the echo manual jae k oh pdf full text download - weebly

14
Continue

Upload: khangminh22

Post on 10-May-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

Theechomanualjaekohpdffulltextdownload

Idealforresidents,fellows,andotherswhoneedacomprehensive,clinicallyfocusedunderstandingofechocardiography,TheEchoManual,4thEdition,hasbeenthoroughlyrevisedwithupdatedinformation,newchapters,andnewvideoclipsonline.WrittenprimarilybyexpertauthoritiesfromtheMayoClinic,thisbest-sellingreferenceremainsapracticalguidetotheperformance,interpretation,andclinicalapplicationsoftoday’sechocardiography.Featuresall-newchaptersspecificallydevotedto3Decho,interventionalechocardiography,andhand-carriedultrasound.Includesnewechovideosthatprovideavaluablelearningexperienceofechocardiographyinmotion.Providesaconcise,user-friendlysummaryoftechniques,diagnosticcriteria,andquantitativemethodsforechocardiography,Dopplerechocardiography,andtransesophagealechocardiography.Presentscomplexmaterialinanapproachable,visuallyappealingmannerthatfocusesontheclinicalapplicationofechocardiographyasadiagnostictool.Coversthelatesttechniques,standards,andapplications–allhighlightedbymorethan900high-quality,annotatedimagesthataretruetograyscaleandcolor.EnhanceYoureBookReadingExperience:Readdirectlyonyourpreferreddevice(s),suchascomputer,tablet,orsmartphone.Easilyconverttoaudiobook,poweringyourcontentwithnaturallanguagetext-to-speech.pafyujartePublishedonFebruary4,2020"DOWNLOADFREEKindleTheEchoManualByJaeK.OhdownloadTheEchoManualPDFPDFTheEchoManualFULLTheEchoManualEbookEpubTheEchoManualDownloadaudibookTheEchoManualFreereadTheEchoManualFUll[PDF]TheEchoManual"Wantmore?Advancedembeddingdetails,examples,andhelp!Showing1-48StartyourreviewofTheEchoManualJul07,2007Catmarkeditasto-readRecommendsitfor:cardiologyfellowsApparently,thisbookisthebestthingsinceslicedbreadforlearningecho.It'salittleexpensive,soI'mlookingforcheapercopies,sinceI'mnotmakingthebigbucksjustyet.Apparently,thisbookisthebestthingsinceslicedbreadforlearningecho.It'salittleexpensive,soI'mlookingforcheapercopies,sinceI'mnotmakingthebigbucksjustyet....moreSmartratedititwasamazingSep04,2013JratedititwasamazingNov02,2014FatimahratedititwasamazingSep28,2013TahirAbbasiratedititwasamazingApr04,2018DaphnaSharonratedititwasamazingJun11,2020KasLimrateditreallylikeditSep01,2015KhintoelayratedititwasamazingJan07,2014HAJIBABAratedititwasamazingSep19,2021JohnTromblyratedititwasamazingJul16,2014NimishrateditreallylikeditMar05,2022MissyWillersrateditdidnotlikeitDec25,2014SmhustonrateditreallylikeditJul19,2009AllisonSelbyratedititwasamazingJul16,2019HamzarateditdidnotlikeitNov03,2020Dr.SafiahratedititwasamazingJun16,2015AsiaMalikmarkeditasto-readMar19,2013DrMirmarkeditasto-readApr03,2013Mojdehmarkeditasto-readJul09,2013Mehdimarkeditasto-readSep25,2013Afifamarkeditasto-readNov30,2013BeauRêvemarkeditasto-readDec15,2013Shamsmarkeditasto-readDec15,2013Thomasmarkeditasto-readFeb18,2014DanaRaemarkeditasto-readApr16,2014Dhanyamarkeditasto-readApr23,2014Marijamarkeditasto-readMay05,2014Shannonmarkeditasto-readAug06,2014Cacasenomarkeditasto-readAug06,2014Luthfiwinmarkeditasto-readAug25,2014Anummarkeditasto-readOct07,2014Gabrielmarkeditasto-readOct22,2014Tableofcontents:CoverTitlePageCopyrightDedicationListofContributorsPrefaceContentsAbbreviations1:TransthoracicM-modeandTwo-DimensionalEchocardiography2:TransthoracicThree-DimensionalEchocardiography3:TransesophagealEchocardiography4:DopplerEchocardiographyandColorFlowImaging:ComprehensiveNoninvasiveHemodynamicAssessment5:TissueDopplerandStrainImaging6:ContrastEchocardiography7:QuantificationofLeft-sidedCardiacChambers:Mass,Volumes,andEjectionFraction8:AssessmentofDiastolicFunction9:RightHeartAssessmentandPulmonaryHypertension10:Cardiomyopathies11:HeartFailure,LVAD,andTransplantation12:PericardialDiseases13:NativeValvularHeartDisease14:ProstheticValveEvaluation15:InfectiveEndocarditis16:StressEchocardiography17:CoronaryArteryDisease,AcuteMyocardialInfarction,TakotsuboSyndrome18:CardiacDiseasesDuetoSystemicIllness,Genetics,orMedication19:CardiacTumorsandMasses20:DiseasesoftheAorta21:CongenitalHeartDisease22:InterventionalEchocardiography23:AdultIntraoperativeEchocardiography24:IntracardiacandIntravascularUltrasound25:VascularTonometryandImagingforCardiovascularRiskAssessment26:HandheldCardiacandPoint-of-CareUltrasound27:PhysicsofUltrasound28:TheFutureofEchocardiography29:ArtificialIntelligenceandEchocardiography:CurrentStatusandFutureDirectionsAppendixIndexCitationpreviewTheEchoManualFOURTHEDITIONJaeK.Oh,MDSamsungProfessorofCardiovascularDiseases,MayoClinicDirector,EchocardiographyCoreLab,MayoClinicCo-Director,IntegratedCVImaging,MayoClinicDirector,HeartVascularStrokeInstitute,SamsungMedicalCenter,KoreaPresident,Asian-PacificAssociationofEchocardiographyGarvanC.Kane,MD,PhDProfessorofMedicine,MayoClinicDirector,StressEchocardiography,MayoClinicCo-Director,EchocardiographyLaboratory,MayoClinicViceChair,DivisionofCardiovascularUltrasound,MayoClinicJamesB.Seward,MDNasseffProfessorofCardiology(Emeritus)inHonorofDr.BurtonOnofrio,MayoClinicDirector(Emeritus)MayoEchocardiographicLaboratoryProfessorofAdultandPediatricCardiology(Emeritus),MayoClinicProfessor(Emeritus)DepartmentofCardiovascularMedicine,MayoClinicA.JamilTajik,MDThomasJ.WatsonJrProfessor(Emeritus)inHonorofDr.RobertL.Frye,MayoClinicChairman(Emeritus),DepartmentofCardiovascularMedicine,MayoClinicDirector(Emeritus),MayoEchocardiographicLaboratoryDirector,CardiacSpecialtyCenter,AuroraSt.Luke’sMedicalCenter,Milwaukee,WisconsinSeniorAcquisitionsEditor:SharonZinnerDevelopmentEditor:ElizabethSchaefferEditorialCoordinator:JohnLarkinMarketingManager:RachelManteLeungProductionProjectManager:JoanSinclairDesignCoordinator:HollyMcLaughlinManufacturingCoordinator:BethWelshPrepressVendor:SPiGlobalFourthEditionCopyright©2019byWoltersKluwer©2019MayoFoundationforMedicalEducationandResearch.Allrightsreserved.Thisbookisprotectedbycopyright.Nopartofitmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformbyanymeans,electronic,mechanical,recording,orotherwise,withoutwrittenpermissionfromMayoFoundation,SectionofScientificPublications,Plummer10,200FirstStreetSW,Rochester,MN55905.NothinginthispublicationimpliesthatMayoFoundationendorsesanyoftheproductsmentionedinthisbook.987654321PrintedinChinaCataloginginPublicationdataavailableonrequestfrompublisherISBN978-1-4963-1219-8Thisworkisprovided“asis,”andthepublisherdisclaimsanyandallwarranties,expressorimplied,includinganywarrantiesastoaccuracy,comprehensiveness,orcurrencyofthecontentofthiswork.Thisworkisnosubstituteforindividualpatientassessmentbaseduponhealthcareprofessionals’examinationofeachpatientandconsiderationof,amongotherthings,age,weight,gender,currentorpriormedicalconditions,medicationhistory,laboratorydataandotherfactorsuniquetothepatient.Thepublisherdoesnotprovidemedicaladviceorguidanceandthisworkismerelyareferencetool.Healthcareprofessionals,andnotthepublisher,aresolelyresponsiblefortheuseofthisworkincludingallmedicaljudgmentsandforanyresultingdiagnosisandtreatments.Givencontinuous,rapidadvancesinmedicalscienceandhealthinformation,independentprofessionalverificationofmedicaldiagnoses,indications,appropriatepharmaceuticalselectionsanddosages,andtreatmentoptionsshouldbemadeandhealthcareprofessionalsshouldconsultavarietyofsources.Whenprescribingmedication,healthcareprofessionalsareadvisedtoconsulttheproductinformationsheet(themanufacturer’spackageinsert)accompanyingeachdrugtoverify,amongotherthings,conditionsofuse,warningsandsideeffectsandidentifyanychangesindosagescheduleorcontraindications,particularlyifthemedicationtobeadministeredisnew,infrequentlyusedorhasanarrowtherapeuticrange.Tothemaximumextentpermittedunderapplicablelaw,noresponsibilityisassumedbythepublisherforanyinjuryand/ordamagetopersonsorproperty,asamatterofproductsliability,negligencelaworotherwise,orfromanyreferencetoorusebyanypersonofthiswork.shop.lww.comToPioneersofEchocardiographyToourEchoColleaguesToourFamiliesListofContributorsSaharS.Abdelmoneim,MDResearchAssociate/Collaborator,EchoCoreLabDepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaKarimaAddetia,MDAssistantProfessorofMedicine,SectionofCardiologyUniversityofChicagoMedicalCenterChicago,IllinoisNaserAmmash,MDProfessorofMedicineConsultant,DivisionofStructuralHeartDiseaseDirector,HeartBrainClinic,DepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaLoriA.Blauwet,MD,MAAssociateProfessorofMedicineConsultant,DepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaAllisonK.Cabalka,MDAssociateProfessorofPediatricsConsultant,DivisionofPediatricCardiologyMayoClinicRochester,MinnesotaFrankCetta,MDProfessorofMedicineandPediatricsDivisionofPediatricCardiologyDepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaSung-AChang,MD,PhDAssociateProfessorDivisionofCardiologyDepartmentofMedicineHeartVascularStrokeInstituteImagingCenterSamsungMedicalCenterSungkyunkwanUniversitySchoolofMedicineSeoul,RepublicofKoreaThaisCoutinho,MDChief,DivisionofCardiacPreventionandRehabilitationChair,CanadianWomen’sHeartHealthCentreDivisionofCardiologyUniversityofOttawaHeartInstituteOttawa,Ontario,CanadaMichaelW.Cullen,MDAssistantProfessorofMedicineConsultant,DepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaRaúlE.Espinosa,MDAssistantProfessorofMedicineConsultant,DepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaCovadongaFernández-Golfín,MDDirector,CardiacImagingUnitDepartmentofCardiologyUniversityHospitalRamónyCajalMadrid,SpainDavidA.Foley,MDAssistantProfessorofMedicineConsultant,DepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaWilliamK.Freeman,MDProfessorofMedicineConsultant,DepartmentofCardiovascularMedicineMayoClinicScottsdale,ArizonaJeffreyB.Geske,MDAssociateProfessorofMedicineConsultant,DepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaArianaGonzález,MDDirector,ValvularHeartDiseasesDepartmentofCardiologyUniversityHospitalRamónyCajalMadrid,SpainDonaldJ.Hagler,MDProfessorofMedicineandPediatricsConsultant,DivisionofPediatricCardiologyDepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaKyleW.Klarich,MDProfessorofMedicineViceChair,DepartmentofCardiovascularMedicineConsultant,DepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaIftikharJ.Kullo,MDProfessorofMedicineConsultant,DepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaRobertoM.Lang,MDPresident(Emeritus),AmericanSocietyofEchocardiographyProfessorofMedicine,SectionofCardiologyUniversityofChicagoMedicalCenterChicago,IllinoisGraceLin,MDAssociateProfessorofMedicineDirector,HeartFailureClinicConsultant,DepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaLieng-HLing,MBBS,MDAssociateProfessor,DepartmentofMedicineYongLooLinSchoolofMedicineNationalUniversityofSingaporeSeniorConsultantDepartmentofCardiologyNationalUniversityHeartCentreSingaporeJosephF.Maalouf,MDProfessorofMedicineDirector,InterventionalEchocardiographyConsultant,DepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaJosephJ.Maleszewski,MDProfessorofLaboratoryMedicine&PathologyandMedicineDepartmentsofLaboratoryMedicine&Pathology,CardiovascularMedicine,andClinicalGenomicsMayoClinicRochester,MinnesotaSunilV.Mankad,MDAssociateProfessorofMedicineConsultant,DepartmentCardiovascularMedicineMayoClinicRochester,MinnesotaRobertB.McCully,MDProfessorofMedicineDirector(Emeritus),StressEchocardiographyConsultant,DepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaHectorI.Michelena,MDProfessorofMedicineDirector,IntraoperativeEchocardiographyConsultant,DepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaFletcherA.Miller,MDProfessorofMedicineDirector(Emeritus),EchocardiographyLaboratoryConsultant,DepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaWilliamR.Miranda,MDAssistantProfessorofMedicineConsultant,DepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaVictorMor-Avi,PhDResearchProfessorDepartmentofMedicine,SectionofCardiologyUniversityofChicagoMedicalCenterChicago,IllinoisSharonL.Mulvagh,MDProfessorofMedicineDalhousieUniversityHalifax,NovaScotia,CanadaProfessor(Emeritus),DepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaVuyisileT.Nkomo,MD,MPHProfessorofMedicineDirector,ValvularHeartDiseasesClinicConsultant,DepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaPatrickO’Leary,MDProfessorofPediatricsDivisionofPediatricCardiologyDepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaSungjiPark,MD,PhDProfessorDirector,ImagingCenterHeartVascularStrokeInstituteSamsungMedicalCenterSungkyunkwanUniversitySchoolofMedicineSeoul,RepublicofKoreaPatriciaA.Pellikka,MDPresident(Emeritus),AmericanSocietyofEchocardiographyProfessorofMedicineDirector,EchocardiographyLaboratoryConsultant,DepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaSorinV.Pisralu,MD,PhDProfessorofMedicineViceChair,DivisionofCardiovascularUltrasoundConsultant,DepartmentofCardiovascularmedicineMayoClinicRochester,MinnesotaDavidPlayford,MBBS,PhDProfessorUniversityofNotreDameFremantle,AustraliaMountHospital,WesternAustraliaPeterM.Pollak,MDDirectorofStructuralInterventionConsultant,DepartmentofCardiovascularMedicineMayoClinicJacksonville,FloridaGuyS.Reeder,MDProfessorofMedicineConsultant,DepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaCharanjitS.Rihal,MDWilliamS.andAnnAthertonProfessorofCardiologyChair(Emeritus),DepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaHartzellV.Schaff,MDStuartW.HarringtonProfessorofSurgeryConsultant,DepartmentofCardiovascularSurgeryMayoClinicRochester,MinnesotaPeterC.Spittell,MDAssistantProfessorofMedicineConsultant,DepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaGeoffStrange,BN,PhDProfessorUniversityofNotreDame,FremantleWesternAustralia,AustraliaRoyalPrinceAlfredHospitalSydney,NewSouthWales,AustraliaRakeshM.Suri,MD,DPhilProfessorofSurgeryClevelandClinicFoundationandClevelandClinicAbuDhabiJeremyJ.Thaden,MDAssistantProfessorofMedicineConsultant,DepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaYanTopilsky,MDAssociateProfessorSacklerUniversityofmedicineTelAviv,IsraelDirectorofEchoandNonInvasiveCardiologyTelAvivMedicalCenterHectorR.Villarraga,MDAssociateProfessorofMedicineConsultant,DepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaBrandonM.Wiley,MD,MSAssistantProfessorofMedicineConsultant,DepartmentofCardiovascularMedicineMayoClinicRochester,MinnesotaJoséLuisZamorano,MDVicePresident,EuropeanSocietyofCardiologyHeadofCardiologyUniversityHospitalRamónyCajalMadrid,SpainPrefaceThefirsteditionoftheEchoManualwasoriginallywritteninearly1990sasaninternalmanualatMayoClinictostandardizetheacquisitionandtheinterpretationofechocardiography,whichwasrapidlydeveloping.Whenitwaspublished,wewerethrilledbyreaders’encouragingresponse,whichhasmotivatedustoupdatethisManualfewtimestothecurrentfourthedition.Thefirsteditiontook4yearstocomplete.Atthattime,allechocardiographyimageswerestoredinvideotapes.Wecreatedalistofeducationallyvaluableillustrativeimages,whichwerelaterretrievedandphotographedusing38-rollfilmpereachimage.Wheneachroll-filmwasdeveloped,thebestimagewasselectedtobelabeledandcropped.TherevisedimageswerephotographedagaintocreatefiguresshowninthefirsteditionoftheManual.Whenechocardiographyimageswereacquiredandstoreddigitally,itbecamemucheasiertolocateandcreateimages.But,itisremarkablethatimagescreatedbyphotographywerefrequentlybetterthandigitizedimages,someofwhicharestillshowninthisedition.TheEchoManualhaslivedthroughremarkablegrowingperiodsofechocardiographywithdevelopmentofDopplerhemodynamics,colorflowimaging,transesophagealimaging,stressechocardiography,contrast(ultrasoundenhancing)agent,tissueDoppler,strainimaging,3Dechocardiographyandhand-heldultrasoundimaging.Echocardiographyhasmaturedtohavebecomethemostpracticalandthemostwidelyavailableimagingandhemodynamicdiagnostictoolfortheentirefieldofcardiovasculardiseases.Consequently,theutilizationofechocardiographyisnowinthehandsofnotonlycardiologists,butanyphysicianswhohaveaneedtoassesscardiacstructure,function,andhemodynamicsintheiroutpatientoffice,bedside,emergencydepartment,criticalcareunit,interventionalsuite,andoperatingroom.Thebedsideultrasoundimagingbyahand-helddevicewasrecommendedtobethefifthpillartobedsidephysicalexaminationinadditiontoinspection,palpation,percussion,andauscultation(1).Thereis,however,alargegapbetweenwhatechocardiographycandoandhowitisusedinclinicalpractice.OptimalutilizationofechocardiographyrequiresdedicatedtraininganditisoursincerehopethatthisfourtheditionoftheEchoManualcanhelptoclosethegapforallphysiciansandsonographerswhoperformandinterpretechocardiographytoprovidethebestcarefortheirpatients.Echocardiographyhasbecomeanamazingtoolnotonlyfordiagnosisbutalsoguidingmanyinnovativedevicetherapiesandprocedures.WehopethattheManualalsohelpsinterventionalistsandcardiacsurgeonstouseechocardiographyforobtainingthebestresultfortheirprocedures.Asthefieldofechocardiographyhasexpandedtremendouslysincethelastedition,severalnewchapters(3Dechocardiography,interventionalechocardiography,echocardiographyforheartfailureandLVAD,hand-carriedultrasound,andartificialintelligenceinechocardiography)wereadded.Previouschapterswereupdatedwithnewinformation,recentreferences,andnewimageswithcorrespondingreal-timeimages.Wethankallcontributingauthorsfortheirpassionandexpertiseforechocardiographyandfortheirsacrificeinprecioustime.Wecontinuedtoemphasizetheinterpretationofechocardiographyinformationinclinicalcontextsinceourultimategoalofperformingechocardiographyistoprovidethebestcareforourpatients.AcreationofthisfourtheditionoftheEchoManualwouldnothavebeenpossiblewithoutsupportandunderstandingfromourfamilies.MostofechocardiographycasesandimagesinthismanualcamefromtheextensiveclinicalmaterialsatMayoClinic.WethankMayoClinicEchocardiographyLaboratoryandtheDepartmentofCardiovascularMedicineforprovidinganamazingenvironmentforpractice,education,andresearchaswellascollegialityandfriendship.MarkA.Zang,JeffreyR.Stelley,andJeffreyW.GansenofourEchocardiographyLaboratoryvisualsectionhelpedcreatingstillandvideoimagesusedfortheManual.PaulW.HonermanofIllustrationandDesignrevisedandcreatedallillustrativefigures.TessaFlieshelpedmewithadministrativedutiesandmadesurethatIdohaveatimetocompletethisManualintime.WecouldnotthankenoughtheWoltersKluwerfortheirsupportandpatienceforhavingthisfourtheditionoftheEchoManualpublishedalmost10yearsafterthethirdedition.Finally,wearegratefultoechocardiographyandnumerouspioneersinthisfieldformakingourprofessionallifefilledwithnewdiscoveries,betterdiagnosticmethods,manymemorabletrips,wonderfulmeetings,internationalcousins,mentoringfellows,makingfriendsallaroundtheworld,andthemostimportantly,opportunitiestoimprovethecareforourpatients.JaeK.OhOnbehalfofallauthorsREFERENCE1.NarulaJ,ChandrashekharY,BraunwaldE.Timetoaddafifthpillartobedsidephysicalexamination:Inspection,palpation,percussion,auscultation,andinsonation.JAMACardiology,2018;3(4):346–350.ContentsListofContributorsPrefaceAbbreviations1TransthoracicM-modeandTwo-DimensionalEchocardiographyJaeK.OhandJosephJ.Maleszewski2TransthoracicThree-DimensionalEchocardiographyKarimaAddetia,VictorMor-Avi,andRobertoM.Lang3TransesophagealEchocardiographyJeremyJ.Thaden,JosephF.Maalouf,andJaeK.Oh4DopplerEchocardiographyandColorFlowImaging:ComprehensiveNoninvasiveHemodynamicAssessmentJaeK.OhandWilliamR.Miranda5TissueDopplerandStrainImagingHectorR.Villarraga,GarvanC.Kane,andJaeK.Oh6ContrastEchocardiographySaharS.AbdelmoneimandSharonL.Mulvagh7QuantificationofLeft-sidedCardiacChambers:Mass,Volumes,andEjectionFractionGarvanC.Kane8AssessmentofDiastolicFunctionJaeK.Oh9RightHeartAssessmentandPulmonaryHypertensionGarvanC.KaneandSung-AChang10CardiomyopathiesJeffreyB.GeskeandJaeK.Oh11HeartFailure,LVAD,andTransplantationYanTopilsky,GraceLin,andJaeK.Oh12PericardialDiseasesJaeK.Oh,RaúlE.Espinosa,andLieng-HLing13NativeValvularHeartDiseaseJaeK.Oh,SungjiPark,SorinV.Pisralu,andVuyisileT.Nkomo14ProstheticValveEvaluationLoriA.Blauwet,FletcherA.Miller,andJaeK.Oh15InfectiveEndocarditisWilliamK.Freeman16StressEchocardiographyRobertB.McCully,PatriciaA.Pellikka,andJaeK.Oh17CoronaryArteryDisease,AcuteMyocardialInfarction,TakotsuboSyndromeSunilV.MankadandJaeK.Oh18CardiacDiseasesDuetoSystemicIllness,Genetics,orMedicationGarvanC.Kane19CardiacTumorsandMassesKyleW.Klarich,JaeK.Oh,andJosephJ.Maleszewski20DiseasesoftheAortaPeterC.Spittell21CongenitalHeartDiseasePatrickO’Leary,NaserAmmash,andFrankCetta22InterventionalEchocardiographyJeremyJ.Thaden,BrandonM.Wiley,PeterM.Pollak,andCharanjitS.Rihal23AdultIntraoperativeEchocardiographyHectorI.Michelena,RakeshM.Suri,andHartzellV.Schaff24IntracardiacandIntravascularUltrasoundDonaldJ.Hagler,AllisonK.Cabalka,andGuyS.Reeder25VascularTonometryandImagingforCardiovascularRiskAssessmentThaisCoutinhoandIftikharJ.Kullo26HandheldCardiacandPoint-of-CareUltrasoundMichaelW.CullenandBrandonM.Wiley27PhysicsofUltrasoundDavidA.Foley28TheFutureofEchocardiographyJoséLuisZamorano,ArianaGonzález,andCovadongaFernándezGolfín29ArtificialIntelligenceandEchocardiography:CurrentStatusandFutureDirectionsDavidPlayfordandGeoffStrangeAppendixIndexAbbreviationsAa′AaACTorATAoASAVPAVRCHFCICOCSACWDDTEe′EaE/AECGEROIVCIVCTlatediastolicfillingduetoatrialcontractionlatediastolicvelocityofthemitralanulus(sameasa′)Accelerationtimeaortaaorticstenosisaorticprostheticvalveaorticvalvereplacementcongestiveheartfailurecardiacindexcardiacoutputcrosssectionalareacontinuouswavediastolicforwardflowvelocitydecelerationtimepeakvelocityofearlydiastolicfillingofmitralinflowpeakearlydiastolicvelocityofthemitralanulusmitralanulusearlydiastolicvelocity(samease′)ratioofEandAvelocitieselectrocardiogram(-graphy)effectiveregurgitantorificeinferiorvenacavaisovolumiccontractiontimeIVRTLALVLVEFLVOTMRMSMVMVPPFOPHTPISAPVRPWQpQsRARVSS′SVSVCSVRTAVRTEETRTTETVITVP2D3Disovolumicrelaxationtimeleftatrium(-ial)leftventricle(-icular)leftventricularejectionfractionleftventricularoutflowtractmitralregurgitationmitralstenosismitralvalvemitralvalveprosthesispatentforamenovalepressurehalf-timeproximalisovelocitysurfaceareapulmonaryvascularresistanceposteriorwallorpulsedwavepulmonarystrokevolumesystemicstrokevolumerightatrium(-ial)rightventricle(-icular)systolicforwardflowvelocitysystolicvelocityofthemitralanulusstrokevolumesuperiorvenacavasystemicvascularresistancetranscatheterAVRtransesophagealechocardiographytricuspidregurgitationtransthoracicechocardiographytimevelocityintegraltricuspidvalveprosthesistwo-dimensionalthree-dimensionalVSventricularseptumCHAPTER1TransthoracicM-modeandTwoDimensionalEchocardiographyJaeK.OhandJosephJ.MaleszewskiTWO-DIMENSIONALECHOCARDIOGRAPHYEvenwithagreatadvanceinthree-dimensional(3D)echocardiography,twodimensional(2D)transthoracicechocardiography,currently,remainsasthemaintoolforacomprehensiveechocardiographystudy.Hence,anechocardiographyexaminationbeginswithtransthoracic2Dscanningfromfourstandardtransducerpositions:theparasternal,apical,subcostal,andsuprasternalwindows.Theparasternalandapicalviewsusuallyareobtainedwiththepatientintheleftlateraldecubitusposition(Fig.1-1A),andthesubcostalandsuprasternalnotchviewsareobtainedwiththepatientinthesupineposition(Fig.1-1B).Apatientmayneedtoflexorbendthekneetorelaxtheabdomenduringthesubcostalexamination.Anexaminermaysitattheleftorrightsideofapatientandscanwiththerightorlefthand,respectively.Fromeachtransducerposition,multiplelong-andshort-axistomographicimagesoftheheartareobtainedbymanuallyrotatingandangulatingthetransducer(Table1-1);hence,amultiplaneexaminationisperformed(Fig.1-2)(1–4).Thelong-axisviewrepresentsasagittalsectionoftheheart,bisectingtheheartfromthebasetotheapex.Theshort-axisviewisperpendiculartothelongaxisviewandisequivalenttosectioningtheheartlikealoafofbread.Real-time2Dechocardiographyprovideshigh-resolutionimagesofcardiacstructuresandtheirmovementssothatdetailedanatomicandfunctionalinformationabouttheheartcanbeobtained.Quantitativemeasurementsofcardiacdimensions,area,andvolumearederivedfrom2Dimagesor2D-derivedM-mode(seebelow).Inaddition,2DechocardiographyprovidestheframeworkforDopplerandcolorflowimaging.Thesestandardlongandshorttomographicimagingplanesareacquiredasdescribedinthefollowingsections.Newermatrixtransducersallowvisualizationofmultipletomographicviewsfromasingle3Dimageoftheheart(seeChapter2).BiplaneorX-planeimagingallowsvisualizationoftwotomographicviews,whichareorthogonaltoeachother,fromthesameacquisition.Thisshortensthedurationoftheexaminationandminimizesvariationintheacquisitionofcardiovascularimages.Withmoreadvancesandclinicalexperiencesin3Dormultidimensionalechocardiographicimaging,visualizationandquantitationofcardiovascularstructure,function,andhemodynamicswillimprove.Whileultrasoundtechnologyisabletoprovide3Dand4Dimagingoftheheart,echocardiographyunitisbeingminiaturizedtobeheldinahandtoprovideapoint-of-careimaginginvariousclinicalsituationsincludingphysician’soffice,criticalcareunit,emergencydepartment,andmedicalschooleducation(5).Comprehensiveknowledgeaboutcardiovascularanatomyprovidedbymultipletomographicimagesfrom2Dtransthoracicechocardiographyisessentialformedicalstaffutilizingtheminiaturizedechocardiographyunit(seeChapter26).ParasternalPositionTheexaminationisbegunbyplacingthetransducerintheleftparasternalregion,usuallyinthethirdorfourthleftintercostalspace,withthepatientintheleftlateraldecubitusposition(Fig.1-1A).Fromthisposition,sectorimagescanbeobtainedoftheheartalongitslongandshortaxes.FIGURE1-1Fourstandardtransthoracictransducerpositions.A:Theparasternal(1)andapical(2)viewsusuallyareobtainedwiththepatientintheleftlateraldecubitusposition.Theparasternalviewusuallyisobtainedbyplacingthetransducerattheleftparasternalareainthethirdorfourthintercostalspace.Theapicalviewisobtainedwiththetransduceratthemaximalapicalimpulse(usuallyslightlylateralandinferiortothenipple,butitmaybesubstantiallydisplacedlaterallyandinferiorlybecauseofcardiacenlargementorrotationorboth).Theseviewsmaybeimagedbestduringheldexpiration,especiallyinpatientswhohavechronicobstructivelungdisease.Theapicalviewcanbedifficulttoobtaininathinyoungperson,andthetransducermayneedtobetiltedsuperiorly.B:Thesubcostal(3)andsuprasternalnotch(4)viewsareobtainedwiththepatientinthesupineposition.Forsubcostalimaging,relaxingtheabdominalmusclesbyflexingthepatient’skneesandforcedinspirationfrequentlyimprovetheviews.Forsuprasternalnotchimaging,thepatient’sheadneedstobeextendedandturnedleftwardsothetransducercanbeplacedcomfortablyinthesuprasternalnotchwithoutrubbingthepatient’sneck.00:00/00:00Video1-1A00:00/00:00Video1-1BLong-AxisViewoftheLeftVentricleThelong-axisviewoftheleftventricle(LV)isrecordedwiththetransducergroovefacingtowardthepatient’srightflankandthetransducerpositionedinthethirdorfourthleftintercostalinterspacesothattheultrasoundbeamisparallelwithalinejoiningtherightshouldertotheleftflank.TheimageobtainedrepresentsasectionthroughthelongaxisoftheLV(Fig.1-3A).Theimageisorientedsotheaortaisdisplayedontheright,thecardiacapexontheleft,thechestwallandrightventricle(RV)anteriorly,andposteriorstructuresposteriorly(Fig.1-3B).Therefore,thelong-axisviewoftheLVisdisplayedasasagittalsectionoftheheartviewedfromtheleftsideofasupinepatient.TABLE1-1TransducerPositionsandCardiacViewsParasternalpositionLong-axisviewLVinsagittalsectionRVinflowLVoutflowShort-axisviewLVapexPapillarymuscles(midlevel)Mitralvalve(basallevel)Aorticvalve–RVoutflowPulmonarytrunkbifurcationApicalpositionFour-chamberviewFive-chamber(orlong-axis)viewTwo-chamberviewSubcostalpositionInferiorvenacavaandhepaticveinRVandLVinflowLV-aortaRVoutflowSuprasternalnotchpositionLong-axisaorta–short-axispulmonaryarteryShort-axisaorta–long-axispulmonaryarteryLong-axisaortaandsuperiorvenacavaLV,leftventricle;RV,rightventricle.Thelong-axisviewoftheLVallowsvisualizationoftheaorticrootandaorticvalvecusps.Thechamberbehindtheaorticrootistheleftatrial(LA)cavity.Usually,theleftinferiorpulmonaryvein,appearingasaroundstructure,alsocanbeseenimmediatelyposteriortothelowerpartoftheLA.Thelong-axisviewallowsgoodvisualizationoftheanteriorandposteriorleafletsofthemitralvalveandtheirchordalandpapillarymuscleattachments(Fig.1-4A).Thecoronarysinusappearsasasmall,circularecho-freestructureandusuallycanberecordedintheregionoftheposterioratrioventriculargroove(Fig.1-3A).Ifthecoronarysinusisenlarged,apersistentleft-sidedsuperiorvenacava,increasedrightatrial(RA)pressure,orrarelycoronarysinusatrialseptaldefectshouldbesuspected(Fig.1-4B).Theleft-sidedsuperiorvenacavacanbeconfirmedbyopacificationofthecoronarysinuswiththeadministrationofagitatedsalinethroughaveinintheleftarm(seeChapter6).TheLVoutflowtract(LVOT),boundedbytheventricularseptumanteriorlyandtheanteriorleafletofthemitralvalveposteriorly,iswellseenandnormallyiswidelypatentduringsystole.SubaorticmembranemaybeseenasasubtlebulgenearthejunctionbetweentheLVOTandtheventricularseptumandcanbesuspectedbyturbulentflowbeforetheaorticvalve(seeChapter21).TheLVOTdiameter,whichisusedtocalculatesystemicstrokevolume,ismeasuredfromthisview.However,themeasurementofactualLVOTareaby3Dechocardiographyismoreaccurateforcalculationofstrokevolume.Inthisview,thedescendingthoracicaortaappearsasacircularstructurebehindtheLA(Fig.1-4A)andLVposteriorwalltrue-orpseudoaneurysmmaybeseenwellfromtheparasternallong-axisview(Fig.1-4C).RVenlargementorRVpressureoverloadaswellasasymmetricventricularseptalhypertrophyinhypertrophiccardiomyopathycanbeassessedinthisview(Fig.1-4DandE).Withthisview,colorflowimagingisusefulforscreeningforaorticandmitralvalveregurgitationaswellassubaorticobstruction.FIGURE1-2A:Drawingsofthelongitudinalviewsfromthefourstandardtransthoracictransducerpositions.Shownaretheparasternallong-axisview(1),parasternalrightventricularinflowview(2),apicalfour-chamberview(3),apicalfivechamberview(4),apicaltwo-chamberview(5),subcostalfour-chamberview(6),subcostallong-axis(five-chamber)view(7),andsuprasternalnotchview(8).B:Drawingsofshort-axisviews.Theseviewsareobtainedbyrotatingthetransducer90degreesclockwisefromthelongitudinalposition.Drawings1to6showparasternalshort-axisviewsatdifferentlevelsbyangulatingthetransducerfromasuperomedialposition(forimagingtheaorticandpulmonaryvalves)toaninferolateralposition,tiltingtowardtheapex(fromlevel1tolevel6short-axisviews).Shownareshort-axisviewsoftherightventricularoutflowtractandpulmonaryvalve(1),aorticvalveandleftatrium(2),rightventricularoutflowtract(3),andshort-axisviewsattheleftventricularbasal(mitralvalvelevel)(4),theleftventriclemidlevel(papillarymuscle)(5),andtheleftventricleapicallevel(6).Agoodviewtovisualizetherightventricularoutflowtractisthesubcostalshort-axisview(7).Alsoshownisthesuprasternalnotchshort-axisviewoftheaorta(8).Ao,aorta;LA,leftatrium;LV,leftventricle;MV,mitralvalve;RA,rightatrium;RPA,rightpulmonaryartery;RV,rightventricle;RVO,rightventricularoutflow.(B:FromTajikAJ,SewardJB,HaglerDJ,etal.Two-dimensionalreal-timeultrasonicimagingoftheheartandgreatvessels:Technique,imageorientation,structureidentification,andvalidation.MayoClinicProceedings,1978;53:271–303.BypermissionofMayoFoundationforMedicalEducationandResearch.)FIGURE1-3A:Anatomicsection(left)anddrawing(right)oftheheart.B:Correspondingstillframeof2Dechocardiographicimageoftheparasternallong-axisview.Theparasternallong-axisviewallowsvisualizationoftherightventricle(RV),ventricularseptum(VS),posteriorwall(PW)aorticvalvecusps,leftventricle(LV),mitralvalve,leftatrium(LA),andascendingthoracicaorta(Ao).Parasternallong-axisviewstartswithalongfield-depthtovisualizeanyabnormalstructuresposteriortotheheartsuchaspleuraleffusion,descendingthoracicaneurysm,oramass.*Pulmonaryartery.(AfromTajikAJ,SewardJB,HaglerDJ,etal.Two-dimensionalreal-timeultrasonicimagingoftheheartandgreatvessels:Technique,imageorientation,structureidentification,andvalidation.MayoClinicProceedings,1978;53:271–303.BypermissionofMayoFoundationforMedicalEducationandResearch.)00:00/00:00Video1-3A00:00/00:00Video1-3BLong-AxisViewofRightVentricularInflowWiththetransducerinthesameintercostalinterspace(thirdorfourth),alongaxisviewoftheRVandRAisobtainedbytiltingthetransducerinferomediallyandrotatingitslightlyclockwise.Inthisview,theimageisorientedwiththechestwallanterior,theRAontherightandposterior,andtheRVapexanteriorandtotheleft.ThisviewshowstheRAcavity,tricuspidvalve,coronarysinusentryintotheRA,andtheRVinflowuptotheapexoftheRV(Fig.1-5).Thisviewisgoodforrecordingthevelocityoftricuspidregurgitation.TheentryofthecoronarysinusintotheRAalongwiththeposteriorleafletofthetricuspidvalvemaybeseenclearlyinthisview.Short-AxisViewsWiththetransducerplacedintheparasternalposition(thirdorfourthleftintercostalspace),short-axisviewsoftheheartareobtainedbyrotatingthetransducerclockwisesotheplaneoftheultrasoundbeamisapproximatelyperpendiculartotheplaneofthelongaxisoftheLV.Thegrooveonthetransducerispointedsuperiorlytofacetherightsupraclavicularfossa,andthebeamisroughlyparallelwithalinejoiningtheleftshoulderandrightflank.Withthetransducerpointeddirectlyposteriorly,acrosssectionisobtainedoftheLVatthelevelofthemitralleaflets.Fromthisposition,thetransduceristiltedinferiorlytowardtheLVapextoobtainatransversesectionoftheventricularapex.Theimagesaredisplayedasifviewedfrombelow(lookingfromtheapexoftheheartuptowardthebase).Inthisformat,thecross-sectionalviewoftheLVisdisplayedposteriorlyandtotherightsideoftheimageandtheRVisdisplayedanteriorlyandtotheleft.FIGURE1-4A:Parasternallong-axisviewfroma64-year-oldpatientwithacutepulmonaryedemademonstratingaflailposteriormitralleaflet(arrow).Also,theleftatrium(LA)isenlarged.AroundstructureposteriortotheLAisthedescendingthoracicaortaofnormaldimension.B:Anotherparasternallong-axisviewdemonstratingalargecoronarysinus(*).Becauseofapersistentleftsuperiorvenacava,thecoronarysinusisquicklyopacifiedafteragitatedsalineisinjectedintoaleftarmvein.C:Alargeposteriorwallpseudo-aneurysm(*)witharelativelysmallmouth(arrow)veryclosetotheposteriormitralleaflet.D:Afemalepatientwithpulmonaryhypertensionandsmallamountofpericardialeffusion(PE).Themostprominentfindingfromthisparasternallong-axisviewisadilatedrightventricle(RV)withtheflattenedventricularseptumtowardtheleftventricle.E:Amarkedincreaseinventricularseptal(VS)thicknessfromapatientwithhypertrophiccardiomyopathy.Ao,ascendingaorta;LA,leftatrium;LV,leftventricle;RV,rightventricle.FIGURE1-5A:Rightventricular(RV)inflowviewdemonstratingatricuspidleaflet(arrow)duringsystole.Thecoronarysinus(CS)enterstherightatrium(RA).ThisRVinflowviewisgoodforvisualizingtricuspidleafletmorphologyandforobtainingtricuspidregurgitationvelocity.B:Rightventricularinflowviewduringsystoledemonstratinginadequatecoaptationofthetricuspidleaflets(arrow).TheRAandCSaredilated.ThisisagoodviewtoguideacatheterintotheCS.LV,leftventricle;VS,ventricularseptum.Acrosssectionofthecardiacapexcanbeobtainedalsobyplacingthetransducerdirectlyoverthepointofmaximal(apical)impulse(apicalshort-axisview).Thisviewishelpfulintheassessmentofapicalwallmotion,apicalhypertrophiccardiomyopathy,noncompactionoftheapex,apicalstresscardiomyopathy,andapicalmass.Astheultrasoundbeamistiltedsuperiorly,acrosssectionisobtainedatthelevelofthepapillarymuscles.Thepapillarymuscles,namely,theanterolateralandposteromedialmuscles,projectintotheLVcavityatapproximatelythe3and8o’clockpositions,respectively(Fig.1-6).Bytiltingthetransducerfurthersuperiorlysoitisnearlyperpendiculartothechestwall,theultrasoundbeamtransectsthebodyoftheLVatthelevelofthemitralleaflets.Inthisview,themitralanterior(A)andposterior(P)leafletsareseenincrosssectionand,duringdiastole,looklikeafishmouth.A1andP1scallopsareseenontherightsideoftheimage,whichrepresentsthelateralaspectoftheLV,andA3andP3scallopsareseenneartheventricularseptum.Thisviewisgoodformeasuringthemitralvalveareainapatientwithmitralstenosis,anditistheviewtoidentifyacleftmitralvalve.Bytiltingthetransducerfurthersuperiorly,thegreatarteriesaresectionedtransversely.Atthislevelinnormalsubjects,theaortaappearsasacirclewithatricuspidaorticvalvethathastheappearanceoftheletter“Y”duringdiastole(Fig.1-7).Coronaryostiamaybeseeninthisview.TheRVoutflowtract(RVOT)crossesanteriortotheaortafromthelefttotherightoftheimage,wrappingaroundtheaorta;incrosssection,ithasasausage-likeappearanceanteriortothecircularaorta.Thepulmonaryvalveisobservedanteriorandtotherightoftheaorticvalve.Theoriginsoftheright(anteriorly)andleftmaincoronaryarteriesalsocanbeseeninthisview.ApicalPositionThisviewisobtainedwiththepatientturnedintheleftlateraldecubitusposition(Fig.1-1A).Theapicalimpulseislocalized,andthetransducerisplacedatorintheimmediatevicinityofthepointofmaximalimpulse.Withtheapicaltransducerposition,afour-chamberviewoftheheartorarightanteriorobliqueequivalentviewoftheLVusuallyisrecorded.Thenotchonthetransducerisplacedpointingupordown,dependingonwhetherthegoalistodisplaytheLVontherightorontheleftsideoftheimage,respectively(Fig.1-8).Becausetheviewsobtainedwiththeapicaltransducerpositionrepresentlong-axisviewsoftheheart,particularlyoftheLV,itisdesirablethattheorientationoftheimageoftheseviewsbesimilartothatofthelong-axisviewoftheLV.Forthisreason,pioneersintheMayoClinicEchocardiographyLaboratorychosetodisplaytheapicalviewswiththeLVontheleftsideandtheRVontherightsideoftheimage.However,morecommonly,theLVisdisplayedontherightsideandtheRVontheleftsideoftheimage.Forthefour-chamberview,theultrasoundbeamisdirectedsuperiorlyandmediallytowardthepatient’srightscapula.Thisviewdisplaysallfourchambersoftheheart,theventricularandatrialsepta,andthecruxoftheheart(Fig.1-8A).Whilerecordingtheapicalfour-chamberview,weusuallytiltthebeaminaslightlyanteriorandposteriordirectiontoscanagreaterportionoftheatrialseptum.Theimageisorientedsotheapexisatthetopandtheatriaatthebottom.TwodifferentimagedisplaysoftheapicalfourchamberviewareshowninFigure1-8B.Theventricularandatrialseptaareconnectedbyamembranousseptum.Theleft(mitral)atrioventriculargroovenormallyisslightlyhigher(moretowardtheatria)thantheright(tricuspid)atrioventriculargroove.Theanteriorleafletofthemitralvalveinsertsintotheleftatrioventriculargrooveandnearthecephalicendofthemembranousseptum,whereastheseptalleafletofthetricuspidvalveinsertsnearthemidportionofthemembranousseptum.Therefore,theinsertionoftheseptalleafletofthetricuspidvalveissomewhatinferior(5–10mmintheheartsofolderchildrenandadults)totheinsertionoftheanteriormitralleaflet.Thisisanimportantanatomicdistinctionbecauseitcanbeusefulinidentifyingventricularchambers.InEbsteinanomaly,theapparentinsertionoftheseptaltricuspidleafletisdisplacedmoreapically.FIGURE1-6Parasternalshort-axisviews.Multipletomographicplaneshavebeenobtainedbyangulatingthetransducerfromtheleveloftheaorticandpulmonaryvalvestotheleftventricularapex.A:Anatomicsection(left)anddrawing(right)ofaparasternalshort-axisviewatthepapillarymusclelevel.B:Correspondingstillframeofa2Dechocardiographicimageintheparasternalshort-axisviewatthepapillarymusclelevel(AL,anterolateralpapillarymuscle;PM,posteromedialpapillarymuscle).Thisviewisparticularlyusefulinmeasuringleftventricular(LV)cavitydimensionandwallthicknessandinassessingwallmotion.C:Superiorandrightwardtiltingofthetransducerobtainsaparasternalshort-axisviewatthebasallevelshowingthemitralvalve(MV).A1,lateralanteriorleaflet;A2,middleanteriorleaflet;A3,medialanteriorleaflet;P1,lateralposteriorleaflet;P2,middleposteriorleaflet;P3,medialposteriorleaflet;RV,rightventricle;VS,ventricularseptum.(AfromTajikAJ,SewardJB,HaglerDJ,etal.Two-dimensionalreal-timeultrasonicimagingoftheheartandgreatvessels:Technique,imageorientation,structureidentification,andvalidation.MayoClinicProceedings,1978;53:271–303.BypermissionofMayoFoundationforMedicalEducationandResearch.)00:00/00:00Video1-6A00:00/00:00Video1-6B00:00/00:00Video1-6C00:00/00:00Video1-6DFIGURE1-7Bytiltingthetransducerfurthersuperiorly,theshort-axisviewoftheaorticvalveisobtained.Inthisview,therightventricularoutflowtractandpulmonaryvalvearevisualized.Belowtheaorticvalveliestheleftatrium;theconnectionofallfourpulmonaryveinswiththeleftventricleisusuallyseen.A:Anatomicsection(left)oftheheartanddrawing(right)ofthisview.B:Corresponding2Dechocardiographicimage.LA,leftatrium;PV,pulmonaryvalve;RA,rightatrium;RVOT,rightventricularoutflowtract.