd (µg g-1)< 0.4 - INAA 8

In (µg g-1)< 0.4 - INAA 5

Sn (µg g-1)0.73 15 LIMS 30.8 10 LA-ICP-MS 151.0 10 ICP-MS 24

< 15 - INAA 8

Sb (µg g-1)0.2 15 INAA 50.2 7 ICP-MS 240.23 10 INAA 8

Cs (µg g-1)1.2 15 LIMS 31.63 10 ICP-MS 231.69 6 LA-ICP-MS 171.7 10 ICP-MS 241.89 15 SIMS 61.91 15 LA-ICP-MS 151.91 5 INAA 52.0 10 INAA 82.05 9 LA-ICP-MS 122.22 6 LA-ICP-MS 16

Ba (µg g-1)240 10 LIMS 3260 25 PIXE 14283 10 SIMS 13287 5 LA-ICP-MS 17293 6 LA-ICP-MS 16297 3 SR-XRF 20297 3 LA-ICP-MS 15300 5 INAA 5300 5 INAA 8302 10 ICP-MS 23304 15 SIMS 6309.9 1 TIMS 4312 10 SIMS 22338 5 LA-ICP-MS 12

La (µg g-1)9.5 10 LIMS 3

11 25 SR-XRF 2011.0 5 MIC-SSMS 211 15 SIMS 611.2 5 LA-ICP-MS 1511.7 3 INAA 511.7 6 LA-ICP-MS 1611.9 10 SIMS 22

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

9 9

Uncert. Method LC Uncert. Method LC Uncert. Method LC

Table 2.3 (continued).Analytical results for MPI-DING reference glass StHs6/80-G (St. Helens andesitic ash glass)

La (µg g-1) (cont.)11.9 10 ICP-MS 2312 10 ICP-MS 2412.1 5 LA-ICP-MS 1712.4 5 LA-ICP-MS 1212.4 5 INAA 812.45 1 TIMS 412.6 10 SIMS 13

Ce (µg g-1)21 10 LIMS 323 13 SR-XRF 2023.4 5 MIC-SSMS 223.9 15 SIMS 625.0 5 LA-ICP-MS 1725.2 10 ICP-MS 2325.5 6 LA-ICP-MS 1625.5 10 SIMS 1325.5 10 SIMS 2226.1 5 INAA 526.50 1 TIMS 427 5 ICP-MS 2428.6 5 LA-ICP-MS 1233 20 INAA 8

Pr (µg g-1)2.4 10 LIMS 33.03 5 LA-ICP-MS 173.04 5 MIC-SSMS 23.06 6 LA-ICP-MS 163.11 10 SIMS 223.17 3 LA-ICP-MS 153.18 15 SIMS 63.23 10 ICP-MS 233.3 5 ICP-MS 243.4 5 LA-ICP-MS 12

Nd (µg g-1)8.2 10 LIMS 3

11 10 INAA 512.3 5 LA-ICP-MS 1512.3 15 SIMS 612.4 3 MIC-SSMS 212.5 5 LA-ICP-MS 1612.6 10 ICP-MS 2312.6 10 SIMS 1312.6 10 SIMS 2212.7 5 LA-ICP-MS 1713 5 ICP-MS 2413.3 5 LA-ICP-MS 1213.50 1 TIMS 414 20 SR-XRF 2015 20 INAA 8

Sm (µg g-1)2.0 10 LIMS 32.5 15 SIMS 132.63 15 SIMS 62.68 10 ICP-MS 232.70 5 LA-ICP-MS 15

Sm (µg g-1) (cont.)2.70 7 LA-ICP-MS 162.71 7 LA-ICP-MS 172.71 3 MIC-SSMS 22.77 10 SIMS 222.82 3 INAA 52.897 1 TIMS 42.9 5 INAA 82.93 6 LA-ICP-MS 123.0 10 ICP-MS 24

Eu (µg g-1)0.75 15 LIMS 30.8 25 INAA 80.82 15 SIMS 60.90 6 LA-ICP-MS 160.93 15 SIMS 130.93 6 LA-ICP-MS 170.944 4 INAA 50.951 10 ICP-MS 230.97 5 LA-ICP-MS 150.981 5 MIC-SSMS 20.987 1 TIMS 41.01 5 LA-ICP-MS 121.08 10 ICP-MS 24

Gd (µg g-1)2.33 6 LA-ICP-MS 152.4 20 LIMS 32.40 15 SIMS 62.41 6 LA-ICP-MS 162.47 5 LA-ICP-MS 122.50 5 MIC-SSMS 22.57 5 LA-ICP-MS 172.61 10 SIMS 222.66 10 ICP-MS 232.729 1 TIMS 43.0 15 INAA 53.1 5 ICP-MS 24

Tb (µg g-1)0.34 6 LA-ICP-MS 160.35 30 INAA 80.35 15 SIMS 60.36 6 LA-ICP-MS 170.37 5 LA-ICP-MS 150.37 15 LIMS 30.376 10 SIMS 220.379 10 ICP-MS 230.38 6 LA-ICP-MS 120.39 7 INAA 50.43 10 ICP-MS 24

Dy (µg g-1)1.6 15 LIMS 31.89 15 SIMS 131.94 5 LA-ICP-MS 152.08 15 SIMS 62.11 10 SIMS 222.17 10 ICP-MS 23

Dy (µg g-1) (cont.)2.2 6 LA-ICP-MS 122.28 6 LA-ICP-MS 172.3 10 ICP-MS 242.316 1 TIMS 42.4 7 INAA 52.41 5 MIC-SSMS 2

Ho (µg g-1)0.38 5 MIC-SSMS 20.39 5 LA-ICP-MS 150.41 7 INAA 50.41 7 LA-ICP-MS 160.421 10 SIMS 220.423 10 ICP-MS 230.43 5 LA-ICP-MS 120.43 15 SIMS 60.44 6 LA-ICP-MS 170.44 10 ICP-MS 240.7 30 INAA 8

Er (µg g-1)0.954 5 MIC-SSMS 21.04 4 LA-ICP-MS 151.09 15 SIMS 131.16 10 SIMS 221.19 10 ICP-MS 231.2 15 LIMS 31.21 6 LA-ICP-MS 121.21 6 LA-ICP-MS 171.25 15 SIMS 61.262 1 TIMS 41.3 10 ICP-MS 24

Tm (µg g-1)0.15 10 LA-ICP-MS 160.16 8 LA-ICP-MS 150.16 15 SIMS 60.17 8 LA-ICP-MS 120.17 10 ICP-MS 230.18 6 LA-ICP-MS 170.18 10 ICP-MS 240.2 25 LIMS 3

< 0.8 - INAA 8

Yb (µg g-1)1.01 5 LA-ICP-MS 151.04 15 SIMS 131.08 8 LA-ICP-MS 161.09 15 SIMS 61.1 7 LA-ICP-MS 121.1 15 LIMS 31.1 5 INAA 81.1 10 ICP-MS 241.11 10 ICP-MS 231.12 10 SIMS 221.13 3 MIC-SSMS 21.14 7 INAA 51.170 1 TIMS 41.18 6 LA-ICP-MS 17

1 0 0

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

Table 2.3 (continued).Analytical results for MPI-DING reference glass StHs6/80-G (St. Helens andesitic ash glass)

Lu (µg g-1)0.13 10 LA-ICP-MS 150.16 7 MIC-SSMS 20.16 10 LA-ICP-MS 160.16 15 SIMS 60.17 5 INAA 50.17 8 LA-ICP-MS 120.17 5 INAA 80.17 10 ICP-MS 230.17 6 LA-ICP-MS 170.17 15 ICP-MS 240.1741 1 TIMS 40.177 10 SIMS 220.2 25 LIMS 3

Hf (µg g-1)2.6 25 LA-ICP-MS 152.7 15 LIMS 32.81 6 LA-ICP-MS 163.07 5 LA-ICP-MS 173.1 10 SIMS 223.14 3 MC-ICP-MS 263.17 15 SIMS 63.2 10 ICP-MS 243.25 4 INAA 53.28 10 ICP-MS 233.3 5 INAA 83.32 6 LA-ICP-MS 125 50 PIXE 14

Ta (µg g-1)0.39 5 LA-ICP-MS 150.400 3 MC-ICP-MS 26

Ta (µg g-1) (cont.)0.41 6 LA-ICP-MS 160.41 15 ICP-MS 240.42 15 INAA 80.422 7 INAA 50.43 8 LA-ICP-MS 170.46 6 LA-ICP-MS 12

W (µg g-1)< 0.5 - INAA 8< 1.5 - INAA 5

Re (µg g-1)< 0.1 - INAA 8

Os (µg g-1)< 1 - INAA 8

Ir (µg g-1)0.02 10 INAA 80.0209 5 INAA 5

Pt (µg g-1)< 1 15 INAA 8

Au (µg g-1)0.042 5 INAA 80.0426 4 INAA 5

Hg (µg g-1)< 0.2 - INAA 5

Pb (µg g-1)9 30 LIMS 39.4 5 ICP-MS 249.8 7 LA-ICP-MS 16

10.7 7 LA-ICP-MS 1710.9 9 PIXE 14

Bi (µg g-1)0.13 20 MIC-SSMS 2

Th (µg g-1)1.90 4 LA-ICP-MS 152.14 20 INAA 82.15 6 LA-ICP-MS 162.18 7 MIC-SSMS 22.21 15 SIMS 132.26 4 INAA 52.28 10 ICP-MS 232.3 10 ICP-MS 242.32 6 LA-ICP-MS 172.42 5 LA-ICP-MS 124.5 25 PIXE 14

U (µg g-1)0.9 20 INAA 80.945 10 ICP-MS 230.97 9 LA-ICP-MS 170.99 10 ICP-MS 241 7 INAA 51.01 5 LA-ICP-MS 151.03 6 LA-ICP-MS 161.14 6 LA-ICP-MS 121.15 5 MIC-SSMS 2

MgO (% m/m)25.3 1 EPMA 725.6 1 EPMA 2225.7 1 EPMA 2726.0 4 EPMA 926.0 2 XRF 726.2 2 XRF 11

Al2O3 (% m/m)9.65 1 EPMA 79.74 1 EPMA 279.75 2 XRF 7

10.1 3 EPMA 910.1 2 XRF 11

SiO2 (% m/m)45.1 2 EPMA 745.8 1 EPMA 22

SiO2 (% m/m) (cont.)46.0 1 XRF 746.0 1 EPMA 946.7 1 EPMA 2747.2 1 XRF 11

P2O5 (% m/m)0.025 35 XRF 110.03 30 EPMA 70.03 30 XRF 7

Cl (µg g-1)< 370 - INAA 5

K2O (% m/m)0.02 50 EPMA 90.03 40 EPMA 220.0337 7 INAA 5

Analytical uncertainties are given as relative standard deviation in percent (see text).

H2O (% m/m)< 0.1 - SIMS 13

Li (µg g-1)7.3 15 SIMS 13

10 10 ICP-MS 24

Be (µg g-1)0.04 20 SIMS 13

B (µg g-1)21.8 10 SIMS 13

Na2O (% m/m)0.52 10 XRF 70.55 10 EPMA 70.556 3 INAA 50.568 11 XRF 110.59 5 EPMA 9

Table 2.4.Analytical results for MPI-DING reference glass GOR128-G (Gorgona Island komatiite glass)

Uncert. Method LC

Uncert. Method LC Uncert. Method LC Uncert. Method LC

Uncert. Method LC Uncert. Method LC

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

1 0 1

K2O (% m/m) (cont.)0.0346 1 TIMS 40.037 30 XRF 110.04 20 XRF 70.05 45 EPMA 7

CaO (% m/m)5.89 5 INAA 56.03 3 EPMA 76.18 2 XRF 76.21 3 EPMA 96.22 1 EPMA 226.30 1 EPMA 276.34 2 XRF 11

Sc (µg g-1)30 10 ICP-MS 2430.2 3 INAA 533.0 5 LA-ICP-MS 15

TiO2 (% m/m)0.266 5 EPMA 90.28 12 EPMA 70.280 5 XRF 70.283 10 SIMS 130.284 9 EPMA 220.285 5 XRF 11

V (µg g-1)170 5 XRF 11

Cr (µg g-1)2100 11 EPMA 72100 3 XRF 72100 3 INAA 52140 15 SIMS 132160 3 XRF 112270 8 EPMA 222420 9 LA-ICP-MS 15

MnO (% m/m)0.168 3 INAA 50.170 4 XRF 70.179 4 XRF 110.18 20 EPMA 70.185 20 EPMA 220.191 9 EPMA 9

FeO (% m/m)9.59 5 EPMA 99.63 3 INAA 59.67 1 EPMA 79.80 2 EPMA 229.83 2 XRF 79.93 2 EPMA 279.99 2 XRF 11

Co (µg g-1)73 4 XRF 1181 10 ICP-MS 2484.6 3 INAA 5

105 9 LA-ICP-MS 15

Table 2.4 (continued).Analytical results for MPI-DING reference glass GOR128-G (Gorgona Island komatiite glass)

Ni (µg g-1)1020 3 XRF 71090 3 XRF 111100 4 INAA 51630 10 LA-ICP-MS 15

Cu (µg g-1)57 10 ICP-MS 2493 10 LA-ICP-MS 15

< 100 - INAA 5

Zn (µg g-1)50 30 LA-ICP-MS 1572 10 ICP-MS 2475 10 INAA 576 5 XRF 11

Ga (µg g-1)8.28 7 INAA 59.0 11 LA-ICP-MS 159.1 10 ICP-MS 24

As (µg g-1)< 0.15 - INAA 5

Se (µg g-1)< 0.6 - INAA 5

Br (µg g-1)< 0.25 - INAA 5

Rb (µg g-1)0.373 1 TIMS 40.40 11 LA-ICP-MS 120.44 30 ICP-MS 240.46 10 ICP-MS 23

< 0.4 - LA-ICP-MS 15< 2.5 - INAA 5

Sr (µg g-1)28.6 10 SIMS 1329 10 ICP-MS 2429.5 6 LA-ICP-MS 1229.8 10 ICP-MS 2333.14 1 TIMS 434 20 XRF 11

< 100 - INAA 5

Y (µg g-1)10.0 5 MIC-SSMS 210.8 6 LA-ICP-MS 1211.6 10 ICP-MS 2311.9 5 LA-ICP-MS 1512.1 15 SIMS 13

Zr (µg g-1)9.14 6 LA-ICP-MS 129.8 10 ICP-MS 24

10.1 3 MC-ICP-MS 2610.3 15 SIMS 1310.4 3 MIC-SSMS 2

Zr (µg g-1) (cont.)10.6 5 LA-ICP-MS 1510.8 10 ICP-MS 22

< 50 - INAA 5

Nb (µg g-1)0.09 25 LA-ICP-MS 150.101 7 MIC-SSMS 20.106 10 MC-ICP-MS 260.128 12 LA-ICP-MS 120.13 30 ICP-MS 24

< 0.14 - SIMS 13

Mo (µg g-1)0.60 20 ICP-MS 24

< 0.7 - INAA 5

Ag (µg g-1)< 0.5 - INAA 5

In (µg g-1)< 0.15 - INAA 5

Sn (µg g-1)0.22 20 ICP-MS 242 60 LA-ICP-MS 15

Sb (µg g-1)0.02 50 ICP-MS 24

< 0.03 - INAA 5

Cs (µg g-1)0.218 10 ICP-MS 220.24 20 LA-ICP-MS 120.25 20 ICP-MS 240.29 15 INAA 50.35 30 LA-ICP-MS 15

Ba (µg g-1)1.0 15 SIMS 131.04 10 ICP-MS 231.091 1 TIMS 41.10 8 LA-ICP-MS 151.21 15 LA-ICP-MS 12

< 20 - INAA 5

La (µg g-1)0.11 20 LA-ICP-MS 150.11 10 INAA 50.119 10 ICP-MS 230.12 9 LA-ICP-MS 120.1288 1 TIMS 40.14 20 ICP-MS 240.14 20 SIMS 13

Ce (µg g-1)0.4 20 SIMS 130.404 10 ICP-MS 230.46 6 LA-ICP-MS 120.46 20 ICP-MS 240.4874 1 TIMS 40.530 5 MIC-SSMS 2

< 0.5 - INAA 5

Uncert. Method LC Uncert. Method LC Uncert. Method LC

1 0 2

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

Table 2.4 (continued).Analytical results for MPI-DING reference glass GOR128-G (Gorgona Island komatiite glass)

Uncert. Method LC Uncert. Method LC Uncert. Method LC

Pr (µg g-1)

0.099 10 ICP-MS 23

0.10 12 LA-ICP-MS 15

0.10 7 LA-ICP-MS 12

0.104 5 MIC-SSMS 2

0.12 20 ICP-MS 24

Nd (µg g-1)

< 0.6 - INAA 5

0.712 10 ICP-MS 23

0.75 7 LA-ICP-MS 12

0.76 10 LA-ICP-MS 15

0.789 3 MIC-SSMS 2

0.79 15 SIMS 13

0.80 20 ICP-MS 24

0.8814 1 TIMS 4

Sm (µg g-1)

0.486 10 ICP-MS 23

0.498 3 INAA 5

0.50 10 LA-ICP-MS 15

0.53 8 LA-ICP-MS 12

0.53 15 SIMS 13

0.59 20 ICP-MS 24

0.6036 1 TIMS 4

0.618 3 MIC-SSMS 2

Eu (µg g-1)

0.241 5 INAA 5

0.249 5 MIC-SSMS 2

0.252 15 ICP-MS 23

0.26 9 LA-ICP-MS 12

0.28 6 LA-ICP-MS 15

0.28 20 ICP-MS 24

0.29 20 SIMS 13

0.3061 1 TIMS 4

Gd (µg g-1)

1.13 7 LA-ICP-MS 15

1.16 6 LA-ICP-MS 12

1.18 10 ICP-MS 23

1.20 7 MIC-SSMS 2

1.2 10 ICP-MS 24

1.399 1 TIMS 4

1.8 25 INAA 5

Tb (µg g-1)

0.21 7 MIC-SSMS 2

0.24 6 LA-ICP-MS 12

0.248 10 ICP-MS 23

0.26 10 INAA 5

0.27 20 ICP-MS 24

0.27 9 LA-ICP-MS 15

Dy (µg g-1)

1.86 10 ICP-MS 23

1.89 8 LA-ICP-MS 12

1.89 10 SIMS 13

1.92 5 INAA 5

1.93 3 MIC-SSMS 2

1.95 6 LA-ICP-MS 15

2.0 10 ICP-MS 24

2.301 1 TIMS 4

Ho (µg g-1)

0.407 5 MIC-SSMS 2

0.429 10 ICP-MS 23

0.44 5 LA-ICP-MS 12

0.44 4 LA-ICP-MS 15

0.45 10 ICP-MS 24

0.46 7 INAA 5

Er (µg g-1)

1.17 15 SIMS 13

1.33 11 LA-ICP-MS 15

1.33 10 ICP-MS 23

1.34 6 LA-ICP-MS 12

1.43 7 MIC-SSMS 2

1.5 10 ICP-MS 24

1.668 1 TIMS 4

Tm (µg g-1)

0.18 15 INAA 5

0.199 10 ICP-MS 23

0.20 7 LA-ICP-MS 12

0.21 10 ICP-MS 24

0.21 12 LA-ICP-MS 15

Yb (µg g-1)

1.15 15 SIMS 13

1.3 7 LA-ICP-MS 12

1.30 10 ICP-MS 23

1.33 7 LA-ICP-MS 15

1.34 4 INAA 5

1.4 10 ICP-MS 24

1.629 1 TIMS 4

1.65 3 MIC-SSMS 2

Lu (µg g-1)

0.18 8 LA-ICP-MS 15

0.194 10 ICP-MS 23

0.20 7 LA-ICP-MS 12

0.21 7 INAA 5

0.21 15 ICP-MS 24

0.22 7 MIC-SSMS 2

0.2504 1 TIMS 4

Hf (µg g-1)

0.326 10 ICP-MS 23

0.34 5 LA-ICP-MS 15

0.344 7 INAA 5

0.344 3 MC-ICP-MS 26

0.37 9 LA-ICP-MS 12

0.38 20 ICP-MS 24

Ta (µg g-1)

0.02 20 LA-ICP-MS 12

0.0232 5 MC-ICP-MS 26

0.04 30 ICP-MS 24

< 0.01 - LA-ICP-MS 15

< 0.03 - INAA 5

W (µg g-1)

14.3 3 INAA 5

Ir (µg g-1)

0.0632 4 INAA 5

Pt (µg g-1)

9.6 7 INAA 5

Au (µg g-1)

0.0279 4 INAA 5

Hg (µg g-1)

< 0.2 - INAA 5

Pb (µg g-1)

0.34 7 MIC-SSMS 2

0.5 15 ICP-MS 24

Bi (µg g-1)

0.0009 20 MIC-SSMS 2

Th (µg g-1)

0.0060 7 MIC-SSMS 2

0.008 14 LA-ICP-MS 12

0.012 25 SIMS 13

< 0.004 - LA-ICP-MS 15

< 0.02 - ICP-MS 24

< 0.02 - ICP-MS 23

< 0.05 - INAA 5

U (µg g-1)

0.012 9 LA-ICP-MS 12

0.012 10 ICP-MS 23

0.014 5 MIC-SSMS 2

0.014 9 LA-ICP-MS 15

0.02 30 ICP-MS 24

< 0.05 - INAA 5

Analytical uncertainties are given as relative standard deviation in percent (see text).

