the feasibility of implementing improved stoves to mitigate

83
The Feasibility of Implementing Improved Stoves to Mitigate COPD in Communities of the Guatemalan Highlands By Brent Gerald Klapthor A thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Health and Medical Sciences in the Graduate Division of the University of California, Berkeley Committee in charge: Professor John Balmes, Chair Professor Susan Ivey Professor Michael Bates Fall 2017

Upload: khangminh22

Post on 23-Apr-2023

1 views

Category:

Documents


0 download

TRANSCRIPT

TheFeasibilityofImplementingImprovedStovestoMitigate

COPDinCommunitiesoftheGuatemalanHighlands

By

BrentGeraldKlapthor

Athesissubmittedinpartialsatisfactionofthe

requirementsforthedegreeof

MasterofScience

in

HealthandMedicalSciences

inthe

GraduateDivision

ofthe

UniversityofCalifornia,Berkeley

Committeeincharge:

ProfessorJohnBalmes,ChairProfessorSusanIvey

ProfessorMichaelBates

Fall2017

i

TABLEOFCONTENTS

PREFACE II

PART1:LITERATUREREVIEW 1

1:DefiningtheHouseholdAirPollutionProblemanditsImportance 1ABriefHistoryofFireandFuelUse 1TheSpectrumofFuelUseToday 3BiomassCooking&Woodsmoke:What’stheProblem? 7TheGlobalHealthBurdenofHAP 15BeyondtheTraditionalHealthImpacts 27

2:CookstovesasanInterventionforHouseholdAirPollution 28TheHistoryofCookstovePrograms 28TypesofImprovedStoves 30CookstovePrograms:BarrierstoSuccess 35DostovesreduceCOPD? 37

3:ConclusionandResearchQuestion 39

PART2:APILOTSTUDYFORTHEINTERVENTIONOFIMPROVEDCOOKSTOVESINTHEREDUCTIONOFCOPDINTHEHIGHLANDSOFGUATEMALA 40

Introduction 40

Methods 41

Results 50

Discussion 65

Bibliography 68

ii

PrefaceApproximately40%oftheworld’spopulation-roughly2.8billionpeople-cookswithbiomassfuels,suchaswoodorotherorganicmatter,onadailybasis.1Oftentimesthiscookingoccursonopenfiresindoorscreatinghomeswheretheparticulatematterisoften10timeswhatistypicallyfoundwithintheambientairofhigherincomecountries.Theresultinghouseholdairpollution(HAP)isamajorhealthconcerninlow-andmiddle-incomecountries(LMIC).Thishasbeenwell-documentedwithover200studiesthathaveassessedthelevelsofHAPinthepast30+years.2PartOneofthisthesiswillprovidealiteraturereviewonthedetailsandextentofthisproblemwithafocusonChronicObstructivePulmonaryDisease(COPD)andstoveinterventionsasawaytomitigateHAP.PartTwoofthisthesiswilldocumentoriginalresearchonapilotfeasibilitystudyinvestigatingtheefficacyofusinganimprovedcookstoveinterventiontodelaytheprogressionofCOPDinwomenexposedtobiomasssmoke.

1

Part1:LiteratureReview

1:DefiningtheHouseholdAirPollutionProblemanditsImportance

ABriefHistoryofFireandFuelUseTheuseofcookingfiresdatesbacktotheoriginofourspecies.3Manyhavearguedthatcontrolofwoodfiresforcookingwas,infact,oneofthekeyfactorsinthetransformationofhumansasdistinctfromotherprimates,adevelopmentonparwiththedevelopmentoftoolsandblades.2,4Sincefirstusingfiretoharnesstheenergycontainedwithinwood,Halletal4suggestthat“thehistoryofhumanculturecanbeviewedastheprogressivedevelopmentofnewenergysourcesandtheirassociatedconversiontechnologies.”Thisnotioniscapturedintheconceptofafuelorenergyladderinwhichrisingincomesandincreaseddevelopmentleadtotheuseofcleanerfuelsprocessedandcombustedfartherfromtheirpointofuse(Figure1).2

Figure1–TheEnergyLadder.Fromsource5

Atthebottommostrungsofthisladderarebiomassfuelsources,theoldestandmostpollutingoffuelsources.Biomassfuelreferstoorganicmaterialderivedfromlivingorrecentlylivingorganisms.Wood,istheearliestusedofthesebiomassfuels,tracedbackto500,000yearsagowiththePekingman,inwhatisnowChina.6Traditionalbiomassusagecanalsoincludecharcoal,peat,andagriculturalwastes

2

liketreeleaves,cropresidues,andanimaldung.2,3,7Thetermsolidfuelsorsolidbiofuelsisalsousedtorefertothesamegroupoffuelsbutwiththeadditionofcoalontopofthetraditionalbiomasssources.aDevelopmentofadvancesinenergysourcesandconversionhasincreasedthestandardsofliving,lifespan,andpopulationofhumans.4However,thosepopulationsatthebottomrungsoftheladdercontinuetoburnbiomassfuelswithintheirownhomesproducinghighlevelsofhouseholdairpollution(HAP),whichisthefocusofthisreview.Asthereaderwillcometoappreciate,movementuptheenergyladderisfarmorecomplicatedthanthepremisethatrisingincomesleadtocleanerfuelsinadirectandlinearfashion.Whileacleartrendexistsbetweenincomesandaccesstomodernfuels,risingincomedoesnotnecessarilyensureaprogressivetransitiontocleanerfuels(Figure2).

Figure2:Therelationshipbetweenhouseholdincomeandaccesstomodernfuelsources.FromSource8

aTraditionalbiomassisnottobeconfusedwithmodernbiofuels(e.g.biodieselorethanol),whichhavebeentoutedaspromisingrenewableenergysources.Inthiscase,biomassisbeingconvertedintoliquidbiofuelsforefficientcombustion.

3

TheSpectrumofFuelUseTodayTherangeoftoday’senergysourcesvariesfromharvestedorscavengedbiomass(wood,dung,etc.)tomoreprocessedbiofuelssuchascharcoaltothecommercialfossilfuelsandelectricityusedintheUnitedStates.2Asof2010,theabsolutenumberofpeoplerelyingonsolidfuelshasremainedaround2.8billion.1Whiletheproportionoftheworld’shouseholdsusingsolidfuelshasdroppedfrom53%in1990to41%in2010,theInternationalEnergyAgency(IEA)projectionssuggesttheabsolutenumberofsolidfuel-usinghouseholdswillstayrelativelystablethrough2030.8,1AsFigure3showsbelow,thereislargeregionalvariationinthefractionofpopulationsrelyingonsolidfuels.IndiaandChinacombinedaccountforoverhalfofthispopulation(27%and25%,respectively)withsub-SaharanAfricarepresentinganadditional21%.2Inadditiontotheglobalfuelusevariation,povertyandrurallocationpredictsignificantuseofsolidfuelswithinagivencountry.2Asanexample,Figure4belowshowsthescaleofthisvariationwithinGuatemalaintermsofwoodfuelusageacrossthecountry.Asof2014,only36%ofGuatemala’spopulationhadaprimaryrelianceoncleanfuels,aratethatis2ndonlytoHaitiintheWesternHemisphere.9

Figure3:Proportionofpopulationwithprimaryrelianceoncleanfuels.FromWHOData,2014

4

Figure4:Countrywideconsumptionofwoodfuel(leña)inGuatemala.Fromsource10

5

AllofthesefactssurroundingpollutinghouseholdenergysourcesledtotheinclusionofHAPwithintheUnitedNation’sSustainableDevelopmentGoals(SDGs).ReleasedinSeptember2015,Goal7includes,“Ensureaccesstoaffordable,reliable,andmodernenergyforall”byatargetdateof2030.11Significanthurdlesstandinthewayofmakingthisgoalhappen.Figure5belowillustratestheprojectionsofKuhnetal.12through2025fortheshareofhouseholdsusingsolidfuel.ThehopeisforagreaterthanlinearreductioninprevalenceofhouseholdHAPexposure.Otherwisewellover10%oftheworld’spopulationwillcontinuetobeexposedtoHAPby2030,despitetheUN’sgoals.

Figure5:Forecastoftheprevalenceofhouseholdsoldfuelexposurethrough2025.Fromsource12

AsilverliningtotheprogresstowardscleanenergyforallisthatconnectednesstoelectricityhasactuallygrownfasterthanWorldEnergyOutlookprojectionsoverthelast10to15years.TheIEA’s2004WorldEnergyOutlookpredicteda10-yeargrowthforglobalaccesstoelectricityto78%by2014from73%in2004.13However,mostrecentestimatesshowedthat84%oftheworld’spopulationhadaccesstoelectricityin2014.13Inplaces,regionalgrowthwasevenhigher.Indiawentfromhaving44%electricityaccessin2002tomorethan80%in2004,farsurpassingprojectionsof60%.Analystscredittheroleofstrongpolicybythefederalandstategovernmentsforthissuccess.InAfrica,wherethepolicyenvironmentdidnotchangesignificantly,realitylargelymatchedthepessimisticprojectionsof2004.13

6

However,asFigure6belowreveals,accesstocleancookingatagloballevelactuallyunderperformedtheIEA’salreadytemperedprojectionsfrom2004.Thecleancookingcommunitymaybeabletolearnfromthesuccessandfailuresofpolicydecisionsaroundelectricityaccess.Whileaccesstoelectricitycanbedrivenbygovernment-levelpolicydecision,ensuringcleancookingcanbeafarmorecomplicatedissue.7Movementawayfromtraditionalfuelsforhouseholdheatingandcooking(where90%ofbiomassfuelsareconsumed)isahousehold-leveldecision.Inruralareas–wherehalfofhumanitylives–household-levelenergyusedominatestotalfueldemand.7Thepredominantfactorbehindthisisthatbiomassfuelssourcessuchasfirewood,cropwaste,etc.areoftenfarlessexpensive–orevenfree–ascomparedtoelectricity,afarmoreexpensivesourceofenergy.

Figure6:Comparisonsof2004projectionsandto2014estimatesfortheWEO’s10-yearelectricityandcleancookingprojections.Fromsource13

7

BiomassCooking&Woodsmoke:What’stheProblem?Asthissectionwillbegintoexplain,householdairpollutionfromtheburningofsolidfuelswithinthehomeisamajorhealthconcerninlow-andmiddle-income(LMIC)countries.Thishasbeenwell-documentedwithover200measurementstudiesthathaveassessedthelevelsofHAPinthepast30+years.2Thetendencytominimizeanytoxiceffectsfromsolidfuelsmokehasbeenacommonsentimentbecausetheuseofbiomassfuelsforcookingandwarmthhasalongandintimatehistorywithhumandevelopment.Theprimaryreasonthatsolidfuelsmokecanbetoxicisincompletecombustion,orsaidanotherway,poorcombustionefficiency.3,14ThishighlightswhyresearchershavereframedtheproblemasHAPfromitsoriginallabelasindoorairpollution,whichimpliesthatsimplyinstallingachimneyorventing,cansolvetheproblemcompletely.1However,inmanycasesambientpollutants–indoorsornot–areatlevelssufficienttobedamagingintheirownright.Harmisnotlimitedtothekitchensofsolidfuel-burninghomes.Thegreatestdangersareofcourseconcentratedwithinhomeswherehighlevelsofpollutionarebeingreleasedinlocationswherepeoplearenearlyalwayspresent.Heretheintakefractionmeasuringtheportionofpollutionreleased,whichisactuallyinhaledbypeople,isdramaticallyhigherthanoutdoorsources.7,15Whenthisiscombinedwiththefactthatexposuresareoftenfor3to7hoursdailyformanyyears,thehealtheffectscausedbythecumulativeexposuresarenotparticularlysurprising.14Sowhatexactlyarethesepollutantsinthecaseofwoodsmoke?

Figure7:Chemicalequationforthecompletecombustionofagenerichydrocarbon

Woodisprimarilycomposedofthehydrocarbonpolymerscelluloseandlignin(70and30%byweight,respectively).Otherbiomassfuelsalsoprimarilycontainthesecompoundsinadditiontosmallerorganiccompoundssuchasresins,waxes,andsugars.7Thecombustionefficiencyofbiomasscompoundsisoftenquitepoor(80%comparedto99%forgaseousfuels)meaningtheabovechemicalequationwithwaterandcarbondioxideassoleendproductsisoftenincomplete.Hundredsofpartiallyoxidizedorganiccompoundsandsideproductsresult,and6to20%offuelmaybeconvertedintotoxicsubstancesinatypicalsolidfuelstove.2,7Woodsmokehasbeenfoundtocontainupwardsof4,000solid,liquid,andgaseousconstituentswhichvariesdependingonthespecificfuelusedandcombustionconditions(stovetype,temperature,oxygenavailability,humidity,etc.)alongwithotherfactors.7Figure8belowsummarizestheseconstituents.Thetopthreemosthealthdamagingcontentsofwoodsmokeare:respirableparticulatematter,carbon

8

monoxide(CO),andnitrogenoxides(NOx).Ofthese,particulatematterandcarbonmonoxidearethemosteasilyandcommonlymeasuredpollutants.2

Figure8:Pollutantsfromthecombustionofbiomassandfossilfuels.FromSource2

TheHealthEffectsofRespirableParticulateMatterinHAPRespirableparticulatematter(PM)isamajorhealthconcernandprobablythesinglemostdamagingconstituentofwoodsmoke.7Sincethe1993“HarvardSixCitiesStudy”,firstfoundthestrongassociationbetweenfineparticulateairpollutionandmortality,manyadditionalepidemiologicstudieshavefoundanassociationbetweenfineparticulatematterandbothacuteandchronicmortality.16,17Specifically,total,cardiovascular,andlungcancermortalitywereallpositivelycorrelatedwithambientPMconcentrationswhileitsreductionwasassociatedwithdecreasedmortalityrisk.17Thespecificpathogenicityofparticlesisdependentontheirsize,composition,origin,solubilityandabilitytoproducereactiveoxygenspecies(seeFigure10).18Particlessmallerthan10microns(μm)havebeenfoundtobeparticularlydamagingduetotheircapacitytoenterandlodgethemselveswithinthelowerrespiratorytractofthelung.3Airqualitystandardstypicallyfurtherdividetheseparticlesbetweenthefraction,whichissmallerthan10μm,PM10,andthose,whicharesmallerthan2.5μm(PM2.5).PM2.5,alsocommonlyreferredtoasfinePM,isconsideredtobemoredamagingastheirdiametersallowalveolardeposition.Ultra-fineparticles(withdiameterssmallerthan0.1μmarebelievedtoallowthediffusionofdamagingchemicalsacrossthelungs,intotheblood,andthroughout

9

body.18PMcancauserespiratoryinflammationthatimpactslungfunction,exacerbatesasthma,andpromoteslungcancer.18However,thedamageisnotlimitedtotherespiratorysystem,asincreasedcardiovasculardiseaseandmortalityhavealsobeenidentified.19Potentialmechanismsofcardiovasculartoxicityinclude,a)spilloverofPM-inducedoxidativestressandinflammatoryresponsesinthelungsintothesystemiccirculationthatmightinduceendothelialdysfunctionandatherosclerosis;b)increasedriskofthrombosisduetothesameresponses;andc)lungnosioceptivesignalsthatimpaircardiacautonomicfunction.19,20

10

Figure9:types,andsizedistributioninmicrons(μm),ofatmosphericparticulatematter.SourceWikipedia(from:GFDL,https://en.wikipedia.org/w/index.php?curid=48987967)

11

TheUSEnvironmentalProtectionAgency(EPA)hasestablishedregulatorystandardsforambientPM2.5andPM10displayedbelowinFigure10(alongwithadditionalpollutants).Regulatorystandardsareseparatelyspecifiedfor24-handannualtimeperiods,abovewhichthegivenPMlevelsaredeemedtobedangerouslyhigh.

Figure10:AirpollutantstandardsfromtheUSEPA.FromSource21

In2000,expertsestablisheda7µg/m3annualmeanforPM2.5concentrationasthepointwherehealthrisksbegin.1UnsurprisinglythePMlevelsmeasuredduringtheuseofbiomasscookinginsidethehomearedramaticallyhigherthanboththisnumberandEPAstandards,atlevelsofupto100timeshigherandroutinely30timeshigherthanWHOairqualityguidelines.22–24Theaverageofparticulateexposurewithuseofindoorcookstovesisintherangeofmilligramspercubicmeter(notethe100foldchangeinunitsfromµgtomg)withpeaklevelsreachingover10–30mg/m3.3Ina2010studyofthewomenandchildrenin63Guatemalanhouseholdsusingacombinationofopenwoodfiresandwoodcookstoveswithchimneys,Northcrossetal.24measuredPM2.5concentrationsof900µg/m3overa48-haveragingtimewithinhomesusingopenfires,avaluethatisover128timesthepointwherehealthrisksarebelievedtobegin.Personalmonitoringofthemothersfoundvaluesof270and220µg/m3foropenfiresandchimneystoves,respectively.Concentrations

12

measuredoninfantsandchildrenwere30to40%lower,butstillwellwithinthedangerouslevel.Figure11belowshowsanexamplecurvefordisease(ischemicheartdisease)bydoseforannualaveragePM2.5exposure.Theshapeofthiscurve,knownasanintegratedexposure-responsefunction,suggeststhatamongstthoseinthesolidfuelzoneofPM2.5exposure(attheplateauedportiontothefarrightofthecurve)drasticreductionsinPM2.5levelswouldbenecessarytomeaningfullyreducerelativerisk.25Forexample,evenhalvingannualaveragePM2.5from300to150µg/m3wouldhaveminimaleffectsonareductionoftherelativeriskofischemicheartdisease.