(AfromTajikAJ,SewardJB,HaglerDJ,etal.Two-dimensionalrealtimeultrasonicimagingoftheheartandgreatvessels:Technique,imageorientation,structureidentification,andvalidation.MayoClinicProceedings,1978;53:271–303.BypermissionofMayoFoundationforMedicalEducationandResearch.)Intheapicalview,theatrialseptumusuallycanbeseeninitsentiretywithoutanythinningordropoutiftheultrasoundbeamisdirectedslightlyanteriorly;however,echoesdodropoutinitsmidportion,whichistheregionofthefossaovalis,iftheultrasoundbeamisdirectedfurtherposteriorly.ThisviewalsoallowsvisualizationoftheemptyingoftherightandleftinferiorpulmonaryveinsintotheLA,andwithfurtherposteriorangulationoftheultrasoundbeam,thecourseofthecoronarysinusasitenterstherightatrium.Withaslightclockwiserotationofthetransducer(Fig.1-8C),theaorticrootandvalveareimagedinadditiontothefourchambers(apicallong-axisorfivechamberview).Theaorticrootoccupiestheregionwherethecruxoftheheartwasrecordedintheprevioussection.Inthisview,colorflowimagingallowsquantitativeassessmentbytheproximalisovelocityareamethodaswellasqualitativeassessmentofaorticregurgitation.Pulsed-waveDopplerechocardiographyfromthisviewattheaorticannulusregionmeasuresvelocityandtimevelocityintegraloftheLVOTrequiredforcalculatingstrokevolume.Withfurtherclockwiserotationofthetransducer,theapicaltwo-chamberviewwithanteriorandinferiorwallsoftheLValongwiththemitralvalve(P1scallopneartheanteriorwallandP3scallopneartheinferiorwallwithP2inbetween)isobtained(Fig.1-8D).Allthreeapicalviewsareessentialforanalysisofregionalmyocardialcontractilityand,hence,forstressechocardiography.Apicalviewsprovideanotheropportunitytovisualizeall16LVsegments.Theaortic,mitral,andtricuspidvalvesareseenfromtheapicalviews.TheLVapexharborsdiagnosticcluesforcardiomyopathy,apicalthrombus,hypereosinophilia,andaneurysm(Fig.1-9).ApicalviewsalsoareimportantforobtainingmeasurementsofchambervolumesandseveralessentialDopplerechocardiographicrecordings.LVvolumesarequantifiedwiththebiplaneSimpsonmethodfromapicalfour-andtwo-chamberviewsoftheLV,although3DechocardiographyisapreferredmethodforobtainingLVvolume.LAvolumeismeasuredfromtheapicalfour-chamberandapicaltwo-chamberviews.LVOTvelocity,whichisusedtocalculatestrokevolume,isrecordedfromtheapicallong-axisview.Mitralinflow,pulmonaryvein,andmitralannulustissuevelocities,essentialmeasurementsfortheassessmentofdiastolicfunction,alsoareobtainedfromtheapicalview(seeChapter8).FIGURE1-8A:Anatomicsection(left)anddrawing(right)ofapicalfour-chamberview.B:Corresponding2Dechocardiographicimageoftheapicalfour-chamberviewintwodifferentimagingdisplayformatswithLVontheleft(left)orontheright(right).Theapicalviewisobtainedbyplacingthetransducerintheimmediatevicinityoforatthepointofmaximalapicalimpulse.Thisviewdisplaysallfourcardiacchambers,theventricularandatrialsepta,andthecruxoftheheart.Notethattheinsertionoftheseptalleafletofthetricuspidvalve(arrow)isslightlyinferiortotheinsertionoftheanteriormitralleafletintwodifferentimagingdisplays;thisisanimportantanatomicdistinctionintheidentificationofthecorrectventricleandimagedisplayformat.C:Byrotatingthetransducerclockwise,thefive-chamberorlong-axisapicalview(left)allowsvisualizationoftheleftventricular(LV)outflowtractandaorticvalve(AV).Furtherrotationofthetransducerclockwiseproducesthetwo-chamberview(right),whichisusefulforvisualizingtheentireposteriororinferior(Inf)wallandinanalyzinganterior(Ant)wallmotion.Ao,aorta;AS,anteroseptum;AV,aorticvalve;IL,inferolateralwall;LA,leftatrium;LV,leftventricle;MV,mitralvalve;RA,rightatrium;RV,rightventricle.(AfromTajikAJ,SewardJB,HaglerDJ,etal.Two-dimensionalreal-timeultrasonicimagingoftheheartandgreatvessels:Technique,imageorientation,structureidentification,andvalidation.MayoClinicProceedings,1978;53:271–303.BypermissionofMayoFoundationforMedicalEducationandResearch.)00:00/00:00Video1-8A00:00/00:00Video1-8B00:00/00:00Video1-8CSubcostalPositionIncertainpatients,especiallythosewhohavechronicobstructivelungdiseaseandemphysema,theusualprecordialultrasonicwindowmaybecomeobliteratedbecauseofhyperinflatedlungs.Thisnecessitatedasearchforotherlocationsforimagingtheheartandledtothediscoveryofthesubcostalregion,agoodultrasonicwindowinthesepatients.Thesubcostalexaminationisperformedbyplacingthetransducerinthemidlineorslightlytothepatient’sright,withthetransducergroovepointeddowntowardthepatient’sspine(Fig.1-1B).Thetransducerheadistiltedinferiorlyandslightlytowardthepatient’sright.Withthisposition,theliverparenchyma,hepaticvessels,andinferiorvenacava(IVC)arevisualized(Fig.110).BasedonthediameterandthecollapsibilitywithrespirationorsniffoftheIVC,RApressureisestimated(seeChapter9).M-modeoftheIVCmaybehelpfulinmeasuringIVCdiameteranditsvariabilitywithrespiration(Fig.110C).Withaslightsuperiortiltofthetransducer,thedrainageofthehepaticveinsintotheIVCcanbeidentified.TorecordtheIVCalongitslongaxis,thetransducerisrotatedsothatitsgroovepointstowardthepatient’srightflank.ThehepaticveinsagaincanberecognizedbytheirdrainingintotheIVC.Colorflowimaging(Fig.1-11)andpulsed-waveDopplerrecordingofthehepaticveins(seeChapter4)shouldbearoutinepartoftheechocardiographystudyinallpatientsbecauseseveretricuspidregurgitation,pulmonaryhypertension,restrictiveright-sidefilling,andconstrictivepericarditisproducedistinctDopplersignalsinthehepaticveins.FIGURE1-9Variouslesionsseeninapicalviews.A:Apicalfour-chamberview(left)showingnoncompactioncardiomyopathycharacterizedbyprominentnoncompactedtrabeculations(arrowheads)resultingindeeprecesses(arrows).Colorflowimaging(right)showsflowwithintherecesses.B:Apicalfour-chamberview(left)showingincreasedwallthicknessatthemidportiontoapex(*)inleftventricle(LV).Contrastadministrationdemonstratedmidcavitaryobstructionwithapicalcavity(*)(right).C:Intracavitarymasses(*)attachedtotheLVseptalandthelateralwallsattheapex(left).Contrastadministrationdemonstratetypicalthrombuswithnoperfusion(*)consistentwitheosinophilicthrombusinhypereosinophilia(right).LA,leftatrium;LV,leftventricle;RA,rightatrium;RV,rightventricle.Thetransduceristiltedfurthersuperiorlysothatitpointsroughlybetweenthepatient’ssuprasternalnotchandtheleftsupraclavicularfossa.Thetomographicviewoftheheartthatisobtainedisnearlysimilartothefour-chamberviewobtainedfromtheapicalposition(Fig.1-12),exceptthatinthisviewtheapicesofthetwoventriclescanbevisualizedbytiltingthetransducerheadslightlytowardthepatient’sleft.Thetwoatria,andespeciallytheatrialseptum,arevisualizedbestinthissection.Althoughdropoutofechoesoftheatrialseptumintheregionofthefossaovalismaybenotedfromtheparasternalandapicaltransducerpositions,theatrialseptumcanbeseeninitsentiretyfromthesubcostalposition.Therefore,thisisthebestviewtovisualizeabnormalitiesoftheatrialseptumwithtransthoracicechocardiography.Toidentifythesinusvenosusportionoftheatrialseptum,thetransducerneedstoberotatedclockwiseslightlytovisualizethe(dis)continuitybetweentheatrialseptumandthesuperiorvenacava.Also,atrialseptalmotioncanbewellevaluatedinthisview.Fororientationoftheimageinthisview,wehavefollowedthesameformatasforthesimilarviewfromtheparasternalposition,thatis,theatriaaredisplayedontherightandthecardiacapexontheleft.Fromthisposition,thetransducerisrotatedclockwiseandtiltedslightlysuperiorlytovisualizetheascendingaortaanditsrelationtothemitralvalveandLV.Inthistomographicsection,aforeshortenedviewoftheLVlongaxisisrecorded.BothleafletsofthemitralvalveandtheaorticleafletsaswellastheLVOTusuallycanbewellvisualized.FIGURE1-10A:Subcostalviewwiththetransducerangulatedtowardtheliverandnormalinferiorvenacava(IVC).TheIVCissmallandcollapseswithinspiration.Thehepaticveinissmall(arrow).B:IVCismarkedlydilated.Thediameter(solidline)ismeasuredperpendiculartothelongaxisoftheIVCatendexpiration,justproximaltothejunctionofthehepaticveinsthatlieapproximately0.5to3.0cmproximaltotheostiumoftherightatrium(RA).(ReprintedfromRudskiLG,LaiWW,AfilaloJ,etal.Guidelinesfortheechocardiographicassessmentoftherightheartinadults.JAmSocEchocardiogr,2010;23(7):685–713.Copyright©2010Elsevier.Withpermission.)C:M-modeechocardiogramoftheIVCwithsimultaneousrespirometerrecording.00:00/00:00Video1-10A00:00/00:00Video1-10BFurtherclockwiserotationandsuperiortiltingofthetransducershowacrosssectionoftheheart(Fig.1-12CandD).Inthisview,theLVisvisualizedintheshortaxis,withportionsofthemitralvalveinitscavity.Moreimportantly,thisviewisusedtoshowthelongaxisoftheentireRVOT.Theorificeofthetricuspidvalveusuallyappearsdirectlyendon.Onthevideomonitor,theheartappearsupsidedown,withRVinflowandRVOTalongtherightsideoftheimage,thecrosssectionofLVtotheleft,livertissueanterior,andthepulmonaryvalveinferior.FIGURE1-11AandB:Colorflowimagingofthehepaticveinshowsantegrade(bluewithaliasingorangeinA)andreversal(orange-redinB)flow.FIGURE1-12Subcostalview.A:Anatomicsection(left)anddrawing(right)oftheheartinthelong-axisview.B:Corresponding2Dechocardiographicimage.C:Anatomicsection(left)anddrawing(right)oftheheartintheshort-axisview.D:Corresponding2Dechocardiographicimage.Thesubcostalviewallowsbetterdefinitionofcertaincardiacstructures,includingtheatrialseptum(arrowsinB),leftatrium(LA),rightatrium(RA),rightventricularfreewall,rightventricularoutflowtractandpulmonaryvalve(arrowinD),hepaticvein,andabdominalaorta.Thisviewmaybetheonlysatisfactoryechocardiographicwindowforpatientswhohavechronicobstructivelungdiseaseandemphysema.AV,aorticvalve;LV,leftventricle;PA,pulmonaryartery;RV,rightventricle.(AandCfromTajikAJ,SewardJB,HaglerDJ,etal.Two-dimensionalreal-timeultrasonicimagingoftheheartandgreatvessels:Technique,imageorientation,structureidentification,andvalidation.MayoClinicProceedings,1978;53:271–303.BypermissionofMayoFoundationforMedicalEducationandResearch.)00:00/00:00Video1-12A00:00/00:00Video1-12BAnotherimportantstructuretoscanroutinelyfromthesubcostalviewistheabdominalaorta,whichcanbeimagedaccuratelyinmostpatients(Fig.1-13).Aprospectivestudyshowedthatthescreeningexaminationdetectedanoccultabdominalaorticaneurysmin6.5%ofhypertensivepatientsolderthan50years(6).AlthoughatherosclerosishasalowerincidenceinAsia,aroutinesubcostalimagingin920patientsinKoreawithcoronaryarterydiseaseidentifiedabdominalaorticaneurysmin2.2%(7).Apulsed-waveDopplerexaminationoftheabdominalaortainthisviewisalsohelpfulinidentifyingcoarctationoftheaortabydemonstratingpersistentdiastolicflow.Coarctationoftheaortaandsevereaorticregurgitationproduceacharacteristicpulsed-waveDopplerrecordingintheabdominalaorta(Chapters4and21).FIGURE1-13A:Normalabdominalaorta(Ao)fromthesubcostalview.LA,leftatrium;RA,rightatrium.B:Long-axisviewoftheabdominalaorta(Ao)fromthesubcostalviewdemonstratingalargeabdominalaorticaneurysm,halfofwhichisfilledwiththrombus(*).00:00/00:00Video1-13SuprasternalNotchPositionForvisualizationoftheleftaorticarchinthelongaxis,thetransducerheadispositionedinthesuprasternalnotch(Fig.1-1B),withthelongaxisofthetransducertotheleftandparallelwiththetracheaandthetransducergroovedirectedtowardtherightsupraclavicularregion.Withthistransducerposition(Fig.1-14A),theascendingaorta,aorticarch,originofthebrachiocephalicvessels,anddescendingthoracicaortaarevisualized.Occasionally,cuspsoftheaorticvalvealsocanbeseenintheaorticroot.Theorientationoftheimageofthisviewissimilartothatofalateralviewofanangiogram;thus,theascendingaortaisontheleftofthefigureandthedescendingaortaontheright.Therightpulmonaryarteryisvisualizedintheshortaxisposteriortotheascendingaortaandbeneaththeaorticarch.Inferiortotherightpulmonaryartery,theLAcanbeseen.Forvisualizationofthelongaxisoftheaortainthepresenceofarightaorticarch,thetransducerisrotatedcounterclockwise,withthegroovedirectedtowardtherightbreast.FIGURE1-14Drawing(left)andcorresponding2Dechocardiographicimage(right)ofsuprasternalnotchlong-axis(A)andshort-axis(B)views.A:Thistransducerposition(right)allowsvisualizationoftheascendingaorta(Asc),aorticarch(Arch),originofthebrachiocephalicvessels(arrows),descendingthoracicaorta(Dsc),andrightpulmonaryartery(*).B:Theshort-axisviewoftheaorticarch(right)isobtainedbyrotatingthetransducerclockwise,whichalsoallowsvisualizationoftherightpulmonaryartery(RPA)initslong-axisformat,locatedinferiorlytotheaorticarch(Arch).InferiortoRPAistheleftatrial(LA)cavitywithconnectionsofthefourpulmonaryveins(arrows).00:00/00:00Video1-14A00:00/00:00Video1-14B00:00/00:00Video1-14CFIGURE1-15A:Colorflowimagingofthedescendingthoracicaortashowstorrentialdiastolicflowreversals(redcolorindicatedbyanarrow)fromsevereaorticregurgitation.B:Colorflowimagingofthedescendingthoracicaortademonstratesturbulentflow(arrow)fromcoarctation.C:Colorflowimagingfromthesuprasternalnotchdemonstratesflow(*)outsideofthedescendingaortamovingtowardthehead,inapatientwithRVvolumeoverload,thetypicalfindingoftheverticalveinasanomalouspulmonaryvenousreturn.Theshort-axisviewoftheaorticarchisobtainedbyrotatingthetransducerclockwisesothetransducergroovefacesposteriorlytowardthepatient’strachea(Fig.1-14B).Inthisview,thecrosssectionoftheascendingaortaissuperiorandtherightpulmonaryartery,initslongaxis,isinferior.Occasionally,thefirstbifurcationoftherightpulmonaryarterycanbevisualizedontheleftoftheimage.Byrotatingthetransducerslightlyclockwiseandtiltingittowardthepatient’sleftandslightlyanteriorly,thedistalmainpulmonaryarterycanbevisualized.Fromthisposition,theleftpulmonaryarterycanbeseenoccasionallybytiltingthetransducerposteriorlyandtotheleft.InferiortothepulmonaryarteryistheLAcavity.Immediatelybeneaththedistalpartoftherightpulmonaryartery,therightsuperiorpulmonaryveinconnectswiththeLA.Colorflowimagingfromthesuprasternalnotchviewisanessentialpartofacomprehensiveechocardiogramsinceitcanprovidenormalandabnormalbloodflowinformationfromsevereaorticregurgitation,coarctationoftheaorta,anomalouspulmonaryvenousreturn,orobstructionofthesuperiorvenacava(Fig.1-15).FIGURE1-16A:Thesuperiorvenacava(SVC)isvisualizedbyfurtherclockwiserotation;itappearsalongtherightsideoftheaortaorcanbeimagedseparatelyfromtherightsupraclaviculararea.B:ColorflowimagingoftheSVCshowsincreasedflowvelocitywithaliasing(arrow).C:TheSVCobstruction(left)iscausedbyamediastinalmass(lymphoma),whichalsoobstructedanear-byarterialcirculationwithaheartshape(*).Colorflowimagingoftheheartshapearteryduetoamediastinalmass(right).00:00/00:00Video1-16A00:00/00:00Video1-16BThesuperiorvenacavacanberecordedinthisviewasanecho-freespacealongsidetheaortaontheleftoftheimage(Fig.1-16).Theleftinnominateveincanbevisualizedtraversingsuperiortotheaortatoitsjunctionwiththesuperiorvenacava.Withaslightcounterclockwiserotationandanteriortiltofthetransducer,thelongaxisofthesuperiorvenacavacanberecordedalongsidethelongaxisoftheascendingaorta.Inthisview,thesuperiorvenacavacanbescannedtoitsjunctionwiththeRA.AnexampleofSCVabnormalityisshowninFigure1-16BandC.Thissameviewofthesuperiorvenacavaoccasionallycanbeobtainedalsowiththetransducerplacedalongtheupperrightsternalborder.M-MODEECHOCARDIOGRAPHYM-modeechocardiographycomplements2Dechocardiographybyrecordingdetailedmotionsofcardiacstructures.Itisbestderivedwithguidancefroma2Dechocardiographicimagebyplacingacursorthroughthedesiredstructure(8)(Fig.1-17).M-modeisusedforthemeasurementofdimensionsandisessentialforthedisplayofsubtlemotionabnormalitiesofspecificcardiacstructuresaswellasthetimingoftheirmotion.MethodsformeasuringcardiacdimensionsfromM-modeareshowninFigure1-18.Normalvaluesforcardiacdimensionsinadultsarewellestablished.Sex-specificreferenceM-modevaluesinadultsweredeterminedfromahealthysubsetoftheFraminghamHeartStudy(Table12)(9,10).Forthesemeasurements,theM-modecursorisdrawnasastraightlinefromthetransducerpositiontoanydirectioninthesectortorecordthemovementofthecardiacstructureofinterest.Manyofuswholearnedechocardiographyinvlate70stoearly80sobtainedphonocardiogramrecordingsimultaneouslywithM-moderecordingbynonimagingtransducersweepingfromthebasetotheapexoftheheart(Fig.1-19).Weassessednotonlystructuralchanges,buthemodynamicsignificanceofcardiacstructuralabnormalitiesfromM-modeechocardiography(11).M-moderecordingsofvariouscardiaclesionsareshownandsomeofthemwithcorrespondingDopplersignalstodemonstratehemodynamicassessmentbyM-modeechocardiographyinFigure1-20.Someofthesefindingsareofhistoricalinterestonlybecauseinourcontemporaryclinicalpractice,thediagnosisisusuallymadefrom2D,3D,andDopplerechocardiographicinformation.However,subtlemotionofcardiacstructurescanbeappreciatedfromM-moderecordings.M-modecanbeutilizedwithcolorflowimagingtocreatecolorM-mode.ColorM-modeisusedfortimingofcardiacflowandalsoformeasuringintracardiacflowpropagationvelocitytoassessthestatusofmyocardialrelaxation(seeChapter4).FIGURE1-17A:AnM-modecursorisplacedalongdifferentlevels(1,ventricular;2,mitralvalve;3,aorticvalvelevel)oftheheart,withparasternallong-axis2Dechocardiographicguidance.B–D:RepresentativenormalM-modeechocardiogramsatthemidventricular(B),mitralvalve(C),andaorticvalvelevels(D),respectively.B:EDdandESdareend-diastolicandend-systolicdimensions,respectively,oftheleftventricle(LV).C:M-modeechocardiogramoftheanteriormitralleaflet:A,peakoflateopeningwithatrialsystole;C,closureofthemitralvalve;D,endsystolebeforemitralvalveopening;E,peakofearlyopening;F,middiastolicclosure.D:Double-headedarrowindicatesthedimensionoftheleftatrium(LA)atendsystole.Ao,aorta;AV,aorticvalve;LA,leftatrium;LV,leftventricle;PW,posteriorwall;RV,rightventricle;RVOT,rightventricularoutflowtract;VS,ventricularseptum.FIGURE1-18DiagramofM-modeechocardiogramoftheleftventricle,aorticroot,andleftatrium(LA).Theleftventricularinternaldimension(LVD)atenddiastole(D)wasmeasuredattheonsetoftheQRScomplex,andthesystolicinternaldimension[LVD(S)]wasmeasuredatthemaximalexcursionoftheventricularseptum,whichnormallyoccursbeforethemaximalexcursionoftheposteriorwall.Thesemeasurementscorrespond,respectively,tothemaximal(max)andminimal(min)internaldimensionsbetweentheventricularseptumandtheposterobasalLVfree-wallendocardium.Septalthickness(ST)andposteriorwallthickness(PWT)weremeasuredatenddiastole(D)attheonsetoftheQRScomplex.Theaorticrootdimension(AO)wasmeasuredattheonsetoftheQRScomplexfromtheleadingedgetotheleadingedgeoftheaorticwalls.TheLAdimensionwasmeasuredatendsystoleasthelargestdistancebetweentheposterioraorticwallandthecenterofthelinedenotingtheposteriorLAwall.TheirnormalvaluesaregivenintheAppendix.ECG,electrocardiogram.(FromGardinJM,HenryWL,SavageDD,etal.Echocardiographicmeasurementsinnormalsubjects:Evaluationofanadultpopulationwithoutclinicallyapparentheartdisease.JClinUltrasound,1979;7(6):439–447.Copyright©1979WileyPeriodicals,Inc.,AWileyCompany.ReprintedbypermissionofJohnWiley&Sons,Inc.)TABLE1-2NormalValuesfromM-ModeEchocardiographyaMen(n=288)MeanSDMeanSDAge,yr35.76.135.95.5Height,m1.770.061.630.06Weight,kg74.16.959.36.1Bodymassindex,kg/m223.51.622.11.7Bodysurfacearea,m21.910.111.640.10Systolicbloodpressure,mmHg117.09.1110.010.5Diastolicbloodpressure,mmHg74.86.870.97.5LVdiastolicdimension,mm50.83.646.13.0LVsystolicdimension,mm32.93.428.92.8LVwallthickness,mmb18.12.015.51.5LAdimension,mm37.53.633.13.2Women(n=524)LA,leftatrium;LV,leftventricle.aThesereferencevalueswerederivedfromahealthysubsetoftheFraminghamHeartStudy.ThesevalueswereobtainedbyM-modemeasurementwithtwo-dimensionalechocardiographicguidance.bLVwall

thicknessisthesumoftheventricularseptumandposteriorwallthickness.ReprintedfromLauerMS,LarsonMG,LevyD.Gender-specificreferenceM-modevaluesinadults:Population-derivedvalueswithconsiderationoftheimpactofheight.JAmCollCardiol,1995;26(4):1039–1046.Copyright©1995AmericanCollegeofCardiology.Withpermission.FIGURE1-19A:AcontinuousrecordingofM-modeechocardiogramfromthebasaltothemidportionoftheheartfromaparasternallocationusinganonimagingprobeinapatientwithalargeleftatrium(LA)andthickmitralvalve(MV)leaflets(arrows)withstenosis.Aphonocardiogramwasobtainedsimultaneously,andarrowsindicateanearlydiastolicsoundof“openingsnap.”B:M-modeechocardiogramofmitralstenosis(left)withflattenedEFslope(arrows).CorrespondingcontinuouswaveDopplerrecordingofmitralinflowvelocity,whichisincreased(right).FIGURE1-20A:M-modeechocardiogramofmitralvalveprolapse(left).Mitralleafletsarethickened,andthereislatesystolicposteriormotion(prolapse)oftheposteriormitralleafletbelowtheC-Dline(arrows).CorrespondingcontinuouswaveDopplerofmitralregurgitation(right)duetomitralvalveprolapse(arrow).Thereisnoflowvelocityrecordedduringthefirsthalfofthesystole(*)sincemitralregurgitationusuallystartsatmidsystole(withclick)inmitralvalveprolapse.B:M-modeechocardiogramofhypertrophicobstructivecardiomyopathy(left)showingsystolicanteriormotion(SAM,arrowheads)ofmitralvalveresponsibleforobstructionoftheLVoutflowtract.CorrespondingcontinuouswaveDopplerrecordingfromtheLVOT(right).TheDopplerhasascooped“dagger”shapewithalatepeaking.C:M-modeechocardiogramofleftatrialmyxomarecordedfromtheparasternaltransducerposition.Duringdiastole,themitralorificeisfilledwithincreasedechodensity(arrows)representingprotrudingatrialmyxoma.D:M-modeechocardiogramofthemitralvalvewithfluttering(arrowheads)fromaorticregurgitation.However,thisM-modesignmaynotbepresentiftheaorticregurgitationjetiseccentrictowardtheventricularseptumratherthantowardthemitralvalve.Theleftventricle(LV)isenlargedandsystolicfunctionisreduced.E:M-modeechocardiogramofadilatedLVwithincreasedE-pointseptalseparation(EPSS).NormalvalueforEPSSislessthan7mm,butthispatienthasEPSSgreaterthan20mmduetosystolicdysfunctionandLVenlargement.Thereisalso“B”bump(arrow)ofthemitralvalve,whichusuallyindicatesincreasedLVdiastolicfillingpressure.BbumpcanalsobeseeninpatientswithprolongPRinterval.F:M-modefromapatientwithRVenlargement.G:M-modeofthemitralvalve(left)whichisthick(arrow).Ventricularseptum(VS)isalsoincreasedinitsthickness.Withtheincreasedseptalthickness,earlymitralvalveopeningisgreaterthanlateopeningcharacteristicforrestrictivediastolicfilling.Therestrictivefillingisconfirmedbypulsed-waveDopplerrecordingofmitralinflowvelocitywithE/Aratiocloseto2(right).H:M-modeoftheaorticvalve.Themaximalopeningtapersoffduringmidsystole(arrowheads)whencardiacoutputisseverelyreduced.I:Aorticvalveopeningisonly4mm,withthickenedcusps.Also,multipledenseechoes(arrow)arenotedintheaorticrootduringsystoleanddiastole.Thesefindingssuggestsevereaorticstenosis,butaDopplerstudyisrequiredtodeterminehowseverethestenosisis.J:M-modeechocardiogram(left)withnormal-appearingaorticvalve(AV).WithValsalva,thereisamidsystolicclosureoftheAVinthispatientwithdynamicLVOTobstructionandsystolicanteriormotionofthemitralvalve(right).Usually,thisisfromhypertrophiccardiomyopathy,butinthiscase,thepatienthadanearlystageofcardiacamyloidosis.K:M-modepassingthroughthemidportionoftheheartdemonstratingmoderatesizeposteriorpericardialeffusion(PE)alongwithsubtlerespiratoryvariationinventricularcavitysize(left).MitralinflowPWDopplerrecording(right)demonstratesrespiratoryvariationofLVfillingwithearlyfilling(E)decreaseswithinspiration(upwardrespirometerrecording)duetotamponade.L:Characteristicrespiratoryvariationofventricularseptum(VS)aswellasventricularchambersizeduetointerventriculardependenceseeninconstrictivepericarditis(left).PosteriorwallM-modeshowsabruptfillingduringearlydiastolefollowedbyflatteningofthewall.Thisisacharacteristicfindingofconstrictivepericarditis.PWmitralinflowvelocityrecording(right)demonstratestypicalrespiratoryvariationseeninconstrictivepericarditis(seeChapter12).M:Normalpulmonaryvalve(PV)M-modeechocardiogramwithprominent“a”wave(a).Thevalveclosureissmooth(arrowheads).N:Midsystolicclosure(arrows)ofPV,producingaWshapeinpulmonaryhypertension(left).Thereisno“a”wave.CorrespondingPWDoppleroftheRVoutflowdemonstratingmidsystolicclosure(arrow)creatingthecharacteristic“W”shapefrompulmonaryhypertension(right).Ao,aorta;AV,aorticvalve;LA,leftatrium;LV,leftventricle;MS,mitralstenosis;PV,pulmonaryvalve;RV,rightventricle.REFERENCES1.TajikAJ,SewardJB,HaglerDJ,etal.Two-dimensionalreal-timeultrasonicimagingoftheheartandgreatvessels:Technique,imageorientation,structureidentification,andvalidation.MayoClinicProceedings,1978;53:271–303.2.BansalRC,TajikAJ,SewardJB,etal.Feasibilityofdetailedtwo-dimensionalechocardiographicexaminationinadults:Prospectivestudyof200patients.MayoClinicProceedings,1980;55:291–308.3.EdwardsWD,TajikAJ,SewardJB.Standardizednomenclatureandanatomicbasisforregionaltomographicanalysisoftheheart.MayoClinicProceedings,1981;56:479–497.4.HenryWL,DeMariaA,GramiakR,etal.ReportoftheAmericanSocietyofEchocardiographyCommitteeonnomenclatureandstandardsintwo-dimensionalechocardiography.Circulation,1980;62:212–217.5.Chamsi-PashaMA,SenguptaPP,ZoghbiWA.Handheldechocardiography:Currentstateandfutureperspectives.Circulation,2017;136(22):2178–2188.6.SpittellPC,EhrsamJE,AndersonL,etal.Screeningforabdominalaorticaneurysmduringtransthoracicechocardiographyinahypertensivepatientpopulation.JournaloftheAmericanSocietyofEchocardiography,1997;10:722–727.7.LeeSH,ChangSA,JangSY,etal.Screeningforabdominalaorticaneurysmduringtransthoracicechocardiographyinpatientswithsignificantcoronaryarterydisease.YonseiMedicalJournal,2015;56(1):38–44.8.LangRM,BadanoLP,Mor-AviV,etal.Recommendationsforcardiacchamberquantificationbyechocardiographyinadults:AnupdatefromtheAmericanSocietyofEchocardiographyandtheEuropeanAssociationofCardiovascularImaging.JournaloftheAmericanSocietyofEchocardiography,2015;28(1):1–39e14.9.LauerMS,LarsonMG,LevyD.Gender-specificreferenceM-modevaluesinadults:Populationderivedvalueswithconsiderationoftheimpactofheight.JournaloftheAmericanCollegeofCardiology,1995;26:1039–1046.10.VasanRS,LarsonMG,BenjaminEJ,etal.Echocardiographicreferencevaluesforaorticrootsize:TheFraminghamHeartStudy.JournaloftheAmericanSocietyofEchocardiography,1995;8:793–800.11.FeigenbaumH.RoleofM-modetechniqueintoday’sechocardiography.JournaloftheAmericanSocietyofEchocardiography,2010;23(3):240–257.CHAPTER2TransthoracicThree-DimensionalEchocardiographyKarimaAddetia,VictorMor-Avi,andRobertoM.LangINTRODUCTIONThree-dimensionalechocardiography(3DE)beganwiththecumbersomeoff-linereconstructionofmultiple2Dacquisitionplanes,firstreportedinthe1980s.Inthe1990s,advancementsintechnologyledtothedevelopmentofthematrixarraytransducer,whichwascapableofscanningapyramidalvolumeinsteadofasingleplane.Insubsequentyears,furtheradvancementsallowedminiaturizationofthematrix-arraytransducers,whichimprovedthespatialandtemporalresolutionoftheimages.Thesepyramidaldatasetsarenowanalyzedwithsemiautomatedsoftwarefacilitatingtheintegrationofthisnovel3Dimagingmodalityintotheclinicalsetting(Fig.2-1).Recentstudieshaveshownthatwhencardiacchambersizesarequantifiedusing3DE,theirvolumesapproximatethoseobtainedwithcardiovascularmagneticresonanceimaging(cMRI)morecloselythandomeasurementsobtainedwith2Dultrasoundimaging.Itisthereforenotsurprisingthattherecentchamberquantificationguidelinesrecommendforthefirsttimetheuseof3DEfortheevaluationofrightandleftventricularvolumes(1).3DImageAcquisitionThreedifferenttypesofacquisitionmodesareavailablewithcurrent3DEtechnology:1)multi-planeimaging;2)real-timeorlive3Dimaging(narrowangle);and3)EKG-gatedmulti-beatacquisitionthatcanbeperformedusingeitherafull-volume(wide-angle)orzoommode(Fig.2-2).Full-volumeacquisitionshavethelargestsectorwidthtogetherwiththehighestspatialandtemporalresolution(>30vps).Thisacquisitionmodeistheoptimalchoiceforquantificationofcardiacchambersanddetaileddiagnosisofcomplexpathologies.The“zoom”modedisplaysasmaller,magnifiedpyramidalvolumeofdatathatmayvaryfrom20°×20°upto90°×90°.Thismodeisoptimalforvisualizationoffast-movingstructuressuchasvalves,althoughitislimitedbyareductioninspatialandtemporalresolutionwhencomparedtofull-volumedatasets(Fig.2-3).Multi-planeimagingisuniquetothematrix-arraytransducerandallowssimultaneousside-by-sidedisplayofthe2Dreferenceplanebeingscannedandauser-definedrotatedplanefromthereferenceplane.Thisallowsadditionalvisualizationoftargetedstructuresfromdifferentanglessimultaneously.Realtimeorlive3Dimagingenablesacquisitionofnarrowpyramidaldatasetsinasingleheartbeat.Thisnarrowvolumecanbevisualizedinrealtimeandisparticularlyusefulduringtheguidanceofinterventionalprocedureswhenwiresandcathetersneedtobelocatedandtrackedwithultrasound.Whilethisimagingmodeislimitedbypoortemporalandspatialresolution,itisusefulinpatientswithrhythmdisturbancesand,unlikemulti-beatacquisitions,isnotinfluencedbybreathingmotion.Multi-beat3Dimagingcombinessubvolumesofdatathatarescannedduringconsecutivecardiaccycles(usuallyrangingfrom2to6)usingECGgatingandstitchedtogethertocreateasingledataset(Fig.2-4AandB).Gatedimageacquisitionisproneto“stitch”artifactscreatedbypatientorrespiratorymotionorirregularcardiacrhythms(Fig.2-4C).Yet,thismoderesultsinthehighesttemporalandspatialresolution.Inordertohelpminimizebreathingartifacts,multi-beatacquisitionshouldbeperformedduringheldendexpiration.Patientswithirregularheartbeats(e.g.,prematureventricularcontractions[PVCs]oratrialfibrillation)maynotbeadequatelyimagedusingmulti-beatacquisitionmethods,duetothepresenceof“stitch”artifacts.FIGURE2-1Evolutionof3Dechocardiographyovertime.Top:AcquisitiontechniquesofmultipleECG-andrespiration-gated2Dacquisitions,resultinginoff-line3Dreconstruction.Bottom:Majoradvancesrelevanttomatrixarraytechnology.