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

1 0 3

Uncert. Method LC Uncert. Method LC Uncert. Method LC

Table 2.5.Analytical results for MPI-DING reference glass GOR132-G (Gorgona Island komatiite glass)

H2O (% m/m)< 0.1 - SIMS 13

Li (µg g-1)6.7 15 SIMS 139.1 10 ICP-MS 24

Be (µg g-1)0.04 20 SIMS 13

B (µg g-1)17.8 10 SIMS 13

Na2O (% m/m)0.755 3 INAA 80.77 7 XRF 70.79 5 EPMA 70.799 3 INAA 50.83 8 XRF 110.841 6 EPMA 9

MgO (% m/m)22.1 1 EPMA 722.2 1 EPMA 922.4 2 XRF 722.4 1 EPMA 2222.4 1 EPMA 2722.7 2 XRF 11

Al2O3 (% m/m)10.6 1 EPMA 710.8 1 EPMA 2710.9 1 XRF 710.9 1 EPMA 911.3 1 XRF 11

SiO2 (% m/m)44.6 1 EPMA 745.2 1 EPMA 945.3 1 EPMA 2245.4 1 XRF 745.8 1 EPMA 2746.8 1 XRF 11

P2O5 (% m/m)0.024 30 XRF 110.04 30 EPMA 70.05 30 XRF 7

Cl (µg g-1)< 300 - INAA 5

K2O (% m/m)0.028 15 INAA 80.03 100 EPMA 70.03 20 XRF 70.03 80 EPMA 220.0313 7 INAA 50.0314 1 TIMS 40.04 30 XRF 11

CaO (% m/m)7.84 10 INAA 88.37 1 EPMA 78.42 2 EPMA 228.46 1 EPMA 98.47 2 XRF 78.48 5 INAA 58.56 1 EPMA 278.73 2 XRF 11

Sc (µg g-1)34 3 INAA 834 10 ICP-MS 2435.7 3 INAA 5

TiO2 (% m/m)0.258 2 EPMA 90.259 5 XRF 110.295 20 EPMA 220.297 15 SIMS 60.30 5 EPMA 70.30 5 XRF 70.302 10 SIMS 130.34 5 LA-ICP-MS 160.367 25 INAA 8

< 0.8 - INAA 5

V (µg g-1)188 6 XRF 11190 15 SIMS 6

Cr (µg g-1)2240 15 SIMS 132300 5 INAA 82350 15 SIMS 62440 3 INAA 52460 2 XRF 112500 2 XRF 72570 18 EPMA 222700 10 EPMA 7

MnO (% m/m)0.14 5 INAA 80.149 3 INAA 50.150 4 XRF 70.155 4 XRF 110.157 10 EPMA 90.16 50 EPMA 220.16 6 LA-ICP-MS 160.18 20 EPMA 7

FeO (% m/m)9.4 10 INAA 8

10.0 1 EPMA 910.1 2 EPMA 710.1 3 INAA 510.1 1 EPMA 2710.2 2 XRF 710.3 2 XRF 1110.4 4 EPMA 22

Co (µg g-1)79 3 XRF 1189 3 INAA 891.9 3 INAA 593 10 ICP-MS 24

Ni (µg g-1)1120 5 XRF 111150 5 INAA 81200 5 XRF 71200 4 INAA 5

Cu (µg g-1)190 10 ICP-MS 24200 40 INAA 8

< 300 - INAA 5

Zn (µg g-1)67 5 XRF 1169 10 ICP-MS 2473 20 INAA 889 15 INAA 5

Ga (µg g-1)10.6 10 INAA 810.8 5 INAA 511 10 ICP-MS 24

As (µg g-1)< 0.1 - INAA 5< 0.5 - INAA 8

Se (µg g-1)< 0.7 - INAA 5< 1 - INAA 8

Br (µg g-1)< 0.2 - INAA 5< 0.3 - INAA 8

Rb (µg g-1)2.03 10 ICP-MS 232.077 1 TIMS 42.1 15 ICP-MS 242.19 10 LA-ICP-MS 122.2 30 INAA 82.23 9 LA-ICP-MS 16

< 2.5 - INAA 5

Sr (µg g-1)14.9 5 LA-ICP-MS 1614.9 10 ICP-MS 2315 15 ICP-MS 2415 10 SIMS 1315.4 15 SIMS 615.7 5 LA-ICP-MS 1218.04 1 TIMS 424 25 XRF 11

< 100 - INAA 8< 120 - INAA 5

1 0 4

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

Table 2.5 (continued).Analytical results for MPI-DING reference glass GOR132-G (Gorgona Island komatiite glass)

Uncert. Method LC Uncert. Method LC Uncert. Method LC

Y (µg g-1)10.6 7 MIC-SSMS 212.8 10 ICP-MS 2312.9 3 LA-ICP-MS 1213.0 5 LA-ICP-MS 1613.4 15 SIMS 613.6 15 SIMS 13

Zr (µg g-1)9.41 5 LA-ICP-MS 169.79 6 LA-ICP-MS 12

10 10 ICP-MS 2410.2 3 MC-ICP-MS 2610.6 15 SIMS 1310.6 15 SIMS 610.8 10 ICP-MS 2311.0 3 MIC-SSMS 2

< 20 - INAA 8< 50 - INAA 5

Nb (µg g-1)0.05 25 LA-ICP-MS 160.072 7 MIC-SSMS 20.072 10 MC-ICP-MS 260.09 30 SIMS 60.1 30 ICP-MS 240.15 20 LA-ICP-MS 12

< 0.13 - SIMS 13

Mo (µg g-1)30.2 7 INAA 532 10 ICP-MS 2432 10 INAA 8

Ag (µg g-1)< 1 - INAA 8

Cd (µg g-1)< 5 - INAA 8

Sn (µg g-1)0.30 20 ICP-MS 24

Sb (µg g-1)0.06 50 ICP-MS 240.11 20 INAA 8

< 0.12 - INAA 5

Cs (µg g-1)7.22 10 ICP-MS 237.7 10 ICP-MS 247.81 10 LA-ICP-MS 128.5 5 INAA 88.61 4 INAA 58.62 6 LA-ICP-MS 168.86 15 SIMS 6

Ba (µg g-1)0.72 10 ICP-MS 230.76 7 LA-ICP-MS 160.81 20 SIMS 13

Ba (µg g-1) (cont.)0.85 15 SIMS 60.8604 1 TIMS 41.19 11 LA-ICP-MS 12

< 20 - INAA 5< 20 - INAA 8

La (µg g-1)0.075 15 INAA 80.0769 1 TIMS 40.084 15 INAA 50.087 15 LA-ICP-MS 160.09 12 LA-ICP-MS 120.09 15 SIMS 60.093 10 ICP-MS 230.1 25 SIMS 130.12 20 ICP-MS 24

Ce (µg g-1)0.358 10 ICP-MS 230.36 6 LA-ICP-MS 160.3748 1 TIMS 40.38 15 SIMS 130.404 15 SIMS 60.42 20 ICP-MS 240.48 30 INAA 80.54 6 LA-ICP-MS 12

Pr (µg g-1)0.085 10 ICP-MS 230.085 9 LA-ICP-MS 160.091 15 SIMS 60.1 5 LA-ICP-MS 120.1 20 ICP-MS 240.11 7 MIC-SSMS 2

< 1 - INAA 8

Nd (µg g-1)0.6853 1 TIMS 40.659 10 ICP-MS 230.69 9 LA-ICP-MS 160.71 15 SIMS 130.73 6 LA-ICP-MS 120.73 20 ICP-MS 240.732 15 SIMS 60.762 5 MIC-SSMS 2

< 4 - INAA 8

Sm (µg g-1)0.467 10 ICP-MS 230.49 15 SIMS 130.503 4 INAA 50.5092 1 TIMS 40.51 8 LA-ICP-MS 160.53 5 INAA 80.55 7 LA-ICP-MS 120.552 15 SIMS 60.575 5 MIC-SSMS 20.6 20 ICP-MS 24

Eu (µg g-1)0.24 8 INAA 80.245 10 ICP-MS 230.246 5 MIC-SSMS 20.25 7 INAA 50.2544 1 TIMS 40.26 9 LA-ICP-MS 160.27 6 LA-ICP-MS 120.27 20 ICP-MS 240.28 15 SIMS 60.29 20 SIMS 13

Gd (µg g-1)1.2 10 ICP-MS 241.22 10 ICP-MS 231.22 6 LA-ICP-MS 161.245 1 TIMS 41.28 6 LA-ICP-MS 121.30 10 MIC-SSMS 21.34 15 SIMS 6

< 2 - INAA 8

Tb (µg g-1)0.26 10 INAA 50.26 10 MIC-SSMS 20.27 7 LA-ICP-MS 160.272 10 ICP-MS 230.29 15 SIMS 60.29 9 LA-ICP-MS 120.3 20 ICP-MS 240.3 15 INAA 8

Dy (µg g-1)2.02 15 SIMS 132.05 10 ICP-MS 232.06 5 MIC-SSMS 22.11 5 INAA 52.195 1 TIMS 42.2 20 ICP-MS 242.21 7 LA-ICP-MS 122.31 15 SIMS 6

Ho (µg g-1)0.489 10 ICP-MS 230.518 15 SIMS 60.53 5 INAA 50.53 6 LA-ICP-MS 160.53 10 ICP-MS 240.54 8 LA-ICP-MS 120.56 10 INAA 80.575 7 MIC-SSMS 2

Er (µg g-1)1.37 15 SIMS 131.54 10 ICP-MS 231.59 15 SIMS 61.66 9 LA-ICP-MS 121.676 1 TIMS 41.7 10 ICP-MS 241.77 7 MIC-SSMS 2

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

1 0 5

Uncert. Method LC

Uncert. Method LCUncert. Method LC Uncert. Method LC

Uncert. Method LC Uncert. Method LC

Table 2.5 (continued).Analytical results for MPI-DING reference glass GOR132-G (Gorgona Island komatiite glass)

Tm (µg g-1)0.229 10 ICP-MS 230.24 15 SIMS 60.25 6 LA-ICP-MS 120.25 10 ICP-MS 240.25 5 LA-ICP-MS 16

< 0.5 - INAA 8

Yb (µg g-1)1.36 15 SIMS 131.51 10 ICP-MS 231.58 3 INAA 51.6 10 ICP-MS 241.6 6 INAA 81.65 9 LA-ICP-MS 121.673 1 TIMS 41.69 5 LA-ICP-MS 161.7 15 SIMS 61.73 5 MIC-SSMS 2

Lu (µg g-1)0.19 10 MIC-SSMS 20.232 10 ICP-MS 230.24 7 INAA 50.24 5 INAA 80.25 9 LA-ICP-MS 120.25 7 LA-ICP-MS 160.25 15 SIMS 60.25 15 ICP-MS 240.2538 1 TIMS 4

Hf (µg g-1)0.32 10 ICP-MS 230.33 25 SIMS 6

Hf (µg g-1) (cont.)0.343 3 MC-ICP-MS 260.36 6 LA-ICP-MS 160.4 9 LA-ICP-MS 120.40 15 INAA 80.40 20 ICP-MS 240.44 10 INAA 5

Ta (µg g-1)0.028 9 LA-ICP-MS 160.03 20 INAA 50.034 13 LA-ICP-MS 120.036 40 INAA 80.0362 5 MC-ICP-MS 260.04 30 ICP-MS 24

W (µg g-1)26 3 INAA 526 3 INAA 8

Re (µg g-1)< 0.01 - INAA 8

Os (µg g-1)< 0.13 - INAA 8

Ir (µg g-1)1.26 3 INAA 51.3 3 INAA 8

Pt (µg g-1)11.5 15 INAA 813.2 5 INAA 5

Au (µg g-1)0.139 4 INAA 50.14 3 INAA 8

Hg (µg g-1)< 0.33 - INAA 8< 0.4 - INAA 5

Pb (µg g-1)19 5 ICP-MS 2423.4 5 LA-ICP-MS 16

Bi (µg g-1)0.0082 20 MIC-SSMS 2

Th (µg g-1)0.004 30 LA-ICP-MS 160.01 50 LA-ICP-MS 120.016 7 MIC-SSMS 20.02 35 SIMS 130.02 50 ICP-MS 24

< 0.02 - ICP-MS 23< 0.1 - INAA 5< 0.15 - INAA 8

U (µg g-1)0.04 30 INAA 50.042 10 ICP-MS 230.044 15 LA-ICP-MS 120.047 5 MIC-SSMS 20.047 25 LA-ICP-MS 160.05 30 ICP-MS 24

< 0.2 - INAA 8

Analytical uncertainties are given as relative standard deviation in percent (see text).

Table 2.6.Analytical results for MPI-DING reference glass BM90/21-G (Ivrea Zone peridotite glass)

H2O (% m/m)< 0.1 - SIMS 13

Li (µg g-1)1.4 15 SIMS 13

Be (µg g-1)0.01 25 SIMS 13

B (µg g-1)2.8 15 SIMS 13

Na2O (% m/m)0.083 15 XRF 110.10 15 EPMA 70.119 3 INAA 80.12 50 EPMA 90.121 3 INAA 50.125 15 EPMA 22

MgO (% m/m)33.7 1 EPMA 733.9 1 EPMA 934.0 1 EPMA 2234.8 1 EPMA 2734.8 2 XRF 11

Al2O3 (% m/m)2.25 1 EPMA 72.27 2 EPMA 222.32 1 EPMA 92.36 1 EPMA 272.44 5 XRF 11

SiO2 (% m/m)52.8 1 EPMA 953.0 1 EPMA 753.3 1 EPMA 2253.6 1 XRF 1153.8 1 EPMA 27

P2O5 (% m/m)< 0.0004 - XRF 11

0.001 - EPMA 7

Cl (µg g-1)< 270 - INAA 5

K2O (% m/m)0.0037 15 INAA 50.003748 1 TIMS 40.005 30 EPMA 70.006 130 EPMA 22

< 0.01 - XRF 11< 0.016 - INAA 8

CaO (% m/m)1.82 15 INAA 81.96 10 INAA 5

1 0 6

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

Table 2.6 (continued).Analytical results for MPI-DING reference glass BM90/21-G (Ivrea Zone peridotite glass)

Uncert. Method LC Uncert. Method LC Uncert. Method LC

CaO (% m/m) (cont.)2.04 3 EPMA 72.09 2 EPMA 92.12 4 XRF 112.12 2 EPMA 272.13 3 EPMA 22

Sc (µg g-1)11.3 3 INAA 511.3 3 INAA 8

TiO2 (% m/m)0.02 40 EPMA 90.04 30 EPMA 70.058 10 SIMS 130.06 40 EPMA 220.067 15 XRF 11

< 0.08 - INAA 8< 0.5 - INAA 5

V (µg g-1)37 20 XRF 11

Cr (µg g-1)1900 10 EPMA 72000 10 INAA 82110 2 XRF 112110 3 INAA 52130 10 EPMA 222350 15 SIMS 13

MnO (% m/m)0.10 20 EPMA 70.103 3 INAA 50.103 15 INAA 80.11 30 EPMA 220.11 35 EPMA 90.111 5 XRF 11

FeO (% m/m)6.56 3 INAA 86.62 2 EPMA 76.67 2 EPMA 96.81 3 INAA 56.83 2 EPMA 226.92 2 EPMA 276.94 3 XRF 11

Co (µg g-1)84 1 XRF 1190.6 3 INAA 591 3 INAA 8

Ni (µg g-1)1800 10 INAA 81830 5 INAA 52020 2 XRF 11

Cu (µg g-1)< 20 - INAA 8

36 30 INAA 5

Zn (µg g-1)36 15 INAA 540 10 INAA 842 8 XRF 11

Ga (µg g-1)2.2 10 INAA 53 20 INAA 8

As (µg g-1)< 0.07 - INAA 5< 0.2 - INAA 8

Se (µg g-1)< 0.4 - INAA 5< 0.7 - INAA 8

Br (µg g-1)< 0.1 - INAA 5< 0.3 - INAA 8

Rb (µg g-1)0.391 1 TIMS 40.45 10 ICP-MS 23

< 2 - INAA 5< 3 - INAA 8

Sr (µg g-1)0.8002 1 TIMS 40.88 10 ICP-MS 231.03 15 SIMS 13

< 15 - XRF 11< 70 - INAA 5< 100 - INAA 8

Y (µg g-1)1.44 7 MIC-SSMS 22.04 10 ICP-MS 232.1 15 SIMS 13

Zr (µg g-1)19.3 3 MIC-SSMS 219.5 10 SIMS 1320.4 10 ICP-MS 23

< 50 - INAA 8

Nb (µg g-1)0.039 10 MIC-SSMS 20.05 20 SIMS 13

Mo (µg g-1)16.5 5 INAA 517 10 INAA 8

Pd (µg g-1)< 6 - INAA 8

Ag (µg g-1)< 0.3 - INAA 5< 0.5 - INAA 8

Cd (µg g-1)< 0.4 - INAA 8

In (µg g-1)0.18 20 INAA 5

Sn (µg g-1)< 15 - INAA 8

Sb (µg g-1)0.033 25 INAA 50.07 40 INAA 8

Cs (µg g-1)1.1 10 ICP-MS 231.25 5 INAA 81.36 4 INAA 5

Ba (µg g-1)0.52 20 SIMS 130.5804 1 TIMS 4

< 10 - INAA 8< 40 - INAA 5

La (µg g-1)0.205 10 ICP-MS 230.2110 1 TIMS 40.226 7 INAA 50.23 25 INAA 80.240 5 MIC-SSMS 20.26 20 SIMS 13

Ce (µg g-1)0.403 10 ICP-MS 230.4224 1 TIMS 40.46 15 SIMS 130.510 5 MIC-SSMS 20.6 40 INAA 8

< 0.7 - INAA 5

Pr (µg g-1)0.066 10 ICP-MS 230.097 5 MIC-SSMS 2

Nd (µg g-1)0.332 10 ICP-MS 230.3547 1 TIMS 40.39 15 SIMS 130.408 3 MIC-SSMS 2

Sm (µg g-1)0.133 10 ICP-MS 230.134 7 INAA 50.1423 1 TIMS 40.15 15 SIMS 130.15 15 INAA 80.180 5 MIC-SSMS 2

Eu (µg g-1)0.049 10 INAA 50.049 10 ICP-MS 23

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

1 0 7

Uncert. Method LC

Uncert. Method LC Uncert. Method LC Uncert. Method LC

Uncert. Method LC Uncert. Method LC

Table 2.6 (continued).Analytical results for MPI-DING reference glass BM90/21-G (Ivrea Zone peridotite glass)