Figure11:RelativeriskofischemicheartdiseasebyaveragePM2.5concentration.FromSource2

WhilenosystematicworldwidemeasurementsforPMlevelsexist,Smithetal.2havepositedthatdatashowthefollowingmeanvaluesbasedonfueltype,

• dung:7,800±11,200µg/m3• charcoal:3,900±8,400µg/m3• wood:2,100±3,900µg/m3

PMvaluesinhomesusingkeroseneareapproximatelyanorderofmagnitudelower,whilethoseinhouseholdsusingexclusivelygasorelectricityareevenlower.

13

TheHealthEffectsofCarbonMonoxideinHAPThetoxiceffectsofcarbonmonoxide(CO)havebeenwelldocumentedviaitsinteractionwithhemoproteinsandoxygenbindingwithintheblood.26Theformationofcarboxyhemoglobin(COHb)whenCOcombineswithhemoglobin(Hb)resultsinadecreasedabilitytobindoxygenleadingtodiminishedbloodoxygenlevelsandultimatelydecreasedoxygendeliverytoallofthebody’stissues.WithhighenoughCOconcentrationsthiswillleadtodeath.TheUSEPAsetslimitsforCOconcentrationsatamaximumof9ppmover8hourswhile35ppmisthemaximumallowableoutdoorconcentrationforaone-hourperiodinanyyear(https://www.epa.gov/criteria-air-pollutants/naaqs-table).TheUSCDCandOSHAdefine1,500ppmastheconcentrationwhichisimmediatelydangeroustolifeorhealth(from:https://www.cdc.gov/niosh/idlh/630080.html).InoneofmanypapersfromtheseminalRESPIREstudySmithetal.27foundbaselineaveragesofCOtobe10.2ppmwithinGuatemalankitchensusingopenfirecookingwhilepersonaldevicemonitoringfound48-hlevelstobe3.4ppmforboththemotherandchildren(seeFigure12).

Figure12:FromRESPIREdata,showingtrendsin48-hCOlevelsbygroupassignmentovertime(months).Dashedlinesrepresentpoint-wise95%confidenceintervals.Tickmarksabovex-axisindicateindividualmeasurementsattime(months)relativetotheintervention.Fromsource27.

14

TheHealthEffectsofNitrogenOxidesinHAPNitrogenoxides(NOx)isaHAPconstituent,thoughmorelikelytobeproducedbythehighertemperaturesofLPGcombustionandmotorvehicles.28Thesenitrogenoxidescanbeahealthdetrimentinandofthemselves,aswellasbeingamajorcomponentofphotochemicalsmog.Bythemselves,thedamagingeffectsoccurviaoxidativedamageandfreeradicalization.29Inreviewingtheresultsofchallengestudiesofhealthysubjectsandsmokers,Bernsteinetal.30notedthatNO2exposure(2-6ppm)resultedinamildinflammatoryresponsecharacterizedbyincreasedneutrophilsanddecreasedlymphocytes.GiventherelativelowintensityofNO2-inducedairwayinflammationatambientlevels,theprimaryroleofthispollutantmaybeasasensitizingagentforinhaledallergensratherthanadirectactor.Whennitrogenoxidesandvolatileorganiccompoundsmixwithsunlightandheatintheatmosphereozonesmogresults(Figure13,below).31Whilethisisofgreaterconcerninurbancenters,HAPisnotexclusivelyaruralissue.ResearchonthehealtheffectsofNO2haslargelyoccurredinhigh-incomecountrieswheretherobustassociationshavebeenbetweenNO2exposureandasthmaoutcomes.32

Figure13:Thecomponentsandreactionsresultingintheproductionofphotochemicalsmog.Fromsource33

15

TheGlobalHealthBurdenofHAPTheGlobalBurdenofDiseaseprojectisanenormousinternationaleffortseekingtoestimatethedeath,disease,andinjurybyage,sex,anddiseasefor21worldregions,whichhasoccurredin1990,2005,2010,andmostrecentlyin2015.WhilethemostrecentGBDresultshaveyettobefullyanalyzed,theGBD-2010wasusedfortheproductionofaseriesofComparativeRiskAssessments(CRAs)toestimatetheportionoftheburdenattributabletoeachofroughly60riskfactorsinthe21globalregions.Limetal.’s34comparativeriskassessmentfortheGBD-2010,attributed3.5to4milliondeathstodirectexposuretoHAP,identifyingitasthe3rdmostdangerousriskfactortohealth,behindonlyhighbloodpressureandtobaccosmoking,includingsecondhandsmoke(seeFigure14below).34,35

Figure14:Burdenofdiseaseattributableto20leadingriskfactorsin2010,expressedasapercentageofglobaldisability-adjustedlife-year.Fromsource34.

16

BeforeIcontinue,abriefasideshouldbemaderegardingtheunitofthedisability-adjustedlifeyear(DALY)asameasureofdisease.Historically,simplemortalitydataor,whereavailable,prevalenceand/orincidenceofdiseasehadbeenusedasmeasuresofdiseaseburden.36Forthefirsttime,in1993,theworlddevelopmentreportutilizedDALYsasameasureofdiseaseburden.Itscalculationattemptstoquantifynotonlythenumberofliveslostfromdiseasebutalsothedurationoflifelostandlengthofdisabilityincurredforagivendiseasetodeterminethosediseaseswiththegreatestburdenontheglobalpopulation.Basedonastandardizedlifeexpectancy(82.5forfemalesand80formales),DALYsareametricthatquantifiesliveslostand/ordisabilityusingstandardizedratesofdisabilitydiscounting(seeFigure16).36Ina1994BulletinoftheWorldHealthOrganizationMurrayjustifiedthisdecisionstating(emphasismyown)36:"[T]heintendeduseofanindicatoroftheburdenofdiseaseiscriticaltoitsdesign.Atleastfourobjectivesareimportant.

•toaidinsettinghealthservice(bothcurativeandpreventive)priorities;•toaidinsettinghealthresearchpriorities;•toaidinidentifyingdisadvantagedgroupsandtargetingofhealthinterventions;•toprovideacomparablemeasureofoutputforintervention,programmeandsectorevaluationandplanning.

Noteveryoneappreciatestheethicaldimensionofhealthstatusindicators…Nevertheless,thefirsttwoobjectiveslistedformeasuringtheburdenofdiseasecouldinfluencetheallocationofresourcesamongindividuals,clearlyestablishinganethicaldimensiontotheconstructionofanindicatoroftheburdenofdisease.36”WhileDALYscontinuetobewidelyusedasthefundamentalunitofdiseaseburdeninglobalhealthandpolicy-makingdecisions,thepracticeisnotwithoutcontroversy.Chiefamongtheobjectionsisperhapstheuseofstandardizedlifeexpectanciesacrosscountries.Impliedinthisdecisionistheideathathealthinterventionsalonecoulderasethedifferenceinlifeexpectancybetweenhighandlow-incomenationswithadisregardforbroadersocialdeterminantsofhealthandwellbeing.Yet,thealternativeofusingdifferinglifeexpectanciesacrossnationsisarguablyevenmoreproblematicforobviousreasons.37

Figure15:ThedefinitionsfordisabilityweightinginthecalculationofDALYs.Fromsource36

17

Withthatsaidandtheirvariousproblematicfeatures,DALYscontinuetobethedefactounitofmeasurefordiseaseburdeninglobalpublichealth,andasFigure14aboveillustrated,HAPisresponsiblefor4.5%ofthetotalDALYslostglobally.34Ina2014reviewarticleSmithetal.1,elaboratedonthecomparativeriskassessmentusedinGBD-2010,breakingoutthehealthburdenofHAPacrossage,sex,andregion,comparingHAPagainstotherenvironmentalriskfactors(seeFigure16).BasedonGBD-2010,HAPwasresponsiblefor119millionDALYsand3.89milliondeaths.OftheseDALYs,38.6%weresufferedbymen,28.0%bywomen,and33.7%bychildrenundertheageof5.IndescendingorderofimpactthetopsixdiseasesattributabletoHAPare:LowerRespiratoryInfections,Stroke,IschemicHeartDisease,COPD,LungCancer,andCataracts.IwilldiscusseachofthesebrieflywithmentionoftheroleofHAPinthepathogenesisofeachdisease.

Figure16:AdjustedtotalHAPburden-of-diseasefromtheanalysisofGBD-2010.Fromsource1

18

AcuteLowerRespiratoryInfections(ALRI)AcuteLowerRespiratoryInfections(ALRI)arethemostsignificantcauseofglobalmortalityinchildrenundertheageof5.1Intermsofmortalityanddisability,childrenarethepopulationmostaffectedbyHAP-causedALRI.Forarespiratoryinfectiontooccur,thecellsofthebody’sinnateimmunesystemmustfirstbeevaded.Whenapathogenisdetected,“justright”immuneresponsemustoccurwhichissufficienttokillofftheinvaderbutwithoutgeneratingunnecessaryanddamaginginflammation.ThespecificsofhowHAPinterfereswiththismechanismarenotfullyunderstood,butitisbelievedthatPMinsomewayinterfereswiththebody’sabilitytoclearpotentialpathogens.38A2014whitepaperreviewonWHO’sIndoorAirQualityguidelinesregardingthestateoftheevidenceforthehealtheffectsofHAPpooledtheresultsof26studiestofindapooledORof1.73(95%CI=1.47,2.03)fortheeffectofHAPonALRI.39However,thelandmarkRESPIREstudyin2011remainstheonlyRCTshowingthatreducedexposuretoHAPcanreduceriskofearlychildhoodALRI.Itfoundthata50%reductioninCOexposurewassignificantlyassociatedwithareductioninphysician-diagnosedseverepneumonia(RR0.82,0.70–0.98).40Additionalreviewsincludeonein2011fromPoetal.41ontheeffectsofsolidbiomassfuelexposureonthehealthofruralwomenandchildrenwhichfoundthepooledORforALRItobe3.53(95%CI1.94to6.43)basedontheanalysisof25studies.Morerecentlyina2015pooledanalysisassessingtherelationshipbetweencookingpracticesandALRIinsub-SaharanAfrica(n=56,437),BuchnerandRehfuessfoundsignificantlyincreasedoddsofALRIinhomesusingkeroseneorsolidfuels(ORkerosene:1.64,CI:0.99,2.71;coalandcharcoal:1.54,CI:1.21,1.97;wood:1.20,CI:0.95,1.51).42ResearchonHAPandALRIhasgenerallyfocusedonchildren,butconsideringthattobaccosmokingisariskfactorforpulmonarytuberculosis,HAPmayalsoincreasetheriskoftuberculosis.35However,mostrecentlythe2017CookingandPneumoniaStudyofover10,000childreninMalawifailedtoshowareducedincidenceofpneumoniainaninterventiongroupgivenbiomass-fueledimprovedcookstovesversusacontrolgroupusingtraditionalopenfireswithanincidencerateratio(IRR)of1.01(95%CI0.91–1.13;p=0·80).43Thestudyinvestigatorshavenotyetreportedwhethertheimprovedstoveactuallyreducedexposurestobiomasssmoke.

CardiovascularDiseaseAdversecardiovascularevents(myocardialinfarction,stroke,etc.)areamajorhealthconcernregardingHAPexposure.Unfortunately,therearelittlepublisheddataontheassociationbetweenHAPexposureandcardiovasculardisease(CVD),largelybecauseHAPexposuretendstooccurinlow-resourcesettings.However,analysishasshownthatthereisaconsistent,nonlinearrelationshipbetweeninhaleddoseofPM2.5andcardiovasculardiseasemortalityoverseveralordersofmagnitudeofdosefromcigarettesmoking,secondhandsmoketobaccosmoke(SHS)exposure,andambientairpollution(seeFigure17;notelogscaleofthex-axis).44,45

19

Figure17:Adjustedrelativerisks(95%confidenceintervals)ofcardiovascularandcardiopulmonarymortalityandestimateddoseofPM2.5acrossstudiesofoutdoorairpollution,secondhandsmoke(ETSabove),andactivecigarettesmoking.FromSource44,45

DuetothegapinevidencefortherelationshipbetweenHAPPM2.5andCVD,theHAP-basedCVDdiseaseburdenfortheGBD-20101reliedoninterpolationforthelevelsofPM2.5typicallymeasuredinHAPonanintegratedexposure-responsecurvethatincludesothercombustionsourcesofPM2.5.TheHAPPM2.5levelsfallbetweenthelevelsofPM2.5knownforcigarettesmokingandSHSexposure.BasedonthisandpreviousobservationalevidenceforoutdoorPM2.5,a2010publishedstatementfromtheAmericanHeartAssociation46indicatedthatshort-termPM2.5exposureincreasestheriskofCVD-relatedmortalitywhilelonger-termexposureoverthecourseofafewyearsincreasestheriskevenmore.ProposedmechanismsforhowthispathologymanifestsareshowninFigure18below.Moreconcretely,ina2012studyofover14,000ChineseadultsLeeetal.47foundthathouseholduseofsolidfuelswasassociatedwithincreasedriskofself-reportedcoronaryheartdisease(oddsratio[OR]:2.58,95%confidenceinterval[CI]:1.53to4.32).Additionally,comparingthehighesttertileofdurationofsolidfuelusewiththelowesttertilefoundasignificantassociationwithahistoryofstroke(OR:1.87,95%CI:1.03,3.38).

20

Figure18:ProposedmechanismsfortherelationshipbetweenHAPandCVD.FromSource48

LungcancerTheWHO’sInternationalAgencyforResearchonCancer(IARC)firstevaluatedthecarcinogenicityofHAPin2006.49,50Coal-basedHAPwasclassifiedasaGroup1carcinogenindicatingdefinitecarcinogenicity.BiomassfuelusemeanwhileisGroup2(a)designatingitasaprobablecarcinogen,citingarelativelackofepidemiologicalevidence.1Smithetal.’sreview1,showedanoddsratioof1.18(1.03,1.35)forbiomassfueluseleadingtolungcancer.Ina2016studyof606lungcancercasesamongstnever-smokersinNepalwithmatchedcontrols,Raspantietal.50foundincreasedriskoflungcanceramongstthoseexposedtoHAP(OR:1.77,95%CI:1.00–3.14).

CataractsCataractsaretheleadingcauseofblindness,globally,withincreasedratesinthosecountrieswithhighsolidfueluse.1Ameta-analysisofsevenstudiesreportingontheriskofcataractwithexposuretosolidbiomassfuelinthehomeshowedapooledORof2.46(1.74,3.50).39

21

ChronicObstructivePulmonaryDiseaseChronicObstructivePulmonaryDisease(COPD)isofsignificantandgrowingimportanceintermsofitsshareofglobalmortalityandmorbidity.Formerlyseenasprimarilyasmoking-relateddiseaseindevelopedcountries,by2020projectionsshowthatCOPDwillbethe3rdleadingcauseofglobalmortalityandmorbidity.1,51The2005NHANESIIIstudyfoundthatnearly25%ofcasesofCOPDintheUSareinnever-smokers,andthatnumbermaybeinexcessof70%inlow-incomenationswhereratesofsolidfuelusearehigh.14WhilesmokingremainsamajorriskfactorforthedevelopmentofCOPD,HAPhasreplaceditastheworld’stopriskfactorglobally.14,52ThegreatestshareofHAP-relatedprematuredeathscomesintheformofnonsmokingwomenwithCOPD.53ThepathogenesisofCOPDisaslowandprogressiveprocessduetochronicexposurestodamagingparticlesorgasesinageneticallysusceptiblesubsetofthepopulation.51,54Itisatypeofobstructivelungdiseasecharacterizedbychronicrespiratorysymptomsandairflowlimitationduetoairwayand/oralveolarabnormalitiesusuallycausedbysignificantexposuretonoxiousparticlesorgases.55Exposuretothesesubstancescauseschronicinflammationandoxidativestressleadingtoirreversibledamagewithtwoseparatebutoftenoverlappingphenotypes:emphysemaandchronicbronchitis.Chronicbronchitisischaracterizedbysmallairwaysobstructionduetoincreasedmucousproduction(seeFigure20).55,56Theemphysemaphenotypeoccursthroughthedestructionoflungparenchyma55,56HAP-derivedlungdiseasetendstobelesscommonlyassociatedwiththeemphysemaphenotypethantobaccosmoking.52

22

Figure19:ThepathogenesisofchronicbronchitisprecedingthedevelopmentofCOPD.AdaptedfromSource57

23

Whilealsoundertheheadingofobstructivelungdiseases,asthmaisdistinctfromCOPDinhavingreversiblebronchospasmafteradministrationofinhaledbronchodilatorwhiletypicalCOPDwillbelargelynon-reversible(seeFigure20)..

Figure20:Theoverlapofchronicobstructivelungdiseases.Fromsource56

Whileamoredetaileddiscussionofthemechanismsbehindthepro-inflammatorymechanismsofbiomasssmokeleadingtothedevelopmentofCOPDisbeyondthescopeofthisreview,Figure21belowfromSilvaetal.54providesasummary,whichmaybehelpfulinshowingsomeofthepro-inflammatorybiomarkersinvolved.

24

Figure21:Thepro-inflammatorymechanismsofbiomasssmoke.Fromsource54

ThedevelopmentofsevereCOPDischaracterizedbyarapiddeclineinthelungs’forcedexpiratoryvolumeover1second(FEV1)throughthedestructionofterminalbronchiolesanddiminishedairways.58COPDprogressionoftenoccursinfitsandstartsratherthanonesmoothcurvebecausetherateofdeclineofFEV1isdictatedbytherateofdestructionofterminalbronchioles.58Ramirez-Venegasetal59showedthisintheir2014studyofacohortofCOPD-patientsover15years.

HAP&COPD,theStrengthofAssociationA2010systematicreviewbyKurmietal.51soughttoquantifythehealthriskandstrengthofassociationbetweenCOPDandtheuseofsolidfuels.Onthewhole,positiveassociationswerefoundbetweentheuseofsolidfuelsandCOPD(OR=2.80,95%CI1.85to4.0)andchronicbronchitis(OR=2.32,95%CI1.92to2.80).Ina2011systematicreviewandmeta-analysisPoetal.41focusedonrespiratorydiseaseduetosolidbiomassfuelexposureinruralwomenandchildren.ForchronicbronchitisinwomentheyfoundanORof2.52(95%CI1.88to3.38)whileforCOPDtheyfoundanORof2.40(95%CI1.47to3.93).A2010meta-analysisbyHuetal.60foundthatbiomasssmokeexposurewasclearlyidentifiedasariskfactorfordevelopingCOPDinbothwomen(OR,2.73;95%CI,2.28-3.28)andmen(OR,4.30;95%CI,1.85-10.01).

25

However,afairbitofheterogeneitywasfoundacrossthestudiesincludedinthesesystematicreviewsandmeta-analyses.OnereasonnotedthatcouldhavebeenbehindthisisalackofstandardizationacrossthedefinitionsofCOPDand/orchronicbronchitis.51TheGlobalInitiativeforChronicObstructiveLungDisease(GOLD),AmericanThoracicSociety(ATS)andtheEuropeanRespiratorySociety(ERS)havealltriedtoresolvethisissuewithstandardizedcriteriaforCOPDdiagnosis.55,61Thishingesontheuseofspirometry,definingCOPDasapost-bronchodilatorFEV1/FVCratiooflessthan0.70.55,62However,thisdoesnotchangethefactthatspirometry,especiallywhendoneinthefieldinlow-resourcesettings,canbeachallengingdiagnostictest.Alternatively,symptom-baseddiagnosisofchronicbronchitisisalsousedbasedontheMedicalResearchCouncil(MRC)standardwhichdefinesitasahistoryofcoughwithphlegmproductionformorethanthreemonthsayearforatleasttwoconsecutiveyears.63However,heretooissuesarisewithrecallbiasandthelackofasimplediagnostictest.Ina2015,nonsystematicreviewAssadetal.52,describedCOPDoutcomessecondarytoHAPfromthecombustionofvarioustypesofindoorsolidfuel.Clinicalevidenceofthisassociationhasbeenwelldocumentednowforover30years,butitwasmentionedthatmoredataonexposure–responserelationshipsfromlongitudinalstudiesareneeded.Furthermore,datafromlow-incomecountriesremainlimited.52ThestudiesontheassociationbetweenHAPandCOPDhighlightedbyAssadetal.52included,

• A2006studybyRegaladoetal.64fromruralMexicofoundthatbiomassusewasassociatedwitha4%decreaseinFEV1/FVCratio.Additionally,anincreaseinkitchenparticulateconcentrationof1,000mg/m3wasassociatedwitha2%reductioninFEV1.64

• A2008prevalencestudyofCOPDacrossfivecitiesand5,500ColombianadultsperformedbyCaballeroetal.65foundanORof1.5(95%CI,1.22–1.86)fortheassociationbetween10ormoreyearsofbiomassstoveuseandspirometry-diagnosedCOPD.

• Amorerecent2013studybyKurmietal.66of1,600youngadultsinNepalfoundanORof2.1fortheassociationbetweenGOLDcriteriaCOPDandexposureto(unquantified)biomasssmoke.66

• A2011studyof900womeninIndiafound1.4foldincreaseinCOPDprevalenceinbiomassvs.cleanfuelusers.67

• InBrazil,across-sectionalstudyfoundtheprevalenceofCOPDdefinedbyGOLDcriteriainbiomasssmoke-exposednonsmokerstobe20%,aratethatwassimilartotheprevalenceinsmokerswhocookwithcleanfuel.68

• Asmentioned,longitudinalstudiesoftheimpactofbiomasssmokeexposureonthedevelopmentofCOPDarelacking,butRamirez-Venegasetal69lookedattheassociationbetweenCOPDassociatedwithbiomasssmokeexposure

26

andmortality.Theirsurvivalanalysisover7yearsoffollow-upfoundwomenwithCOPDduetobiomasssmokehadmortalityratessimilartomenwithCOPDduetotobaccosmoking.

• A2015studybyJaganathetal.70acrossadiversecross-sectionofPeruviancommunitiesfoundthatdailybiomassfueluseforcookingamongwomeninruralcommunitieswasassociatedwithCOPDwithaprevalenceratioof2.22(95%CI1.02–4.81).Thepopulationattributablerisk(PAR)ofCOPDduetodailyexposuretobiomassfuelsmokewas55%.

Returningtotheabovementioned2010systematicreviewbyKurmietal.51,Figure22belowshowsaforestplotsummarizingtheeffectsizeoftheassociationbetweenGOLD-standarddiagnosedCOPDandvariousbiomassfuelexposures.Notethegradientofeffectsacrossfueltypeswithwoodsmokebeingassociatedwiththelargesteffect.

Figure22:ForestplotshowingtheeffectsizeofCOPDduetoexposuretofueltypes(forstudiesbasedonlungfunctiondiagnosis).N/A=notavailable.Fromsource51

27

TheExposure-ResponseRelationshipofHAP&COPDAnadditionalgapintheresearchregardingHAPandCOPDisthecharacterizationofanexposure-responserelationship.52Suchacharacterizationisvitaltodeterminingwhenandhowaninterventioncouldbeimplemented,andtowhatextentsuchaninterventioncouldpreventtheprogression–orevenreverse–theeffectsofHAP.Whenbiomasssmokeexposurehasbeenquantifiedbyhour-years,aassociationhasbeenfoundwithFEV1.68,71Thissuggestsagreateramountofexposuretobiomasssmokeisassociatedwithgreaterrespiratoryimpairment.AnotherstudylookedattheindividualcomponentsofthismetrictoshowthattheORforCOPDisgreaterinsubjectswitheitheragreaternumberofyearsofexposureormoreheavyexposureintheformofhoursperday.72

BeyondtheTraditionalHealthImpactsWhilelargelybeyondthescopeofthisreview,therearealsonumerousotherimpactsofHAP,whichmayaffecthealthmorebroadly.

RiskofPhysicalandSexualViolenceGirlsandwomenarenearlyalwaysresponsibleforthecollectionoffirewoodandseveralstudieshaveshownthisresponsibilitymayexposethemtotheadditionalrisksofphysicaland/orsexualviolencewhilewalkingmilesfromhome.3,73,74Thiscanbeparticularlyproblematicinrefugeecrisissituations.StudieshaveshownincreasedincidencesofviolenceandrapeofwomenduringfirewoodcollectioninAfricanrefugeecampsacrossChad,Uganda,andSouthSudan.75

TimeBurdenThetimeburdenoffuel-collectionandcookingcanbeamajorsourceofgenderinequalityinthesecommunitiesasgirlsaremorelikelytodropoutofschoolatearlieragesthantheirmalepeerstohelpwiththelabor-intensivecookingprocess.73ClimateChangeTheemissionsofHAPareknowncontributorstoglobalwarming.3Infact,theblackcarbonemittedfromopenfiresisperhapsthe2ndleadingcauseofatmosphericcarbon.76Additionally,therecentrecognitionofcleanercookingasamajorleverinreducinggreenhousegasemissionsfromlowerincomecountrieshasresultedinarenewedeffortonthepartofdevelopmentagenciestoscaleupcleancookingprograms.77

DeforestationOntopofclimatechange,theconsumptionofwoodleadstodeforestationandtheassociatedcascadeofsocial,environmental,andclimateconsequencestocomewithit.3

28

2:CookstovesasanInterventionforHouseholdAirPollution

TheHistoryofCookstoveProgramsAsof2014,therewereatleast160improvedcookstoveprogramsgloballywhichhasproducedavastandsomewhatdisorganizedbodyofliterature.6Eventhebasicterm“improvedcookstove”isusednonspecificallyintheliteratureandwidelytoutedbypromoterswithlittleconsensusonwhatisthefocusoftheimprovement.78Thishascreated,attimes,duelingprioritiesonwhichfactorsofimprovementshouldbeoffocus:fuel-efficiency,HAP,cost-savings,etc.79Intoday’sliteratureimprovedcookstove(ICS)simplyreferstobiomass-burningcookstoveswhichhavesoughttoimproveontraditionaldesigntoimprovecookingefficiencyandreduceHAP.80Though,itshouldbenotedthatICSsdonotnecessarilyreduceemissionstomeetWHOairqualityguidelines.81Oftenseenastheworld’sleadingexpertoncookstoveprograms,researcherKirkSmithwroteonthe“DialecticsofImprovedStoves”in198979presentingthehistoryofimprovingstovetechnologywithhumandevelopment.WhilehumanshadalwaysbeenimprovingstovetechnologiesSmithcitesthe20thcenturyasbeinguniquewiththefirstof“self-conscious”stoveimprovementmovements.IndiaservedasthebirthplaceofICSprogramswithfuel-andcost-savingsbeingtheprimarydriver.ManyoftheseprogramsoriginsgrewoutoftheGandhieraoftheearly20thcentury.HAPwasformallyidentifiedasacauseofhealthproblemsinIndiaasearlyasthe1950s,andbythe1970sformalscientificresearchandengineeringstovedesignhadturnedattentiontoICSdevelopment.6Throughthistime,anerawhichSmithhastermedthe“energyperiod,”thefocusonICSdevelopmentwasdrivenby“aglobalinterestinappropriatetechnology,oilshortages,anddeforestation.79”Asmentioned,thiscreatedtheduelingprioritiesoffuel-efficiencyvs.smokelessstovedesign.Infact,evenupuntiltheturnofthemillenniumICSdesignprioritizedenergyefficiencyoverHAPreduction.78InadditiontoIndia,ICSswereintroducedtotheSahelregionofAfricainthewakeofanextremedroughttotheregion.6CentralAmericaalsosawitsfirstICSprograminthistimeaftertheGuatemalanearthquakeof1976.82Smithcalledtheemergingphaseofthe1980sthe“Phoenixphase”whereexperiencesfromearlystoveprogramscouldinformthereemergenceofsuccessfulprogramswithafocusonHAP.79Issuescloselyassociatedwithtraditionalstovesuchas“women-empowerment,enhancementoflivelihoods,andnaturalresourceconservation”gainedtractionforthefirsttime.6Thelate1980sintothe1990susheredinathirdphaseofcookstovedevelopmentwithgovernment-backedprogramsinIndiaandChinabeingtwoofthemajorevents:6,83

29

• From1982to1992theChineseNationalImprovedStoveProgram(NISP)becamethelargestandmostsuccessfulcookstoveprograminhistory,introducingapproximately129millionnewstoveswhilefocusingonenergyefficiencythroughtheuseofchimney-basedcookstoves.78,83,84Evenasgovernmentfundingfortheprogramdriedup,privatecompaniesemerged,continuingtoproduceindoorpollution-reducingstoves.83

• FollowingtheleadofChina,theIndianMinistryforNewandRenewable

Energylaunchedanambitiousnationalcookstoveprogramin1985thatperformedwellbelowexpectations.83Itwasconcludedthattheruralpopulationbeingtargetedhadhigherpriorityneedsthanthegovernment’sconcernfordeforestation.Additionallyrecognizedinfluenceofsocio-culturalfactorshighlightedtheneedforimprovedassessmentofcookstoveprogramswithsurveysandevaluationofculturalbarriers.

However,withhindsight,Barnesetal.85concludedthatthestoveprogramsuptothispointwere,onthewhole,notassuccessfulastheycouldhavebeenforanumberofreasons.Amajorissuewas–andIwouldarguecontinuestobe–alackofcoordinationbetweentheinnumerableICSprogramsinexistence.AdditionallyitwasemphasizedthatallprogramsshouldunderstandthediscreteroleofICSprogramsinfacilitatingaclearenergytransition.Astheysaid,“Theimprovedbiomassstoveshouldbeconsideredanewsteppingstonebetweenthetraditionalbiomassstovesusedbyruralandurbanpoorfamiliesandthemodernfuelsandappliancesmainlyusedbyurban,betteroffhouseholds.”TheunfortunaterealityisthatafulltransitionuptheenergyladdertocompleteelectrificationorcleanfuelusesuchasLPGmaybedecadesawayformuchoftheworld’spoor(seeFigure23,below).3ICSprogramsshouldaimtoalleviatethehealthburdenofHAPwhilethispopulationcontinuestorelyonbiomassfuels.

Figure23:PercentageofpeoplehavingaccesstoICSinsomelow-andmiddle-incomecountriesasof2009.Fromsource6

Inthenewmillennium,thehealthimpactsofHAPhavebeenmorefullyrecognizedashasbeenthoroughlydocumentedabove.ThishassetthestageforenormousforeignaidinvolvementonthepartoftheUnitedStates.In2002,theU.S.EPA

30

launchedthe“PartnershipforCleanIndoorAir.”ThiswasfollowedbytheU.S.DepartmentofStateandEPA’sco-launchof“TheGlobalAllianceforCleanCookstoves”inconjunctionwiththeUnitedNationsFoundationin2010.TheAlliance’sgoalcallsfor100millionhomestoadoptcleanandefficientstovesandfuelsby2020.Ithassoughttounitemorethan12USgovernmentalagenciesandover600partnersinthecreationofglobalmarketforcleanercookstoves.6

TypesofImprovedStovesTodatecountlessICSdesignshavebeenproduced,avarietyofwhicharepicturedbelowinFigure24.

Figure24:Cookstovesfromaroundtheworld.Fromsource35

Becauseofthegreatvarietyofstovedesigns,manyschemasexistforwaysinwhichtocompareandcontrastthembasedonconstructionmaterial,size,fueltype,combustion,etc.80Themostrecentadvancesincookstovetechnologiesmakesupanewclassofstovesknownasadvancedbiomasscookstoves(ABS).6,80OftheseABSstovestherearetwoprimarycategories:RocketandGasifierstoves.80Gasifierstovesrelyontwo-stagecombustion,meaningthewood(orotherfuelmaterial)isfirstheatedtothepointofthereleaseofvolatilegases.6,86Thesegasesarethenburned.Gasifierstoveshaveshowntoproduceadrasticreductioninemissionsascomparedtotypicalsingle-stagecombustionsystemwherethegasesmaybereleasedupthechimneybeforebeingfullycombusted.Gasifierstovesare

31

availablewithorwithouttheuseofafansystemtoassistairflow.6Thetwomostwell-knownGasifiertypestovesarecurrentlythe“Oorja”ofIndiaandthe“Philips”stoves(showinFigure25below).6,86

Figure25:SchematicofaPhilipsforceddrafttypecookstovewithabattery-operatedfan.FromSource87

Theso-called“Rocketstoves”applythedesignprinciplesdevelopedbyDr.LarryWiniarskiin1980intoacharacteristicL-shapeddesign(seeFigure26below).87,88Asaclass,RocketStoveshaveprovenreliableandattimeshaveperformedevenbetterthanGasifierstoves.6Stilletal.89summarizedacoupleofthekeydesignprinciplesas,

• theuseofaninsulatedandtremendouslyhotcombustionchamber(over1,100F)toimprovethemixingoffuelandflameresultinginimprovedcombustionefficiency,aswellas

• aninsulatedchimneycreatingaverystrongnaturaldraft

32

Figure26:ASchematicoftheRocketStoveDesign.Fromsource83

Ina2010publicationbyMacCartyetal.81thefueluseandemissionsperformanceof50differentcookstoveswereinvestigated.Asaclass,theRocket-typestovesreducedfuelconsumptionby33%,COemissionsby75%,andPMemissionsby46%ascomparedtothethree-stonefirecookstove.OneofthemostsuccessfullyiterationsoftherocketstovedesignistheONILcookstoveproducebyHELPSInternational,aninternationalnot-for-profitfoundedtoprovidemedicalcareforthepoorinCentralAmerica.90TheONILstovewasdesignedtomeettheneedsofitsusersthroughinterviewswith60womenoftheGuatemalanhighlands(showninFigure27below).91TheONILcookstoveshavenowbeendisseminatedinGuatemala,Honduras,andMexicoatacostofabout$125perstove.90,92Intheir2014reviewofcookstoveperformancesKshirsagaretal.6foundtheONILstovetobehigh-performing,low-polluting,andverysafetooperate.