(AdaptedwithpermissionfromCaianiE.Transthoracicandtransesophagealmatrixtransducersandimageformation.In:LangRM,ShernanSK,ShiraliGS,etal.,eds.ComprehensiveAtlasof3DEchocardiography,1sted.Philadelphia,PA:WoltersKluwerHealth,2013:1–12.)3DEimagingsystemscanalsogenerate3DcolorDopplerdatasetsbysuperimposingflowvelocitydataontoa3Dzoomorfull-volumedatasets.Currentlythesecolordatasetshavenarrowersectorwidthsandlowerframeratessothatcolorjetquantificationusingparameterssuchasvenacontractaarea,3DPISA,andeffectiveregurgitantorificearea(EROA)remainchallenging.FIGURE2-2Illustrationofacquisitionmodesavailablewithcurrent3DEtechnology:1)narrow-volumeorlive3Dimaging(farleft)and2)EKG-gatedmulti-beatacquisitionthatcanbeperformedusingeitherafull-volume(wide-angle)orzoommode(middleandfarright).Thefullvolumeispreferredforcardiacchamberassessmentwhilethezoommodeispreferredforfast-movingstructuressuchasthevalves.Aninherentlimitationof3DEimagingisatrade-offbetweenspatialandtemporalresolutions(volumerateorframerate).Toimprovespatialresolution,anincreasednumberofscanlines(orsubvolumes)needtobeacquiredto“stitch”togetherthe3Ddataset.Volumeratescanbeoptimizedbyreducingthesectorwidthand/orimagingdepthtoreducethevolumesizeofthedataset,thedisadvantagebeinglimitedvisualizationofthespecificstructureofinterest.Figures2-5and2-6listtheanatomicstructuresthataremostcommonlyimagedwithtransthoracicechocardiographytogetherwiththecorrespondingbestchoiceofacquisitionmodeandimagedisplayasoutlinedbythecurrentguidelines(2).FIGURE2-3Multi-planeandnarrow-volumeacquisitionsarelimitedtoasinglebeatandthereforecanbeusedforlivescanning.Multi-beatacquisitionsarebuiltoveraseriesofconsecutivebeatsandhavehighertemporalandspatialresolution.TheLeftVentricleQuantificationofleftventricular(LV)volumesandejectionfraction(EF)isoneofthecornerstonesofclinicalechocardiography,sincetheseestimatesprovideimportantdiagnosticandprognosticinformationinmultipleclinicalscenarios.ThemainLVparametersthatcanbeevaluatedusing3DEincludevolume,function,mass,andshape.Theaccuracyoftraditional2DmethodologyforLVvolumequantificationislimitedbyacquisitionofforeshortenedapicalviewsandrelianceongeometricmodeling.ForeshorteningoccurswhentheimagingplanedoesnotpassthroughthetrueLVapexresultinginanobliqueviewoftheLVcavity.WhentheseobliqueviewsareusedtocalculateLVvolumes,theresultantvolumesareunderestimated.Inthisregard,3DEoffersanumberofadvantages.Firstly,iteliminateserrorsassociatedwithventricularforeshorteningbyallowingtheusertoselectfromthepyramidaldatasetanatomicallycorrect,nonforeshortenedapicalviews.ThevalidityofthisconceptfirstbecameapparentwhenLVmassmeasurementsacquiredusing2Dand3DechocardiographywerecomparedwithcMRI(3).Becauseinmostpatients,LVapicalviewswereforeshortenedwith2Dimaging,thecalculatedLVmasswassignificantlyunderestimatedcomparedtocMRIreferencevalues.Incontrast,3Dimagingresultedinmoreaccuratemeasurements.Inaddition,3DEeliminatestheneedforgeometricassumptionswhencalculatingventricularvolumes.WhenLVvolumeismeasuredusingthebiplaneSimpsontechniquefromlong-axis2Dimages,itisassumedthatLVshapecanbeapproximatedbyaprolatedellipse,anassumptionthatmaybeinaccurateinthepresenceofwallmotionabnormalitiesandaneurysms.FIGURE2-4A:Multi-beat3Dimaging(bothfull-volumeandzoom)combinessubvolumesofdatascannedduringconsecutivecardiaccycles.B:Thedataarethen“stitched”togethertocreateasingledataset.C:Gatedimageacquisitionisproneto“stitch”artifactscreatedbypatientorrespiratorymotionorirregularcardiacrhythms(blackarrows).LVvolumequantificationusing3DEechocardiographycanbeperformedusingtwodifferentapproaches(Fig.2-7).FIGURE2-5Full-volumeacquisitionsoftheleftventricle(A),rightventricle(B),leftatrium(C),andrightatrium(D).Thesedatasetswereacquiredbyfirstusingthebiplanemodetoconfirmtheabsenceofwalldropoutinorthogonalplanes(firsttwopanelsonleft)andthenacquiringthefull-volume3Ddatasetduringa(1–6beat)breath-hold(thirdandfourthpanel).Thechamberisthendisplayedaftercropping.Ideally,frameratesofthesedatasetsshouldbe>20vps.1.3D-guidedbiplanetechnique.Withthistechnique,nonforeshortenedanatomicallycorrect2DviewsareselectedfromthepyramidaldatasetfromwhichLVvolumesaremeasuredusingthebiplaneSimpsonapproximation.Thisapproacheliminatesforeshorteningerrors,butgeometricassumptionscanstillconfoundvolumecalculations.2.Directvolumetricquantification.ThistechniqueisbasedonthesemiautomateddetectionofLVendocardialsurfacesthroughoutthecardiaccycle.Directphase-by-phasevolumetricanalysisbasedonpixelcountscontainedwithinthe3DendocardialsurfaceresultsinLVvolumeovertimecurve.Withthisapproach,bothforeshorteningandgeometricassumptionsareeliminated.FIGURE2-6Zoomacquisitionsoftheaortic,pulmonary,mitral,andtricuspidvalves(toptobottom).Eachvalveisinitiallydisplayedinorthogonalplanestoensuretheabsenceofdropout(firsttwopanelsonleft).Thevalveisthenacquiredasa(1–6beat)zoomdatasetduringbreath-hold(thirdpanel).The3Dvalveisdisplayedintherecommendedorientation:fromtheaorticperspectivefortheaorticvalve,fromthemainpulmonaryarteryperspectiveforthepulmonaryvalve,fromtheleftatrialperspective(alsocalledthe“surgeon’sview”)forthemitralvalvewiththeaorticvalveinthe12o’clockposition,andfromtherightventricularperspectiveforthetricuspidvalvewiththeseptalleafletinthe6o’clockposition.00:00/00:00Video2-6Whenthe3D-guidedbiplaneapproachiscomparedwiththe3Dsurfaceanalysisvolumetricmethod,LVvolumesobtainedwiththelattermethodcorrelatebetterwithcMRI-derivedreferencevolumes,withsmallerbiasesandnarrowerlimitsofagreement(4–6),underscoringthesuperioraccuracyofthismethodology,especiallyindistortedventricles.Because3DEavoidsapicalforeshorteningandcircumventstheneedforgeometricassumptions,whencomparedside-by-sidewith2DbiplaneSimpsonwithandwithoutcontrast,3DvolumesandEFhavethelowestinter-andintraobservervariabilityandtest/retestvariability(5).Inonestudy,noncontrast3DEFhadanobserverandtest-retestvariabilityof5%to8%,while2Dbiplanemethodsshowedavariabilityof10%to15%(5).Inthisstudy,3Dcontrastenhancementdidnotimproveobservervariability.Thisisimportantbecauseitmeansthat3DimagingisabletodetectsmallervolumeandEFchangesinpatientsrequiringserialassessments.Thisisclinicallyusefulinpatientsreceivingpotentiallycardiotoxicchemotherapeuticagentsorinpatientswithregurgitantvalvularlesions,wheresmallchangesmaypromptmorefrequentevaluationsorchangesinmedicalstrategy.FIGURE2-7LVvolumequantificationusing3Dechocardiographycanbeperformedusingoneoftwoapproaches.Thefirstapproachiscalledthe3D-guidedbiplanetechnique(leftpanels).Thismethodusesuser-defined,nonforeshortened,orthogonal2Dviewsoftheleftventricle,whichhavebeenextractedfromthe3Ddatasetinend-diastole(leftpanel,toprow)andend-systole(leftpanel,bottomrow).Thelengthoftheleftventricleintheseorthogonalviewsshouldbeclosetoidenticalinend-diastoleandend-systole(seelengthmeasurements).LeftventricularvolumesandejectionfractionarethenmeasuredusingthebiplaneSimpsonmethod.Thisapproacheliminatesforeshorteningerrors,butgeometricassumptionscanstillimpactvolumecalculations.Thesecondapproachiscalleddirectvolumetricquantificationmethod(rightpanels).Thistechniqueisbasedonthesemiautomateddetectionofleftventricularendocardialsurfacesthroughoutthecardiaccycle(twocolumns,farright).Volumeovertimecurvesaregenerated(bottomleft).Volumetricanalysisisbasedonpixelcountscontainedwithinthe3Dendocardialsurface(top,left).Withthisapproach,bothforeshorteningandgeometricassumptionsareeliminated.Oneofthedifficultiesassociatedwiththewidespreadapplicationof3DEliesintheabilitytoobtaingoodquality3Ddatasetswithoptimaltemporalandspatialresolutioninwhichtheentireleftventricleiscontainedwithinthe3Dpyramidalvolume.Thisischallengingin1)patientswithdilatedventricles,2)patientswithpooracousticwindows,3)patientswitharrhythmias,and4)patientswhoareunabletoholdtheirbreath.FeasibilityforadequateLV3DEimaginginnonselectedpatientsisbetween70%and90%.Despitethesuperiorityof3DEchamberquantification,itsintegrationintodailypracticehasalsobeenhamperedbytheaddedtimerequiredfor3DEanalysis.Newadaptiveanalyticalgorithmsbasedonmachinelearningtechnologyallowquantificationof3Ddatasetsbywayofautomatedborderdetection.Withthisnewtechnology,limitedinputisrequiredtotraceendocardialbordersbecausethesoftwareiscapableofcontouringtheendocardiumautomatically.Theuseronlyneedstomakefinaladjustments.Withthistypeoftechnology,itmaybecomeeasiertoincorporate3Dquantificationintothedailyclinicalroutine(7)(Fig.2-8).ValidationAgainstcMRIDespiteitsimprovedaccuracyandreproducibility,3DechocardiographyconsistentlyunderestimatesLVvolumeswhencomparedwithcMRI.Inadditiontoforeshortening,correcttracingoftheendocardialborderhasbeenidentifiedasamajorsourceofventricularvolumeunderestimation(8).Thestandardconventionistotracetheborderattheinterfacebetweenthecompactedandnoncompactedmyocardium,whileincludingthetrabeculaewithintheLVcavity.Duetothelimitedspatialresolutionof3Dimagesinsomepatients,accuratedetectionofthisinterfaceischallenging,moresowhenconsideringthatsmallinaccuraciesintheendocardialtracingmayadverselyinfluencetheaccuracyofthevolumecalculation.Itisinterestingtonotethatwhile3Dimagingismoreaccuratethan2Dimagingforvolumetricquantification,calculationofEFtendstobesimilarbetweentechniques,becausethevolumeunderestimationatendsystoleandend-diastoleby2Dechocardiographyareofsimilarmagnitude.Normalvaluesfor3DLVvolumesandEFfromselectedstudiesarereportedinTable2-1.Womenhavehigher3DLVEFthandomenandsmallerindexedLVvolumes(9–13).FIGURE2-8Noveladaptiveanalyticalgorithmsbasedonmachinelearningallowsquantificationof3Ddatasetsbywayofautomatedborderdetection.Limitedinputfromtheuserisrequiredtotraceendocardialbordersbecausethesoftwareiscapableofcontouringtheendocardiumautomatically.LeftVentricularMassInpopulation-basedstudies,LVhypertrophyisanimportantpredictorofcardiovascularevents(14)andanintegralpartofLVremodelinginmultiplediseases.Traditionally,LVmasshasbeenquantifiedusingM-modeor2Dmeasurementsofwallthickness,togetherwithend-diastolicLVcavitydimensions(1).3DLVmasscanbedeterminedusingeitherthe3D-guidedbiplanetechniqueorthedirectvolumetricanalysismethod,inbothcasesatenddiastole.3Dmethodshavetheadvantageofdirectmeasurementwithoutgeometricalassumptionsaboutcavityshapeandhypertrophydistribution.ThesemeasurementshavebeenproventobemoreaccuratethanM-modeor2Dmeasurementswithhigherintermeasurementandtest/retestreproducibility.Duetotheseadvantages,3Dmassmeasurementsareabletobetterdiscriminatesmallchangesinmassovertimeinthesamepatient.Inadditiontoaccuratedetectionoftheendocardialboundaries,LVmassmeasurementsheavilyrelyontheaccuratedetectionoftheepicardialborder,whichcanbeextremelychallenging.Measurementsobtainedusing3DEhavebeenshowntocloselyapproximateLVmassobtainedwithcMRI,inexplantedheartsandanimalexperiments(15).Furtherimprovementsin3Dtechnologyandadditionalstudiesascertainingprognosticvalueof3Dover2Dmassareneededinordertousher3DELVmassmeasurementsintotheclinicalarena.Currently,thismethodologyisverydependentonimagequality,andnormalvaluesarelesswellestablished.3DSpeckleTrackingEchocardiographySpeckletrackingechocardiography(STE)isanoff-linetechniquethatallowsquantificationofLVdeformationparameters(i.e.,strainandstrainrate)bytrackingthemotionofdistinctacousticmarkersthroughoutthecardiaccycle.Theconcepthasbeenrecentlyintegratedinto3DE,enabling3Ddeformationmeasurements.Themainadvantageof3Dover2DSTEisthatwhilewiththelatter,specklesere“lost”whentheymoveoutoftheimagingplane,with3Dtracking,specklescanbefollowedinalldirectionsastheymovewithinthethickerpyramidalimagingvolume.Additionally,when2DglobalLVlongitudinalstrainismeasured,speckle-trackinginformationiscollectedfromnonsimultaneousbeatsindifferentviews,andthusbeat-to-beatvariabilitycouldimpactmeasurements.Normativevaluesfor3DSTEderivedparameterscollectedfromselectrecentstudiesarereportedinTable2-1.Themainlimitationof3DSTEatthistimeisitsrelativelylowspatialandtemporalresolution,whichmayimpacttheaccuracyandreproducibilityof3Dspeckletrackingresults.Furthermore,significantintervendorvariabilityhasbeenreportedwhencomparisonsaremadeonthesamepatientusingdifferentvendorplatforms(16,17).Importantly,arecentintersocietaltaskforceincollaborationwiththemajormanufacturershasbeenabletostandardizethesemeasurementsandminimizethisproblem(18).TABLE2-1NormalValuesfor3DChamberSizeandFunctionalParametersfromSelectedRecentPublicationsStudiesNMenWomenLeftventricleEDVi,(mL/m2)ESVi,(mL/m2)EF(%)Fukudaetal.41050(7)19(5)61(4)46(9)17(4)63(4)Auneetal.66(10)29(6)57(4)58(8)23(5)61(6)Chahaletal.(European)49940(9)19(5)61(6)42(8)16(4)62(5)Chahaletal.(Asian)47941(9)16(5)62(5)39(8)15(4)62(5)Muraruetal.22663(11)24(5)64(4)56(8)20(4)65(4)Bernardetal.44069(14)29(7)59(4)60(10)24(5)60(5)Mizukoshietal.39070(9)61(8)Muraruetal.26577(10)73(8)Fukudaetal.41064(12)56(11)Radialstrain(%)Kleijnetal.Circumferentialstrain(%)LongitudinalstrainBernardetal.