Eu (µg g-1) (cont.)0.05 25 INAA 80.0522 1 TIMS 40.06 20 SIMS 130.063 5 MIC-SSMS 2

Gd (µg g-1)0.228 10 ICP-MS 230.2426 1 TIMS 40.320 7 MIC-SSMS 2

Tb (µg g-1)0.044 10 ICP-MS 230.05 20 INAA 50.062 7 MIC-SSMS 2

< 0.06 - INAA 8

Dy (µg g-1)0.333 10 ICP-MS 230.34 10 INAA 50.34 10 INAA 80.35 15 SIMS 130.3522 1 TIMS 40.368 5 MIC-SSMS 2

Ho (µg g-1)0.075 10 ICP-MS 230.076 25 INAA 50.093 7 MIC-SSMS 2

< 0.1 - INAA 8

Er (µg g-1)0.23 15 SIMS 130.234 10 ICP-MS 230.2555 1 TIMS 40.302 7 MIC-SSMS 2

Tm (µg g-1)0.036 10 ICP-MS 23

< 0.15 - INAA 8

Yb (µg g-1)0.25 15 SIMS 130.259 10 ICP-MS 230.264 3 MIC-SSMS 20.2751 1 TIMS 40.276 7 INAA 50.28 25 INAA 8

Lu (µg g-1)0.037 7 MIC-SSMS 20.040 10 ICP-MS 230.0419 4 INAA 50.042 15 INAA 80.0443 1 TIMS 4

Hf (µg g-1)0.49 10 ICP-MS 230.5 20 INAA 80.514 5 INAA 5

Ta (µg g-1)< 0.025 - INAA 5< 0.1 - INAA 8

W (µg g-1)0.46 10 INAA 50.5 30 INAA 8

Re (µg g-1)< 0.01 - INAA 8

Os (µg g-1)< 0.3 - INAA 8

Ir (µg g-1)0.0649 4 INAA 50.065 10 INAA 8

Pt (µg g-1)19 4 INAA 520 15 INAA 8

Au (µg g-1)0.0617 3 INAA 50.066 5 INAA 8

Hg (µg g-1)< 0.3 - INAA 5< 0.3 - INAA 8

Pb (µg g-1)0.790 7 MIC-SSMS 2

Bi (µg g-1)0.0015 20 MIC-SSMS 2

Th (µg g-1)0.038 7 MIC-SSMS 20.049 10 ICP-MS 230.06 25 SIMS 13

< 0.1 - INAA 5< 0.14 - INAA 8

U (µg g-1)0.073 10 ICP-MS 230.086 15 INAA 50.089 5 MIC-SSMS 20.1 40 INAA 8

Analytical uncertainties are given as relative standard deviation in percent (see text).

Table 2.7.Analytical results for MPI-DING reference glass T1-G (Italian Alps quartz diorite glass)

H2O (% m/m)

< 0.1 - SIMS 13

Li (µg g-1)

18.5 10 SIMS 13

20 10 ICP-MS 24

21 10 SIMS 22

Be (µg g-1)

2.4 15 SIMS 13

B (µg g-1)

4.6 15 SIMS 13

Na2O (% m/m)3.04 3 INAA 83.06 2 EPMA 73.09 3 INAA 53.18 4 XRF 73.22 4 XRF 113.23 3 EPMA 9

MgO (% m/m)3.62 1 EPMA 93.64 2 EPMA 73.76 4 EPMA 223.79 1 EPMA 273.81 3 XRF 73.84 3 XRF 11

Al2O3 (% m/m)16.8 1 EPMA 716.9 1 EPMA 917.1 1 XRF 717.1 1 XRF 1117.2 1 EPMA 27

SiO2 (% m/m)57.7 3 EPMA 2258.3 1 XRF 1158.6 1 EPMA 958.7 1 EPMA 758.8 1 XRF 759.0 1 EPMA 27

1 0 8

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

Table 2.7 (continued).Analytical results for MPI-DING reference glass T1-G (Italian Alps quartz diorite glass)

Uncert. Method LC Uncert. Method LC Uncert. Method LC

P2O5 (% m/m)0.13 15 LIMS 30.169 6 XRF 110.18 7 EPMA 70.18 7 XRF 7

Cl (µg g-1)86 20 LIMS 3

< 620 - INAA 5

K2O (µg g-1)1.83 5 INAA 81.904 1 TIMS 41.92 3 INAA 51.93 9 EPMA 221.95 3 XRF 71.98 3 XRF 112.00 2 EPMA 92.05 1 EPMA 72.25 10 SR-XRF 21

CaO (% m/m)6.88 1 EPMA 76.94 1 EPMA 97.05 4 EPMA 227.08 2 XRF 77.10 5 INAA 57.19 1 EPMA 277.31 2 XRF 117.46 10 SR-XRF 21

Sc (µg g-1)25 10 ICP-MS 2425.9 3 INAA 526 3 INAA 827.2 10 SIMS 2227.8 4 LA-ICP-MS 1528 7 LIMS 3

TiO2 (% m/m)0.701 2 EPMA 90.71 5 EPMA 70.72 3 XRF 70.721 3 XRF 110.747 10 EPMA 220.757 10 SIMS 130.792 10 SIMS 220.8 40 INAA 81.0 6 SR-XRF 21

< 1.7 - INAA 5

V (µg g-1)190 5 LIMS 3

Cr (µg g-1)16 10 LIMS 321 5 INAA 521 20 XRF 1122.0 7 LA-ICP-MS 1525 10 INAA 826 10 SIMS 2257 15 SIMS 13

MnO (% m/m)0.10 30 EPMA 90.115 10 SIMS 220.12 40 EPMA 70.13 5 XRF 70.13 3 INAA 50.13 60 EPMA 220.134 5 XRF 110.136 15 INAA 80.142 5 LIMS 30.18 30 SR-XRF 21

FeO (% m/m)6.22 5 LIMS 36.22 2 EPMA 96.43 3 INAA 86.46 3 EPMA 76.47 3 XRF 76.47 2 EPMA 276.47 5 EPMA 226.48 3 XRF 116.60 3 INAA 5

Co (µg g-1)11 20 XRF 1115.3 10 SIMS 2218 7 LIMS 319 10 ICP-MS 2419.2 3 INAA 520 3 INAA 821.7 5 LA-ICP-MS 15

Ni (µg g-1)8 40 INAA 8

11 15 ICP-MS 2412 10 LIMS 315.9 13 LA-ICP-MS 15

< 20 - INAA 565 12 XRF 11

Cu (µg g-1)18 10 LIMS 322 10 ICP-MS 2422.9 9 LA-ICP-MS 15

< 150 - INAA 8< 400 - INAA 5

Zn (µg g-1)66 10 SR-XRF 2168 10 LIMS 369 11 SR-XRF 2172 10 ICP-MS 2476 10 INAA 580 10 INAA 8

105 4 XRF 11137 5 LA-ICP-MS 15

Ga (µg g-1)17 50 SR-XRF 2118 20 SR-XRF 2118 12 INAA 5

Ga (µg g-1) (cont.)18 10 LIMS 318 10 INAA 819.6 3 LA-ICP-MS 1520 10 ICP-MS 24

As (µg g-1)0.58 20 INAA 50.68 25 LIMS 30.86 20 INAA 8

Se (µg g-1)< 0.2 - INAA 5< 1 - INAA 8

Br (µg g-1)< 0.3 - INAA 5

0.33 40 INAA 8

Rb (µg g-1)70.09 1 TIMS 473 5 SR-XRF 2174 7 LIMS 378 5 INAA 878.7 10 ICP-MS 2381 10 ICP-MS 2485.9 3 INAA 588 1 LA-ICP-MS 1589.2 9 LA-ICP-MS 12

Sr (µg g-1)252 5 SR-XRF 21277 10 SIMS 22280 7 LIMS 3282 6 LA-ICP-MS 12286 10 ICP-MS 24288 10 ICP-MS 23290 10 INAA 5292 10 SIMS 13292.3 1 TIMS 4295 4 XRF 11340 20 INAA 8

Y (µg g-1)20 10 SR-XRF 2121.9 5 MIC-SSMS 222 6 LA-ICP-MS 1223 7 LIMS 323.7 5 LA-ICP-MS 1524 10 SIMS 1324.1 10 ICP-MS 2326.5 10 SIMS 22

Zr (µg g-1)133 5 SR-XRF 21134 6 LA-ICP-MS 12137 10 SIMS 13146 5 LA-ICP-MS 15147 10 ICP-MS 24149 3 MIC-SSMS 2154 10 SIMS 22

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

1 0 9

Uncert. Method LC Uncert. Method LC Uncert. Method LC

Table 2.7 (continued).Analytical results for MPI-DING reference glass T1-G (Italian Alps quartz diorite glass)

Zr (µg g-1) (cont.)154 3 MC-ICP-MS 26160 7 LIMS 3160 10 ICP-MS 23170 30 INAA 8180 25 INAA 5

Nb (µg g-1)6.3 8 SR-XRF 217.6 7 LIMS 38.5 3 LA-ICP-MS 158.6 10 ICP-MS 248.76 10 MC-ICP-MS 269.3 5 LA-ICP-MS 129.4 10 SIMS 13

11.6 5 MIC-SSMS 2

Mo (µg g-1)4 35 INAA 85.6 10 ICP-MS 246.7 15 INAA 5

Ag (µg g-1)< 0.6 - INAA 5< 1 - INAA 8

Cd (µg g-1)< 25 - INAA 8

In (µg g-1)< 0.3 - INAA 5< 6 - INAA 8

Sn (µg g-1)1.15 14 LA-ICP-MS 151.4 25 LIMS 33.6 10 ICP-MS 24

< 25 - INAA 862 20 INAA 5

Sb (µg g-1)0.27 25 LIMS 30.27 15 INAA 80.275 10 INAA 50.29 20 ICP-MS 24

Cs (µg g-1)2.11 6 LA-ICP-MS 152.76 10 ICP-MS 232.8 15 LIMS 32.9 10 ICP-MS 242.95 8 LA-ICP-MS 123.0 5 INAA 83.42 3 INAA 5

Ba (µg g-1)331 5 SR-XRF 21340 5 LA-ICP-MS 15340 10 LIMS 3341 5 SR-XRF 21390.7 1 TIMS 4

Ba (µg g-1) (cont.)396 10 SIMS 13397 10 SIMS 22400 10 INAA 8413 10 ICP-MS 23426 4 INAA 5431 6 LA-ICP-MS 12

La (µg g-1)57 5 SR-XRF 2158.3 5 LA-ICP-MS 1559 5 SR-XRF 2159.3 5 MIC-SSMS 262 10 LIMS 369 10 SIMS 2270.2 6 LA-ICP-MS 1270.38 1 TIMS 470.5 10 ICP-MS 2371 5 ICP-MS 2471.8 3 INAA 572 3 INAA 873.9 3 ICP-AES 1083.4 10 SIMS 13

Ce (µg g-1)98 10 SR-XRF 21

102 10 SR-XRF 21112 10 LIMS 3125 10 ICP-MS 23126.1 1 TIMS 4127 2 ICP-AES 10131 6 LA-ICP-MS 12134 5 INAA 8135 5 MIC-SSMS 2136 4 INAA 5140 10 SIMS 13

Pr (µg g-1)10.4 10 LIMS 310.9 4 LA-ICP-MS 1512.6 5 MIC-SSMS 212.7 6 LA-ICP-MS 1212.8 10 ICP-MS 2313 5 ICP-MS 2415 30 INAA 8

Nd (µg g-1)35 10 SR-XRF 2135 6 SR-XRF 2135.5 5 LA-ICP-MS 1536 10 LIMS 340.1 10 SIMS 2240.7 3 MIC-SSMS 240.9 10 ICP-MS 2341.2 4 INAA 541.3 6 LA-ICP-MS 1242.52 1 TIMS 443 5 ICP-MS 2444 20 INAA 844.3 10 SIMS 1344.4 3 ICP-AES 10

Sm (µg g-1)3 70 SR-XRF 215.76 7 LA-ICP-MS 155.8 10 LIMS 36.37 5 INAA 56.37 10 ICP-MS 236.54 10 SIMS 136.59 6 LA-ICP-MS 126.65 3 MIC-SSMS 26.750 1 TIMS 46.9 5 INAA 86.95 15 ICP-AES 107.0 5 ICP-MS 24

Eu (µg g-1)1.04 15 LIMS 31.08 8 LA-ICP-MS 151.16 15 SIMS 131.19 10 ICP-MS 231.2 9 LA-ICP-MS 121.2 4 INAA 51.2 20 INAA 81.228 1 TIMS 41.26 5 ICP-AES 101.40 5 MIC-SSMS 21.4 10 ICP-MS 24

Gd (µg g-1)4.16 15 ICP-AES 104.2 35 INAA 84.44 7 LA-ICP-MS 154.66 7 LA-ICP-MS 125.20 5 MIC-SSMS 25.279 1 TIMS 45.42 10 ICP-MS 237.3 20 LIMS 37.5 5 ICP-MS 24

Tb (µg g-1)0.70 5 LA-ICP-MS 150.72 6 LA-ICP-MS 120.771 10 ICP-MS 230.830 5 MIC-SSMS 20.836 4 INAA 50.84 15 LIMS 30.856 10 SIMS 220.9 10 ICP-MS 240.9 20 INAA 8

Dy (µg g-1)3.72 7 LA-ICP-MS 154.29 7 LA-ICP-MS 124.3 15 LIMS 34.38 10 ICP-MS 234.47 10 SIMS 134.618 1 TIMS 44.7 5 INAA 54.7 10 ICP-MS 244.74 7 ICP-AES 10

1 1 0

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

Table 2.7 (continued).Analytical results for MPI-DING reference glass T1-G (Italian Alps quartz diorite glass)

Uncert. Method LC

Uncert. Method LC Uncert. Method LC Uncert. Method LC

Uncert. Method LC Uncert. Method LC

Ho (µg g-1)0.72 15 LIMS 30.74 7 LA-ICP-MS 150.8 20 INAA 80.820 5 MIC-SSMS 20.85 7 LA-ICP-MS 120.869 10 ICP-MS 230.91 10 INAA 50.94 10 ICP-MS 24

Er (µg g-1)2.06 7 LA-ICP-MS 152.16 5 MIC-SSMS 22.3 15 LIMS 32.39 8 ICP-AES 102.45 7 LA-ICP-MS 122.48 10 ICP-MS 232.53 10 SIMS 132.613 1 TIMS 42.8 10 ICP-MS 24

Tm (µg g-1)0.31 12 LA-ICP-MS 150.35 6 LA-ICP-MS 120.362 10 ICP-MS 230.38 10 ICP-MS 24

< 4 - INAA 8

Yb (µg g-1)1.96 5 LA-ICP-MS 152.0 15 LIMS 32.2 5 INAA 82.26 7 LA-ICP-MS 122.38 10 ICP-MS 232.39 3 MIC-SSMS 22.4 10 ICP-MS 242.42 10 SIMS 132.439 1 TIMS 42.49 5 INAA 52.55 4 ICP-AES 10

Lu (µg g-1)0.28 6 LA-ICP-MS 150.3 10 INAA 80.34 8 LA-ICP-MS 120.35 25 LIMS 30.357 10 ICP-MS 230.3608 1 TIMS 40.37 15 ICP-AES 100.37 15 ICP-MS 240.374 4 INAA 50.38 7 MIC-SSMS 2

Hf (µg g-1)3.17 6 LA-ICP-MS 153.5 15 LIMS 34.0 5 INAA 84.03 6 LA-ICP-MS 124.09 3 MC-ICP-MS 264.1 10 ICP-MS 244.11 10 ICP-MS 234.17 4 INAA 5

Ta (µg g-1)0.38 5 LA-ICP-MS 150.433 3 MC-ICP-MS 260.46 6 LA-ICP-MS 120.47 15 ICP-MS 240.48 7 INAA 50.49 15 INAA 80.6 50 LIMS 3

W (µg g-1)0.82 20 LIMS 30.9 35 INAA 8

< 1.5 - INAA 5

Ir (µg g-1)0.016 5 INAA 80.434 3 INAA 5

Pt (µg g-1)< 0.25 - INAA 5< 7 - INAA 8

Au (µg g-1)0.13 5 INAA 80.0552 5 INAA 5

Hg (µg g-1)< 0.25 - INAA 5

Pb (µg g-1)10 25 LIMS 311 5 ICP-MS 2411.4 5 MIC-SSMS 217.9 6 LA-ICP-MS 15

Bi (µg g-1)0.094 20 MIC-SSMS 2

Th (µg g-1)23.3 6 LA-ICP-MS 1528.4 7 MIC-SSMS 231 6 LA-ICP-MS 1231.8 3 INAA 532 5 INAA 832 5 ICP-MS 2432.1 10 ICP-MS 2333.1 10 SIMS 1335 30 LIMS 3

U (µg g-1)0.98 40 LIMS 31.43 4 LA-ICP-MS 151.5 15 INAA 81.67 5 MIC-SSMS 21.71 10 ICP-MS 231.77 8 LA-ICP-MS 121.8 10 ICP-MS 241.83 5 INAA 5

Analytical uncertainties are given as relative standard deviation in percent (see text).