33

Figure27:OnilStove.Fromsource90

34

Anadditionalplancha,rocket-stovedesignistheEcostufawhichisproducedinMexicoatacostofabout$200(seeFigure28below).92,93.SeveralthousandEcostufashavebeendistributedacrossseveralMexicanstates.93

Figure28:Ecostufa.Source:Author'spersonalphoto

Liquefiedpetroleumgas(LPG)Aboveimprovedbiomasscookstovesontheenergyladderarethe“modernfuels,”generallyconsideredtoincludeliquefiedpetroleumgas(LPG),naturalgas,andelectricity.94Ofthese,LPGstoveshavebeenmostthoroughlyinvestigatedasatoolforHAP-reductioninlow-incomecountries.Thusfar,oftheimprovedbiomasscookstoveoptions,nonecanreachthecleanlinessofLPG.Whilecontinueddevelopmentoffan-assistedgasifierstovesmaygetclosetoLPG-likeHAPperformance,eventhebestofimprovedbiomassstovesremainatleastanorderofmagnitudemorepollutingthanLPG.95Invirtuallyallcases,levelsofrespirableparticulatematterfollowthefollowingtrendacrossfuelsources96:

Dung>Cropresidue>Wood>Charcoal>Kerosene>LPG>ElectricityInastudyofmorethan400households,thepersonalexposuretorespirableparticulatematter(PM10)wasfoundtobeabout70μg/m3forhouseholdsusingLPGorkerosenecomparedto2000μg/m3forthoseusingbiomassasfuel.96TheevidenceisclearthatLPGhasunrivaledairqualitybenefitsascomparedtobiomassfuels.95,97Inthelongterm,itisgenerallythoughtthatmodernfuelswillbetheanswertotheHAPproblem.TheIEAhasidentifiedthiswithits“UniversalModernEnergyAccess”goalfor2030.13However,thecurrentrealityseemsthatLPGisunlikelytobeanear-

35

termfixasitremainunaffordableforthepoorofmuchoftheworld.87Fueldistributionisalsoasignificanthurdlefortheruralpoor.95BrazilhasbeenacasestudyofsuccesswiththepromotionofLPG.A30-yearprogramtherebroughtsignificantpenetrationofLPGandkerosenethroughsubsidiesonthesemodernfuels.97However,theappropriateroleoffuelsubsidiesinencouragingfuelswitchingisadebatedtopicindevelopmentaleconomics.97,98IthasbeenarguedthatpublicsubsidiesofLPGfueluseinaplacelikeGuatemalawouldberegressive.BysubsidizingcurrentLPGfuelconsumption,fundsareallocatedawayfromtheexpansionofmodernenergyaccesstothosewhoarethemostrural,themostpoor,andleastlikelytohavemodernenergyaccess.98Anadditional–andoftenunderestimatedaspect–ofLPGfueluptakeistheprofileofagivenhousehold’scookingneeds.Forexample,inGuatemalaamajorcomponentoffoodpreparationisthecookingofnixtamal(tortilladough),whichrequirescorntobeslowlycookedinlargepotsoverseveralhours.10Preferenceandtraditionhasoftenmadebiomassthefuelofchoiceforthistypeofcooking,leavingLPGtofillthenicheofbreakfastandfoodre-heatingfuel.10

CookstovePrograms:BarrierstoSuccessAsmentionedabovewiththediscussionofincompletefuelswitchingwithregardstoLPG,so-called“stovestacking”hasbeenamajorbarriertosuccessintheabilityofICSandLPGstoveprogramstoreduceHAPasmuchashoped.Inconsideringtherealityoffuelstacking,themodelofanenergyladderwithsimplelinearprogressionbreaksdownbecauseamoveuptoanewfuelisnotalwaysaccompaniedbyamoveawayfromthegreaterHAP-producingfuelsofthelowerrungs.98Householdstendtouseeverycombinationofstovesforthetasksthatbestfulfilltheirneeds(seeFigure29below).99

Figure29:Aschematicrepresentationofapossiblestove-stackingscenario.Atleftisahouseholdwithasinglefuelcookingpractice.Afteracquiringnewstoves,theoriginalcookingsystemtransformsintoanewsystemofthreestovesandtwofuels(right).Thenewstovesfindanicheinthecookingpracticesofmakingtortillasandreheatingfood,whiletheoldoneisstillusedtoboilwater.Fromsource78

36

Heltberg94,98hasstudiedthisfuelstackingphenomenonthroughoutthedevelopingworldandspecificallywithinGuatemalafromabehavioraleconomicspointofview.Figure30belowshowsthatinGuatemalatherelationshipbetweenthenumberofdifferentfuelsusedbyahouseholdandwelfareissomewhatU-shaped.Asincomerises,sotoodoesthenumberofdifferentcookingfuelstypesused.Asincomerisesfurther,especiallyinurbanareas,thereisatransitionbacktowardsasingle(modern)fuel.Asaresultofthisphenomenon,firewoodandLPGisacommonfuelcombinationinGuatemalawhereitisusedby26%and16%ofurbanandruralhouseholds,respectively.94

Figure30:TherelationshipbetweentheaveragenumberoffuelsourcesutilizedbyruralandurbanGuatemalanhouseholdsandpercapita,perdayfuelexpenditures.FromSource98

Acommonshortcomingofstoveprogramsisthatrelativelylittleefforthasbeendevotedtounderstandinghowwellstovesaretrulyadoptedandiftheiruseissustainedovertime.78However,duetothefrequencyofthestove-stackingphenomenon,quantitativeassessmentofstoveusagehasbecomeanecessityofhighqualitystoveprograms.Directobservationofcookingactivitieshasbeenconsideredthegoldstandardbutmaychangeparticipantbehaviorandisademandinguseofresources.99SimpletemperaturesensorsknownasStoveUseMonitors(SUMs)havelargelyreplacedquestionnaires,diaries,surveys,interviewsandobservationsasawaytoeasilyquantifyadoptionandfuelstacking.99

37

Inadditiontothequestionofwhetherstovesarebeingusedasexpected,thereisthequestionofwhetherthefieldperformanceofanICSmatcheslaboratorytestsofthestove.A2015reviewfromThomasetal.100soughttodothisandfoundquiteheterogeneousresults.Amongstthoseincludedinthereview,thestudywiththelongestfollow-uptime(4years)failedtoshowHAPreductionbeyondoneyear.In2017theMalawi-basedCAPSstudybecamethelargesttrialofacookstoveinterventiononhealthoutcomesinhistorybutfailedtofindaneffectontheprimaryoutcome(childhoodpneumoniaincidence),anoutcomethatseemstobeattributabletostovesthatwerenotasreliableoreffectiveaslaboratorytestssuggested,aswellastofairlywidespreadstacking.43,101AkeyconclusionofWHO’s2014indoorairqualityguidelines(IAQG)wasthatwhilestoveprogramsmayproducenotablerelativereductionsofHAPby50-80%,inmanycasestheabsolutePMlevelsremainwellabovetheWHOinterimtarget(PM10of35µg/m3annualmean)whereitisestimatedthatsignificanthealthimprovementswouldresult.102,103Basedonthesefindings,ithasbeensuggestedthatperhapsexclusive,community-wideuseofcleanfuelsistheonlywaytoreachthePM2.5guidelineandmaximizehealthbenefits.102,104

DostovesreduceCOPD?Relativelyfewstudieshaveinvestigatedthelong-termeffectsofdecreasedHAPthroughcookstovesprogramsonlungfunctionandobstructivelungdisease.Ina2005studyinXuanwei,China,Chapmanetal.105comparedtheincidenceofself-reportedCOPDbetweenpeoplewhoinstalledchimneysagainstthosewhousedonlyunventedstovesinaretrospectivecohortstudy.TheriskofCOPDdecreasedwithlengthoftimesinceinstallation(seeFigure31below).

38

Figure31:Productlimitsurvivalplotsshowingprobabilityofnothavingchronicobstructivepulmonarydisease(COPD)byageinyearsinwomenaccordingtowhethertheyhadachimney(redsolidline)ordidnot(bluedashedline),Xuanwei,China,1976-92.Fromsource105

Zhouetal.106performeda9-yearprospectivecohortstudyontheeffectsofinstallingimprovedbiomassstovesand/orexhauststoimprovekitchenventilation.Participantschoseforthemselveswhichinterventiontheywantedtoadopt(biogasfuel,akitchenventilationfan,both,orneither).Theuseofthecleanerbiogas(methane)fuelwasassociatedwithareduceddeclineinFEV1by12ml/y(95%CI,4to20ml/y)comparedtothosewhotookupneitherintervention.106Anexposure-responserelationshipwasalsoseenasthelongerdurationofcleanfuelusewasassociatedwithaslowerdeclineinFEV1,aswasthecombineduseofbiogasandthekitchenfan.Inacookstoveinterventioninvolvingover500Mexicanwomen,Romieuetal.107(2009)failedtoobserveadifferenceinsymptomsorlungfunctionbetweentheinterventionandcontrolgroupsattributedtolowadherencetouseoftheimprovedstove.However,self-reporteduseoftheimprovedstovewassignificantlyassociatedwithareductioninbothsmoke-relatedsymptomsandFEV1declineover1yearoffollow-up.AsapartoftheRESPIREstudy,Smith-Sivertsenetal.108(2009)alsoreportedthattheimprovedchimneystovewassignificantlyassociatedwithareducedriskofrespiratorysymptomsinanintention-to-treatanalysis,butnosignificanteffectonlungfunctionwasobserved.However,inalaterexposure-responseanalysisofthesamestudyparticipants,reducedexposuretoCOwasassociatedwithaslowerdeclineinlungfunction.109

39

3:ConclusionsandResearchQuestionsUltimatelythequestionsof,

• Howcleandoesacookstovehavetobetoreduceand/oreliminateHAP-associateddisease?

• And,whathouseholdenergytechnologywillgetusthere?remainincompletelyanswered.110Imbeddedwithinthefirstquestionistheelucidationoftheexposure-responseforHAPandobstructivelungdisease(chronicbronchitisandCOPD).AmorecompleteunderstandingofthisphenomenonisnecessarytounderstandwhethertheprogressionofCOPDduetoHAPmaybestopped–orevenreversed.Thesearethebeginningstepstounderstandinghowthemosteffectivecookstoveinterventionshouldbedesigned.Perhapsaphysicianinalow-incomecountrywillonedaybeabletodefinitively“prescribe”new,cleanerstovestoCOPDpatients.

40

Part2:APilotStudyfortheInterventionofImprovedCookStovesintheReductionofCOPDintheHighlandsofGuatemala

IntroductionApproximately40%oftheworld’spopulation-roughly2.8billionpeople-cookswithbiomassfuels,suchaswoodorotherorganicmatter,onadailybasis.1Oftentimesthiscookingoccursonopenfiresindoorscreatinghomeswheretheparticulatematterisoften10timeswhatistypicallyfoundwithintheambientairofhigherincomecountries.Theresultinghouseholdairpollution(HAP)isamajorhealthconcerninlow-andmiddle-incomecountries(LMIC).Thishasbeenwell-documentedwithover200studiesthathaveassessedthelevelsofHAPinthepast30+years.2IntheGlobalBurdenofDisease’sComparativeRiskAssessment,4.5%ofthedisabilityadjustedlife-yearslostareattributedtoHAPduetoacutelowerrespiratoryinfectionsinchildrenandchronicobstructivepulmonarydisease(COPD),lungcancer,cataracts,andcardiovasculardiseaseinadults.2,34COPD,specifically,isofsignificantandgrowingimportanceintermsofitsshareofglobalmortalityandmorbidity.Formerlyseenasprimarilyasmoking-relateddiseaseindevelopedcountries,projectionsshowthatby2020COPDwillbethe3rdleadingcauseofglobalmortalityandmorbidity.1,51Womentendtohavethehighestlevelsofbiomasssmokeexposure,andnumerousepidemiologicstudiesofwomenindevelopingcountrieshaveshownstrongassociationsbetweentheuseofbiomasscookingfuelandchronicbronchitisand/orCOPD.24,72,111–115Improvedstovesincludebothdesignswhichusechimneysystemstoremovesmokefromthehomeandliquidpetroleumgas(LPG)stoves,whichgiveoffdramaticallylessparticulatematterintotheair.Specifically,therehaveyettobeanylongitudinalstudiesallowingforthequantificationoftheeffectofbiomasssmokeexposuresontherateofdeclineinlungfunction.Norhavetherebeenstudiesontheefficacyofdifferentimprovedstovedesignstoslowtherateofdeclineinlungfunctionduetobiomasssmoke.52,53Toobtainpreliminarydatathatcouldserveasastepping-stonetowardsamuchlargerstudy,wecarriedoutapilotfeasibilitystudyofstoveinterventionsinacohortofwomenwithchronicobstructivepulmonarydisease(COPD)orchronicbronchitisandexposuretoHAPfromtheuseofbiomassfuelsintheruralGuatemalanhighlands.

41

Methods

EthicalConsiderationsAllresearchdiscussedhereinwasapprovedbytheResearchEthicsCommitteesattheUniversitiesofCalifornia-SanFrancisco,California-Berkeley,anddeGuatemalaValle.

OverviewThisisastudyofacohortofwomenwithCOPDand/orchronicbronchitisandexposuretoHAPfromtheuseofbiomassfuelsfollowedprospectivelyforsixmonths.ThestudywasconductedintheDepartmentofQuetzaltenango,Guatemalawhere40participantswererandomizedintooneoffourstoveinterventionstrategiesintendedtoreduceHAPexposure:(1)anEcostufa,improvedwood-burningstovewithchimneydesign,(2)aHelps-Onil,improvedwood-burningstovewithchimneydesign,(3)aliquefiedpetroleumgas(LPG)Supercocinastove,and(4)anidenticalLPGstovewithasubsidyfor50%ofhouseholdpropaneuse(seeFigure32below).

Figure32:Thefourstovegroups

Stove Groups 1. Ecostufa

2. Onil

3. LPG

4. LPG w/ Subsidy

42

Thegoalofthispilotstudywastoevaluatethefeasibilityofcarryingoutalargerstoveinterventionstudytoinvestigatewhetheranimprovedstoveinterventioncanslow–orevenreverse–theprogressionofCOPDinwomenexposedtobiomasssmoke.Thisgoalgeneratesthreemainresearchquestions:

1. Isitfeasibletoconductalarge-scalestudytotesttheeffectivenessofastoveinterventiontodelaytheprogressionofCOPDinwomenexposedtobiomasssmoke?

2. WhichofthefourinterventionsevaluatedinthispilotstudyhasthegreatesteffectivenessinreducingexposuretoHAP?

3. Whichofthefourinterventionsevaluatedinthispilotstudyhasthegreatestacceptabilityforuse?

Thestudyareaincludes10municipalitiesaroundthecityofQuetzaltenangointhewesternhighlandsofGuatemala(Almolonga,Cantel,ConcepciónChiquirichapa,LaEsperanza,Olintepeque,Salcajá,SanJuanOstuncalco,SanMartínSacatepequez,SanMateo,Zunil).Illiteracyiscommoninthisregion,especiallyamongstwomen.MamisthefirstlanguageofmostpeoplewhileSpanishisspokenatvariablelevelsoffluencyfromalmostnotatalltofullyfluent.Priorworkhereshowedboththatwomenspendanaverageof5hoursdailyinaroomwithalitfireandthattobaccosmokinglevelsareverylowamongMamwomen.116,117TimelineRecruitmentanddatacollectionforthisstudywereperformedbetweenOctober2015andMay2017.Inthemannerdiscussedbelow,studysubjectswererecruitedandbaselinemeasureswereobtainedonthosewhoprovidedconsent.Repeatmeasureswerethentakenatboth3and6monthspost-stoveinstallation.Followingcompletionofdatacollectionatapproximately6monthsafterinstallation,participantswerefreetokeepthestovesanddowiththemastheywished(seeFigure33below).

43

Figure33:ProjectTimeline

ParticipantInclusionCriteria&TargetNumberAsoriginallydesigned,inclusioncriteriaforthisstudywere:

• non-smokingwomen• over40yearsofage• whowerebiomasssmoke-exposed,

o duetoeither:§ theuseofanopen-firestovewithoutachimneyor§ theuseofabiomass-burningstovewithachimney,whichwas

inpoorconditionwithobviousstructuraldamageandsignificantsmokeleakingintothecookingspace

• experiencingsymptomsofchronicrespiratorydisease,includingo cough,o phlegmproduction,ando shortnessofbreath

• withaspirometry-confirmeddiagnosisofCOPDaccordingtotheATS-GOLDcriteria55ofanFEV1/FVCratiolessthan0.70.

Aftersixmonthsofpersistentrecruitmentdifficulties,thefinalcriterionofspirometry-confirmedCOPDaccordingtoGOLDcriteriawasrelaxedtoasymptom-baseddiagnosisofchronicbronchitisaccordingtotheMedicalResearchCouncil(MRC)standard63,definedasahistoryofcoughwithphlegmproductionformorethanthreemonthsayearforatleasttwoconsecutiveyearsplusadequatequalityspirometry.Duetotheexpansionoftheinclusioncriteria,ourstudypopulationconsistedof20womenwithGOLDcriteriaCOPDand20womenwithMRC-standardchronicbronchitis.

44

Asapilotstudy,40wasseenasapracticableandsufficientlylargesamplesize,givenlimitedstudyresources.Statisticalpowerwasnotaconsiderationinsamplesizedecisions,becauseitwasnotourobjectivetodetermineanassociationbetweenexposureandoutcome.

RecruitmentRecruitmentforparticipationinourstudyoccurredbetweenFall2015andFall2016.TheinitialrecruitmentplanwasthatwomenwithchronicrespiratorysymptomswouldbeidentifiedamongpatientshospitalizedinorattendingtheoutpatientclinicoftheSanJuandeDiosHospitalortheRodolfoRoblesHospitalinQuetzaltenango.However,thisapproachyieldedveryfewparticipantsbecause

• themajorityofpatientsvisitingthesehospitalsinthisurbancenterwerenotusingopenfirestoves,and

• ofthosewhowereusingsuchstoves,manyarrivedatthehospitalwithsevereCOPDexacerbationsandweretoosicktoparticipateinthestudy.