Table 2.8.Analytical results for MPI-DING reference glass ATHO-G (Iceland rhyolite glass)

H2O (% m/m)

< 0.1 - SIMS 13

Li (µg g-1)

24 10 ICP-MS 24

26.9 15 SIMS 22

31.8 15 SIMS 13

Be (µg g-1)

3.66 15 SIMS 13

B (µg g-1)5.8 15 SIMS 13

Na2O (% m/m)2.4 20 LIMS 32.7 30 EPMA 72.84 3 EPMA 253.37 2 EPMA 223.64 4 EPMA 94.04 3 INAA 84.36 3 XRF 74.53 3 INAA 5

MgO (% m/m)0.082 30 EPMA 90.086 11 EPMA 70.091 5 LIMS 30.098 10 EPMA 270.10 10 EPMA 220.10 10 EPMA 250.17 15 XRF 7

Al2O3 (% m/m)9.6 10 LIMS 3

11 6 PIXE 14

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

1 1 1

Uncert. Method LC Uncert. Method LC Uncert. Method LC

Table 2.8 (continued).Analytical results for MPI-DING reference glass ATHO-G (Iceland rhyolite glass)

Al2O3 (% m/m) (cont.)11.9 1 EPMA 711.9 1 EPMA 2212.0 1 XRF 712.1 1 EPMA 2712.3 1 EPMA 912.3 1 EPMA 25

SiO2 (% m/m)74.9 1 EPMA 774.9 6 PIXE 1475.6 1 EPMA 2275.9 1 XRF 775.9 1 EPMA 976.7 1 EPMA 2778.1 1 EPMA 25

P2O5 (% m/m)0.024 10 LIMS 30.030 10 XRF 70.03 50 EPMA 7

Cl (µg g-1)380 9 PIXE 14410 10 LIMS 3

K2O (% m/m)2.0 10 SR-XRF 212.13 2 EPMA 252.53 15 INAA 82.6 20 LIMS 32.66 20 SR-XRF 192.66 2 XRF 72.67 6 PIXE 142.68 2 EPMA 222.698 1 TIMS 42.77 3 INAA 52.82 3 EPMA 7

CaO (% m/m)1.32 10 SR-XRF 211.4 10 LIMS 31.53 3 EPMA 251.6 10 SR-XRF 191.61 2 EPMA 71.67 2 XRF 71.67 2 EPMA 91.68 15 INAA 51.72 6 PIXE 141.72 3 EPMA 221.74 2 EPMA 27

Sc (µg g-1)4.9 10 ICP-MS 245.03 3 INAA 85.17 3 INAA 56.04 15 SIMS 22

12 7 LIMS 3

TiO2 (% m/m)0.18 20 SR-XRF 210.226 10 SIMS 130.228 7 EPMA 9

TiO2 (% m/m) (cont.)0.234 6 PIXE 140.24 3 XRF 70.242 15 SIMS 220.242 11 EPMA 220.244 15 SIMS 60.25 8 EPMA 70.25 4 EPMA 250.26 20 SR-XRF 190.28 6 LA-ICP-MS 16

< 0.4 - INAA 5< 0.8 - INAA 8

V (µg g-1)4.1 5 LIMS 34.34 15 SIMS 224.63 3 SIMS 634 25 PIXE 14

Cr (µg g-1)4.93 15 SIMS 65.0 10 LIMS 35.0 15 SIMS 136.08 15 SIMS 22

11 10 INAA 5< 5 - SR-XRF 21< 5 - INAA 8

MnO (% m/m)0.09 20 EPMA 250.100 2 XRF 70.100 5 INAA 80.10 7 LA-ICP-MS 160.102 15 SIMS 220.105 7 INAA 50.106 5 LIMS 30.106 30 EPMA 90.106 6 PIXE 140.108 35 EPMA 220.13 25 EPMA 70.13 20 SR-XRF 21

FeO (% m/m)2.96 5 INAA 83.03 2 EPMA 253.09 5 LIMS 33.18 6 PIXE 143.19 2 XRF 73.23 3 EPMA 223.24 3 INAA 53.24 1 EPMA 93.55 7 EPMA 73.59 6 EPMA 27

Co (µg g-1)1.9 7 LIMS 31.91 15 SIMS 222.3 15 ICP-MS 242.56 4 INAA 52.65 3 INAA 8

Ni (µg g-1)5.9 15 PIXE 14

18 10 LIMS 320 20 INAA 823 10 ICP-MS 24

< 10 - INAA 5

Cu (µg g-1)18 10 ICP-MS 2419.2 7 PIXE 1422 10 LIMS 323 10 SR-XRF 19

Zn (µg g-1)112 7 INAA 5118 10 ICP-MS 24130 10 INAA 8137 6 PIXE 14152 3 SR-XRF 19153 7 SR-XRF 21170 10 LIMS 3

Ga (µg g-1)21 12 INAA 522 15 INAA 822 10 ICP-MS 2423.8 6 PIXE 1426 10 SR-XRF 2126 10 LIMS 3

Ge (µg g-1)1.6 25 PIXE 14

As (µg g-1)0.83 15 INAA 50.85 20 INAA 81.8 45 PIXE 14

Se (µg g-1)< 0.5 - INAA 5< 1 - INAA 8

Br (µg g-1)1.1 30 PIXE 141.15 15 INAA 51.3 15 INAA 8

Rb (µg g-1)57.6 10 ICP-MS 2359 7 LIMS 361 10 ICP-MS 2463.76 1 TIMS 464.3 5 INAA 565 5 SR-XRF 1965 6 SR-XRF 2165.6 30 INAA 869.5 6 LA-ICP-MS 1669.9 6 PIXE 1471 10 SR-XRF 1878.2 9 LA-ICP-MS 1282 10 SR-XRF 21

1 1 2

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

Table 2.8 (continued).Analytical results for MPI-DING reference glass ATHO-G (Iceland rhyolite glass)

Uncert. Method LC Uncert. Method LC Uncert. Method LC

Sr (µg g-1)88.7 10 ICP-MS 2391 10 ICP-MS 2492 7 LIMS 392 6 LA-ICP-MS 1693.5 5 LA-ICP-MS 1294 15 SR-XRF 1994.8 10 SIMS 1395.33 1 TIMS 496.4 15 SIMS 2299.0 5 SR-XRF 21

104 15 SIMS 6105 6 PIXE 14108 12 INAA 5112 4 SR-XRF 18120 30 INAA 8

Y (µg g-1)78 10 SIMS 1382.9 15 SIMS 687.3 10 ICP-MS 2389.8 5 LA-ICP-MS 1295.2 6 LA-ICP-MS 1699 15 SIMS 22

103 7 LIMS 3104 6 PIXE 14105 5 SR-XRF 19105 5 SR-XRF 18105 4 SR-XRF 21

Zr (µg g-1)438 10 SIMS 13476 5 LA-ICP-MS 12483 15 SIMS 6492 15 SIMS 22499 6 LA-ICP-MS 16509 3 MC-ICP-MS 26515 10 ICP-MS 23557 3 SR-XRF 21564 6 PIXE 14570 7 LIMS 3580 3 SR-XRF 18600 10 INAA 8613 5 SR-XRF 19

Nb (µg g-1)55 10 ICP-MS 2456.0 10 MC-ICP-MS 2657 6 LA-ICP-MS 1658.4 10 SIMS 1362 8 SR-XRF 1862.5 6 PIXE 1463 15 SIMS 2265.4 15 SIMS 666 7 LIMS 367.3 10 SR-XRF 2168.6 5 LA-ICP-MS 12

Mo (µg g-1)4 50 LIMS 35.8 10 ICP-MS 247 30 INAA 87 40 PIXE 14

Pd (µg g-1)< 13 - INAA 8

Ag (µg g-1)< 0.15 - INAA 8

Cd (µg g-1)< 5 - INAA 8

Sn (µg g-1)4.7 10 ICP-MS 245.0 15 LIMS 3

< 100 - INAA 8

Sb (µg g-1)0.27 20 ICP-MS 240.28 12 INAA 50.46 30 LIMS 30.5 20 INAA 8

Cs (µg g-1)0.90 15 LIMS 31.11 9 LA-ICP-MS 161.14 11 LA-ICP-MS 121.32 10 ICP-MS 231.4 15 SIMS 61.4 5 INAA 51.4 10 ICP-MS 241.4 10 INAA 8

Ba (µg g-1)520 5 INAA 8522 10 SIMS 13524 6 LA-ICP-MS 16548 15 SIMS 22550.4 1 TIMS 4553 10 ICP-MS 23556 5 SR-XRF 19559 4 INAA 5560 10 LIMS 3573 5 LA-ICP-MS 12574 15 SIMS 6592 5 SR-XRF 21620 3 SR-XRF 18641 5 SR-XRF 21648 12 PIXE 14

La (µg g-1)47.8 15 SIMS 648.6 15 SIMS 2250 5 SR-XRF 1952 5 ICP-MS 2454 5 INAA 854.2 6 LA-ICP-MS 1655.1 10 ICP-MS 2355.2 10 SIMS 1355.6 5 LA-ICP-MS 1255.97 1 TIMS 457 5 SR-XRF 2158 3 INAA 658 10 LIMS 367 15 SR-XRF 18

Ce (µg g-1)105 15 SIMS 22105 15 SIMS 6112 5 SR-XRF 19114 10 SIMS 13114 5 MIC-SSMS 2119 6 LA-ICP-MS 16119 10 ICP-MS 23122.8 1 TIMS 4125 4 SR-XRF 21130 10 LIMS 3130 5 INAA 8131 6 LA-ICP-MS 12131 4 INAA 5132 15 SR-XRF 18170 20 PIXE 14

Pr (µg g-1)13 15 SR-XRF 2113 25 INAA 813 15 SIMS 2214 15 SIMS 614.2 6 LA-ICP-MS 1614.6 5 MIC-SSMS 215 10 LIMS 315 5 ICP-MS 2415.1 2 LA-ICP-MS 1215.2 10 ICP-MS 23

Nd (µg g-1)55.6 15 SIMS 656 15 SIMS 2256.4 10 SIMS 1358 30 PIXE 1458.1 6 LA-ICP-MS 1658.6 3 MIC-SSMS 259 10 LIMS 359.4 10 ICP-MS 2361.9 5 LA-ICP-MS 1262 5 ICP-MS 2462.74 1 TIMS 465 7 INAA 565 10 INAA 872 8 SR-XRF 21

Sm (µg g-1)12.2 15 SIMS 2212.5 10 SIMS 1313 20 SR-XRF 2113 10 LIMS 313.1 15 SIMS 613.3 8 LA-ICP-MS 1613.6 10 ICP-MS 2314.47 1 TIMS 415 5 INAA 815 5 ICP-MS 2415.1 3 INAA 516.0 3 MIC-SSMS 217.1 5 LA-ICP-MS 12

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

1 1 3

Uncert. Method LC Uncert. Method LC Uncert. Method LC

Table 2.8 (continued).Analytical results for MPI-DING reference glass ATHO-G (Iceland rhyolite glass)

Eu (µg g-1)2.1 15 LIMS 32.4 25 SIMS 132.66 6 LA-ICP-MS 122.7 8 INAA 82.77 10 ICP-MS 232.88 6 LA-ICP-MS 162.891 1 TIMS 42.98 4 INAA 53.0 5 ICP-MS 243.41 15 SIMS 66 70 SR-XRF 21

Gd (µg g-1)12 15 SIMS 613.7 6 LA-ICP-MS 1614.5 5 LA-ICP-MS 1215.2 10 ICP-MS 2315.33 1 TIMS 416 25 SR-XRF 2116 10 INAA 817.0 7 MIC-SSMS 217 5 ICP-MS 2419 15 LIMS 319.3 15 SIMS 22

Tb (µg g-1)2.14 15 SIMS 62.26 6 LA-ICP-MS 162.3 15 LIMS 32.52 10 ICP-MS 232.55 5 LA-ICP-MS 122.58 7 MIC-SSMS 22.7 5 ICP-MS 242.7 15 SIMS 222.7 15 INAA 82.72 5 INAA 5

Dy (µg g-1)13 40 SR-XRF 2114 15 SIMS 1314.8 15 SIMS 614.9 15 SIMS 2215 15 LIMS 315.0 3 MIC-SSMS 215.8 10 ICP-MS 2316 5 INAA 816.4 5 LA-ICP-MS 1216.73 1 TIMS 417 5 ICP-MS 24

Ho (µg g-1)3.1 15 LIMS 33.11 15 SIMS 63.21 7 LA-ICP-MS 163.23 15 SIMS 223.26 5 MIC-SSMS 23.30 10 ICP-MS 233.4 12 INAA 53.45 5 LA-ICP-MS 123.5 8 INAA 83.6 10 ICP-MS 24

Er (µg g-1)8.5 15 SIMS 139.4 15 LIMS 3

Er (µg g-1) (cont.)9.67 15 SIMS 69.9 10 ICP-MS 23

10 5 MIC-SSMS 210.4 6 LA-ICP-MS 1210.52 1 TIMS 410.8 15 SIMS 2211 5 ICP-MS 2414 40 SR-XRF 21

Tm (µg g-1)1.3 25 LIMS 31.44 15 SIMS 61.44 6 LA-ICP-MS 161.50 10 ICP-MS 231.56 6 LA-ICP-MS 121.6 10 ICP-MS 24

Yb (µg g-1)9.27 15 SIMS 139.8 15 LIMS 39.8 10 ICP-MS 239.85 15 SIMS 229.93 6 LA-ICP-MS 16

10.0 3 MIC-SSMS 210 5 INAA 810 10 ICP-MS 2410.3 6 LA-ICP-MS 1210.44 1 TIMS 410.5 15 SIMS 610.9 3 INAA 515 50 PIXE 14

Lu (µg g-1)1.3 25 LIMS 31.43 15 SIMS 61.45 6 LA-ICP-MS 161.48 15 SIMS 221.49 10 ICP-MS 231.5 5 INAA 81.542 1 TIMS 41.58 6 LA-ICP-MS 121.6 10 ICP-MS 241.63 3 INAA 5

Hf (µg g-1)12.4 6 LA-ICP-MS 1612.5 15 SIMS 612.6 15 SIMS 2212.9 3 MC-ICP-MS 2614 15 LIMS 314 5 INAA 814 5 ICP-MS 2414.1 10 ICP-MS 2314.2 3 INAA 614.8 6 LA-ICP-MS 1218 15 PIXE 14

Ta (µg g-1)3.5 5 ICP-MS 243.54 3 MC-ICP-MS 26

Ta (µg g-1) (cont.)3.68 6 LA-ICP-MS 163.7 4 INAA 64.0 5 INAA 84.1 25 LIMS 34.15 5 LA-ICP-MS 129.7 25 PIXE 14

W (µg g-1)7.83 4 INAA 58.5 3 INAA 89.1 15 LIMS 3

10 40 PIXE 14

Re (µg g-1)< 0.25 - INAA 8

Os (µg g-1)< 2 - INAA 8

Ir (µg g-1)0.0794 3 INAA 50.1 10 INAA 8

Pt (µg g-1)10.7 5 INAA 514 25 INAA 8

Au (µg g-1)0.024 15 INAA 80.025 10 INAA 5

Hg (µg g-1)< 1 - INAA 8

Pb (µg g-1)5.1 5 ICP-MS 245.64 6 LA-ICP-MS 166.2 15 LIMS 38 13 PIXE 14

Bi (µg g-1)0.090 20 MIC-SSMS 2

Th (µg g-1)5.65 7 MIC-SSMS 27.06 3 INAA 57.2 15 LIMS 37.29 10 ICP-MS 237.4 5 INAA 87.5 5 ICP-MS 247.66 5 LA-ICP-MS 127.78 15 SIMS 137.95 9 LA-ICP-MS 16

11 13 PIXE 14

U (µg g-1)1.8 15 LIMS 32.0 15 INAA 82.07 10 ICP-MS 232.2 10 ICP-MS 242.21 5 INAA 52.37 6 LA-ICP-MS 162.44 3 MIC-SSMS 22.81 9 LA-ICP-MS 12

Analytical uncertainties are given as relative standard deviation in percent (see text).

which is similar to that of White and Patchett (1984),was recently published by Raczek et al. (2000). Theamount of sample used was 50-200 mg for eachanalysis. Alkali elements, Sr, REE and Ba were sepa-rated following standard ion exchange procedures,employing 5 ml of AG50W-X12 ion exchange resin.Barium and rare earth fractions were further separa-ted on a 1.2 ml column of Teflon powder coated withdi-2-ethylhexyl phosphoric acid. Spikes were calibra-ted against standard solutions made from 1 g piecesof highly purified rare earth metals (obtained fromAmes Laboratories) and against highly pure saltsignited or dried to constant weight. Generally, themeasurement sequence comprised three to ten blocksof ten isotope rat ios , depending on the sampleamount. Most measurements were repeated two tofive times.

Raczek et al. (2000) determined an overall analyti-cal uncertainty of better than 1% for the analysis ofhomogeneous samples by the T IMS techn ique .Replicate determinations using different sample ali-quots, spikes and reference materials (e.g. NIST SRM611, BCR-1, BHVO-1, AGV-1; Raczek et al . 2000,Rocholl et al. 2000) confirmed these values.

Instrumental neutron activation analysis (INAA):INAA analyses were performed at the Max-Planck-In s t i t u t f ü r Chemie Mainz ( LC = 5 ) and a t t heUnivers i tät zu Köln (LC = 8; Woike et al . 1997) .Between 50 and 150 mg of sample powder (in thecase of T1-G a chip) was irradiated for six hours atthe TRIGA-Reactor (Universität Mainz) with a thermalneutron flux of 7 * 1011 n cm-2 s-1). After irradiation,samples were γ-counted several times on Ge(Li)- andhigh-purity Ge-detectors in Mainz and Köln, respecti-vely. Evaluations of the spectra were done with thepeak-fitting routine of Kruse (1979). Final calculationswere made using a complete set of single-elementcalibration standards, which were regularly redeter-mined at the Max-Planck-Inst i tut in Mainz for al ldetectors at up to five different sample-detector dis-tances. Efficiency ratios of identical γ-lines measuredon different detectors vary exponentially with theγ-energy. Regressions of such ratios showed relativestandard deviations between 1 and 2%. Additionally,incorrect determinations can be found and elimina-ted. The internally consistent set of single-elementcalibration standard values was used to establishcalibrations of the new detectors in Köln, based on alimited number of single-element calibration standardmeasurements.

Variations in neutron flux and sample position inthe reactor were controlled by flux-monitors, using Mnand Au in Mainz and Zr in Köln. Around thirty ele-ments were analysed with an analytical uncertaintyranging from about 3-30%. These errors are givenrelative to the true values of the single-element calibra-tion standards. Furthermore, there is an extended linearrelationship between count rate and content, so thateven trace abundances can be determined with thesame calibration. Thus, errors based on counting statis-tics and the calibration uncertainty are consistent withthe term accuracy.

X-ray fluorescence (XRF): This technique was usedto analyse major elements and some trace elements. Atthe Universität Mainz (LC = 7), samples were preparedby homogenizing 0.8 g glass powder with 4.80 glithium tetraborate for major element analyses. The mix-ture was melted in a platinum crucible. Measurementswere made with a Philips PW 1404 instrument with aRh anode following the method of Norrish and Hutton(1969). Calibration curves were based on geochemicalreference materials. Uncertainty was about 1-3% formajor elements. At the Universität zu Köln (LC = 11), aPhilips PW 2400 spectrometer equipped with a Rhanode was used for the analysis of glass tablets thatwere made from about 0.12 g sample and 3.6 glithium tetraborate. Calibration curves were obtainedfrom the analysis of twenty five reference materials.Analytical uncertainties were about 1-3% for majorelements and about 3-15% for trace elements.

Inductively coupled plasma-atomic emissionspectrometry (ICP-AES): This technique was used forthe determination of rare earth element (REE) concen-trations in T1-G, at the Universität zu Köln (LC = 10;Klein et al. 1997). The powdered sample (100 mg)was dissolved by acid attack. REE were separated byion exchange columns. The REE-containing solutionswere diluted to 3 ml with HCl (1 mol l-1). Calibrationlines were defined by a blank and five 1 mol l-1 HClsolutions containing REE in concentrations between0 and 15 µg ml-1. Calibration solutions were madeus ing 1000 µg ml -1 s tandard so lu t ions (A ldr ichChemical Company). The measurements were correc-ted for drift and inter-element interferences.

Inductively coupled plasma-mass spectrometry(ICP-MS): ICP-MS measurements were performed attwo di f ferent laborator ies at the GeoForschungs-Zentrum Potsdam. At the first laboratory (LC = 23), anELAN 5000 ICP mass spectrometer (Perkin-Elmer/

1 1 4

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

SCIEX) was used. The sample powder (100 mg) wasdecomposed by a mixed-acid digestion procedureunder pressure. Ruthenium and Re served as internalstandards to correct for drift. Calculation of elementconcentrations was done using an external calibration.Interference corrections were performed as describedin detail by Dulski (1994). The precision (obtained bymore than five analyses of individual samples) and theuncertainty of the total analytical procedure, derivedfrom the analysis of ninety geochemical referencematerials during the last five years (unpublished data,publication in preparation by Dulski), are generallybetter than 5% (precision) and 10% (uncertainty) for allanalytes that have been determined.

In the second laboratory (LC = 24), a VG-PlasmaQuad PQ2+ was used. About 150 mg of dried (at105 °C) sample was dissolved overnight at 160 °C inHF and aqua regia in Savillex containers. Silicon wasremoved as silicon fluoride by evaporation with HClO4

at 180-190 °C. Loss of elements due to volatility is unli-kely for those determined by this method. Residueswere dissolved in HNO3 and diluted to 50 ml. Sampleswere diluted stepwise and analysed six times by ICP-MSas described in Zuleger et al. (1996). Estimated uncer-tainties are given as 2s values, which were not calcula-ted from this study because of limited sample volume.Instead, they represent average overall uncertainties,estimated on the basis of ICP-MS experience of thislaboratory over the last seven years (e.g. Zuleger et al.1996). Accuracy has been repeatedly tested by theanalysis of numerous international reference rock mate-rials and participation in international co-operativeanalysis studies (e.g. Govindaraju et al. 1994).

Multiple collector-inductively coupled plasma-mass spectrometry (MC-ICP-MS): This technique wasused for the determination of high field strength ele-ment (HFSE) concentrations in all samples (except forBM90/21-G) at the Universität in Münster, Zentrallaborfür Geochronologie (LC = 26). About 50-100 mg ofsample powder was spiked with a Zr-Hf-Ta mixed-spike and digested with concentrated HF/HClO4 in a15 ml Savillex beaker on a hot plate. After chemicalseparation of the HFSEs with a newly developed chro-matographic column chemistry process (publication inpreparation by Münker et al.), isotope dilution determi-nations of Zr, Hf and Ta were made on a MicromassIsoprobe MC-ICP-MS. The first ID data for Ta wereobtained using an isotopic tracer enriched in 180Ta bya factor of 360 (Weyer et al. 1999 and publication inpreparation by Weyer et al.). Niobium was determined

using the ID value of Zr for internal standardisation.Spikes and the sensitivity factor for Nb were calibratedagainst standards made from 1 g pieces of highly puri-fied HFSE metals (obtained from Ames Laboratories).Accuracy and reproducibility have been tested withinternational reference materials (BIR-1, BCR-2, BHVO-2).Total analytical uncertainties are < 3% for all ID measu-rements (Zr, Hf and Ta), except for Ta in the two mostdepleted (GOR) samples (5% uncertainty). The maxi-mum uncertainty of Nb is assumed to be 10%.

Microanalytical techniques

For in-situ microanalysis, small glass chips (about0.1 g) were distributed to the various laboratories.

Electron probe microanalysis (EPMA): This tech-nique was used at different laboratories to determinemajor element compositions of the glasses. At theUniversität Heidelberg (LC=22), a CAMECA SX51 wave-length dispersive 5-spectrometer electron microprobewas used. Instrumental and analytical conditions regar-ding accelerating voltage (15 kV), probe current (20 nA),counting time (10 s for each element) and the calibra-tion procedure were reported in detail in Rocholl (1998).To minimise possible loss of alkali metals (especially Na)during analysis, these elements were the first to be mea-sured and the beam diameter was enlarged to 5 and10 µm, respectively, depending on the chosen step sizeof the profiles (Table 3). Depending on the sample size,profile lengths varied between about 200 and 2000µm and profile steps (distances between analysis spots)ranged between 5 and 20 µm. Autofocussing wasapplied after every five steps. The overall analyticaluncertainty (including instrumental repeatability andcalibration errors) was typically < 2% relative for ele-ments at concentration levels of > 3% m/m oxide.

At the GeoForschungsZentrum Potsdam (LC = 27),major element concentrations were determined using awavelength dispersive 4-spectrometer CAMECA SX-100microprobe. Elements were measured for 20 s eachapplying a probe current of 20 nA, an accelerationvoltage of 15 kV and a beam diameter of 10 µm. Themeasurements represent profile analyses (for number ofanalytical spots and profi le lengths, see Table 3).Calibration was achieved using natural and syntheticminerals and oxides, as follows: Si and Ca: wollastonite;K and Al: orthoclase; Na: albite; Ti: rutile; Mn: rhodonite;Fe: hematite; Mg: MgO (synthetic); Cr: Cr2O3 (synthetic).The overall analytical uncertainty is estimated to < 2%for elements at oxide concentrations > 3% m/m.

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

1 1 5

1 1 6

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

Table 3.Mean results of elemental profiles by EPMA across sample fragments

HD-Samples GFZ-Samples

Analysis at HD Analysis at GFZ Analysis at GFZ

KL2-G Profile 1 Profile 2 Profile 1 Profile 2

Profile length (µm) 865 - 490 - - - 795 - 410 -

No. of anal. points 63 - 20 - - - 50 - 15 -

Spot size (µm) 10 - 10 - - - 5 - 10 -

Mean RSD [%] Mean RSD [%] Mean RSD [%] Mean RSD [%]

SiO2 50.1 0.3 49.4 0.5 - - 50.5 0.3 50.2 0.5

Al2O3 12.9 1.1 13.0 0.6 - - 13.4 0.4 13.4 0.3

FeO 10.7 1.9 10.6 1.4 - - 10.7 1.3 10.7 1.3

MgO 7.24 1.0 7.26 0.8 - - 7.43 0.8 7.45 0.7

CaO 11.0 0.9 11.0 0.6 - - 11.1 0.7 11.1 0.7

ML3B-G Profile 1 Profile 2 Profile 3 Profile 1 Profile 2

Profile length (µm) 2055 - 500 - 20 - 2045 - 2118 -

No. of anal. points 100 - 50 - 20 - 25 - 25 -

Spot size (µm) 10 - 10 - 1 - 5 - 10 -

Mean RSD [%] Mean RSD [%] Mean RSD [%] Mean RSD [%] Mean RSD [%]

SiO2 51.1 0.5 52.0 0.3 52.0 0.6 51.4 0.7 52.2 0.4

Al2O3 13.0 1.7 13.5 0.5 13.5 0.6 13.9 0.4 13.8 0.5

FeO 11.0 1.9 11.0 1.2 11.0 1.1 11.0 1.5 11.1 1.1

MgO 6.52 0.9 6.59 0.8 6.54 0.6 6.69 0.7 6.72 0.9

CaO 10.5 1.0 10.5 0.7 10.5 0.8 10.6 0.7 10.6 0.7

StHs6/80-G Profile 1 Profile 2 Profile 1 Profile 2

Profile length (µm) 1480 - 700 - - - 1945 - 2130 -

No. of anal. points 100 - 25 - - - 25 - 25 -

Spot size (µm) 10 - 10 - - - 10 - 10 -

Mean RSD [%] Mean RSD [%] Mean RSD [%] Mean RSD [%]

SiO2 63.6 0.4 64.0 0.5 - - 65.6 0.2 65.4 0.4

Al2O3 17.4 1.4 17.8 0.6 - - 17.9 0.6 18.1 0.8

FeO 4.31 3.2 4.38 2.2 - - 4.46 1.4 4.47 2.1

MgO 1.96 1.8 2.00 1.4 - - 2.03 1.1 2.03 1.3

CaO 5.31 1.5 5.48 1.1 - - 5.52 1.0 5.51 1.1

T1-G Profile 1 Profile 2 Profile 1 Profile 2

Profile length (µm) - - 655 - 10 - 1180 - 761 -

No. of anal. points - - 20 - 10 - 15 - 15 -

Spot size (µm) - - 10 - 1 - 10 - 10 -

Mean RSD [%] Mean RSD [%] Mean RSD [%] Mean RSD [%]

SiO2 - - 58.1 0.7 59.4 0.5 59.4 0.3 59.2 0.5

Al2O3 - - 16.9 0.5 17.2 0.6 17.2 0.5 17.3 0.4

FeO - - 6.43 1.1 6.66 0.9 6.41 1.6 6.39 1.8

MgO - - 3.78 0.9 3.80 1.1 3.78 1.0 3.78 1.0

CaO - - 7.23 0.6 7.18 0.6 7.18 0.8 7.17 0.9

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

1 1 7

Table 3 (continued).Mean results of elemental profiles by EPMA across sample fragments

HD-Samples GFZ-Samples

Analysis at HD Analysis at GFZ Analysis at GFZ

GOR128-G Profile 1 Profile 2 Profile 3

Profile length (µm) 1700 - 750 - 20 - - - - -No. of anal. points 100 - 25 - 20 - - - - -Spot size (µm) 10 - 10 - 1 - - - - -

Mean RSD [%] Mean RSD [%] Mean RSD [%]

SiO2 45.8 0.4 46.7 0.5 46.6 0.4 - - - -Al2O3 - # - # 9.75 0.7 9.73 0.6 - - - -FeO 9.85 2.1 9.94 1.3 9.91 1.3 - - - -MgO 25.6 0.6 25.8 0.6 25.6 0.5 - - - -CaO 6.22 1.2 6.29 0.7 6.30 0.5 - - - -

GOR132-G Profile 1 Profile 2 Profile 3 Profile 1 Profile 2

Profile length (µm) 1015 - 500 - 20 - 1550 - 1364 -No. of anal. points 203 - 50 - 20 - 25 - 25 -Spot size (µm) 5 - 10 - 1 - 10 - 10 -

Mean RSD [%] Mean RSD [%] Mean RSD [%] Mean RSD [%] Mean RSD [%]

SiO2 45.3 0.7 45.9 0.4 45.7 0.4 45.9 0.5 45.8 0.7Al2O3 - # - # 10.8 0.7 10.7 0.7 10.9 0.4 10.9 0.8FeO 10.4 3.5 10.3 1.3 10.2 0.9 10.2 1.4 10.2 1.1MgO 22.4 1.0 22.3 0.5 22.1 0.6 22.5 0.6 22.5 0.5CaO 8.42 2.4 8.58 0.7 8.51 0.8 8.58 0.8 8.57 0.6

BM90/21-G Profile 1 Profile 2 Profile 1 Profile 2

Profile length (µm) 1545 - 1055 - - - 1275 - 600 -No. of anal. points 100 - 20 - - - 30 - 20 -Spot size (µm) 10 - 10 - - - 10 - 10 -

Mean RSD [%] Mean RSD [%] Mean RSD [%] Mean RSD [%]

SiO2 53.3 0.3 54.1 0.3 - - 53.6 0.4 53.8 0.2Al2O3 2.27 1.8 2.35 1.1 - - 2.37 1.6 2.36 0.8FeO 6.83 2.3 6.83 1.4 - - 6.97 1.3 6.95 1.7MgO 34.0 0.4 34.2 0.3 - - 35.1 0.4 35.2 0.3CaO 2.13 2.5 2.15 1.4 - - 2.10 1.6 2.12 1.6

ATHO-G Profile 1 Profile 2 Profile 3 Profile 1 Profile 2

Profile length (µm) 1970 - 690 - 385 - 1880 - 1465 -No. of anal. points 100 - 25 - 10 - 25 - 25 -Spot size (µm) 10 - 10 - 10 - 5 - 5 -

Mean RSD [%] Mean RSD [%] Mean RSD [%] Mean RSD [%] Mean RSD [%]

SiO2 75.6 0.4 75.2 0.6 77.3 0.1 77.2 0.3 77.1 0.4Al2O3 11.9 1.0 12.0 0.7 12.1 0.8 12.1 0.6 12.2 0.8FeO 3.23 3.4 3.30 2.5 3.74 2.0 3.70 2.5 3.63 3.1MgO 0.10 9.9 0.10 9.3 0.10 6.3 0.09 10 0.1 11CaO 1.72 2.5 1.77 1.7 1.74 1.2 1.73 2.2 1.72 1.8

HD University of Heidelberg. GFZ GeoForschungsZentrum Potsdam.

# Values not reported because of mechanical problems with spectrometer positioning. Concentrations in % m/m.

Analyses at the Universität Mainz (LC = 7) werecarried out with a CAMECA microprobe (CamebaxMicrobeam). The accelerating voltage was 15 kV andthe beam current was 12 nA. Eleven mineral referencematerials were used for calibration. The data werecorrected using the “PAP” correction.

Electron probe microanalyses at the Universitätzu Köln (LC = 9) were done with a Jeol JXA-8900instrument. Operating conditions were 15 kV for theaccelerating voltage and 15 nA for the beam currentin the Faraday cup. The beam was defocused to adiameter of 10 µm. Wollastonite, rutile, corundum,rhodonite, periclase, hematite, albite and orthoclase,which are all distributed by P & H Developments,were used as reference materials. Five analyses werecarried out for each glass. The results were correctedusing the “ZAF” procedure.

Analyses at the American Museum of NationalHistory in New York (LC = 25) were done with aCAMECA electron microprobe analyser SX100, equip-ped with 5 wavelength dispersive spectrometers. ZAFdata reductions were carried out by means of thein-built PAP routine. In-house reference materials wereused for calibration.

Laser ablation-inductively coupled plasma-massspectrometry (LA-ICP-MS): Trace element analyseswere performed in three different LA-ICP-MS laborator-ies: St . John’s (Newfoundland), ForschungszentrumJülich and Harvard University. The laser ablation sys-tem at Memorial University (LC = 12) consists of aQ-switched Nd:YAG laser (1064 nm), a frequencyquadrupler (to produce the 266 nm UV used in theablation process), and a PQII+“S” ICP-MS. Details ofthe configuration and operating conditions of this ins-trument can be found in Günther et al. (1995) andHorn et al. (1997). The glasses were analysed usingNIST SRM 612 as the primary calibration standard andBCR-2G as a secondary standard. NIST SRM 612 andBCR-2G were analysed twice each, at the beginningand also at the end of data collection (twelve abla-tions) on the unknown glasses. Each unknown glasswas ablated for 60-80 s, in six to twelve differentspots, using a 100 µm spot size and between 0.3 to0.8 mJ pulse energy. Data were reduced using softwaredeveloped at Memorial University, and Ca was usedas the internal standard.

The Harvard University system (LC = 16, 17) usedan excimer laser system that operated at a wavelength

of 193 nm, coupled to a PQ II+ (VG Elemental) quad-rupole mass spectrometer. Details of the laser systemare given in Horn et al. (2000). The data acquisitionand reduction procedures are given in Longerich et al.(1996) and Rudnick et al. (2000). The NIST SRM 612glass CRM (Pearce et al. 1997) was used for cali-bration and Ca was used as the internal standardelement for each analysis.

For the measurements at the ForschungszentrumJülich (LC = 15), the laser ablation system (CETAC LSX200) was coupled to the ICP plasma ion source of aquadrupole ICP mass spectrometer (ELAN 6000,Sciex). The experimental parameters for laser ablation(wavelength: 266 nm; laser power density: 9*108 Wcm-2; repetition rate: 20 Hz) and mass spectrometricmeasurements (rf power: 1000 W; acquisition mode:peak hopping; mass resolution m/∆m = 300; carriergas flow rate: 0.6 l min-1) were optimized to maximiseanalyte ion intensities. Details of the experimental set-up and parameters are given in Becker et al. (2000).Relative standard deviation (RSD) without samplechanging (instrument repeatability) was typically bet-ween 1 and 5% (n = 3). Relative sensitivity coefficientswere used to correct the measured concentrations inthe geological glasses as described by Becker andDietze (1999). They were determined on USGS refe-rence glass BCR-2G, where Sr was used as the internalstandard element. Overall analytical uncertainties aregiven in Table 2. Detection limits for most trace elementswere between 0.01 and 0.05 µg g-1.

Laser plasma ionisation mass spectrometry (LIMS):The instrument used at the Max-Planck-Inst i tut fürChemie (LC = 3) was a double focusing AEI-MS 7 massspectrometer equipped with a laser plasma ion source(Seufert and Jochum 1997). About thirty to forty traceelements were analysed in sample areas of 0.1-1 mm2

down to the 0.1 µg g-1 concentration level. Concen-trations were calibrated using relative sensitivity factorsobtained from the analyses of NIST SRM 610 and 612.Titanium and Sr were used as internal standard ele-ments. Analytical uncertainty of the data was about 15%.

Secondary ionisation mass spectrometry (SIMS):Measurements were performed with ion probes at theInstitute of Microelectronics, Yaroslavl, at the UniversitätHeidelberg, and at the Max-Planck-Institut für Chemie.

The analytical procedures of the Yaroslavl laboratory(LC = 13) are reported in Sobolev (1996). Each glasswas analysed at four to five points with a CAMECA IMS

1 1 8

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

4f ion probe, using a sequence of five measurementsfor each element at each point. Repeatability for mostelements was better than 5%. The calibration for thetrace elements was performed by using NIST SRM 610,612, 614 and basaltic glass reference materials analy-sed by isotope dilution - mass spectrometry. Water wascalibrated using natural basaltic glasses from highpressure experiments with H2O measured by FTIR(Sobolev 1996). Analytical uncertainty was better than15% relative for concentrations > 1 µg g-1; it was betterthan 20% for concentrations between 1-0.1 µg g-1.

At the Universität Heidelberg (LC = 22), a CAMECAIMS 3f ion probe was used for trace element determi-nation. Depending on the element, either the high-resolut ion or energy- f i l ter ing mode was appl ied.Details of the instrumental and analytical conditionsregarding and the evaluation procedures are reportedin Rocholl (1998). A BCR-1 glass was used as areference material. Typical analytical uncertainties(Table 2) are estimated to be better than 15% (ATHO-G)and 10% (other samples), respectively.

Four glasses (Table 2) were analysed with a modi-fied CAMECA IMS 3f ion microprobe at the Max-Planck-Institut für Chemie (LC = 6). The measurementswere performed using 17 keV O- primary ions (10-20nA), low mass resolution (m/∆m = 500) and energyfiltering of the secondary ion signal to suppress contri-butions from molecular interferences on the elementsof interest. For the REE, a data reduction procedurewas used similar to that presented by Zinner andCrozaz (1986). The trace element concentrations weremeasured on five spots with total integration times permass of 6 s (Ti, V, Cr, Sr, Y, Zr, Nb) and 60-120 s (Cs,Ba, REE, Hf) in each glass sample, with a repeatability(including the counting statistical error) between diffe-rent spots of typically several percent for elements withconcentrations > 1 µg g-1 and better than 20% forelements with concentrations between 0.1 and 1 µg g-1.Systematic uncertainties due to calibration, matrixeffects and variable tuning conditions were approxi-mately 15%, resulting in overall analytical uncertaintiesof between 15 and 20% (depending on elementconcentrations and integration times) for the measuredelement concentrations.

Synchrotron radiation induced X-ray fluorescence(SR-XRF): Measurements were done at Hasylab BeamLine L (DESY), Hamburg (Germany), using a bendingmagnet-based SR-XRF spectrometer (LC = 18-21).Samples were 50-100 µm thick slices. For quantification,

a combined fundamental parameter and Monte Carlosimulation approach was used (Vincze et al. 1993).Detection limits varied between 10-100 µg g-1 forelements with atomic numbers 19 < Z < 26 and about1-10 µg g-1 for elements 26 < Z < 66. Analytical uncer-tainties were in the range 5-25%, depending mainlyon the element in question, fluorescence peak overlapsand concentration. Some preliminary SR-XRF results forthe glasses were previously published by Amort et al.(1994) and Vincze et al. (1994, 1995).