Asaresult,additionalwomenwithchronicrespiratorysymptomswereidentifiedthroughrecordsofhealthservicesineachmunicipalityandthroughhomevisitsincoordinationwithstaffofthesehealthservices.Toenhancerecruitmentacombinationofdoor-to-doorandwordofmouthpromotionaswellascommunityhealtheventsheldatlocalschoolswerealsoutilizedintherecruitmentprocess.

ParticipantScreeningScreeningofpotentialparticipantsforeligibilityaccordingtoinclusioncriteriawasperformedusingasimplequestionnaireofdemographicvariables,exposure,andsymptomsassociatedwithCOPD.ThequestionnairewasdevelopedbasedonscreeningquestionnairealreadytestedinEnglishandtranslatedintoSpanishbyaqualifiedtranslator.QuestionnaireswereadministeredbyabilingualMam-andSpanish-speakingteamoffieldworkers,whocarriedoutallinteractionswithstudyparticipants.If,accordingtothescreeningquestionnaire,candidatesforthestudyhadoneofthefollowing:

• coughmultipletimesadayoverthemajorityofdaysandnightsforthelastthreemonths,

• phlegmproductionthemajorityofdaysandnightsforthelastthreemonths,Or

• shortnessofbreathduringphysicalactivitythattheygaugedtobeworsethanotherstheirage

andmetthefirstthreeelementsofthepreviouslydefinedinclusioncriteria(non-smokingwomen,over40yearsofage,biomasssmoke-exposed),theywerereferredforthespirometryscreeningdescribedbelow.

SpirometryScreeninglungfunctiontestingbyspirometrywascarriedoutonthecompletionofapositivescreeningquestionnaire.Standingheightwithoutfootwearwasmeasured

45

inthefieldusingastadiometer.Weightwasmeasuredinlightclothingusinganelectronicscale.SpirometrywasthenperformedinaccordancewithEuropeanRespiratorySociety/AmericanThoracicSocietyguidelinesusingtheEasyOneSpirometer(nddMedicalTechnologies,Andover,MA,USA).Calibrationchecksofthespirometerwereundertakenatthebeginningofeachdayofuse.Forspirometry,participantswereseatedwithoutnoseclips.Alltestswereperformed10minutesaftertheadministrationof90μgofalbuterolusingaspacerdevice.Pre-bronchodilatorspirometrywasnotcarriedout.Measurementswereclassifiedasacceptableifthewomanhadatleastthreegoodexhalations,andifbestandsecond-bestvaluesofbothFVCandFEV1didnotdifferbymorethan0.20L.Twolocalbilingual(MamandSpanish)field-workersperformedthespirometrytesting.Asdiscussedabove,thefirst20participantswerewomenwhoproducedabaselinespirometrywithanFEV1/FVCratiolessthan0.70.Forthenext20participants,womenwhoscreenedpositivelyforMRC-standardsymptomsofchronicbronchitisandwereabletoproduceacceptablespirometrywereincluded,eveniftheydidnotmeetGOLDcriteriaforCOPD.Thewomenwhoparticipatedinthestudyhadspirometrytestingatthreetimepoints:atbaseline(priortonewstoveinstallation)aswellas3monthsand6monthspost-stoveinstallation.

Allspirometrysessionswerereviewedbyanexperiencedpulmonologist(Dr.JohnBalmes)forqualitygrading,accordingtomodifiedATS/ERSperformancecriteria,asfollows:

• 3:Allpartsoftheexpiratoryflow-volumecurveareacceptableandallparameterscanbeused

• 2:Minorissuesmayexist(e.g.,evidenceofcough)butallparameterscanbeused

• 1:Qualityissuesexistattheendoftest,butthemajorityofthecurveisacceptable.OnlytheFEV1valueisacceptable

• 0:NoportionofthecurveisacceptableAdditionally,theEasyOnespirometrysoftwareappliedagradeofreproducibilityforeachsessionwheregradesareasfollows:

• A:>=3acceptabletestsANDthedifferencebetweenthebest2FEV1&FVCis<=100ml

• B:>=3acceptabletestsANDthedifferencebetweenthebest2FEV1&FVCis<=150ml

• C:>=2acceptabletestsANDthedifferencebetweenthebest2FEV1&FVCis<=200ml

• D:>=2acceptabletestsBUTresultsarenotreproducibleORonly1acceptabletest

• F:Noacceptabletests

46

Aselaboratedbelowinthestatisticalmethodssection,analysisofspirometrydataoccurredintworounds:

1. AllacceptableFEV1values(withoutconsiderationforreproducibility)2. SensitivityanalysisusingallsessionswithreproducibilitygradesofA,B,orC,

whereatleasttwocurveswerefoundtobeacceptable

StoveGroupRandomizationandInstallationWomenwhomettheaboveinclusioncriteriaandprovidedinformedconsentwererandomizedtooneofthefourstovegroupsasindicatedabove.Thefieldteamwaskeptindependentoftherandomizationofstovetypes.TheMam-andSpanish-speakingfieldteamwasresponsibleforstoveinstallation.Inadditiontotheinstallationvisit,participanthomeswereagainvisitedwithin48hoursofinstallationtoensurethestovewasworkingproperlyandthattheparticipantswerefamiliarwithitsproperuseandmaintenance.

Demographic,RespiratorySymptoms,&CookingHabitsQuestionnaireInformationonhouseholddemographics,currentstoveuse,andfueltypeswasobtainedviaaninterviewer-administeredquestionnaire.QuestionsaboutchronicrespiratorysymptomswerefromtheCOPDAssessmentTest(CAT),whichwastranslatedintoSpanish.118TheCATconsistsofscoringeightsymptomsofCOPDonascaleof0(nonexistent)to5(verysevere).Additionalquestionsregardinghealthoutcomes(e.g.,recentillnessandexacerbations)werealsoincludedinthequestionnaire.AllinterviewerswerebilingualinbothMamandSpanish.WhilethequestionnairewaswritteninSpanish,theinterviewerprovidedMamclarificationasneeded.Thedemographic,CAT,andcookinghabitsquestionnairewascompletedatthesamethreetimepointsasspirometry:atbaseline(priortonewstoveinstallation),3months,and6months.

BloodSampleCollectionBloodsampleswerecollectedbystandardphlebotomyatbaseline(priortonewstoveinstallation)andsixmonthspost-installation.FivemLofwholebloodweredrawnfromparticipantsanddividedbetweentwotubes:oneforserumandoneforwholeblood.Oncecollectedfromthefield,bloodsamplesweretransportedincoolerstothelaboratoryatSanJuandeDiosHospitalinQuetzaltenango.Labpersonnelpreparedserum,plasma,buffycoat,andFlindersTechnologyAssociates(FTA)cardsamples(Whatman,Inc.,Clifton,NewJersey).TheFTAcardsampleswerekeptatroomtemperaturewhileothersamplesweremaintainedat-20°Cwhileinthehospitallab.BiweeklytransportofcollectedsampleswasmadetotheUniversityofGuatemala-VallelaboratoryinGuatemalaCity.HeretheFTAcardscontinuedtobestoredatroomtemperaturewhileothersamplesweremaintained

47

at-80°C.Uponcollectionofallsamples,bulkshipmentwasmadetoEmoryUniversityinAtlantaforanalysis.Atthedateofwriting,thisanalysishasnotbeencompleted,butwillbeincludedinafuturemanuscript.

StoveusagemeasurementWeutilizedThermochroniButtons1921G(MaximIntegratedProducts,Sunnyvale,CA)temperaturedataloggersasStoveUseMonitors(SUMs)todeterminestoveusageandobtaincountsofthedailymealsfromthetemperaturesignals.Thesebutton-sized,battery-operateddevicesdidnotdisruptcookingactivities.TwoweekspriortonewstoveinstallationSUMswereplacedontheoriginalstove(s)and/oropenfiresusedforcookinginparticipanthomes,fortwofullweeksofdatacollection.AdditionalSUMsdatawerecollectedatthreeandsixmonthspost-installationwhentheSUMswereplacedontheinterventionstovesaswellastheoriginalstovesand/oropenfires.Eachofthethreeperiodsofstovetemperaturelogginglastedtwoweeks.DuringperiodsofSUMstemperaturemonitoring,returnvisitsweremadeafteroneweektoensuretheSUMswerefunctioningcorrectly.SpikesintemperatureasmeasuredbytheSUMswereusedtocountcookingeventsanddeterminethepercentofcookingeventsusingthenewvs.oldstove(s).Thisanalysiswillbeincludedinafuturemanuscript.

Exposuremeasurement

KitchenmonitoringForparticulatematter(PM)measurementsinallparticipantkitchens,theUCBParticleMonitorandTemperatureSensor(UCB-PATS),aPMmonitorbasedonlightscattering,wasusedwithatemperaturesensor,whichhasbeenvalidatedinthelaboratoryandinthefieldandwidelyusedbyresearchersinIndia,Nepal,Guatemala,Chinaandelsewhere.119–122TheUCB-PATShasbeenwidelyusedinareasinGuatemalaaroundthesiteofthisstudy.MeasurementsofPMwithamassmediandiameter≤2.5μm/m3(PM2.5)inthekitchensofallparticipantswerecarriedoutusingastandardmonitorlocationprotocol,placingtheUCB-PATS1.5metershighonthewallandmorethan1meterawayfromanydoororwindow.Asampleofone-thirdofparticipatinghouseholdswassystematicallyselectedalsotohavePM2.5concentrationsmeasuredinthekitchenusingagravimetricmonitorwithaTUFFTMPersonalSamplingPump(Casella,Bedford,UK),anSKCimpactor(http://www.skcinc.com/pumps.aspz)andpre-weighed37mmfilters.COmeasurementsweremadewithaLascarmonitor(EL-USB-CO300).ThesegravimetricPM2.5andCOmonitorswereco-locatedintheareawiththeUCB-PATSmonitors.Wetookthesegravimetricmeasurementsintwo24-hourperiodsduringthestudy:oncebeforeinstallationoftheinterventionstoveandthesecondtimeatthreemonthsafterinstallation.ThesemeasurementswereusedforthecalibrationoftheUCB-PATSmonitors.Pre-andpost-measurementofCasellafilterweights

48

wereperformedinthesamemicro-scale(withmicrogramaccuracy)atHarvardUniversitySchoolofPublicHealthlaboratoryinaroomwithenvironmentalcontrol.Atthedateofwriting,analysisofkitchen-basedexposuremeasureshasnotbeencompletedandwillbeincludedinafuturemanuscript.

PersonalmonitoringAllparticipantsreceivedpersonalPM2.5gravimetricmonitoringinthree24-hourperiods(beforeinstallationoftheinterventionstove,at3monthsandat6months)usingthesameCasellaTUFFTMgravimetricmeasurementdevicesasabove.Flowsweresetto1.5LPMusingarotameterforcalibration.ALascarCOmonitorwasplacedinconjunctionwiththePM2.5personalmonitorandatthesametimewhenCOmonitorswereplacedinthekitchen.Bothdevicesweresetfor24hoursofdatacollectionandfittedwithinavestwornoutsideofthewoman’sotherclotheswhereeachmonitorsatintheupperchestarea.Willingnesstoundergopersonalmonitoringwasaconditionofparticipationassessedinourconsentprocedures.Participantswereinstructedtogoabouttheirdaysasnormallyaspossiblewhilewearingthevestwiththemonitorsatalltimes.Theywereinstructedtoplacethevestwithmonitorsattheheadofthebedduringsleepingperiods.WhiletheLascarCOdataareanalyzedhere,analysisofthegravimetricPM2.5datawillbeincludedinafuturemanuscript.

DataManagementInitialquestionnairedatainthefieldwererecordedonpaper.DatawerethenenteredintoEpiInfo2000software(CDC,Atlanta,USA)beforebeingexportedtospreadsheets(MicrosoftExcel2011;MicrosoftCorporation,Redmond,WA).SpirometrydatawerehandledintheEasyWaresoftware(nddMedicalTechnologies,Andover,MA,USA)beforebeingexportedtoadatabase(MicrosoftAccess2011;MicrosoftCorporation,Redmond,WA).

StatisticalanalysisTheanalysiscomponentofthisprojectwashandledinExcelandR(RDevelopmentCoreTeam,2005).Excelwasusedtocheckfordataentryconsistency,whileRwasusedtoexecutealldatacleaning,statisticalanalyses,anddatavisualizations.

BaselineAssessmentofNormalityandRandomizationAllbaselinevariableswereexaminedtocheckfornormalityandrandomizationoftheirdistributionsacrossthestovegroupsusingappropriatestatisticaltests(chi-squaredtestforcategoricalvariablesandanalysisofvariancetestingforcomparisonofmeanvalues).

BaselineAnalysisUsingmeasurescollectedatbaseline(priortostoveinstallation),thefollowinganalyseswereperformed:

49

1. AssociationbetweensymptomburdenandmeanpersonalCOlevelatbaseline

2. AssociationbetweenspirometrymeasuresandmeanpersonalCOlevelatbaseline

Agewasconsideredasacovariateineachoftheaboveanalysesandmultiplelinearregressionswereperformed.

LongitudinalAnalysisUsingchangesinmeasuresfrombaselineto6months,thefollowinganalyseswereperformed:

3. AssociationbetweenchangeinmeanpersonalCOlevelandstovetype

4. Associationbetweenchangeinsymptomburdenandstovetype

5. AssociationbetweenchangeinspirometrymeasuresandstovetypeAsimplelinearregressionwasusedinanalyses3to5.

50

Results

SociodemographiccharacteristicsandbaselinemeasuresTable1showsdataonprincipalbackgroundcharacteristicsaswellasbaselinemeasuresofsymptomburden,COexposure,andspirometry,stratifiedbystoveassignmentgroups.Anindicationofdifferencesbetweenstovegroupswasfoundonlyinoneinstance:weeklyuseofthetemescal.bBecausethestovegroupswereassignedrandomly,thisdifferenceislikelytobearesultofchanceandwouldnotbelikelytooccurinastudywithalargersamplesize.Temescaluseisunlikelytohavebeeninfluencedbythetypeofstoveaparticipantwasassigned,butisalikelysourceofincreasedCOexposure.Approximately48%ofthewomencookedusinganopenfire(n=19)whiletheotherscookedonastovedeterminedtobeinpoorconditionwithasignificantlydamagedornon-functionalchimney.

bA‘‘temescal’’isasauna-likestructureinwhichawoodfireisfirstlittoheatwaterandrocks.Whenthefireisout,thepeopleenterthesteamyenvironmenttobathe.Theinteriordimensionsareabout1.5mlongby1mwideby1mhigh.BathinginthetemescalistypicallydoneonceperweekandmaybeasignificantsourceofHAPexposure

51

Table1:Sociodemographiccharacteristicsstratifiedbystoveassignmentgroup.

†indicatesmissingdata;n=9forthismeasure

Ecostufa, mean

(SD)orn(%)

Onil, mean(SD)orn(%)

Gas, mean(SD)orn(%)

Gas Subsidy, mean(SD)or

n(%)

p

n 10 10 10 10 Characteristics of Women

Age 63.20 (13.44)

59.60 (6.70) 58.50 (9.40) 59.90 (11.44)

0.78

Have Open Fire? 2 (20.0)

5 (50.0)

6 (60.0)

6 (60.0)

0.23

Hours Per Day in Kitchen

4.00 (1.69)

5.80 (1.55)

5.30 (2.06) 4.30 (1.16)

0.081

Years of Education 0.67 (1.32)

0.70 (1.25)

0.70 (1.06) 0.60 (1.26)

1.0

Baseline CAT Burden Score Cough 2.90

(1.29) 2.90

(0.88) 2.10 (0.99) 2.60

(1.17) 0.33

Phlegm 2.80 (1.03)

2.90 (0.99)

2.70 (1.25) 3.10 (1.45)

0.89

Chest Pressure 3.30 (0.67)

2.90 (1.20)

2.50 (1.08) 3.20 (0.79)

0.26

Shortness of Breath 3.30 (0.82)

3.20 (0.79)

2.90 (1.20) 3.20 (1.14)

0.83

CAT Burden Sum 23.20 (6.86)

21.89 (5.67) 20.40 (6.60) 23.10† (6.30)

0.74

HouseholdCharacteristicsSmoker in Home? 2

(20.0) 1

(10.0) 1

(10.0) 0

(0.0) .53

Use a Temescal Weekly?