Pro ton induced X- ray Emiss ion (P IXE) : TheHeidelberg proton microprobe (LC = 14; Traxel et al.1995, Wallianos et al. 1997) was used for the determi-nation of about thirty elements. For most elements theprecision was better than 10% with a mean value of6.2%. Analyses of different reference materials showedno sign of systematic errors (Maetz et al. 1999). Thestatistical variations in the intensity of the X-ray peakswas the most important source of uncertainty, especial-ly for trace elements. The uncertainties of the measuredconcentrations given in Table 2 take into account theprecision, peak statistics as well as background statis-tics and peak overlapping effects. The detection limitfor elements with atomic numbers higher than 20 (Ca)was between < 1 and 10 µg g-1. The mass of sampleused for the analytical measurements was about 1 µg.

Homogeneity

Next to well-characterized values for composition,the homogeneous distribution of major and trace ele-ments within the sample is a fundamental requirementof any reference material. We have tested the homo-geneity of the glasses at the µm to mm-scale byvarious in-situ microanalytical techniques includingEPMA, SIMS, time of flight (TOF)-SIMS and SR-XRF. Wedefine chemical heterogeneities as variations in ele-ment concentration that are in excess of the analyticalprecision. As a measure of variation we use the relativestandard deviation (RSD) in percent.

Major element homogeneity

The major element homogeneity was evaluated bymeans of EPMA profiles across two different sets of sub-samples, hereafter labelled HD (Heidelberg) and GFZ(GeoForschungsZentrum Potsdam). The EPMA studieswere carried out at the Universität Heidelberg (LC =22) and at the GeoForschungsZentrum Potsdam (LC =27). Sub-sample HD was analysed in both laboratories.The results together with information regarding spot

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

1 1 9

size (1-10 µm), profile length (10-2000 µm) and num-ber of analytical spots are given in Table 3. This tablelists only elements which occur at oxide concentrationlevels > 3% m/m and could be measured with goodprecision. For these elements, the variation in measuredconcentrations varied between both different composi-tions and different elements and ranged between 0.2and 3.5%. It is crucial to the scope of this study to ascer-tain whether this variation reflected true chemical heter-ogeneities or whether it was due to analytical bias orboth. This required the measurement of analytical repea-tability. For the Heidelberg data, we used the results forthe well homogenised USGS reference material basaltglass BCR-2G, which had been previously investigatedin Heidelberg under identical analytical conditions(Rocholl 1998; Table 4). For the Potsdam data, we used

results obtained for ML3B-G and the glassy part ofGOR132-G, based on ten successive analyses of thesame analytical spot. Table 4 shows that the repeatab-ility for each element is better than two percent andcomparable in all three samples. Significantly highervalues can be interpreted as heterogeneities.

Overall, RSD variations in all samples except for thetwo komatiites are similar to the ranges of analyticalrepeatibility (Tables 3 and 4). This indicates that possiblechemical heterogeneities in these glasses are smallerthan the analytical uncertainty and, hence, not detec-table. The few exceptions include elements present atvery low concentration levels, i.e. calcium in BM90/21-Gand ATHO-G and iron in ATHO-G and StHs6/80-G, thevariation of which may exceed the respective repeatibi-lity values obtained at higher concentration levels by upto 50%. Clearly, this phenomenon is related to poorcounting statistics. Aluminium data from Heidelberg alsoshow a slightly increased scatter which, however, is notseen in the Potsdam data for the same sample frag-ments. During the analytical session at the Heidelbergprobe, some mechanical problems with the positioningof the (Al, Na) spectrometer occurred sporadically andthis is recorded in the larger variance of these data.Thus, these exceptions reflect analytical bias and do notindicate any detectable chemical heterogeneity.

Unequivocal mineralogical and chemical hetero-geneities are, however, observed in a few fragments ofkomatiites GOR128-G and GOR132-G, in which olivine

1 2 0

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

Table 4.Repeatability of EPMA analyses

for the elements listed in Table 3

BCR-2G # ML3B-G * GOR132-G *RSD [%] RSD [%] RSD [%]

SiO2 0.4 0.7 0.5

Al2O3 0.9 0.7 0.7

FeO 1.7 1.1 2.1

MgO 1.5 1.0 1.3

CaO 1.2 0.8 1.7

# Mean RSD values for 580 analyses of BCR-2G carried out in

Heidelberg under identical analytical/instrumental conditions (Rocholl 1998).

* RSD-variation of ten repeated “single spot” analyses at GFZ Potsdam.

10

15

20

25

30

35

0 50 100 150

GOR132-G

crystals glass

Figure 1. MgO variation across the glassy and crystal- (olivine) bearing part of komatiite sample GOR132-G

(EPMA profile, LC = 22; spot size 1 µm, step width 1 µm). Note the perfectly homogeneous composition of

the glassy part which contrasts with the enhanced Mg variation in the crystal-bearing part.

Distance (µm)

Mg

O (%

m/m

)

crystals formed upon quenching. However, these den-dritic and spinifex-shaped crystals concentrate in smalland limited areas within the glass shards, while mostof the fragments are glassy throughout. Moreover, thecrystals can easily be recognized in polished sectionsand BSE images and can therefore be avoided duringanalysis. Figure 1 shows a profile analysis across the

sample GOR132-G (spot size 1 µm; step width 1 µm).The figure demonstrates uniform MgO abundances inthe glassy part of the fragment and a rapid increase inthe variability in the crystalline part. It should be notedthat the glassy parts of komatiites appear to be veryhomogeneous. This is shown for both komatiites bymeans o f la rge- sca le and smal l - s ca le p ro f i l e s ,

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

1 2 1

1000µm

A-1

A-2

A-3

B-4

B-2

B-3

spot #

mean Li meanY

B-1

B-2

B-3

A-1

A-2

A-3

spot #

mean

0.98 0.99 1.00 1.01 1.02

Mn mean

0.98 0.99 1.00 1.01 1.02

K

B-1

B-2

B-3

A-1

A-2

A-3

spot #

mean

0.98 0.99 1.00 1.01 1.02

Na

0.98 0.99 1.00 1.01 1.02

Crmean

Figure 2. SIMS analyses (LC = 22, Table 1) of different spots on basalt ML3B-G. Concentrations are normalized to the

mean value. Bars indicate ± 1s errors. The diagrams show that Mn, K, Li, Y and Na are homogeneously distributed (within

about 1 percent) at a scale of hundreds of micrometres to a millimetre. Chromium shows a slightly larger variability.

1 2 2

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

applying spot sizes of 10 µm and 1 µm, respectively(Table 3). Note that not only the mean concentrationsbut also the RSD values are nearly identical in bothprofile types.

Major element concentrations determined at the GFZPotsdam compare very well in the HD and GFZ sub-samples. With the exception of those elements measuredwith poor counting statistics as discussed above, elementabundances in both sub-samples agree to within 2%, i.e.within analytical uncertainty (Table 3). This shows thatoverall major element homogeneity is not only valid forscales of a few micrometres to a few millimetres (asdemonstrated by the profile analyses), but also exists bet-ween different glass fragments, i.e. at the centimetre scale.

Trace element homogeneity

It has been noted that elements with high volatili-ties or high affinity for alloying with platinum cruciblesmay become depleted from silicate melts during glassproduction (e.g. NBS 1970, Rocholl et al. 1997). Infact, some inconsistent results for the noble metals Pt, Irand Au (Table 2) may indicate that these elements areheterogeneously distributed in the samples due to lossto the platinum crucible. This is especially obvious for Irin T1-G, where two INAA analyses using glass chips(0.016 µg g-1; LC = 8) and glass powder (0.434 µg g-1;LC = 5), respectively, show very large discrepancies.

We will focus the following discussion on refractorylithophile trace elements, to which such depletion

processes do not apply. The distribution of this elementgroup was studied by SIMS (Universität Heidelberg;LC = 22; Institute of Microelectronics, Yaroslavl; LC = 12),TOF-SIMS (Universität Münster) and SR-XRF (Hasylab,Hamburg; LC = 21) . A t Heidelberg, homogeneitychecks were carried out for a single, 2.7 x 0.5 mmlarge fragment of basalt glass ML3B-G. Six analyticalspots, about 70 µm in diameter and grouped into twosets of three spots each, were analysed for selectedtrace elements. The location of the analytical spotstogether with the measured element abundances ateach spot, normalized to the mean value of the sixanalyses, and the respective 1s precision are shownin Figure 2. This figure demonstrates the homogeneousdistribution of the measured trace elements in ML3B-G.Within one percent, i.e. well within analytical error, theabundances of Li, Na, K, Mn and Y are indistingui-shable at each spot. This implies that possible hetero-geneities, if they exist at all, are averaged out by usinga probe diameter of 70 µm and would only affectmeasurements made at higher resolution. Chromiumshows a slightly larger variability of nearly four percentand individual data do not overlap within error. It isinteresting to note that the phenomenon of enhancedCr variability has also been observed in basalt glassBCR-2G (Rocholl 1998). This may indicate the forma-tion of Cr-rich “islands” within the silicate melt duringquenching, in accordance with the observation thatCr2

6+ dimers form spinel- l ike structures in si l icatemelts (Colson et al. 2000) and that Cr-rich spinels areamong the f irst phases to form during cooling ofbasaltic melts.

Table 5.SIMS and SR-XRF analyses carried out at the Institute of Microelectronics, Yaroslavl (LC = 13) and at Hasylab (LC = 21)

Sample KL2-G ML3B-G StHs6/80-G GOR128-G GOR132-G BM90/21-G ATHO-G T1-Gglassy part glassy part

Mean conc. RSD Mean conc. RSD Mean conc. RSD Mean conc. RSD Mean conc. RSD Mean conc. RSD Mean conc. RSD Mean conc. RSD(µg g-1) (%) (µg g-1) (%) (µg g-1) (%) (µg g-1) (%) (µg g-1) (%) (µg g-1) (%) (µg g-1) (%) (µg g-1) (%)

SIMS analysesTi 15400 1.8 12400 0.2 3910 0.5 1710 0.5 1810 0.9 345 1.6 1360 2.8 4540 0.9Sr 354 2.7 307 0.4 458 0.9 28.6 1.0 15.0 1.4 1.03 2.8 94.8 2.7 292 1.1Y 24.3 3.6 22.6 1.1 9.9 1.0 12.1 0.1 13.6 1.2 2.1 1.6 78.0 3.0 24.0 0.9Zr 148 2.2 118 1.6 104 0.8 10.3 0.6 10.6 0.4 19.5 2.0 438 0.5 137 0.5Yb 2.22 4.0 2.04 2.6 1.04 7.5 1.15 5.4 1.36 4.1 0.25 15.9 9.27 10.4 2.42 2.5

SR-XRF analysesTi - - 9760 2.8 3740 1.5 - - - - - - 1100 0.0 5990 1.5Zn - - 117 3.3 60.0 2.9 - - - - - - 153 1.7 68.6 4.1Sr - - 327 1.1 472 1.1 - - - - - - 98.7 0.8 252 0.7Zr - - 131 2.1 120 1.4 - - - - - - 557 1.7 133 0.4Ba - - 88.8 1.2 297 0.8 - - - - - - 592 2.0 341 0.9

Each glass was analysed at four to five (SIMS) and seven to ten points (SR-XRF). Distances between the points were about 100 µm (SIMS) and 500 µm (SR-XRF).

RSD relative standard deviation (%).

At Yaroslavl (LC = 13), each glass was analysed bySIMS at four to five analytical spots spaced about 100µm from each other. The results for five selected traceelements (Ti, Sr, Y, Zr and Yb) are listed in Table 5 andindicate a very good homogeneity for all analysedglass fragments. One standard deviation variations(1 RSD) are well within analytical error ranging between0.1 and 4%. Ytterbium data exceeded these limits, anobservation attributed to the low concentration of thiselement and the consequential poor counting statistics.

The excellent homogeneity of the glasses with res-pect to lithophile elements is also confirmed by SR-XRFmeasurements performed at Hasylab (LC = 21). Fiveselected trace elements measured with high precision(Ti, Zn, Sr, Zr and Ba) varied by 1 to 3% (1 RSD) in fourglasses analysed at seven to nine points each (Table 5).

In accordance with the SIMS and SR-XRF studies,TOF-SIMS data do not reveal any sign of inhomoge-neity with respect the distribution of major and lithophile

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

1 2 3

LA-I

CP

MS

ICP

MS

ICP

MS

ICP

MS

LA-I

CP

MS

LA-I

CP

MS

LA-I

CP

MS

LA-I

CP

MS

INA

A

INA

A

INA

A

SIM

S

SIM

S

ICP

MS

SIM

S

TIM

S

ICP

MS

MIC

-SS

MS

MIC

-SS

MS

MIC

-SS

MS

LA-I

CP

MS

MC

-IC

PM

S

LA-I

CP

MS

LA-I

CP

MS

ICP

MS

ICP

MS

LA-I

CP

MS

LA-I

CP

MS

LA-I

CP

MS

LA-I

CP

MS

LA-I

CP

MS

LA-I

CP

MS

INA

A

INA

A

PIX

E

PIX

E

SR

-XR

F

SR

-XR

F

SR

-XR

F

SIM

S

ICP

MS

SIM

S

SIM

S

SIM

S

SIM

S

SIM

S

TIM

S

SIM

SIC

PM

SS

IMS

SIM

S

MIC

-SS

MS

MIC

-SS

MS

LA-I

CP

MS

INA

A

INA

A

INA

A

EP

MA

PIX

E

EP

MA

EP

MA

EP

MA

EP

MA

EP

MA

EP

MA

EP

MA

PIX

E

PIX

E

EP

MA

SR

-XR

F

SR

-XR

F

SR

-XR

F

XR

F

XR

F

XR

F

SR

-XR

F

SR

-XR

F

SR

-XR

F

SIM

S

EP

MA

SIM

S

EP

MA

SIM

S

LIM

S

LIM

S

EP

MA

TIM

S

1

1.5

2

2.5

80

100

120

140

160

0.02

0.03

0.04

0.05

0.06

0.07

0.1

0.15

0.2

0.25

0.3

0.35

ICP

MS

12

14

16

18

20

4

6

8

10

12

0

0.05

0.1

0.15

0.2

1.5

2

2.5

3

3.5

0.18

0.22

0.26

0.3

ATHO-GCaO (%)

ML3B-GZr(µg g-1)

GOR132-GU(µg g-1)

ATHO-GTiO2(%)

ML3B-GNd(µg g-1)

ML3B-GNb(µg g-1)

GOR132-GNb(µg g-1)

ATHO-GK2O (%)

GOR132-GEu(µg g-1)

LA-I

CP

MS

MC

-IC

PM

S

MIC

-SS

MS

SIM

S

MC

-IC

PM

S

±5%±5%

±5%

±5%

±5%±5%

±5% ±5% ±5%

Figure 3. Selected major and trace element abundance data obtained by different laboratories and analytical

techniques. The horizontal lines represent the preliminary reference values, based on a careful evaluation of data

and methodology. The error bars give the approximate scale of the uncertainty of ± 5% of a single analysis.

1 2 4

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

trace elements at analytical spots of 5x5 µm and fordepths of up to 0.05 µm (T. Stephan, D. Rost, E.K.Jessberger, pers. communications). This implies thatwithin limits of TOF-SIMS precision, the glasses arehomogeneous for excited volumes of about 1 µm3.

In summary, various microanalytical in-situ tech-niques indicate that individual glass fragments arewell homogenised with respect to both major andlithophile trace elements at the µm to mm scale, andthis conclusion appears to be true also for the entiretyof the samples. Repeti t ive measurements of mostelement abundances vary within analytical error, i.e.between less than one and a few percent . Un-equivocal evidence for chemical and mineralogicalheterogeneity has been observed in a few fragmentsof the komatiitic glasses GOR128-G and GOR132-G.These heterogeneities are thought to be due to quenchcrystallisation of olivine. Heterogeneous distribution hasalso been observed for chromium in basalt ML3B-G(and may also exist in the other glasses) and for a fewnoble metals at very low concentration levels.

Analytical results

Tables 2.1-2.8 list all analytical results for the glasssamples and include the total analytical uncertainties(%) of the techniques used. The consistency of the datamay be taken as a measure of their quality.

Figure 3 shows the data for selected elements inATHO-G, ML3B-G and GOR 132-G from differentlaboratories, arranged in order of increasing concen-tration. The uncertainties of most data are similar des-pite the fact that they depend not only on the elementand i ts concentrat ion, but also on the analyt icalmethod used. Exceptions are the isotope dilution dataof the TIMS technique which are more precise andaccurate than the results of most other techniques.

Basalt glass KL2-G is among the best analysed ofthe MPI-DING reference samples. For some elements,e.g. Sr, Zr, Ba, Nd, up to seventeen independent ana-lyses are available. Figure 4 shows a comparison ofthe results for thirty trace elements in KL2-G. Mostdata agree within 15%. The good agreement of themicroanalytical techniques is especially promising. Thefigure also shows that the abundances in KL2-G arenearly identical (within about 3%) to those in the ori-ginal rock powder (Newsom et al. 1986, Jochum etal. 1993, Jochum and Hofmann 1995, 1997) whichwas used for preparing this glass. Exceptions are theelements Mo, W, Pb, Cs and U.

Few data could be obtained for the depletedul t ramaf ic samples GOR128-G, GOR132-G andBM90/21-G, because the abundances of several traceelements are too close to, or below, the detection limitsof the analytical techniques used.

0Rb Nb Sn Cs La Pr Sm Gd Dy Er Yb Hf W ThY

Sr Mo Sb Ba Ce Nd Eu Tb Ho Tm Lu Ta Pb UZr

0.5

1

1.5

2

original rock

TIMS

INAA

SSMS

MIC-SSMS

ICPMS

MC-ICPMS

LA-ICPMS

LIMS

SIMS

PIXE

SR-XRF

Figure 4. Comparison of individual trace element data of basalt glass KL2-G (Table 2.1). Elemental data are normalized

to the reference values (Table 6). Most data agree within ± 15% (shaded band). The composition of the original rock

powder is also shown (Newsom et al. 1986).

Conc

.nor

ma

lized

to r

ef. v

alu

e

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

1 2 5

Table 6.1.Preliminary reference and information values forsample KL2-G (Kilauea tholeiitic basalt glass)

Oxides (% m/m)

Reference value Information value

SiO2 - 50.1 ± 0.1Al2O3 - 13.1 ± 0.1FeO tot 10.7 ± 0.1 -MnO 0.166 ± 0.003 -MgO - 7.26 ± 0.06CaO 10.8 ± 0.1 -Na2O 2.27 ± 0.04 -K2O 0.48 ± 0.01 -TiO2 2.60 ± 0.05 -P2O5 0.25 ± 0.01 -H2O - < 0.1

Major elements (% m/m) and trace elements (µg g-1)

Reference value Information value

Li - 5.4 ± 0.5Be - 0.9B 3Na (%) 1.68 ± 0.03 -Mg (%) - 4.38 ± 0.04Al (%) - 6.93 ± 0.05Si (%) - 23.4 ± 0.1P 1090 ± 50 -Cl - 30K 4000 ± 100 -Ca (%) 7.72 ± 0.11 -Sc 32.3 ± 0.7 -Ti (%) 1.56 ± 0.03 -V 370 ± 50 -Cr 310 ± 10 -Mn 1290 ± 20 -Fe (%) 8.32 ± 0.08 -Co 42 ± 1 -Ni 116 ± 3 -Cu 95 ± 4 -Zn 112 ± 4 -Ga 20 ± 1 -Ge - 1As - < 0.2Se - < 0.2Br - < 0.2Rb 8.9 ± 0.2 -Sr 364 ± 6 -Y 26.8 ± 0.9 -Zr 159 ± 3 -Nb 15.8 ± 0.6 -Mo 4.1 ± 0.3 -Rh * - 40Pd * - < 6Ag * - < 0.5Cd - < 0.4In - < 0.3Sn 1.7 ± 0.1 -Sb 0.15 ± 0.01 -Cs 0.12 ± 0.01 -Ba 123 ± 3 -La 13.2 ± 0.2 -Ce 32.9 ± 0.6 -Pr 4.71 ± 0.09 -Nd 21.7 ± 0.4 -Sm 5.55 ± 0.09 -Eu 1.95 ± 0.04 -Gd 6.1 ± 0.1 -Tb 0.93 ± 0.02 -Dy 5.35 ± 0.06 -Ho 0.99 ± 0.01 -Er 2.64 ± 0.04 -Tm 0.336 ± 0.006 -Yb 2.13 ± 0.04 -Lu 0.296 ± 0.008 -Hf 4.14 ± 0.05 -Ta 0.97 ± 0.02 -W - < 0.4Re - < 0.01Os * - < 0.3Ir * - 0.1Pt * - 10Au * - 0.4Hg - < 0.3Pb 2.2 ± 0.1 -Bi - 0.04Th 1.03 ± 0.03 -U 0.55 ± 0.01 -

Uncertainties represent the standard deviations of the mean calculated from the analytical data in Tables 2.1-2.8 (without outliers; see text for further information).