6 (66.7)

2 (20.0)

5 (50.0)

8 (80.0)

.046*

Electricity in Home 9 (90.0)

10 (100.0)

9 (90.0)

8 (80.0)

.53

People Living in Home

5.00 (3.43)

6.00 (3.71)

6.20 (3.85) 5.10 (2.77)

.82

Baseline ExposureMeans 24h mean personal

CO at baseline (ppm)

0.96 (1.08)

1.85 (1.72)

2.08 (2.03) 3.08 (3.66)

0.26

52

Ecostufa, mean

(SD)orn(%)

Onil, mean(SD)orn(%)

Gas, mean(SD)orn(%)

Gas Subsidy, mean(SD)or

n(%)

p

BaselineLungFunctionMeasuresn 6 8 7 9

FEV1 1.81 (0.57) 1.95 (0.41) 1.59 (0.45) 1.58 (0.44)

0.33

FVC 2.21 (0.64)

2.65 (0.45) 2.10 (0.53) 2.16 (0.46)

0.16

FEV1/FVC Ratio .82 (0.04)

.74 (0.10)

.76 (0.11

.73 (0.09)

0.32

***p<0.001,**p<0.01,*p<0.05

53

BaselineAnalysis

1. AssociationbetweensymptomburdenandmeanpersonalCOlevelatbaselineAstrong,positiverelationshipcanbeseenbetweenageandsymptomburdenatbaseline.Therelationshipofagetoourdependentvariable,symptomburden,canbeinterpretedasa0.31pointincreaseeveryyear,or3.1pointseverydecade(i.e.worseningsymptomswithincreasingage)ascanbeseenbelowinTable2andFigure34.Inthecontextofthe40-pointCATscore,a2to3-pointchangehasbeendemonstratedtobeclinicallysignificant.123WhilepersonalPM2.5isconsideredthegoldstandardofwoodsmokeexposure,ithasbeenshownthatpersonalCOexposurecorrelateswellwithexposuretoPM2.5inthispopulationofwood-fuelusers;somehavemadethecaseforitsuseasaproxyforPM2.5exposure.24However,analysisonforthcomingPM2.5datawillbeperformedtovalidatethisassumption.Carbonmonoxideconcentrationsdidnothaveasignificantrelationshipwiththeparticipants’symptomburden(Β=-0.28;p-value=0.45).Thismodel’sfindingssupportexpectedhealthtrendswithsymptomburdenincreasingwithage(andpresumedyearsofHAPexposure)butdonotestablishadirectlinkbetweencurrentCOexposureinthehouseholdandrespiratoryhealthatbaseline.

Table2:RegressionofCATsymptomburdenonageandmeanpersonalCOlevelsatbaseline

***p<0.001,**p<0.01,*p<0.05

Coefficient

(Β)

SEB t-value P-value

Intercept 3.98 5.46 0.73 0.47

COPPM -0.28 0.37 -0.76 0.45

Age 0.31*** 0.08 3.62 <0.01

R2 0.31

Num.obvs. 39

RMSE 5.34

F-statistic 7.93** <0.0001

54

Figure34:LinearRegressionPlotofSymptomBurdenbyAgeatbaseline.

2. AssociationbetweenspirometrymeasuresandmeanpersonalCOlevelatbaseline

Whiletheexpecteddecrementsinlungfunctionparametersbyagewereobserved,therewerenostatisticallysignificantassociationsbetweenmean24-hpersonalCOlevelsatbaselineandlungfunctionmeasures(FEV1,FVC,orFEV1/FVCratio)(Table3).Table3:RegressionoutputfortheassociationbetweenspirometrymeasuresandmeanCOlevelsandageatbaseline

DependentVariable

FEV1 FEV1(sens) FVC FEV1/FVCRatio

Intercept 3.65*** 3.97*** 3.88*** 1.04***

(0.47) (0.49) (0.73) (0.14)

PPMbaseline 0.02 0.02 0.07 0.00

55

(0.03) (0.03) (0.06) (0.01)

Age -0.03*** -0.04*** -0.03* 0.00

(0.01) (0.01) (0.01) (0.00)

R2 0.46 0.51 0.30 0.16

Num.obvs. 30 28 26 26

RMSE 0.36 0.35 0.47 0.09

F-Statistic 11.45*** 13.05*** 4.95* 2.11

***p<0.001,**p<0.01,*p<0.05

Thef-statisticsinthefirstthreemodelsindicatethatatleastoneofthepotentialpredictorvariablesisassociatedwiththeresponsevariables.Asexpected,theeffectestimatesshowthatagehasastrong,negativerelationshipwithlungfunction:HoldingCOlevelsconstant,

• FEV1decreasedby0.03Lforeveryyearincreaseinage• FEV1(sensitivityanalysis)decreasedby0.04Lforeveryyearincreaseinage• FVCdecreasedby0.03Lforeveryyearincreaseinage

TheR2valueincreaseswhenmovingfromthemoreinclusiveFEV1model1tosensitivitymodelwithstricter(lessinclusive)useofFEV1values.AgeandCOexposureseemedtohavelittletonoassociationwiththeFEV1/FVCratio.Theactualestimateforagewas-0.004withamarginallysignificantp-value,indicatingaweaknegativerelationshipaswouldbeexpected.AnoutlierinCOconcentrationswaspresentinthefirstthreemodels,buttheremovalofthisoutlierdidnothavemuchofaneffectontheanalysisresults.Furthermore,theoutlierwaswithinreasonablelevelsforCOlevelsinthepopulation.

56

LongitudinalAnalysis

3. AssociationbetweenchangeinmeanpersonalCOlevel(baselineto6months)andstovetype

Theoutcomevariablewasthedifferenceinmean24-hCOlevelfrombaselinetosixmonths,andtheexposurevariablewasthetypeofstoveinstalledinthehousehold.Table4:Asummaryof24hpersonalCOmeasures(ppm)acrosstimeinthestudy

Exposure Means Ecostufa, mean

(SD)orn(%)

Onil, mean(SD)orn(%)

Gas, mean(SD)orn(%)

Gas Subsidy, mean(SD)or

n(%)

p

24h mean personal CO at baseline (ppm)

0.96 (1.08)

1.85 (1.72)

2.08 (2.03) 3.08 (3.66)

0.26

24h mean personal CO at 3

months (ppm)

0.88 (0.48)

1.09 (0.59)

1.12 (0.75) 1.28 (0.89)

0.65

24h mean personal CO at 6

months (ppm)

1.57 (1.17)

2.08 (0.99)

1.74 (1.56) 2.77 (3.61)

0.60

Change in CO from baseline to

6m (ppm)

0.61 (2.00)

0.23 (2.09)

-0.34 (2.92) -0.31 (5.73)

0.92

Themodelwas: COdifference~stovetype+errorTheEcostufastovewasusedasthereferencegroupbecauseitwasconsideredtobetheleastlikelytoreduceCOexposureandleastpopularofthefourand,therefore,mostsimilartotheoriginalstovesthatwereinthehomes.

57

Table5:RegressionoutputfortheassociationbetweenchangeinCOlevelsandstovegroupsover6months.

***p<0.001,**p<0.01,*p<0.05

ThenullhypothesiswasthattherewasnochangeinCOdifferenceacrossthestovetypes,andthereisinsufficientevidencetorefuteit.Anestimateof0.61anditsassociatedp-valueof0.59failtoindicateanon-zerovaluefortheintercept.Theestimatesforthethreeotherstovetypesareallslightlynegative;however,thestandarderrorsarelargeenoughtocreateconfidenceintervalsthatspan0,andthep-valuesarewellabove0.05.Aswasanticipatedgiventhesmallcookstovegroupsamplesizesinthispilotproject,themodelhaddifficultyfindinganythingmorethanaweaksignalinthedata.TwooutliersexistedwiththeGasSubsidygroup,ascanbeseeninthefollowinggraph:

DeltaCO(6mo-baseline)inPPM

Coefficient

(B)

SEB t-value P-value

Intercept(Ecostufa) 0.61 1.11 0.55 0.59

Onil -0.37 1.58 -0.24 0.81

Gas -0.95 1.58 -0.60 0.55

GaswithSubsidy -0.92 1.58 -0.58 0.56

R2 0.01

Num.obvs. 40

RMSE 3.52

F-statistic 0.17 0.91

58

Figure35:DotplotbystovetypeforthechangeinCOlevelsover6months.

Whilethedistributionisevenlydispersedaround0forthefirst3groups,thefourthhasanoutlierineitherdirection,bothbeingwellbeyondtwostandarddeviationsfromthemean.Removingtheoutlierswasfoundtohavenosubstantialchangeonthedescriptivepoweroftheregressionmodel.Thepresenceoftwooutliersisimportanttonote,butgiventhesamplesizeonlytrendsarenoted,withorwithouttheoutliers.ItwasdiscoveredthatthereisanoticeabledifferenceinthechangeofCOlevelsatthreemonthscomparedtobaselineandsixmonths(Table4andFigure36).Therewasastatisticallysignificantreductionat3monthsacrossallstovetypesthenactuallyaslightincreaseover6months,withthe6-monthchangefailingtobesignificant.RemovingtheextremevaluesthatcanbeseenintheGaswithSubsidygroupreducesthemagnitudeofthischange,buttheregressionmodelstillsupportsthesignificanceofthischange.Thesefindingsareinterestingandcouldbesupplementedbymoreinformationonstoveuse.Perhapsstoveswereusedinitiallyduetothenoveltyofthem,butoldcookinghabitsreturnedovertime

59

Table4:RegressionoutputofoverallchangeinCOlevelsovertime.

COPPM COPPM(outliersremoved)

Intercept 1.99*** 1.73***

(0.29) (0.20)

3Months -0.90* -0.64*

(0.42) (0.28)

6Months 0.05 0.04

(0.42) (0.28)

R2 .05 .06

Num.obvs. 120 118

RMSE 1.86 1.23

F-Statistic 3.33* 3.77*

***p<0.001,**p<0.01,*p<0.05

Figure36:ChangeinCOfrombaselinethrough6months

60

4. Associationbetweenchangeinsymptomburden(baselineto6months)andstovetype

Linearregressionwasusedasthemodeltoanswerthisquestion.TheoutcomevariableherewasthechangeinCATsymptomscorefrombaselineto6months.Themodelwas: Deltaburdensum~stovetype Table5:Regressionoutputofchangeinsymptomburdenbystovetype

***p<0.001,**p<0.01,*p<0.05

Theoverallmodeldoesshowaslightdecreaseinthesymptomburdenaftersixmonthsasisindicatedbytheeffectestimatecoefficients.TheEcostufa,representedbytheintercept,hasthecoefficientof-3.30(p-value=0.08)whiletheotherstovecoefficientsareinrelationtothe-3.30-interceptestimate.Itisworthnotingthedecreaseshownbytheinterceptestimateandconsideringitinthecontextofoursmallsamplesize.Perhapsaclearersignalcouldbedetectedinalargerstudy.Thefollowingplotshowsthedispersionoftheoutcomevariableacrossthestovegroups:

DeltaSymptomBurden

Coefficient

(B)

SEB t-value P-value

Intercept(Ecostufa) -3.30 1.85 -1.78 0.08

Onil -0.37 2.69 -0.14 0.89

Gas 0.70 2.62 0.27 0.79

GaswithSubsidy -0.10 2.62 -0.04 0.97

R2 <0.01

Num.obvs. 39

RMSE 5.87

F-statistic 0.06

61

Figure37:Dotplotbystovetypeforthechangeinsymptomburdenover6months.

Clearly,thereisalotofvariabilityintheCATscoreoutcomevariable,buteachstovegrouphasanegativescore,whichreflectsaslightdropinsymptomburdenoversixmonths.Apairedt-testwasconductedexaminingthemeanscoreatbaselineandsixmonths:Pairedt-testt=3.57 Df=38 p-value=<.00195%ConfidenceInterval 1.40 5.06 MeanofDifference 3.23

Thereisevidencetosupporta3.23-pointdecrease(95%confidenceinterval:1.40,5.06)insymptomburdenaftersixmonthsoftheimprovedstovesbeinginstalledinthehouseholds.Whilethismaynotbeproofofacausalrelationshipbetweentheimprovedstovesandrespiratoryhealth,thedeclineinsymptomburdenisencouraging.

62

5. Associationbetweenchangeinspirometrymeasures(baselineto6m)andstovetype

Althoughourstudywasnotpoweredtodetermineanysignificantdifferencesbetweenthestovegroupsregardingtheirabilitytoimprovepulmonaryfunctionaftersixmonthsofuse,wewereinterestedinassessingwhethertherewasanydirectionalchange.ThefouroutcomevariablesofinterestwerechangeinFEV1,FVC,andFEV1/FVCRatio.Theregressionmodelswere: DeltaFEV1~StoveGroup DeltaFEV1(sensitivityanalysis)~StoveGroup DeltaFVC~StoveGroup DeltaFEV1/FVCRatio~StoveGroupWhichwereusedtogenerateTable6below.Table6:Regressionoutputofchangeinspirometrymeasuresbystovetype

DependentVariable DeltaFEV1 DeltaFEV1

(sens)DeltaFVC Delta

FEV1/FVCRatio

Intercept(Ecostufa)

0.00 0.00 -0.09 0.04

(0.12) (0.13) (0.18) (0.04)Onil -0.03 -0.03 0.13 -0.08 (0.17) (0.17) (0.24) (0.05)

Gas 0.02 0.04 0.15 -0.04 (0.18) (0.19) (0.26) (0.05)

GaswithSubsidy

-0.24 -0.29 -0.26 -0.01

(0.17) (0.18) (0.26) (0.05)

R^2 0.11 0.15 0.13 0.13Num.obvs. 30 28 26 26RMSE 0.33 0.33 0.45 0.09

F-Statistic 1.04 1.38 1.08 1.07***p<0.001,**p<0.01,*p<0.05

Norelationshipsprovedstrongenoughtohavestatisticalsignificanceatthealpha=0.05level.OnetrendisthatoftheGaswithSubsidygroup,whichmaintainedanegativeestimateacrossthefourmodels.Ecostufaisthereferencegroup,sothis

63

negativeestimateisrelativetotheInterceptestimate.Thisistheoppositeofwhatwouldbeexpectedifthegasstovewasbeingusedproperlyandfrequently,andfurtherexaminationshowsthatthismaybeduetoaparticularoutlierinthatgroupwithalargenegativevalue.Removingthisoutlierdidnotsubstantiallyimprovethefitofthemodel,butdidreducethedegreeofthatnegativerelationshipobservedintheregressionoutputtable.Thenumberofobservationsuseddecreasesfromlefttorighttoreflecttheincreasingstringencywithwhichthespirometrywasgraded.BothFEV1testscanbeseenbelow:

Figure38:(Left)DotplotofoverallchangeinFEV1after6monthsbystovetype.(Right)Anidenticalplotusingasensitivityexcludingspirometrytrialswithpoorreproducibility.

ItseemstheremovalofthetwospirometrytrialswithpoorreproducibilityinthesensitivityanalysishadlittleeffectonthechangeinFEV1.OnepointwasremovedfromtheGasgroupandonefromtheGaswithSubsidygroup,causingslightshiftsintheirmeans.Inbothmodels,theGasgroupperformedthebest.ThethirdcolumnintheregressionoutputtabledenotestheFVCmodel.Forcedvitalcapacityshouldhaveincreasedifthestoveswerehavingaremedialinfluenceontheparticipants.

64

Figure38:DotplotofoverallchangeinFVCafter6monthsbystovetype

TheOnilandGasgroupsimprovedslightly,whileGaswithSubsidywasthelowestgrouponceagain.TheremovaloftheoutlierdoesnotproduceapositiveDeltaFVC.Ultimately,allvaluesareveryclosetozero,indicatingthestovesdidnothaveamarkedeffectonFVC.Asimilartrendisseeninthefinalplot,wherethevaluesareallclosetozero.Thedistributionsaremorehomogenousinthisplotcomparedtotheotherthree.Incontrasttowhatwasseenintheotherthreetests,theGaswithSubsidygroupshowedaslightimprovementaftersixmonths.

Figure39:DotplotofoverallchangeinFEV1/FVCratioafter6monthsbystovetype

65

Unfortunately,thedatadidnothaveastrongsignaltoit,andtheevidenceforarealimprovementinlungfunctionintheGaswithSubsidygroupisminimal.AninterestingobservationfromthesefourplotsisthattheGasgroupdemonstratedaslightimprovementineverysingletest.Thisistheeffectexpectedifthestoveswereusedproperlythroughoutthesixmonths.MoreinformationonstoveusefrequencymayshedlightonwhytheGaswithSubsidygroupdidsopoorlyincomparisontotheGasgroup.

DiscussionThisisthefirststudyofitskindtolookatfourstoveinterventionsinaprospective,randomizedfashionwithwell-measuredexposureandoutcomedata.Despitebeingafeasibilitypilotstudywithoutsignificantstatisticalpowertherewerenotablefindings.While24h-personalCOlevelsfailedtoshowareductioninexposureoversixmonths,astatisticallysignificantreductionwasseenatthreemonths.Additionallytherewasa3.23-pointdecrease(95%CI:1.40,5.06)inCATsymptomburdenoversixmonthsacrossallstovetypes.Whilenosignificantchangeswereseeninspirometrymeasures,oursix-monthtimeframewaslikelytooshorttoobservemeaningfulchangesinspirometry.ForthcomingdataonPM2.5.exposure,SUMsstoveusagemeasures,andbloodworkmeasuresofinflammatorybiomarkersshouldfurtherbolsterourresults.WhatisseenwithCOlevelsdroppingthenrisingagainisanotableresultthatisconsistentwithevidenceintheliteraturesurroundingstovestacking.99,122,124ItwillbenecessarytoconfirmthesefindingswithSUMsdata,butseveralstudiesincludingonesinIndiaandMexicohaveshownreductionsininterventionstoveuseovertime.124,125Inoneofthelargestandlongestmeasuresofstoveusagetodate,Pillarisettietal.124foundthatusageofinterventionstovesdeclinedcontinuously overthefirst200daysoftheinterventionatwhichpointusagestabilized.InastudyofMexicanindigenouswomenthepatternwassomewhatdifferentwithstoveusageincreasinguntilmonth4atwhichpointusagedeclinedbeforeplateauing.125BasedonCOdataitispossiblethatpatternsofuseinthisstudymimickedthelatter.ForthcomingSUMsandPM2.5datawillbeevaluatedtofurtherelucidatethesepatterns.124,126Thisstudywasabletodetectasmallbutclinicallysignificantreductioninsmoke-relatedsymptomsbutasexpectedgivenoursamplesizeandtimeframenosignificantspirometrychangesweredetected.Thesefindingareconsistentwitha2009cookstoveinterventioninvolvingover500Mexicanwomen.107InthisstudyRomieuetal.failedtoobserveadifferenceinsymptomsorlungfunctionbetweentheinterventionandcontrolgroupsattributedtolowadherencetouseoftheimprovedstove.However,increasedself-reporteduseoftheimprovedstovewassignificantlyassociatedwithareductioninbothsmoke-relatedsymptomsandFEV1declineover1yearoffollow-up.Thesmallsamplesizeofourstudywilllikelylimitourabilitytofurtherinvestigatesymptomandspirometrychangeswhenweanalyzestoveusage.