* element possibly heterogeneously distributed in the glass sample because of contamination during sample preparation.

Table 6.2.Preliminary reference and information values forsample ML3B-G (Mauna Loa tholeiitic basalt glass)

Oxides (% m/m)

Reference value Information value

SiO2 50.9 ± 0.4 -Al2O3 - 13.4 ± 0.1FeO tot 10.9 ± 0.1 -MnO 0.169 ± 0.003 -MgO - 6.56 ± 0.03CaO 10.5 ± 0.1 -Na2O 2.35 ± 0.02 -K2O 0.383 ± 0.002 -TiO2 2.09 ± 0.04 -P2O5 0.24 ± 0.02 -H2O - < 0.1

Major elements (% m/m) and trace elements (µg g-1)

Reference value Information value

Li - 4.2 ± 0.2Be - 0.8B - 2Na (%) 1.74 ± 0.01 -Mg (%) - 3.96 ± 0.02Al (%) - 7.09 ± 0.05Si (%) 23.8 ± 0.2 -P 1050 ± 90 -Cl - < 1000K 3180 ± 20 -Ca (%) 7.50 ± 0.07 -Sc 31.4 ± 0.8 -Ti (%) 1.25 ± 0.02 -V - 240 ±30Cr 170 ± 10 -Mn 1310 ± 20 -Fe (%) 8.47 ± 0.08 -Co 39 ± 3 -Ni 105 ± 2 -Cu 115 ± 4 -Zn 112 ± 3 -Ga 19 ± 1 -Ge - 0.9As - < 0.2Se - < 0.3Br - < 0.2Rb 5.8 ± 0.2 -Sr 315 ± 3 -Y 24.3 ± 0.7 -Zr 126 ± 2 -Nb 9.0 ± 0.2 -Mo 18 ± 1 -Rh * - -Pd * - -Ag * - < 0.7Cd - -In - < 0.4Sn - 0.9 ± 0.2Sb - 0.1Cs - 0.14 ± 0.01Ba 80 ± 2 -La 8.96 ± 0.07 -Ce 23.3 ± 0.3 -Pr 3.47 ± 0.04 -Nd 16.8 ± 0.1 -Sm 4.79 ± 0.05 -Eu 1.68 ± 0.01 -Gd 5.23 ± 0.08 -Tb 0.82 ± 0.01 -Dy 4.81 ± 0.06 -Ho 0.91 ± 0.01 -Er 2.46 ± 0.05 -Tm 0.326 ± 0.004 -Yb 2.05 ± 0.02 -Lu 0.286 ± 0.005 -Hf 3.32 ± 0.05 -Ta 0.55 ± 0.01 -W - < 0.3Re - -Os * - -Ir * - 0.03Pt * - 8Au * - 0.07Hg - < 0.3Pb 1.45 ± 0.04 -Bi - 0.01Th 0.54 ± 0.01 -U 0.44 ± 0.02 -

1 2 6

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

Table 6.3.Preliminary reference and information values forsample StHs6/80-G (St Helens andesitic ash glass)

Oxides (% m/m)

Reference value Information value

SiO2 63.7 ± 0.2 -Al2O3 - 17.7 ± 0.1FeO tot 4.35 ± 0.05 -MnO 0.079 ± 0.003 -MgO - 1.98 ± 0.02CaO 5.29 ± 0.05 -Na2O 4.52 ± 0.06 -K2O 1.29 ± 0.01 -TiO2 0.69 ± 0.02 -P2O5 0.17 ± 0.01 -H2O - < 0.1

Major elements (% m/m) and trace elements (µg g-1)

Reference value Information value

Li - 13 ± 6Be - 1B - 10Na (%) 3.35 ± 0.04 -Mg (%) - 1.19 ± 0.01Al (%) - 9.36 ± 0.05Si (%) 29.8 ± 0.1 -P 740 ± 40 -Cl - 270 ± 30K 10700 ± 100 -Ca (%) 3.78 ± 0.04 -Sc 10.7 ± 0.4 -Ti (%) 0.41 ± 0.01 -V 96 ± 9 -Cr 19 ± 2 -Mn 610 ± 20 -Fe (%) 3.38 ± 0.04 -Co 13 ± 1 -Ni 27 ± 4 -Cu 47 ± 7 -Zn 65 ± 2 -Ga 21 ± 2 -Ge - 1.4As 2.6 ± 0.3 -Se - < 0.2Br - 0.8 ± 0.1Rb 29.9 ± 0.9 -Sr 486 ± 5 -Y 11.3 ± 0.3 -Zr 120 ± 2 -Nb 7.1 ± 0.2 -Mo - 2.2 ± 0.4Rh * - -Pd * - < 6Ag * - < 0.4Cd - < 0.4In - < 0.4Sn 0.84 ± 0.08 -Sb - 0.21 ± 0.01Cs 1.89 ± 0.06 -Ba 302 ± 4 -La 11.9 ± 0.2 -Ce 25.7 ± 0.4 -Pr 3.17 ± 0.04 -Nd 12.7 ± 0.1 -Sm 2.79 ± 0.04 -Eu 0.97 ± 0.02 -Gd 2.64 ± 0.08 -Tb 0.372 ± 0.007 -Dy 2.19 ± 0.05 -Ho 0.417 ± 0.006 -Er 1.17 ± 0.03 -Tm 0.167 ± 0.004 -Yb 1.11 ± 0.01 -Lu 0.168 ± 0.002 -Hf 3.16 ± 0.05 -Ta 0.418 ± 0.008 -W - < 0.5Re - < 0.1Os * - < 1Ir * - 0.02Pt * - < 1Au * - 0.04Hg - < 0.2Pb 10.2 ± 0.4 -Bi - 0.1Th 2.22 ± 0.04 -U 1.03 ± 0.03 -

Table 6.4.Preliminary reference and information values forsample GOR128-G (Gorgona Island komatiite glass)

Oxides (% m/m)

Reference value Information value

SiO2 - 46.1 ± 0.3Al2O3 - 9.87 ± 0.10FeO tot 9.78 ± 0.06 -MnO 0.179 ± 0.004 -MgO - 25.8 ± 0.1CaO 6.17 ± 0.06 -Na2O 0.557 ± 0.011 -K2O 0.036 ± 0.001 -TiO2 0.280 ± 0.003 -P2O5 - 0.028 ± 0.002H2O - < 0.1

Major elements (% m/m) and trace elements (µg g-1)

Reference value Information value

Li - 9 ± 1Be - 0.04B - 20Na (%) 0.413 ± 0.008 -Mg (%) - 15.6 ± 0.1Al (%) - 5.22 ± 0.05Si (%) - 21.5 ± 0.1P - 120 ± 10Cl - < 400K 300 ± 10 -Ca (%) 4.41 ± 0.04 -Sc 31 ± 1 -Ti (%) 0.168 ± 0.002 -V - 200Cr 2180 ± 50 -Mn 1390 ± 30 -Fe (%) 7.60 ± 0.05 -Co 86 ± 7 -Ni - 1070 ± 30Cu - 70 ± 20Zn 74 ± 1 -Ga 8.8 ± 0.3 -Ge - -As - < 0.2Se - < 0.6Br - < 0.3Rb - 0.39 ± 0.01Sr 31 ± 1 -Y 11.3 ± 0.4 -Zr 10.2 ± 0.2 -Nb 0.11 ± 0.01 -Mo - 0.6Rh * - -Pd * - -Ag * - < 0.5Cd - -In - < 0.2Sn - 0.2Sb - 0.02Cs 0.25 ± 0.02 -Ba 1.09 ± 0.04 -La 0.124 ± 0.005 -Ce 0.46 ± 0.02 -Pr 0.105 ± 0.004 -Nd 0.78 ± 0.02 -Sm 0.54 ± 0.02 -Eu 0.27 ± 0.01 -Gd 1.21 ± 0.04 -Tb 0.25 ± 0.01 -Dy 1.97 ± 0.05 -Ho 0.44 ± 0.01 -Er 1.40 ± 0.06 -Tm 0.20 ± 0.01 -Yb 1.39 ± 0.06 -Lu 0.21 ± 0.01 -Hf 0.351 ± 0.008 -Ta - 0.028 ± 0.006W - 10Re - -Os * - -Ir * - 0.06Pt * - 10Au * - 0.03Hg - < 0.2Pb - 0.42 ± 0.08Bi - 0.0009Th - 0.007 ± 0.001U 0.013 ± 0.001 -

Uncertainties represent the standard deviations of the mean calculated from the analytical data in Tables 2.1-2.8 (without outliers; see text for further information).

* element possibly heterogeneously distributed in the glass sample because of contamination during sample preparation.

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

1 2 7

Table 6.5.Preliminary reference and information values forsample GOR132-G (Gorgona Island komatiite glass)

Oxides (% m/m)

Reference value Information value

SiO2 - 45.5 ± 0.3Al2O3 - 10.9 ± 0.1FeO tot 10.1 ± 0.1 -MnO 0.152 ± 0.003 -MgO - 22.4 ± 0.1CaO 8.42 ± 0.09 -Na2O 0.798 ± 0.014 -K2O 0.032 ± 0.002 -TiO2 0.29 ± 0.01 -P2O5 - 0.04 ± 0.01H2O - < 0.1

Major elements (% m/m) and trace elements (µg g-1)

Reference value Information value

Li - 8 ± 1Be - 0.04B - 20Na (%) 0.592 ± 0.010 -Mg (%) - 13.5 ± 0.1Al (%) - 5.77 ± 0.05Si (%) - 21.3 ± 0.1P - 170 ± 40Cl - < 300K 270 ± 20 -Ca (%) 6.02 ± 0.06 -Sc - 35 ± 1Ti (%) 0.174 ± 0.006 -V - 190Cr 2450 ± 50 -Mn 1180 ± 20 -Fe (%) 7.85 ± 0.08 -Co 88 ± 3 -Ni - 1170 ± 20Cu - 200Zn 75 ± 5 -Ga - 10.8 ± 0.1Ge - -As - < 0.1Se - < 0.7Br - < 0.2Rb 2.13 ± 0.04 -Sr 15.6 ± 0.4 -Y 12.7 ± 0.4 -Zr 10.3 ± 0.2 -Nb 0.071 ± 0.008 -Mo - 31 ± 1Rh * - -Pd * - -Ag * - < 1Cd - < 5In - -Sn - 0.3Sb - 0.09 ± 0.03Cs 8.2 ± 0.2 -Ba 0.86 ± 0.07 -La 0.085 ± 0.003 -Ce 0.38 ± 0.01 -Pr 0.095 ± 0.004 -Nd 0.71 ± 0.01 -Sm 0.52 ± 0.01 -Eu 0.261 ± 0.005 -Gd 1.26 ± 0.02 -Tb 0.28 ± 0.01 -Dy 2.14 ± 0.04 -Ho 0.53 ± 0.01 -Er 1.62 ± 0.05 -Tm 0.244 ± 0.004 -Yb 1.61 ± 0.03 -Lu 0.24 ± 0.01 -Hf 0.37 ± 0.02 -Ta 0.034 ± 0.002 -W - 26Re - < 0.01Os * - < 0.2Ir * - 1Pt * - 10Au * - 0.1Hg - < 0.4Pb - 21 ± 2Bi - 0.008Th 0.016 ± 0.002 -U 0.045 ± 0.002 -

Table 6.6.Preliminary reference and information values forsample BM90/21-G (Ivrea Zone peridotite glass)

Oxides (% m/m)

Reference value Information value

SiO2 - 53.3 ± 0.2Al2O3 - 2.33 ± 0.03FeO tot 6.76 ± 0.06 -MnO 0.106 ± 0.002 -MgO - 34.2 ± 0.2CaO - 2.10 ± 0.02Na2O 0.111 ± 0.007 -K2O - 0.0037TiO2 0.06 ± 0.01 -P2O5 - < 0.001H2O - < 0.1

Major elements (% m/m) and trace elements (µg g-1)

Reference value Information value

Li - 1Be - 0.01B - 3Na (%) 0.0823 ± 0.005 -Mg (%) - 20.6 ± 0.1Al (%) - 1.23 ± 0.02Si (%) - 24.9 ± 0.1P - < 5Cl - < 300K - 31Ca (%) - 1.50 ± 0.01Sc - 11Ti (%) 0.04 ± 0.01 -V - 40Cr 2100 ± 60 -Mn 821 ± 15 -Fe (%) 5.25 ± 0.05 -Co - 89 ± 2Ni - 1890 ± 70Cu - < 40Zn - 39 ± 2Ga - 3Ge - -As - < 0.07Se - < 0.4Br - < 0.1Rb - 0.42 ± 0.03Sr - 0.84 ± 0.04Y 1.9 ± 0.2 -Zr 19.7 ± 0.3 -Nb - 0.045 ± 0.006Mo - 17Rh * - -Pd * - < 6Ag * - < 0.3Cd - < 0.4In - 0.2Sn - <15Sb - 0.05Cs - 1.24 ± 0.08Ba - 0.55 ± 0.03La 0.22 ± 0.01 -Ce 0.45 ± 0.02 -Pr - 0.08 ± 0.02Nd 0.37 ± 0.02 -Sm 0.15 ± 0.01 -Eu 0.054 ± 0.003 -Gd 0.26 ± 0.03 -Tb 0.052 ± 0.005 -Dy 0.35 ± 0.01 -Ho 0.081 ± 0.006 -Er 0.26 ± 0.02 -Tm - 0.04Yb 0.27 ± 0.01 -Lu 0.041 ± 0.001 -Hf - 0.50 ± 0.01Ta - < 0.03W - 0.5Re - < 0.01Os * - < 0.3Ir * - 0.06Pt * - 20Au * - 0.06Hg - < 0.3Pb - 0.8Bi - 0.002Th - 0.044 ± 0.006U 0.083 ± 0.005 -

Uncertainties represent the standard deviations of the mean calculated from the analytical data in Tables 2.1-2.8 (without outliers; see text for further information).

* element possibly heterogeneously distributed in the glass sample because of contamination during sample preparation.

1 2 8

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

Table 6.7.Preliminary reference and information values forsample T1-G (Italian Alps quartz diorite glass)

Oxides (% m/m)

Reference value Information value

SiO2 - 58.5 ± 0.2Al2O3 - 17.0 ± 0.1FeO tot 6.42 ± 0.04 -MnO 0.131 ± 0.004 -MgO - 3.74 ± 0.04CaO 7.08 ± 0.05 -Na2O 3.14 ± 0.03 -K2O 1.94 ± 0.02 -TiO2 0.73 ± 0.01 -P2O5 - 0.176 ± 0.004H2O - < 0.1

Major elements (% m/m) and trace elements (µg g-1)

Reference value Information value

Li - 20 ± 1Be - 2B - 5Na (%) 2.33 ± 0.02 -Mg (%) - 2.26 ± 0.02Al (%) - 9.00 ± 0.05Si (%) - 27.3 ± 0.1P - 770 ± 20Cl - 90K 16100 ± 200 -Ca (%) 5.06 ± 0.04 -Sc 26.7 ± 0.5 -Ti (%) 0.44 ± 0.01 -V - 190Cr 22 ± 1 -Mn 1010 ± 30 -Fe (%) 4.99 ± 0.03 -Co 19 ± 1 -Ni 13 ± 2 -Cu 21 ± 2 -Zn 84 ± 9 -Ga 18.6 ± 0.4 -Ge - -As - 0.71 ± 0.08Se - < 0.2Br - < 0.4Rb 80 ± 2 -Sr 283 ± 4 -Y 23.2 ± 0.7 -Zr 147 ± 3 -Nb 9.1 ± 0.5 -Mo - 5.4 ± 0.8Rh * - -Pd * - -Ag * - < 0.6Cd - < 30In - < 0.3Sn 2.1 ± 0.8 -Sb 0.276 ± 0.005 -Cs 2.9 ± 0.2 -Ba 382 ± 11 -La 69 ± 2 -Ce 127 ± 4 -Pr 12.1 ± 0.5 -Nd 40.7 ± 0.9 -Sm 6.52 ± 0.13 -Eu 1.21 ± 0.03 -Gd 5.2 ± 0.4 -Tb 0.82 ± 0.02 -Dy 4.44 ± 0.11 -Ho 0.83 ± 0.03 -Er 2.42 ± 0.08 -Tm - 0.35 ± 0.01Yb 2.32 ± 0.06 -Lu 0.35 ± 0.01 -Hf 3.9 ± 0.1 -Ta 0.45 ± 0.02 -W - 0.86 ± 0.04Re - -Os * - -Ir * - 0.1Pt * - < 7Au * - 0.1Hg - < 0.3Pb 13 ± 2 -Bi - 0.09Th 30 ± 1 -U 1.67 ± 0.06 -

Table 6.8.Preliminary reference and information values forsample ATHO-G (Iceland rhyolite glass)

Oxides (% m/m)

Reference value Information value

SiO2 76.0 ± 0.4 -Al2O3 11.9 ± 0.2 -FeO tot 3.23 ± 0.06 -MnO 0.103 ± 0.001 -MgO 0.104 ± 0.011 -CaO 1.66 ± 0.02 -Na2O 3.8 ± 0.3 -K2O 2.68 ± 0.03 -TiO2 0.245 ± 0.005 -P2O5 - 0.027 ± 0.003H2O - < 0.1

Major elements (% m/m) and trace elements (µg g-1)

Reference value Information value

Li - 28 ± 2Be - 4B - 6Na (%) 2.8 ± 0.2 -Mg (%) 0.063 ± 0.007 -Al (%) 6.30 ± 0.10 -Si (%) 35.5 ± 0.2 -P - 120 ± 10Cl - 400K 22200 ± 200 -Ca (%) 1.19 ± 0.01 -Sc 5.3 ± 0.3 -Ti (%) 0.147 ± 0.003 -V - 4.4 ± 0.2Cr 6 ± 1 -Mn 798 ± 8 -Fe (%) 2.51 ± 0.05 -Co 2.3 ± 0.2 -Ni - 17 ± 4Cu 21 ± 1 -Zn 139 ± 8 -Ga 24 ± 1 -Ge - 2As - 1.2 ± 0.3Se - < 0.5Br - 1.2 ± 0.1Rb 63.8 ± 1.6 -Sr 96.4 ± 1.6 -Y 93.8 ± 3.3 -Zr 524 ± 14 -Nb 61.9 ± 1.4 -Mo 6 ± 1 -Rh * - -Pd * - < 20Ag * - < 0.2Cd - < 5In - -Sn - 4.9Sb 0.38 ± 0.06 -Cs 1.31 ± 0.05 -Ba 553 ± 6 -La 55.5 ± 0.6 -Ce 124 ± 2 -Pr 14.5 ± 0.3 -Nd 61.3 ± 0.9 -Sm 14.6 ± 0.4 -Eu 2.84 ± 0.05 -Gd 15.5 ± 0.5 -Tb 2.52 ± 0.12 -Dy 15.6 ± 0.3 -Ho 3.32 ± 0.05 -Er 10.2 ± 0.2 -Tm 1.51 ± 0.03 -Yb 10.1 ± 0.1 -Lu 1.52 ± 0.02 -Hf 13.6 ± 0.3 -Ta 3.81 ± 0.10 -W - 8.5 ± 0.4Re - < 0.3Os * - < 2Ir * - 0.09Pt * - 12Au * - 0.025Hg - < 1Pb 5.7 ± 0.3 -Bi - 0.09Th 7.48 ± 0.11 -U 2.35 ± 0.11 -

Uncertainties represent the standard deviations of the mean calculated from the analytical data in Tables 2.1-2.8 (without outliers; see text for further information).