66

Thispilotstudywasnovelbecauseitproducedacombinationofexposureandoutcomedataacrossfourseparatestoveinterventioninawaythathasnotpreviouslybeenachievedinasingleproject.Strengthsofthestudyincludethequantitativenatureandbreadthofboththeexposureandoutcomedata.Whilesomeanalysisisyettooccur,thefinalresultswillinclude:

• bothpersonal(24h)-andkitchen-COandPM2.5,• SUMsstoveusagedata,• post-bronchodilatorspirometry,• thewellvalidatedCOPDAssessmentTest(CAT)ofrespiratorysymptoms• bloodbiomarkersofinflammation.

Anotherstrengthwasthecollectionoffielddatabyalocal,multilingualteamthatwaswellknowninthecommunitiesstudied.Ashasbeennoted,thesmallsamplesizeandpilotnatureofthisstudywerelimitationstoproducingstatisticallysignificantfindingsbeyondtheoriginallydesiredknowledgeregardingfuturefeasibilityofalarge-scaleproject.Additionally,therewasnotruecontrolgroupofhouseholdscontinuingtraditionalstoveuse,whichwouldbeimportantforafuturelarge-scaletrial.Thequestionofvaliditysurroundingself-reportedsymptomscoringisalsoanimportantone.PriorworkinasimilarGuatemalanpopulationsuggests“socialdesirability”biashasalikelybutunknowableinfluenceonparticipantresponse.99Allstovesinthisstudyweregivenfullyfreeofcharge.EvidencefromIndiahasshownthatstovesgivenfreeofchargedevaluetheirperceivedvalueandpotentiallyreducetheiruseovertime.127WhileparticipantsinthisstudywerelimitedtoarelativelysmallgeographicareainthedepartmentofQuetzaltenango,theywerespreadacrossmorethanfivedistinctcommunities.Inanaforementionedstudyinarural,largelyindigenousMexicanpopulation,highlevelsofheterogeneitywasseeninstoveadoptionacrossvaryingcommunities.107Community-levelstratificationonstoveuseandexposuresisnotpossiblegivenourdatabutwouldbeofinterestinafuturestudy.Thisraisesthequestionofneighborhoodorvillage-levelpollutionlevels.Thisisanimportantbutchallengingquestionabouthowsignificantlyasinglehousehold’sexposurescanbereducedwithanimprovedcookstovewhilebeingsurroundedbyhomescontinuingtousetraditionalstoves.Tryingtodocumentthenumberofimmediateneighborsusingbiomassfuelscouldbeaworthwhileeffortintryingtoaccountforalikelyconfounder.HAP-associatedobstructivelungdisease(chronicbronchitisandCOPD)isanimportantandincreasingsourceofglobalmorbidityandmorality.Amorecompleteunderstandingoftheexposure-responserelationshipforHAPandobstructivelungdiseaseisvitaltoknowingwhethertheprogressionofCOPDduetoHAPmaybestopped–orevenreversed.Thispilotstudyprovidedproofofconceptforthecollectionofhigh-qualitydataonemissions,stoveuse,fieldspirometry,andbloodsamplesinafuturelarge-scaleRCTonstoveinterventionsasatreatmentforHAP-relatedchroniclungdiseaseinGuatemala.Inconductingthispilotstudy,wealso

67

showedthatimprovedstovesmayproduceaclinicallysignificantreductionintherespiratorysymptomsoverasix-monthperiod.AllofourresultshavepushedforwardthequestionofhowthemosteffectivecookstoveinterventionshouldbedesignedinGuatemala.Workremainstobedone,butperhapsaGuatemalanphysicianwillonedaybeabletodefinitively“prescribe”new,cleanerstovesforthetreatmentofCOPD.

68

Bibliography

1. SmithKR,BruceN,BalakrishnanK,etal.Millionsdead:howdoweknowandwhatdoesitmean?Methodsusedinthecomparativeriskassessmentofhouseholdairpollution.AnnuRevPublicHealth.2014;35:185-206.doi:10.1146/annurev-publhealth-032013-182356.

2. SmithKR,FrumkinH,BalakrishnanK,etal.Energyandhumanhealth.AnnuRevPublicHealth.2013;34:159-188.doi:10.1146/annurev-publhealth-031912-114404.

3. MartinWJ,HollingsworthJW,RamanathanV.HouseholdAirPollutionfromCookstoves:ImpactsonHealthandClimate.In:PinkertonKE,RomWN,eds.GlobalClimateChangeandPublicHealth.NewYork:SpringerScience+BusinessMedia;2014:237-255.doi:10.1007/978-1-4614-8417-2.

4. HallC,TharakanP,HallockJ,ClevelandC,JeffersonM.Hydrocarbonsandtheevolutionofhumanculture.Nature.2003;426(6964):318-322.doi:10.1038/nature02130.

5. WorldHealthOrganization.FuelforLife:HouseholdEnergyandHealth.;2006.

6. KshirsagarMP,KalamkarVR.Acomprehensivereviewonbiomasscookstovesandasystematicapproachformoderncookstovedesign.RenewSustainEnergyRev.2014;30:580-603.doi:10.1016/j.rser.2013.10.039.

7. NaeherLP,BrauerM,LipsettM,etal.Woodsmokehealtheffects:areview.InhalToxicol.2007;19(1):67-106.doi:10.1080/08958370600985875.

8. InternationalEnergyAgency.WorldEnergyOutlook2010.;2010.doi:10.1016/S1359-6454(03)00324-0.

9. WorldHealthOrganization(WHO).GlobalHealthObservatoryDataRepository.2014.http://apps.who.int/gho/data/node.country.country-KEN?lang=en.AccessedMarch1,2017.

10. GlobalAllianceforCleanCookstoves.GuatemalaCookstovesandFuelsMarketAssessmentSectorMapping.;2013.

11. UnitedNationsDevelopmentProgramme.SustainableDevelopmentGoals.;2015.

69

12. KuhnR,RothmanDS,TurnerS,SolórzanoJ,HughesB.BeyondAttributableBurden :EstimatingtheAvoidableBurdenofDiseaseAssociatedwithHouseholdAirPollution.PLoSOne.2016;11(3):1-12.doi:10.1371/journal.pone.0149669.

13. IEA.WorldEnergyOutlook2016.;2016.doi:10.1787/weo-2016-en.

14. SalviSS,BarnesPJ.Chronicobstructivepulmonarydiseaseinnon-smokers.Lancet.2009;374(9691):733-743.doi:10.1016/S0140-6736(09)61303-9.

15. BennettDH,McKoneTE,EvansJS,etal.Definingintakefraction.EnvironSciTechnol.2002;36(9):207A-211A.doi:10.1021/es0222770.

16. DockeryDW,PopeCA,XuX,etal.AnAssociationBetweenAirPollutionandMortalityinSixU.S.Cities.NEnglJMed.1993;329(27):2002-2012.

17. LadenF,SchwartzJ,SpeizerFE,DockeryDW.Reductioninfineparticulateairpollutionandmortality:Extendedfollow-upoftheHarvardSixCitiesStudy.AmJRespirCritCareMed.2006;173(6):667-672.doi:10.1164/rccm.200503-443OC.

18. XingYF,XuYH,ShiMH,LianYX.TheimpactofPM2.5onthehumanrespiratorysystem.JThoracDis.2016;8(1):E69-E74.doi:10.3978/j.issn.2072-1439.2016.01.19.

19. PopeCA,BurnettRT,ThurstonGD,etal.CardiovascularMortalityandLong-TermExposuretoParticulateAirPollution:EpidemiologicalEvidenceofGeneralPathophysiologicalPathwaysofDisease.Circulation.2004;109(1):71-77.doi:10.1161/01.CIR.0000108927.80044.7F.

20. NelA.AirPollution–RelatedIllness :EffectsofParticles.Science(80-).2005;308(5723):804-806.doi:10.1126/science.1108752.

21. NationalAmbientAirQualityStandard(NAAQS)Table.https://www.epa.gov/criteria-air-pollutants/naaqs-table.AccessedSeptember16,2017.

22. GuarnieriMJ,DiazJV,BasuC,etal.EffectsofwoodsmokeexposureonairwayinflammationinruralGuatemalanwomen.PLoSOne.2014;9(3):e88455.doi:10.1371/journal.pone.0088455.

23. BalakrishnanK,GhoshS,GanguliB,etal.StateandnationalhouseholdconcentrationsofPM2.5fromsolidcookfueluse:resultsfrommeasurementsandmodelinginIndiaforestimationoftheglobalburdenof

70

disease.EnvironHealth.2013;12(1).doi:10.1186/1476-069X-12-77.

24. NorthcrossA,ChowdhuryZ,McCrackenJ,CanuzE,SmithKR.EstimatingpersonalPM2.5exposuresusingCOmeasurementsinGuatemalanhouseholdscookingwithwoodfuel.JEnvironMonit.2010;12(4):873-878.doi:10.1039/b916068j.

25. ApteJS,MarshallJD,CohenAJ,BrauerM.AddressingGlobalMortalityfromAmbientPM2.5.EnvironSciTechnol.2015;49(13):8057-8066.doi:10.1021/acs.est.5b01236.

26. BartlettDJ.Pathophysiologyofexposuretolowconcentrationsofcarbonmonoxide.ArchEnvHeal.1968;16(5):719-727.doi:10.1080/00039896.1968.10665136.

27. SmithKR,McCrackenJP,ThompsonL,etal.Personalchildandmothercarbonmonoxideexposuresandkitchenlevels:methodsandresultsfromarandomizedtrialofwoodfiredchimneycookstovesinGuatemala(RESPIRE).JExpoSciEnvironEpidemiol.2010;20(5):406-416.doi:10.1038/jes.2009.30.

28. BrunekreefB,HolgateST.Airpollutionandhealth.Lancet.2002;360(9341):1233-1242.doi:10.1016/S0140-6736(02)11274-8.

29. SandströmT,StjernbergN,EklundA,etal.Inflammatorycellresponseinbronchoalveolarlavagefluidafternitrogendioxideexposureofhealthysubjects:adose-responsestudy.EurRespirJ.1991;3:33é-339.

30. BernsteinJA,AlexisN,BarnesC,etal.Healtheffectsofairpollution.JAllergyClinImmunol.2004;114(5):1116-1123.doi:10.1016/j.jaci.2004.08.030.

31. KurtOK,ZhangJ,PinkertonKE.Pulmonaryhealtheffectsofairpollution.CurrOpinPulmMed.2016;22(2):138-143.doi:10.1097/MCP.0000000000000248.

32. RückerlR,SchneiderA,BreitnerS,CyrysJ,PetersA.Healtheffectsofparticulateairpollution:Areviewofepidemiologicalevidence.InhalToxicol.2011;23(10):555-592.doi:10.3109/08958378.2011.593587.

33. QueenslandGovernment.AirPollutants:Ozone.2016.https://www.qld.gov.au/environment/pollution/monitoring/air-pollution/ozone/#!lightbox-uid-0.AccessedJuly14,2017.

34. LimSS,VosT,FlaxmanAD,etal.Acomparativeriskassessmentofburden

71

ofdiseaseandinjuryattributableto67riskfactorsandriskfactorclustersin21regions,1990-2010:AsystematicanalysisfortheGlobalBurdenofDiseaseStudy2010.Lancet.2012;380(9859):2224-2260.doi:10.1016/S0140-6736(12)61766-8.

35. GordonSB,BruceNG,GriggJ,etal.Respiratoryrisksfromhouseholdairpollutioninlowandmiddleincomecountries.LancetRespirMed.2014;2(10):823-860.doi:http://dx.doi.org/10.1016/S2213-2600(14)70168-7.

36. MurrayCJ.Quantifyingtheburdenofdisease :thetechnicalbasisfordisability-adjustedlifeyears.BullWorldHealthOrgan.1994;72(3):429.

37. AnandS,HansonK.Disability-adjustedlifeyears:Acriticalreview.JHealthEcon.1997;16(6):685-702.doi:10.1016/S0167-6296(97)00005-2.

38. LeeA,KinneyP,ChillrudS,JackD.ASystematicReviewofInnateImmunomodulatoryEffectsofHouseholdAirPollutionSecondarytotheBurningofBiomassFuels.AnnGlobHeal.2015;81(3):368-374.doi:10.1016/j.aogh.2015.08.006.

39. BruceN,SmithKR,BalmesJ,etal.WHOIndoorAirQualityGuidelines :HouseholdFuelCombustion.Review4:HealthEffectsofHouseholdAirPollution(HAP)Exposure.;2014.

40. SmithKR,McCrackenJP,WeberMW,etal.EffectofreductioninhouseholdairpollutiononchildhoodpneumoniainGuatemala(RESPIRE):arandomisedcontrolledtrial.Lancet.2011;378(9804):1717-1726.doi:10.1016/S0140-6736(11)60921-5.

41. PoJYT,FitzGeraldJM,CarlstenC.Respiratorydiseaseassociatedwithsolidbiomassfuelexposureinruralwomenandchildren:systematicreviewandmeta-analysis.Thorax.2011;66(3):232-239.doi:10.1136/thx.2010.147884.

42. BuchnerH,RehfuessEA.CookingandSeasonasRiskFactorsforAcuteLowerRespiratoryInfectionsinAfricanChildren :ACross-SectionalMulti-CountryAnalysis.2015:1-21.doi:10.1371/journal.pone.0128933.

43. MortimerK,NdamalaCB,NaunjeAW,etal.Acleanerburningbiomass-fuelledcookstoveinterventiontopreventpneumoniainchildrenunder5yearsoldinruralMalawi(theCookingandPneumoniaStudy):aclusterrandomisedcontrolledtrial.Lancet.2017;389(10065):167-175.doi:10.1016/S0140-6736(16)32507-7.

72

44. SmithKR,PeelJL.CommentaryMindtheGap.2010;118(12):1643-1645.doi:10.1289/ehp.1002517.

45. PopeAC,BurnettRT,KrewskiD,etal.Cardiovascularmortalityandexposuretoairbornefineparticulatematterandcigarettesmokeshapeoftheexposure-responserelationship.Circulation.2009;120(11):941-948.doi:10.1161/CIRCULATIONAHA.109.857888.

46. BrookRD,RajagopalanS,PopeCA,etal.Particulatematterairpollutionandcardiovasculardisease:Anupdatetothescientificstatementfromtheamericanheartassociation.Circulation.2010;121(21):2331-2378.doi:10.1161/CIR.0b013e3181dbece1.

47. LeeM-S,HangJ,ZhangF,DaiH,SuL,ChristianiDC.In-homesolidfueluseandcardiovasculardisease:across-sectionalanalysisoftheShanghaiPutuostudy.EnvironHealth.2012;11:18.doi:10.1186/1476-069X-11-18.

48. McCrackenJP,WelleniusGA,BloomfieldGS,etal.Householdairpollutionfromsolidfueluse:EvidenceforlinkstoCVD.GlobHeart.2012;7(3):223-234.doi:10.1016/j.gheart.2012.06.010.

49. CancerIAforRon.IARCMonographsontheEvaluationofCarcinogenicRiskstoHumans.2010;95.

50. RaspantiGA,HashibeM,SiwakotiB,etal.Householdairpollutionandlungcancerriskamongnever-smokersinNepal.EnvironRes.2016;147:141-145.doi:10.1016/j.envres.2016.02.008.

51. KurmiOP,SempleS,SimkhadaP,SmithWC,AyresJG.COPDandchronicbronchitisriskofindoorairpollutionfromsolidfuel:asystematicreviewandmeta-analysis.Thorax.2010;65(3):221-228.doi:10.1136/thx.2009.124644.

52. AssadN,BalmesJ,MehtaS,CheemaU,SoodA.ChronicObstructivePulmonaryDiseaseSecondarytoHouseholdAirPollution.SeminRespirCritCareMed.2015;36(3):408-421.doi:10.1055/s-0035-1554846.

53. BalmesJR.Whensmokegetsinyourlungs.ProcAmThoracSoc.2010;7(2):98-101.doi:10.1513/pats.200907-081RM.

54. SilvaR,OyarzúnM,OlloquequiJ.PathogenicMechanismsinChronicObstructivePulmonaryDiseaseDuetoBiomassSmokeExposure.ArchBronconeumol(EnglishEd.2015;51(6):285-292.doi:10.1016/j.arbr.2015.04.013.

73

55. VogelmeierCLF,CrinerGEJ,MartinezFEJ,etal.GlobalStrategyfortheDiagnosis,ManagementandPreventionofChronicObstructiveLungDisease2017ReportGOLDExecutiveSummary.2017:575-601.doi:10.1111/resp.13012.

56. KumarV,AbbasAK,AsterJC.RobbinsandCotranPathologicBasisofDisease.9thed.Philadelphia:Elsevier;2015.

57. Osmosis.Chronicbronchitis(COPD)-causes,symptoms,diagnosis,treatment&pathology.Feb14,2017.https://www.youtube.com/watch?v=Y29bTzKK_P8&t=249s.AccessedJuly19,2017.

58. HoggJC.Apathologist’sviewofairwayobstructioninchronicobstructivepulmonarydisease.AmJRespirCritCareMed.2012;186(5):v-vii.doi:10.1164/rccm.201206-1130ED.

59. Ramírez-VenegasA,SansoresRH,Quintana-CarrilloRH,etal.FEV1declineinpatientswithchronicobstructivepulmonarydiseaseassociatedwithbiomassexposure.AmJRespirCritCareMed.2014;190(9):996-1002.doi:10.1164/rccm.201404-0720OC.

60. HuG,ZhouY,TianJ,etal.RiskofCOPDfromexposuretobiomasssmoke:Ametaanalysis.Chest.2010;138(1):20-31.doi:10.1378/chest.08-2114.

61. GlobalInitativeforChronicObstructiveLungDisease.GObalInitiativeforChronicObstructiveLungDisease.;2006.

62. CelliBR,MacNeeW,AgustiA,etal.StandardsforthediagnosisandtreatmentofpatientswithCOPD:AsummaryoftheATS/ERSpositionpaper.EurRespirJ.2004;23(6):932-946.doi:10.1183/09031936.04.00014304.

63. DefinitionandClassificationofChronicBronchitisforClinicalandEpidemiologicalPurposes.AReporttotheMedicalResearchCouncilbyTheirCommitteeontheAetiologyofChronicBronchitis.;1965.

64. RegaladoJ,P??rez-PadillaR,SansoresR,etal.TheeffectofbiomassburningonrespiratorysymptomsandlungfunctioninruralMexicanwomen.AmJRespirCritCareMed.2006;174(8):901-905.doi:10.1164/rccm.200503-479OC.

65. CaballeroA,Torres-DuqueCA,JaramilloC,etal.PrevalenceofCOPDinfiveColombiancitiessituatedatlow,medium,andhighaltitude(PREPOCOL

74

study).Chest.2008;133(2):343-349.doi:10.1378/chest.07-1361.

66. KurmiOP,DevereuxGS,SmithWCS,etal.ReducedlungfunctionduetobiomasssmokeexposureinyoungadultsinruralNepal.2013;41(1):25-30.doi:10.1183/09031936.00220511.

67. JohnsonP,BalakrishnanK,RamaswamyP,etal.PrevalenceofchronicobstructivepulmonarydiseaseinruralwomenofTamilnadu :implicationsforrefiningdiseaseburdenassessmentsattributabletohouseholdbiomasscombustionPrevalenceofchronicobstructivepulmonarydiseaseinruralwomenofTamil.2011;9716(July2017).doi:10.3402/gha.v4i0.7226.

68. daSilvaLFF,SaldivaSRDM,SaldivaPHN,DolhnikoffM.Impairedlungfunctioninindividualschronicallyexposedtobiomasscombustion.EnvironRes.2012;112:111-117.doi:10.1016/j.envres.2011.10.012.

69. Ramírez-VenegasA,SansoresRH,Pérez-PadillaR,etal.Survivalofpatientswithchronicobstructivepulmonarydiseaseduetobiomasssmokeandtobacco.AmJRespirCritCareMed.2006;173(4):393-397.doi:10.1164/rccm.200504-568OC.

70. JaganathD,MirandaJJ,GilmanRH,etal.Prevalenceofchronicobstructivepulmonarydiseaseandvariationinriskfactorsacrossfourgeographicallydiverseresource-limitedsettingsinPeru.RespirRes.2015:1-9.doi:10.1186/s12931-015-0198-2.

71. KöksalH,SaygıA,SarımanNetal.E.EvaluationofClinicalandFunctionalParametersinFemalePatientsWithBiomassSmokeExposure.RespirCare.2012;58(3):424-430.doi:10.4187/respcare.01772.

72. Orozco-LeviM,Garcia-AymerichJ,VillarJ,Ram??rez-SarmientoA,Ant??JM,GeaJ.Woodsmokeexposureandriskofchronicobstructivepulmonarydisease.EurRespirJ.2006;27(3):542-546.doi:10.1183/09031936.06.00052705.

73. ThompsonLM.CookingwithGas :HowChildrenintheDevelopingWorldBenefitfromSwitchingtoLPG.;2015.

74. LegrosG,HavetI,BruceN,BonjourS.TheEnergyAccessSituationinDevelopingCountries.;2009.http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:THE+ENERGY+ACCESS+SITUATION+IN+DEVELOPING+COUNTRIES+A+Review+Focusing+on+the#0.

75

75. NowheretoTurn:FailuretoProtect,Support,andAssureJusticeforDarfuriWOmen.http://www.ncbi.nlm.nih.gov/pubmed/11974409.

76. LuomaJR.World’sPallofBlackCarbonCanBeEasedWithNewStoves.NewHaven;2010.

77. JohnsonM,BerruetaV,GhilardiA.QuantificationofCarbonSavingsfromImprovedBiomassCookstoveProjects.EnvironSciTechnol.2009;43(7):2456-2462.doi:10.1021/es801564u.

78. Ruiz-MercadoI,MaseraO,ZamoraH,SmithKR.Adoptionandsustaineduseofimprovedcookstoves.EnergyPolicy.2011;39(12):7557-7566.doi:10.1016/j.enpol.2011.03.028.

79. SmithKR.DialecticsofImprovedStoves.EconPolitWkly.1989;24(10):517-522.

80. MehetreSA,PanwarNL,SharmaD,KumarH.Improvedbiomasscookstovesforsustainabledevelopment:Areview.RenewSustainEnergyRev.2017;73(February):672-687.doi:10.1016/j.rser.2017.01.150.

81. MacCartyN,StillD,OgleD.Fueluseandemissionsperformanceoffiftycookingstovesinthelaboratoryandrelatedbenchmarksofperformance.EnergySustainDev.2010;14(3):161-171.doi:10.1016/j.esd.2010.06.002.

82. WesthoffB,GermannD.StoveImages:ADocumentationofImprovedandTraditionalStovesinAfrica,AsiaandLatinAmerica.(CommunitiesCoftheE,ed.).FrankfurtamMain,Germany:Brandes&ApselVerlagGmbH,;1995.http://www.gtz.de/de/dokumente/en-stove-images1-1995.pdf%5Cnfile:///Users/marem/Desktop/DESKTOP-2012-02-16/MASTERSUJID/Papers2/Articles/1995/Westhoff/CEC?CommissionoftheEuropean ?1995Westhoff.pdf%5Cnpapers2://publication/uuid/C26342F9-8ACC-4300-823.

83. ManojKumar,SachinKumar,TyagiSK.Design,developmentandtechnologicaladvancementinthebiomasscookstoves:Areview.RenewSustainEnergyRev.2013;26(May):265-285.doi:10.1016/j.rser.2013.05.010.

84. SintonJE,SmithKR,PeabodyJW,etal.AnassessmentofprogramstopromoteimprovedhouseholdstovesinChina.EnergySustainDev.2004;8(3):33-52.doi:10.1016/S0973-0826(08)60465-2.

85. BarnesDF,OpenshawK,SmithKR,VanderPlasR.Whatmakespeoplecook

76

withimprovedbiomassstoves.WorldBankTechPap.1994;242(242):2004.doi:10.1016/0165-0572(87)90003-X.

86. MukundaHS,DasappaS,PaulPJ,etal.Gasifierstoves-science,technologyandfieldoutreach.CurrSci.2010;98(5):627-638.

87. SutarKB,KohliS,RaviMR,RayA.Biomasscookstoves:Areviewoftechnicalaspects.RenewSustainEnergyRev.2015;41:1128-1166.doi:10.1016/j.rser.2014.09.003.

88. BrydenM,StillD,ScottP,etal.DesignPrinciplesforWoodBurningCookStoves.;2006.

89. StillDKJ.CapturingHeat:FiveEarth-FriendlyCookingTechnologiesandHowtoBuildThem.

90. UrmeeT,GyamfiS.AreviewofimprovedCookstovetechnologiesandprograms.RenewSustainEnergyRev.2014;33:625-635.doi:10.1016/j.rser.2014.02.019.

91. WorldBank.HouseholdCookstoves,Environment,Health,andClimateChange:ANewLookatanOldProblem.2011:94.

92. GlobalAllianceforCleanCookstoves.GuatemalaCountryActionPlanforCleanCookstovesandFuels.;2014.

93. MedinaP,BerruetaV,MartínezM,RuizV,EdwardsRD,MaseraO.ComparativeperformanceoffiveMexicanplancha-typecookstovesusingwaterboilingtests.DevEng.2017;(2):20-28.http://www.sciencedirect.com/science/article/pii/S2352728515300555.

94. HeltbergR.Fuelswitching:Evidencefromeightdevelopingcountries.EnergyEcon.2004;26(5):869-887.doi:10.1016/j.eneco.2004.04.018.

95. GrieshopAP,MarshallJD,KandlikarM.Healthandclimatebenefitsofcookstovereplacementoptions.EnergyPolicy.2011;39(12):7530-7542.doi:10.1016/j.enpol.2011.03.024.

96. ParikhJ,BalakrishnanK,PandeyV,BiswasH.Exposurefromcookingwithbiofuels;pollutionmonitoringandanalysisforruralTamilnadu,India.Energy.2001;26:949-962.http://dx.doi.org/10.1016/S0360-5442(01)00043-3.

97. FoellW,PachauriS,SprengD,ZerriffiH.Householdcookingfuelsandtechnologiesindevelopingeconomies.EnergyPolicy.2011;39(12):7487-

77

7496.doi:10.1016/j.enpol.2011.08.016.

98. HeltbergR.FactorsdetermininghouseholdfuelchoiceinGuatemala.EnvironDevEcon.2005;10(3):337-361.doi:10.1017/S1355770X04001858.

99. Ruiz-MercadoI,CanuzE,WalkerJL,SmithKR.QuantitativemetricsofstoveadoptionusingStoveUseMonitors(SUMs).BiomassandBioenergy.2013;57:136-148.doi:10.1016/j.biombioe.2013.07.002.

100. ThomasE,WickramasingheK,MendisS,RobertsN,FosterC.Improvedstoveinterventionstoreducehouseholdairpollutioninlowandmiddleincomecountries:adescriptivesystematicreview.BMCPublicHealth.2015;15(1):650.doi:10.1186/s12889-015-2024-7.

101. EzzatiM,BaumgartnerJC.Householdenergyandhealth:wherenextforresearchandpractice?Lancet.2016;0(0):63-72.doi:10.1016/S0140-6736(16)32506-5.

102. RosenthalJ,BalakrishnanK,BruceN,etal.ImplementationSciencetoAccelerateCleanCookingforPublicHealth.EnvironHealthPerspect.2017;125(1):3-7.doi:10.1289/EHP1018.

103. WorldHealthOrganization.WHOGuidelinesforIndoorAirQuality:HouseholdFuelCombustion.;2014.http://www.who.int/indoorair/guidelines/hhfc/en/.

104. JohnsonMa,ChiangRa.Quantitativestoveuseandventilationguidanceforbehaviorchangestrategies.JHealthCommun.2015;20Suppl1(February):6-9.doi:10.1080/10810730.2014.994246.

105. ChapmanRS,HeX,BlairAE,LanQ.ImprovementinhouseholdstovesandriskofchronicobstructivepulmonarydiseaseinXuanwei,China:retrospectivecohortstudy.BMJ.2005;331(7524):1050-0.doi:10.1136.

106. ZhouY,ZouY,LiX,etal.LungFunctionandIncidenceofChronicObstructivePulmonaryDiseaseafterImprovedCookingFuelsandKitchenVentilation :A9-YearProspectiveCohortStudy.PLoSMed.2014;11(3).doi:https://doi.org/10.1371/journal.pmed.1001621.

107. RomieuI,Riojas-RodríguezH,Marrón-MaresAT,SchilmannA,Perez-PadillaR,MaseraO.ImprovedBiomassStoveInterventioninRuralMexico.AmJRespirCritCareMed.2009;180(7):649-656.doi:10.1164/rccm.200810-1556OC.

78

108. Smith-SivertsenT,DíazE,PopeD,etal.EffectofReducingIndoorAirPollutiononWomen’sRespiratorySymptomsandLungFunction:TheRESPIRERandomizedTrial,Guatemala.AmJEpidemiol.2009;170(2):211-220.doi:10.1093/aje/kwp100.

109. PopeD,DiazE,Smith-SivertsenT,LieRT,BakkeP,BalmesJR,SmithKRBN.AssociationsofRespiratorySymptomsandLungFunctionwithMeasuredCarbonMonoxideConcentrationsamongNonsmokingWomenExposedtoHouseholdAirPollution:TheRESPIRETrial,Guatemala.EnvironHealthPerspect.2015;123(4):285-292.doi:10.1289/ehp.1003280.

110. JackDW,AsanteKP,WylieBJ,etal.Ghanarandomizedairpollutionandhealthstudy(GRAPHS):studyprotocolforarandomizedcontrolledtrial.Trials.2015;16(1):420.doi:10.1186/s13063-015-0930-8.

111. PandeyMR,RegmiHN,NeupaneRP,GautamA,BhandariDP.DomesticSmokePollutionandRespinRuralNepaliratoryFunction.ClinMed.1985;10(4):471-481.

112. PandeyMRAJ.PrevalenceofchronicbronchitisinaruralcommunityoftheHillRegionofNepal.1984;(January):331-336.

113. Perez-PadillaR,SchilmannA,Riojas-RodriguezH.Respiratoryhealtheffectsofindoorairpollution.IntJTuberclungDis.2010;14(9):1079-1086.doi:20819250.

114. DennisRJ,MaldonadoD,NormanS,etal.WoodSmokeExposureandRiskforObstructiveAirwaysDiseaseAmongWomen.Chest.1996;109(3):55S-56S.doi:10.1378/chest.109.3_Supplement.55S.

115. BeheraDS.RespiratorySymptomsinIndianWomenUsingDomesticCookingFuels*.1991:385-388.

116. EnglePL,HurtadoE,RuelM.SmokeExposureofWomenandYoungChildreninHighlandGuatemala :PredictionandRecallAccuracy.Humorganaization.1997;56(4):408-417.

117. DíazE,BruceN,PopeD,etal.LungfunctionandsymptomsamongindigenousMayanwomenexposedtohighlevelsofindoorairpollution.IntJTubercLungDis.2007;11(12):1372-1379.http://www.ncbi.nlm.nih.gov/pubmed/18034961.

118. JonesPW,HardingG,BerryP,WiklundI,ChenWH,KlineLeidyN.DevelopmentandfirstvalidationoftheCOPDAssessmentTest.EurRespir

79

J.2009;34(3):648-654.doi:10.1183/09031936.00102509.

119. BalakrishnanK,SambandamS,RamaswamyP,MehtaS,SmithKR.ExposureassessmentforrespirableparticulatesassociatedwithhouseholdfueluseinruraldistrictsofAndhraPradesh,India.JExpoAnalEnvironEpidemiol.2004;14(February):S14-S25.doi:10.1038/sj.jea.7500354.

120. EdwardsR,SmithKR,KirbyB,AlleT,LittonCD,HeringS.Aninexpensivedual-chamberparticlemonitor:Laboratorycharacterization.JAirWasteManagAssoc.2006;56(6):789-799.doi:10.1080/10473289.2006.10464491.

121. ChowdhuryZ,EdwardsRD,JohnsonM,etal.Aninexpensivelight-scatteringparticlemonitor:fieldvalidation.JEnvironMonit.2007;9(10):1099.doi:10.1039/b709329m.

122. MukhopadhyayR,SambandamS,PillarisettiA,etal.Cookingpractices,airquality,andtheacceptabilityofadvancedcookstovesinHaryana,India:anexploratorystudytoinformlarge-scaleinterventions.GlobHealthAction.2012;5(1):19016.doi:10.3402/gha.v5i0.19016.

123. JonesPW,BrusselleG,DalNegroRW,etal.PropertiesoftheCOPDassessmenttestinacross-sectionalEuropeanstudy.EurRespirJ.2011;38(1):29-35.doi:10.1183/09031936.00177210.

124. PillarisettiA,VaswaniM,JackD,etal.Patternsofstoveusageafterintroductionofanadvancedcookstove:Thelong-termapplicationofhouseholdsensors.EnvironSciTechnol.2014;48(24):14525-14533.doi:10.1021/es504624c.

125. PineK,EdwardsR,MaseraO,SchilmannA,Marrón-MaresA,Riojas-RodríguezH.AdoptionanduseofimprovedbiomassstovesinRuralMexico.EnergySustainDev.2011;15(2):176-183.doi:10.1016/j.esd.2011.04.001.

126. SorrellS,DimitropoulosJ,SommervilleM.Empiricalestimatesofthedirectreboundeffect:Areview.EnergyPolicy.2009;37(4):1356-1371.doi:10.1016/j.enpol.2008.11.026.

127. Barnes,DouglasF.,PritiKumarandKO.CleanerHearths,BetterHomes:NewStovesforIndiaandtheDevelopingWorld.;2014.