* element possibly heterogeneously distributed in the glass sample because of contamination during sample preparation.

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

1 2 9

10

100

T1-G

10

StHs6/80-G

10

LaCe

PrNd

PmSm

EuGd

TbDy

HoEr

TmYb

Lu LaCe

PrNd

PmSm

EuGd

TbDy

HoEr

TmYb

Lu

LaCe

PrNd

PmSm

EuGd

TbDy

HoEr

TmYb

Lu LaCe

PrNd

PmSm

EuGd

TbDy

HoEr

TmYb

Lu

KL2-G

10

ML3B-G

1GOR128-G

0.1

1

10

GOR132-G

100

ATHO-G

1

BM90/21-G

reference valueLIMSLA-ICPMS

SIMSSR-XRFPIXE

Figure 5. CI chondrite-normalized REE abundances of the MPI-DING glasses obtained by various microanalytical in-situ

techniques (SIMS, LA-ICP-MS, LIMS, SR-XRF and PIXE) in comparison to the “reference values”.

Sam

ple

/ C

l cho

ndri

te

Preliminary geochemical characterisation

The eight MPI-DING glasses were made with thepurpose of providing reference materials for geochemi-cal, microanalytical in-situ studies. It is desirable, there-fore, that these samples should fit the ISO definition ofa reference material, namely a “material or substanceone or more of whose property values are sufficientlyhomogeneous and well established to be used for thecalibration of an apparatus, the assessment of a mea-surement method, or for assigning values to materials(ISO Guide 30 1992, Kane and Potts 1999)”. To cha-racterise the MPI reference glasses, we follow therecommendations for the certification of reference mate-rials of Kane and Potts (1997, 1999), although we areaware that an official certificate cannot be made by us.

Traceability (King 1997, Potts 1997) is a key conceptin the characterisation of reference samples. As shownearlier in the section “Analytical techniques”, traceabilitywas established in the results from the various tech-niques by the use of international reference materials,for example, to set up the calibration. The chemicaldata of the reference glasses obtained in the differentlaboratories (Tables 1 and 2) are accompanied by ana-lytical uncertainties. The homogeneity of six glasses wasdemonstrated by various methods. The degree of heter-ogeneity of the two komatiitic samples GOR128-G andGOR132-G is sufficiently small that it does not adverselyaffect their use as reference samples. The collaboratinglaboratories have demonstrated their technical compe-tence in geochemical analytical research by using tho-roughly investigated and well established methods, aswell as the publication of reports and research papersdescribing improvements to “state of the practice” analy-tical techniques (references in the analytical section).It is assumed that all laboratories are equally capableof analysing the geological glasses and that all resultsare comparable. Comparability of measurement fromindependent laboratories using different analytical tech-niques is one of the most important assurances of ana-lytical accuracy, and a sound basis on which traceabilityto SI units can be based when reference materials arecharacterized by a network of qualified laboratories(Kane and Potts 1999).

To obtain reference values of the geological glas-ses, we averaged the results from a large numberof independent techniques (Table 2). Outliers wererejected if the data are unacceptable presumablybecause of technical reasons. Most of them have

relatively high uncertainties (compared to other tech-niques) mainly caused by measurements near thedetection limits or calibration errors.

The results in Table 6 are classified in two catego-ries: preliminary reference values and informationvalues. Preliminary reference values are reported whenthey are derived from at least three laboratories usingthree or more independent, well-defined techniquesthat are in statistical agreement (Uriano and Gravatt1977). The standard deviation of the mean definestheir uncertainties. Information values with standarddeviations of the mean are derived from the data of atleast two laboratories using two independent tech-niques. All other results representing information from asingle laboratory or analytical technique are listed asinformation values without standard deviations. Thedata of elements identified as being possibly hetero-geneously distributed are marked in Table 6.

The reliability of the reference values may also bedemonstrated by means of abundance data of ele-ments that behave in a geochemically coherent man-ner such as the rare earth elements (REE). Because thereference glasses are natural in composition, they dis-play smooth chondrite-normalized REE patterns (Figure5). This indirectly confirms the quality of the REE refer-ence values listed in Table 6.

Availability

Because our sample set may be valuable forgeochemical microanalytical work, we are willing todistribute small amounts of these reference materials tothe scientific community on request (e-mail addresses:[email protected] or [email protected]).

Acknowledgements

Many people were involved in the preparationand the characterisation of the reference glasses. Wethank all of them who have contributed to the extensivedata base. Three reviewers and Phil Potts are thankedfor their constructive comments.

References

Amort H., Brandenburg T., Diercks H., Garbe S.,Haller M., Knöchel A., Radtke M., Hofmann A.,Jochum K.P., Adams F., Janssens K. and Vincze L. (1994)Quantification of geological standards. HasylabJahresbericht 1994, 993-994.

1 3 0

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

references

Becker J.S. and Dietze H.-J. (1999)Determination of trace elements in geological samplesby laser ablation inductively coupled plasma-mass spectrometry. Fresenius’ Journal of Analytical Chemistry,365, 429-434.

Becker J.S., Pickhardt C. and Dietze H.-J. (2000)Laser ablation inductively coupled plasma-mass spectrometry for determination of trace elements in geological glasses. Mikrochimica Acta, submitted.

Colson R.O., Colson M.C., Nermoe M.K.B., Floden A.M. and Hendrickson T.R. (2000)Effects of aluminium and Cr dimerization in silicate meltsand implications for Cr partitioning and redox equilibria.Geochimica et Cosmochimica Acta, 64, 527-543.

Dingwell D., Bagdassarov N., Bussod N. and Webb S.L. (1993)Magma Rheology. Mineralogical Association ofCanada Short Course on Experiments at High Pressureand Applications to the Earth’s Mantle, 131-196.

Dulski P. (1994)Interferences of oxide, hydroxide and chloride analytespecies in the determination of rare earth elements ingeological samples by inductively coupled plasma-massspectrometry. Fresenius’ Journal of Analytical Chemistry,350, 194-203.

Echeverria L.M. (1980)Tertiary or Mesozoic komatiites from Gorgona Island,Colombia: Field relations and geochemistry. Contributionsto Mineralogy and Petrology, 73, 253-266.

Gill R. (ed) (1997)Modern Analytical Geochemistry. Addison WesleyLongman (Harlow, Essex, UK), 329pp.

Govindaraju K., Potts P.J., Webb P.C. and Watson J.S. (1994)1994 Report on Whin Sill dolerite WS-E from Englandand Pittscurrie microgabbro PM-S from Scotland:Assessment by one hundred and four international laboratories. Geostandards Newsletter, 18, 211-300.

Günther D., Longerich H. and Jackson S.E. (1995)A new enhanced sensitivity quadrupole inductively coupled plasma-mass spectrometer (ICP-MS). CanadianJournal of Applied Spectroscopy, 40, 111-116.

Hémond C., Arndt N.T., Lichtenstein U., Hofmann A.W., Oskarsson N. and Steinthorsson S. (1993)The heterogeneous Iceland plume: Nd-Sr-O isotopesand trace element constraints. Journal of GeophysicalResearch, 98, 15833-15850.

Hinton R.W. (1995)Ion microprobe analysis in geology. In: Potts P.J., BowlesJ.F.W., Reed S.J.B. and Cave M.R. (eds), Microprobe techniques in the Earth sciences, Chapman and Hall(London), 235-289.

Horn I., Hinton R.W., Jackson S.E. and Longerich H.P. (1997)Ultra-trace element analysis of NIST SRM 616 and 614using laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS): A comparisonwith secondary ion mass spectrometry (SIMS).Geostandards Newsletter: The Journal of Geostandardsand Geoanalysis, 21, 191-203.

Horn I., Rudnick R.L. and McDonough W.F. (2000)Precise elemental and isotope ratio determination bycombined solution nebulization and laser ablation - ICP-MS: Application to U/Pb geochronology. ChemicalGeology, 164, 281-301.

ISO Guide 30: 1992Terms and definitions used in connection with referencematerials. (Second edition). International Organisationfor Standardisation (Geneva), 8pp.

Jenner G.A., Foley S.F., Jackson S.E., Green T.H.,Freyer B.J. and Longerich H.P. (1994)Determination of partition coefficients for trace elementsin high pressure-temperature experimental run productsby laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS). Geochimica etCosmochimica Acta, 58, 5099-5103.

Jochum K.P., Seufert H.M., Midinet-Best S.,Rettmann E., Schönberger K. and Zimmer M. (1988)Multi-element analysis by isotope dilution-spark sourcemass spectrometry (ID-SSMS). Fresenius Zeitschrift fürAnalytische Chemie, 331, 104-110.

Jochum K.P. and Hofmann A.W. (1995)Contrasting Th/U in historical Mauna Loa and Kilauealavas. In: Rhodes J.M. and Lockwood J.P. (eds), MaunaLoa Revealed, American Geophysical Union(Washington), 307-314.

Jochum K.P. and Hofmann A.W. (1997)Constraints on Earth evolution from antimony in mantle-derived rocks. Chemical Geology, 139, 39-49.

Jochum K.P., Hofmann A.W. and Seufert H.M. (1993)Tin in mantle-derived rocks: Constraints on Earth evolution. Geochimica et Cosmochimica Acta, 57, 3585-3595.

Jochum K.P., Hofmann A.W., Haller M., Radtke M.,Knöchel A., Vincze L. and Janssens K. (1995)Comparison of synchrotron X-ray fluorescence analyses ofgeological standard glasses with reference values.Hasylab Jahresbericht 1995, II, 1003-1004.

Jochum K.P., Laue H.-J., Seufert H.M., Dienemann C., Stoll B., Pfänder J., Flanz. M.,Achtermann H. and Hofmann A.W. (1997)Multi-ion counting-spark source mass spectrometry (MIC-SSMS): A new multielement technique in geo- andcosmochemistry. Fresenius’ Journal of AnalyticalChemistry, 359, 385-389.

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

1 3 1

references

Kane J.S. (1998)An assessment of the suitability of NIST glass SRM literature data for the derivation of reference values.Geostandards Newsletter: The Journal of Geostandardsand Geoanalysis, 22, 15-31.

Kane J.S and Potts P.J. (1997)ISO Guides for reference material certification and use:Application to geochemical reference materials.Geostandards Newsletter: The Journal of Geostandardsand Geoanalysis, 21, 51-58.

Kane J.S and Potts P.J. (1999)An interpretation of ISO Guidelines for the certification of geological reference materials. GeostandardsNewsletter: The Journal of Geostandards andGeoanalysis, 23, 209-221.

King B. (1997)Traceability of chemical analysis. The Analyst, 122,197-204.

Klein M., Stosch H.-G. and Seck H.A. (1997)Partitioning of high field-strength and rare-earth elementsbetween amphibole and quartz-dioritic to tonalitic melts:An experimental study. Chemical Geology, 138, 257-271.

Kruse H. (1979)Spectra processing with computer graphics. In: CarpenterB.S. (ed.), Computers in Activation Analysis andGamma-Ray Spectroscopy. Proceedings of theAmerican Nuclear Society Conference, 76-84.

Longerich H.P., Jackson S.E. and Günther D. (1996)Laser ablation inductively coupled plasma-mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of AnalyticalAtomic Spectrometry, 11, 899-904.

Maetz M., Schüßler A., Wallianos A. and Traxel K. (1999)Subcellar trace element distribution in Geosiphon pyriforme. Nuclear Instruments and Methods in PhysicsResearch, B150, 200-207.

NBS (1970)Certificate of analysis: Trace elements in glass SRMs: SRM610 through 619, inclusive. National Bureau ofStandards (Gaitherburg, USA), 4pp.

Newsom H.E., White W.M., Jochum K.P. andHofmann A.W. (1986)Siderophile and chalcophile element abundances inoceanic basalts, Pb isotope evolution and growth of theEarth’s core. Earth and Planetary Science Letters, 80,299-313.

Norrish K. and Hutton J.T. (1969)An accurate X-ray spectrographic method for the analysisof a wide range of geological samples. Geochimica etCosmochimica Acta, 33, 431-453.

Obermiller W. (1994) Chemical and isotopic variations in the Balmuccia,Baldissero and Finero peridotite massifs (Ivrea-Zone, N-Italy). PhD thesis, Universität Mainz, 191pp.

Ottolini L., Bottazzi P. and Vannucci R. (1993)Quantification of lithium, beryllium, and boron in silicatesby secondary ion mass spectrometry using conventionalenergy filtering. Analytical Chemistry, 65, 1960-1968.

Pearce N.J.G., Perkins W.T., Westgate J.A., Gorton M.P., Jackson S.E., Neal C.R. and Chenery S.P. (1997)A compilation of new and published major and traceelement data for NIST SRM 610 and NIST SRM 612 glassreference materials. Geostandards Newsletter: TheJournal of Geostandards and Geoanalysis, 21, 115-144.

Potts P.J. (1997)A glossary of terms and definitions used in analytical chemistry. Geostandards Newsletter: The Journal ofGeostandards and Geoanalysis, 21, 157-161.

Raczek I., Stoll B., Hofmann A.W. and Jochum K.P. (2000)High-precision trace element data for the USGS referencematerials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, DTS-1, DTS-2, GSP-1 and GSP-2 by ID-TIMS and MIC-SSMS. Geostandards Newsletter: The Journal ofGeostandards and Geoanalysis, submitted.

Rocholl A. (1998)Major and trace element composition and homogeneityof microbeam reference material: basalt glass USGSBCR-2G. Geostandards Newsletter: The Journal ofGeostandards and Geoanalysis, 22, 33-45.

Rocholl A.B.E., Simon K., Jochum K.P., Bruhn F.,Gehann R., Kramar U., Luecke W., Molzahn M.,Pernicka E., Seufert M., Spettel B. and Stummeier J. (1997)Chemical characterisation of NIST silicate glass referencematerial SRM 610 by ICP-MS, TIMS, LIMS, SSMS, INAA,AAS and PIXE. Geostandards Newsletter: The Journal ofGeostandards and Geoanalysis, 21, 101-114.

Rocholl A., Dulski P. and Raczek I. (2000)New ID-TIMS, ICP-MS and SIMS data on the trace-elementcomposition and homogeneity of NIST reference materialSRM 610-611. Geostandards Newsletter: The Journal ofGeostandards and Geoanalysis, in press.

Rudnick R.L., Barth M., Horn I. and McDonough W.F. (2000)Rutile-bearing refractory eclogites: The missing link between continents and depleted mantle. Science, 287,278-281.

Seufert H.M. and Jochum K.P. (1997)Trace element analysis of geological glasses by laserplasma ionization mass spectrometry (LIMS): A comparisonwith other multielement and microanalytical methods.Fresenius’ Journal of Analytical Chemistry, 359, 454-457.

Sobolev A.V. (1996)Melt inclusions in minerals as a source of principal petrologic information. Petrology, 4, 209-220.

Stoll B. and Jochum K.P. (1999)MIC-SSMS analyses of eight new geological standardglasses. Fresenius’ Journal of Analytical Chemistry, 364,380-384

1 3 2

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

references

Stoll B., Raczek I., Jochum K.P., Hofmann A.W. andDingwell D. (1998)New geological standard glasses for in-situ microanalysis:Reference values for 50-60 elements using high precisionbulk and microanalytical methods. EOS 79, SupplementF953 (abstract).

Traxel K., Arndt P., Bohsung J., Braun-Dullaeus K.-U.,Maetz M., Reimold D., Schiebler H. and Wallianos A. (1995)The new Heidelberg proton microprobe: The success of aminimal concept. Nuclear Instruments and Methods inPhysical Research, B104, 19-25.

Uriano G.A. and Gravatt C.C. (1977)The role of reference materials and reference methods inchemical analysis. CRC Critical Reviews in AnalyticalChemistry, 6, 361-411.

USGS (1996)Microbeam Standard Columbia River Basalt (Glass) BCR-2G, United States Geological Survey Special Bulletin(Reference Materials Project). United States GeologicalSurvey, Preliminary report, 10pp.

Vincze L., Janssens K. and Adams F. (1993)A general Monte Carlo simulation of energy dispersive X-Ray fluorescence spectrometers - Part I. SpectrochimicaActa, 48B, 553-573.

Vincze L., Janssens K., Adams F., Amort H., Radtke M., Garbe S., Lechtenberg F., Haller M.,Knöchel A. and Jochum K.P. (1994)Quantitative calibration of elemental SR-XRF intensities bymeans of a detailed Monte Carlo simulation model.Hasylab Jahresbericht 1994, 917-918.

Vincze L., Janssens K., Adams F., Radtke M., Haller M., Knöchel A., Hofmann A. and Jochum K.P. (1995)Quantitative analyses of SRXRF spectra of geologicalreference materials by means of a combined FP/MCquantification procedure. Hasylab Jahresbericht 1995, II, 999-1000.

Wallianos A., Arndt P., Maetz M., Schneider T. andTraxel K. (1997)Accurate quantification resulting from precise beammonitoring and calibration. Nuclear Instruments andMethods in Physics Research, B130, 144-148.

Weyer S., Münker C., Rehkämper M. and Mezger K. (1999)Precise determination of Hf isotopic composition andhigh field strength elements (HFSE) in mantle rocks - Anew method with MC-ICP-MS. EOS 80, Supplement,F1192 (abstract).

White W.M. and Patchett P.J. (1984)Hf-Nd-Sr isotopes and incompatible element abundances in island arcs: Implications for magma origins and crust-mantle evolution. Earth and PlanetaryScience Letters, 67, 167-185.

Woike Th., Weckwerth G., Palme H. and Pankrath P. (1997)Instrumental neutron activation analysis and absorptionspectroscopy of photo-refractive strontium-barium niobatesingle crystals doped with cerium. Solid StateCommunications, 102, 743-747.

Zinner E. and Crozaz C. (1986) A method for the quantitative measurement of rare earthelements in the ion microprobe. International Journal ofMass Spectrometry and Ion Processes, 69, 17-38.

Zuleger E., Alt H. and Erzinger J. (1996)Trace-element geochemistry of the lower sheeted dikecomplex, Hole 540 (Leg 140). In: Alt J.C., Kinoshita H.,Stokking L.B. and Michael P.J. (eds) Proceedings of theOcean Drilling Program, Scientific Results, 148, 455-466.

GEOSTANDARDSNEWSLETTERThe Journal of Geostandards and Geoanalysis

1 3 3