(%)30335(10)−31(3)−16(2)36(11)−31(3)−16(2)44042(5)−30(4)−20(3)44(4)−31(4)−21(2)Muraruetal.a26551(46;58)−19(−20;−16)−18(−19;−16)54(48;59)−18(−20;−17)−20(−21;−18)Maffessantietal.b507107(17)44(11)60(8)81(12)30(8)63(7)Tamborinietal.24556(9)22(6)62(7)51(7)18(5)64(7)Badanoetal.c27631(19;52)11(4;21)66(51;80)31(27;45)10(5;18)68(63;71)Fukudaetal.41023(6)10(3)58(6)24(6)10(3)58(6)Pelusoetal.20031(8)12(4)61(6)27(6)9(3)65(8)Indexedmass(g/m2)RightventricleLeftatriumEDVi,(mL/m2)ESVi,(mL/m2)EF(%)EDVi,(mL/m2)ESVi,(mL/m2)EF(%)RightatriumEDVi,(mL/m2)ESVi,(mL/m2)EF(%)EDV,end-diastolicvolume;ESV,end-systolicvolume;EF,ejectionfraction.aThisstudyreportedfirstquartileandthirdquartile(inbrackets).Nostandarddeviationwasreported.bThisstudydidnotreportindexedvaluesforEDVandESV.cThisstudyreportedmedian(25thpercentile;75thpercentile).LeftVentricularShapeAlterationsinLVshape,size,andwallthicknessandfunctioninducedbychangesincardiacload,tissueinjury,andotherfactorsdefineLVremodeling.Remodelingcanbeunfavorableasinprogressiveheartfailure,wheretheheartsizeandmassincreaseasfunctiondeteriorates,andfavorable(i.e.,reverseremodeling),whichoccursforexampleaftersuccessfulvalvesurgery.Clinically,LVremodelingisassessedusing2Dechocardiographicevaluationofchambersizeandmass,bothofwhicharelimitedbytheuseofforeshortenedviewsandgeometricassumptions.Newermethodsbasedon3Dimaginghaveovercometheselimitations.With2Dechocardiography,thesphericityindexiscalculatedastheratiobetweenLVvolumescalculatedusingthebiplaneSimpsonmethodofdisksandthevolumeofaspherewithadiameterequaltotheLVlongaxisintheapical4-chamberview(19).With3DE,thesphericityindexiscalculatedasaratioofLVvolumeandthevolumeofaspherewithadiametermeasuredfromthenonforeshortened2Dplaneextractedfromthe3Ddataset(20)(Fig.2-9).FIGURE2-9Methodologiesfortheassessmentofleftventricularshape.Thesphericityindexisthesimplestwaytoestimateleftventricularshape.Theindexiscalculatedastheratiobetweenleftventricularvolumemeasuredusing2Dor3Dechocardiographyandthevolumeofaspherecalculatedusingadiameter(D)equaltothelongaxisoftheleftventricleinthefour-chamberview.The2Dmethodisillustratedonthefarleft.Thecalculatedleftventricularvolumeisobtainedusingthe2DbiplaneSimpsonformula.Thediameterofsphere(D)isequaltothelongaxisoftheleftventricleinthefour-chamberview(dottedyellowline,topleft).The3D-basedmethodisillustratedinthemiddlepanel.Inthisformula,the3Dleftventricularvolumeisusedwhilethediameter(D)isobtainedfromamanuallyextracted,nonforeshortenedapicalfour-chamberview(dottedyellowline,centerpanel).Onthefarrightpanel,anewermethodbasedoncurvatureindicesisillustrated.Colorcodedcurvaturevaluesaresuperimposedontheendocardialsurfaceoftheleftventricle;redhuescorrespondwithmoreconvexsurfaces,bluehuescorrespondwithmoreconcavesurfaces,andthegreen/yellowhuescorrespondwithflattersurfaces.MoreintricateandcomplexindicesforLVshapehavebeendevelopedusingcustomsoftwaretoreflecttheresemblanceoftheLVshapetoasphereorcone.AdversealterationsinLVshapefrequentlyhaveanegativeimpactonoutcomes.Patientswithdilatedcardiomyopathyandmoresphericalventricleshaveworseoutcomes.PatientswithdegenerativemitralvalvediseasewithseveremitralregurgitationandnormalLVEFhavebeenshowntohavemoresphericalventricles,whichreverttoamoreconicalshapeaftermitralvalvesurgery(21).Surgicaltechniquesdesignedtorestorethepost–myocardialinfarctionventricleswithaneurysmaldilatationtoamorephysiologicalconicalshapehavebeenshowntoresultinimprovedoutcomes.Therefore,analysisofLVshape,inadditiontoaninsightintoLVremodeling,likelyprovidesadditionalprognosticinformationtothatprovidedbyejectionphaseindices.WhilesphericitydoesprovideadditionalinformationaboutLVremodeling,itremainsaglobalparameter.ItdoesnotaccountforregionalchangesinLVshape,whichareknowntooccurincommondiseasestates,suchasischemicheartdisease.RegionalassessmentofLVshapeispossibleusingcurvatureindices.Curvatureisdefinedasthemagnitudebywhichasurfacedeviatesfrombeingflat.Itiscalculatedasthereciprocaloftheradiusofacirclethattangentiallyfitsthecurvedsurfaceofinterest.Alargeradiusrepresentsasmallcurvature(flattersurface),whileasmallradiusrepresentsalargercurvature(amoreroundorconvexsurface).Regionalcurvatureanalysisof3DEdatasetsoftheleftventriclehasbeenusedtodescriberegionalLVremodelingindilatedcardiomyopathyaswellasotherpathologies(22)(Fig.2-9).ItiswidelyacceptedthatLVEFisanimportantprognosticparameter.LVvolumesobtainedusing2Dechocardiographyunderestimatetruevolumesandthereforehavenotbeenusefulinprovidingoutcome-relatedinformationfordecision-makinginpatientcare.Recentdata,however,suggestthatthismaynotbetruefor3DE-derivedLVvolumes.Bothlarger3DvolumesandlowerLVEFhavebeenshowntobeassociatedwithhighermortality.Whencomparedalongside2Dparameters,3DLVEFand3Dend-systolicvolumehavebeenshowntocorrelatemorestronglywithoutcomesthando2Dparameters(23).TheRightVentricleAlthoughrightventricular(RV)volumesandEFarealsoofprognosticimportanceinavarietyofdiseasestates,includingischemicandnonischemiccardiomyopathy,pulmonaryarterialhypertension,andright-sidedvalvedisease,objectivequantificationof3DRVsizeandfunctionhasbeenelusiveforyears.EstimationofRVsizeandfunctionusing2Dimagingischallengingduetoitsasymmetricalandcomplexcrescentshapeandretrosternallocation,makingitdifficulttovisualizetheentireRVchamberfromasingle2Dechocardiographicview.WhileitispossibletocalculateLVvolumesandEFby2Dechocardiographyusingthebiplanemethodofdiscs,itisnotpossibletoapproximateRVvolumesinthiswaybecausetheRVchambershapecannotbeapproximatedbyaprolatedellipse.Additionally,itisdifficulttoobtainorthogonallong-axisviewsoftherightventriclearoundacommonaxis,suchthattheuseoftheSimpsonbiplaneorarea-lengthmethodsistechnicallynotfeasible.SegmentssuchastheRVoutflowtract,whichaccountforupto30%oftheRVvolume,arenotmeasuredby2Danalysis,resultinginpoorcorrelationsbetweenRVvolumesandthoseobtainedwithangiographicstudies.Functionalanalysisoftherightventriclefrom2Dechocardiographyhasthereforebeenlimitedtovisualassessment,fractionalchangeinRVareas,andassessmentofRVlongitudinalmotionusingparameterssuchastricuspidannularplanesystolicexcursionorTAPSEandtissueDopplerS-wavevelocity.Recently,3DEhasprovidedauniqueopportunityforthequantificationofRVvolumesandEFfromfull-volumeRVdatasetsobtainedfromtheRV-focusedviewwithouttheneedforgeometricassumptions.Becausetherightventricleisasymmetrical,RVfullvolumedatasetsmustbeobtainedwithparticularcaretoincludeallthreeRVregions,namelytheinflow,outflow,andbody,inordertoavoidRVfreewalldropout,whichismostfrequentlyseenintheanteriorfreewall(Fig.2-5).Oncea3Dfull-volumedatasetoftherightventricleisobtained,therearetwoapproachesforvolumeassessment(24)(Fig.2-10).1.Disksummationormethodofdisks.Whenusingthistechnique,theoperatortracesthecontouroftheRVendocardialborderatend-systoleandend-diastoleinastackofshort-axisviewswithknownthicknessspanningtherightventriclefrombasetoapex.Thesoftwarethencomputestheend-systolicandend-diastolicvolumesbyaddingtheslicevolumes.2.Directvolumequantification.ThistechniqueisbasedonthesemiautomateddetectionoftheRVendocardialsurface,followedbycalculationofthevolumecontainedwithinthissurface.Theoperatorusesend-diastolicandend-systolicframesobtainedfromafull-volume3DEdatasetinthelong-andshort-axisviewstotracetheendocardialbordersuchthattrabeculaeareincludedwithintheRVcavity.Overtime,ithasbeenrecognizedthatthediscsummationmethodislessaccuratethanisthevolumetrictechnique,becauseitfailstoaccuratelyaccountforthevolumecontainedinthebasalsliceandthereforetendstooverestimateRVvolumeswhencomparedwithknown-volumephantoms(24).ThisisbecausethetricuspidvalveandRVoutflowtractarenotinthesameplane.ThemoreacceptedapproachforRVvolumeandEFquantificationusing3DEtodayisthedirectvolumequantificationorthevolumetricapproach.ThisvolumetricapproachhasbeenvalidatedusinginvitroaswellasinvivomodelsagainstcMRIreference(24–26).FIGURE2-10Therearetwoapproachesfor3Dquantificationofrightventricularvolumeandejectionfraction.Thefirst(toprow)isthedisksummationmethod.Inthistechnique,theusertracesthecontouroftheRVendocardialborderinastackofshort-axisviewswithknownthicknessspanningtherightventriclefrombasetoapexatend-diastoleandend-systole.Thesoftwarecomputestheend-systolicandenddiastolicvolumesandprovidesavaluefortheejectionfraction.Thesecond(bottompanel)isthevolumetricanalysismethod.Inthistechnique,theoperatorusesenddiastolicandend-systolicplanesobtainedfromafull-volume3DEdatasetinboththelong-andshort-axisviewstotracetheendocardialborder.Volumeestimatesarebasedonpixelcountscontainedwithinthe3Dendocardialsurface.Similartotheleftventricle,RVvolumesareunderestimatedon3DEwhencomparedwithcMRI.3DEmeasurementsalsoresultinwidermarginsoferrorwithhigherinter-andintraobservervariabilitythancMRI.ThisisprobablyduetothelowerspatialresolutionandprominentRVtrabeculae,whichmaketheidentificationoftheendocardialborderchallenging.Currently,3DanalysisistheonlyechocardiographictechniquethatprovidesareliablemeasurementofRVEF(Fig.2-10).However,clinicaluseof3DEforRVvolumeandfunctionalassessmentislimitedduetothelearningcurverequiredfortheacquisitionandmeasurementsof3DRVdatasets.RightVentricularShapeRVshapevariesindifferentdiseasestates.Duetoitscrescentshapeoncrosssectionalviewsandasymmetricalinflowandoutflowtracts,therightventriclecannotbeviewedinitsentiretyinanysingle2Dplane,andhencethedifficultyincharacterizingandquantifyingchangesinRVshapewith2Dechocardiography.Untilrecently,quantificationofchangesinRVshapehasbeenlimitedtotheuseoftheeccentricityindexandassessmentofseptalflatteningandregionalapicalgeometry.Incontrast,with3DEimaging,theentirerightventriclecanbecontainedinasingledataset.ThisprovidesauniqueopportunityforevaluatingtheentireRVsurfacemorphology.ArecentlydescribedmethodologyfortheassessmentofRVshapedividestheRVendocardialsurfaceintosixregions.IthasbeenreportedthatpatientswithseverepulmonaryarterialhypertensionhaverounderRVoutflowtracts,flatterapicalfreewalls,andaseptumthattendstobulgeintotheLVcavity,whencomparedwithnormalsubjects.ThestudyoftheRVshapetogetherwithfunctionalmeasuresremainsanareaofincreasinginterestandpromise(27).THELEFTATRIUMLeftatrial(LA)enlargementisamarkerofchronicelevationofLVfillingpressure.Itisalsoapowerfulpredictorofadversecardiovascularoutcomes,includingstroke,atrialfibrillation,congestiveheartfailure,anddeath(28).LAvolumemeasurementsarepreferredoverlineardimensionsbecausetheyallowmoreaccurateassessmentoftheasymmetricremodelingoftheatrium.However,leftatrialvolumesremaingrosslyinaccuratewhenmeasuredusingthe2Darealengthor2Dbiplanemethodofdiscsapproaches,whicharebasedongeometricassumptions.Theaccuracyofthesevolumesisevenfurthercompromisedifdedicatedviewsoftheleftatriumarenotacquired.Analogoustotheleftventricle,whereitisimportanttoavoidforeshorteninginordertominimizevolumeunderestimation,caremustalsobetakentomaximizethelong-axisdimensionoftheleftatriumduringimaginginboththeapical4-and2-chamberviews.Thisisimportantbecausethelongaxesoftheleftventricleandleftatriumalmostalwayslieindifferentplanes(Fig.2-11).Hencetheneedfornonforeshortened“focused”acquisitionsoftheleftatrium.Ifacquiredcorrectly,thelengthoftheleftatriuminthetwoapicalviewsshouldbenearlyidentical(29).3DEintrinsicallyeliminatesthisproblem,similartovolumetricanalysisoftheventricles,byallowingtheoperatortomanuallyselectnonforeshortenedorthogonalplanesfromthe3Ddatasetpriortoquantification.Thisisinadditiontominimizinginaccuraciesassociatedwithgeometricassumptions,whicharenotneededwith3DEanalysis.ThetwoapproachesavailableforLAvolumequantificationwith3DEarethesameasthosedescribedfortheleftventricle,thatis,thebiplaneSimpsonmethodandthevolumetricmethod(seesectiononTheLeftVentricle).Ofnote,LAvolumesobtainedusing3DEmorecloselyapproximatethosemeasuredwithcMRI,probablybecausethedifferentiationbetweencompactedandnoncompactedmyocardiumdoesnotapplytotheleftatrium(30).When3DderivedLAvolumesarecomparedwith2Dvolumesinthesamesubjects,3Dvolumesarelarger(31).Anumberofrecentstudieshavereportednormalvaluesfor3DLAvolumes(Table2-1).Theleftatriumhasthreemainfunctions:reservoir,conduitand“booster.”Duringventricularsystole,theleftatriumfunctionsasareservoir,acceptingbloodfromthepulmonaryveins;inearlydiastole,itservesasapassiveconduit,acceptingbloodfromtheleftventricle;andinlatediastoleitcontracts,servingasapumptocompleteLVfilling.3DEallowscalculationoftime-volumecurves,whichmayproveinthefuturetohaveprognosticimplications.Somedatasuggestthatwithage,LAreservoirfunctiondecreasesandboosterfunctionaugments(29).Asimilarpatternisseenwithincreasingseverityofdiastolicdysfunction.3DIMAGINGOFTHEVALVESThesuperiorityof3DEover2Dimagingliesinitsrealisticimagingofnativeheartvalves,visualizationoftheiranatomicalrelationships,andgeometry,includingnonplanarity.Withtransthoracic3DE,itispossibletoobtain3Dviewsofallthevalves(Fig.2-6)fromdifferentperspectives.Perhapsthemostdifficultvalvetoimageisthepulmonaryvalve.Therearetwoparticularareaswheretransthoracic3DEprovidesincrementalbenefitover2Dimaging(32).Theseinclude1)thequantitativeassessmentofmitralstenosisand2)thevisualizationofthetricuspidvalve.Recentstudieshavealsosuggestedvalueinthequantificationofvalvularregurgitationusingfull-volume3DcolorDopplertovisualizeandmeasurethevenacontractaareaand3DPISA–derivedEROA.3DPISAassessmentisespeciallyattractiveincaseswherethehemisphericprincipleisnotapplicable.Limitationsof3DcolorDopplerimagingatthistimeincludechallengingacquisitionandlowframerateofdatasets,whichlimittheaccuracyofmeasurements.Finally,atthistime,therearenoofficialguidelinestoassistinthecategorizationof3DcolorDopplermeasurements.FIGURE2-11A–Careimagestakenfromthesamepatient.Theleftatriumdoesnotenlargesymmetricallysothatasingledimensionintheparasternallong-axisview(A)doesnotnecessarilycorrelatewithleftatrialenlargement.InBleftatrialvolumeisobtainedfromtheapical-fourchamberviewwhileinCleftatrialvolumeisbeingobtainedfromthefocusedleftatrialview.ThevolumeobtainedinCislargerthanthatobtainedinB.Inordertoaccuratelymeasureleftatrialvolumes,theatrial-focusedviewmustbeused.Thisviewmaximizesleftatrialdimensionsinordertoavoidforeshorteningoftheleftatrium(C).With3Dechocardiography,theoperatorcanchoosetheanatomicallycorrect,nonforeshortenedleftatrialviewssothatcalculatedvolumesaremoreaccurate(E).MitralStenosisThemitralvalve(MV)isbestassessedusingtransesophagealechocardiography.Theproximityofthevalvetotheultrasoundprobeandthesuperiorspatialresolutionofthetransesophageal3DEimagesallowMVassessmentwithgreatanatomicaldetail.Fromatransthoracicperspective,theMVcanbeimagedfrom1)parasternalshort-axisviewand2)theapicalfour-chamberview,usingbothzoomandfull-volumeacquisition,whenhigherspatialandtemporalresolutionarerequired(Fig.2-12).RheumaticMVstenosis(Fig.2-12c)continuestobeanimportantpublichealthconcern.AsdiscussedingreaterdetailinChapter13,theseverityofrheumaticMVstenosison2DechocardiographyisapproximatedbymeasuringtheMVorificeareausingthepressurehalf-timemethod,thecontinuityequationmethod,and/or2Dplanimetry.TheDoppler-basedmethodsareheavilyinfluencedbyhemodynamicvariables,LVandLAcompliance,andassociatedvalvularlesions.Accordingly,directmeasurementsofMVorificearea(e.g.,2Dplanimetry)aresometimesmoreaccurate.However,2Dplanimetryofthemitralvalveorificeisnoteasytoperform.Itrequiresthattheultrasoundbeambeperpendiculartotheleaflettipsintheshortaxisviews,inordertotracetheMVorificearea.AnincorrectimagingplanecanresultinoverestimationoftheMVorificearea.3DEenablestheechocardiographertoselecttheanatomicallycorrectplaneonwhichtoperformtheMVorificeareameasurementattheleaflettips(Fig.2-13).ThismethodologyisfeasibleandhasshownthebestagreementwiththeinvasivelydeterminedMVarea,particularlyafterpercutaneousmitralvalvuloplasty.3DplanimetryisthemostaccuratemethodformeasuringMVorificeareaintheimmediateperiodfollowingpercutaneousballoonmitralvalvuloplastyandcanbeusedtoestimateMVorificeareainpatientswithcalcificmitralstenosis(33).FIGURE2-12PanelAshowstransthoracicimagingofthemitralvalve.Themitralvalveshouldbedisplayedwiththeaortainthe12o’clockposition.Fromthisperspective,theleftatrialappendageisinthe9o’clockposition.PanelBshowsthemitralvalvefromtheleftatrialperspectiveinapatientwithprolapseofP2(arrow).PanelCdisplaysthemitralvalveinapatientwithmitralstenosisformtheleftatrialandleftventricularperspectivedepictingcommissuralfusionandthickeningofthemitralleaflets.00:00/00:00Video2-12A00:00/00:00Video2-12BFIGURE2-133Dofthemitralvalvecanbeacquiredfromtheparasternallong-axisview(toprow)andtheapicalfour-chamberview(bottomrow).Multiplanarreconstructioncanbeusedtoobtainorthogonalviewsofthemitralvalve(greenandredboxes).Aftercarefulalignmentoftheseorthogonalplanes,thethirdplane(blueline)canbeusedtocutthroughtheleaflettipstoallowplanimetryofthemitralvalveorificearea(blueboxes,farright).Theresultantmitralvalvearea(MVA)canthenbetraced.TheTricuspidValveThetricuspidvalve(TV)isacomplexstructurewiththreeleafletsofvaryingsizesthatareattachedtothefibroustricuspidannulus.With2Dechocardiography,nomorethantwoleafletscanbereasonablyidentifiedineachofthestandardviews.Transthoracic3DEallowssimultaneousvisualizationofallthreeTVleafletsfromasingleacquisition(Fig.2-14).Unlikethemitralvalve,3DimagesoftheTVarebestacquiredfromthetransthoracicapproach.Thecloseproximityofthetricuspidapparatustotheanteriorwallofthechestmakesitreadilyavailabletothe3Dtransthoracicprobe.TransthoracicacquisitionsoftheTVcanbeperformedfromthe1)apicalfour-chamberRVfocusedviews,2)parasternallong-axisRVinflowviews,and3)parasternalbasalshort-axisviews.Usingthe3Dzoommode,theTVcanbevisualizedfromtherightatrialandRVperspective.Thisviewcanbeusefulindelineatingthemechanismoftricuspidregurgitationoridentifyingtheleaflet(leaflets)involvedinthepathology(Fig.2-14).Tricuspidregurgitationduetoendocardialleadimplantationorimplantablecardioverterdefibrillatorsisaknowncomplicationoftheseprocedures.Togetherwith2Dimagingandfull-volumeRVimaging,thezoomviewofthetricuspidvalvecansometimesbeusedtodeterminewhetheradeviceleadisimpingingontheTVleaflets(34,35).FIGURE2-14Transthoracicimagingofthetricuspidvalve.Thetricuspidvalveshouldbedisplayedwiththeseptalleafletinthe6o’clockposition.A:Normaltricuspidvalvedisplayedfromtherightventricularperspective.Notethethinleaflets.B:Tricuspidvalveinapatientwithseverepulmonaryhypertension.Notethethickenedleaflets.C:Bicuspidtricuspidvalvewithonlytwoleaflets.D:Tricuspidvalveasseenfromtherightatrialperspective.Allleafletsareprolapsed.EandF:Tricuspidvalveasseenfromtherightatrial(E)andrightventricular(F)perspectiveinapatientwithapacemaker.Theleadisinthecommissurebetweentheposteriorandseptalleaflets.G:Aquadricuspidtricuspidvalveasseenfromtherightventricularperspective.HandI:Tricuspidvalveinapatientwithmalcoaptationseeninend-diastole(H)andend-systole(I)fromtherightventricularperspective.J:tricuspidvalveseenfromtherightventricularperspectiveinapatientwithmalcoaptationbetweentheanteriorandposteriorleaflets(A,anteriorleaflet;P,posteriorleaflet;S,septalleaflet;PM,pacemaker;PS,posteroseptalcommissure).00:00/00:00Video2-14A00:00/00:00Video2-14B00:00/00:00Video2-14C00:00/00:00Video2-14DRecently,increasingattentionhasbeengiventotheTVinpatientsundergoingMVsurgery.Ithasbeenshownthatadilatedtricuspidannulus(basedonasingle2Ddiameter)withorwithoutthepresenceofsignificanttricuspidregurgitationisassociatedwithworseoutcomespostMVsurgery,suggestingthattricuspidannulardilatationmaybeabetterindicatorofTVdysfunctionthanthepresenceorabsenceoftricuspidregurgitation.ThisislargelybecausetricuspidregurgitationvariesmarkedlywithRVloadingconditions.However,becauseofitsovalshape,nonplanarmorphology,anddynamicbehaviorthroughoutthecardiaccycle,asingle2Ddiameteroftheannuluscannotfullycharacterizetricuspidannularsize.Withtransthoracic3DE,ithasbeenshownthatitispossibletoobtainaccuratemeasurementsofthetricuspidannulusarea,perimeter,anddimensionsandtotrackthesemeasurementsdynamically.SUMMARY3Dimaginghasthepotentialtoradicallymodifythemannerinwhichweroutinelyquantifycardiacchambersontransthoracicechocardiography.Iteliminatesgeometricassumptionsanddiminishesforeshortening,therebyresultinginvolumemeasurementsthataremorereproducibleandaccurate.Furtheranalysisoftheendocardialsurfacesandtime-volumecurveswillopenthedoorstothecharacterizationofchambershape,interchamberrelationships,and3Ddeformation.Transthoracic3DEalsoholdspromiseforcomprehensiveevaluationofcardiacvalves.Itiscurrentlyrecommendedintheevaluationofmitralstenosiswhenplanimetryisrequiredandhasrecentlybeenshowntobevaluableintheevaluationofthetricuspidvalve.REFERENCES1.LangRM,BadanoLP,Mor-AviV,etal.Recommendationsforcardiacchamberquantificationbyechocardiographyinadults:AnupdatefromtheAmericanSocietyofEchocardiographyandtheEuropeanAssociationofCardiovascularImaging.JournaloftheAmericanSocietyofEchocardiography,2015;28(1):1–39.e14.2.LangRM,BadanoLP,TsangW,etal.EAE/ASErecommendationsforimageacquisitionanddisplayusingthree-dimensionalechocardiography.JournaloftheAmericanSocietyofEchocardiography,2012;25(1):3–46.3.Mor-AviV,SugengL,WeinertL,etal.Fastmeasurementofleftventricularmasswithreal-timethreedimensionalechocardiography:Comparisonwithmagneticresonanceimaging.Circulation,2004;110(13):1814–1818.4.JacobsLD,SalgoIS,GoonewardenaS,etal.Rapidonlinequantificationofleftventricularvolumefromreal-timethree-dimensionalechocardiographicdata.EuropeanHeartJournal,2006;27(4):460–468.5.ThavendiranathanP,LiuS,VerhaertD,etal.Feasibility,accuracy,andreproducibilityofreal-timefullvolume3DtransthoracicechocardiographytomeasureLVvolumesandsystolicfunction:afullyautomatedendocardialcontouringalgorithminsinusrhythmandatrialfibrillation.JACCCardiovascularImaging,2012;5(3):239–251.6.NesserHJ,Mor-AviV,GorissenW,etal.Quantificationofleftventricularvolumesusingthreedimensionalechocardiographicspeckletracking:comparisonwithMRI.EuropeanHeartJournal,2009;30(13):1565–1573.7.TsangW,SalgoIS,MedvedofskyD,etal.Transthoracic3DEchocardiographicLeftHeartChamberQuantificationUsinganAutomatedAdaptiveAnalyticsAlgorithm.JACCCardiovascularImaging,2016;9(7):769–782.8.Mor-AviV,JenkinsC,KuhlHP,etal.Real-time3-dimensionalechocardiographicquantificationofleftventricularvolumes:Multicenterstudyforvalidationwithmagneticresonanceimagingandinvestigationofsourcesoferror.JACCCardiovascularImaging,2008;1(4):413–423.9.AuneE,BaekkevarM,RodevandO,etal.Referencevaluesforleftventricularvolumeswithreal-time3-dimensionalechocardiography.ScandinavianCardiovascularJournal,2010;44(1):24–30.10.BernardA,AddetiaK,DulgheruR,etal.3Dechocardiographicreferencerangesfornormalleftventricularvolumesandstrain:ResultsfromtheEACVINORREstudy.EuropeanHeartJournalCardiovascularImaging,2017;18(4):475–483.11.ChahalNS,LimTK,JainP,etal.Population-basedreferencevaluesfor3DechocardiographicLVvolumesandejectionfraction.JACCCardiovascularImaging,2012;5(12):1191–1197.12.FukudaS,WatanabeH,DaimonM,etal.Normalvaluesofreal-time3-dimensionalechocardiographicparametersinahealthyJapanesepopulation:TheJAMP-3DStudy.CirculationJournal,2012;76(5):1177–1181.13.MuraruD,BadanoLP,PelusoD,etal.Comprehensiveanalysisofleftventriculargeometryandfunctionbythree-dimensionalechocardiographyinhealthyadults.JournaloftheAmericanSocietyofEchocardiography,2013;26(6):618–628.14.BluemkeDA,KronmalRA,LimaJA,etal.Therelationshipofleftventricularmassandgeometrytoincidentcardiovascularevents:TheMESA(Multi-EthnicStudyofAtherosclerosis)study.JournaloftheAmericanCollegeofCardiology,2008;52(25):2148–2155.15.GopalAS,SchnellbaecherMJ,ShenZ,etal.Freehandthree-dimensionalechocardiographyfordeterminationofleftventricularvolumeandmassinpatientswithabnormalventricles:Comparisonwithmagneticresonanceimaging.JournaloftheAmericanSocietyofEchocardiography,1997;10(8):853–861.16.BadanoLP,CucchiniU,MuraruD,etal.Useofthree-dimensionalspeckletrackingtoassessleftventricularmyocardialmechanics:Inter-vendorconsistencyandreproducibilityofstrainmeasurements.EuropeanHeartJournalCardiovascularImaging,2013;14(3):285–293.17.GayatE,AhmadH,WeinertL,etal.Reproducibilityandinter-vendorvariabilityofleftventriculardeformationmeasurementsbythree-dimensionalspeckle-trackingechocardiography.JournaloftheAmericanSocietyofEchocardiography,2011;24(8):878–885.18.YangH,MarwickTH,FukudaN,etal.ImprovementinStrainConcordancebetweenTwoMajorVendorsaftertheStrainStandardizationInitiative.JournaloftheAmericanSocietyofEchocardiography,2015;28(6):642–648.e7.19.LamasGA,VaughanDE,ParisiAF,etal.Effectsofleftventricularshapeandcaptopriltherapyonexercisecapacityafteranteriorwallacutemyocardialinfarction.AmericanJournalofCardiology,1989;63(17):1167–1173.20.MannaertsHF,vanderHeideJA,KampO,etal.Earlyidentificationofleftventricularremodellingaftermyocardialinfarction,assessedbytransthoracic3Dechocardiography.EuropeanHeartJournal,2004;25(8):680–687.21.MaffessantiF,CaianiEG,TamboriniG,etal.Serialchangesinleftventricularshapefollowingearlymitralvalverepair.AmericanJournalofCardiology,2010;106(6):836–842.22.SalgoIS,TsangW,AckermanW,etal.Geometricassessmentofregionalleftventricularremodelingbythree-dimensionalechocardiographicshapeanalysiscorrelateswithleftventricularfunction.JournaloftheAmericanSocietyofEchocardiography,2012;25(1):80–88.23.StantonT,HaluskaBA,LeanoR,etal.Hemodynamicbenefitofrestandexerciseoptimizationofcardiacresynchronizationtherapy.Echocardiography,2014;31(8):980–988.24.SugengL,Mor-AviV,WeinertL,etal.Multimodalitycomparisonofquantitativevolumetricanalysisoftherightventricle.JACCCardiovascularImaging,2010;3(1):10–18.25.MedvedofskyD,AddetiaK,PatelAR,etal.NovelApproachtoThree-DimensionalEchocardiographicQuantificationofRightVentricularVolumesandFunctionfromFocusedViews.JournaloftheAmericanSocietyofEchocardiography,2015;28(10):1222–1231.26.MuraruD,SpadottoV,CecchettoA,etal.Newspeckle-trackingalgorithmforrightventricularvolumeanalysisfromthree-dimensionalechocardiographicdatasets:Validationwithcardiacmagneticresonanceandcomparisonwiththepreviousanalysistool.EuropeanHeartJournalCardiovascularImaging,2016;17(11):1279–1289.27.AddetiaK,MaffessantiF,YamatM,etal.Three-dimensionalechocardiography-basedanalysisofrightventricularshapeinpulmonaryarterialhypertension.EuropeanHeartJournalCardiovascularImaging,2016;17(5):564–575.28.TsangTS,AbhayaratnaWP,BarnesME,etal.Predictionofcardiovascularoutcomeswithleftatrialsize:Isvolumesuperiortoareaordiameter?JournaloftheAmericanCollegeofCardiology,2006;47(5):1018–1023.29.BadanoLP,MiglioranzaMH,MihailaS,etal.LeftAtrialVolumesandFunctionbyThree-DimensionalEchocardiography:ReferenceValues,Accuracy,Reproducibility,andComparisonwithTwoDimensionalEchocardiographicMeasurements.CirculationCardiovascularImaging,2016;9(7).30.Mor-AviV,YodwutC,JenkinsC,etal.Real-time3Dechocardiographicquantificationofleftatrialvolume:MulticenterstudyforvalidationwithCMR.JACCCardiovascularImaging,2012;5(8):769–777.31.MiyasakaY,TsujimotoS,MaebaH,etal.Leftatrialvolumebyreal-timethree-dimensionalechocardiography:Validationby64-slicemultidetectorcomputedtomography.JournaloftheAmericanSocietyofEchocardiography,2011;24(6):680–686.32.LangRM,TsangW,WeinertL,etal.Valvularheartdisease.Thevalueof3-dimensionalechocardiography.JournaloftheAmericanCollegeofCardiology,2011;58(19):1933–1944.33.ZamoranoJ,CordeiroP,SugengL,etal.Real-timethree-dimensionalechocardiographyforrheumaticmitralvalvestenosisevaluation:Anaccurateandnovelapproach.JournaloftheAmericanCollegeofCardiology,2004;43(11):2091–2096.34.AddetiaK,MaffessantiF,MedirattaA,etal.Impactofimplantabletransvenousdeviceleadlocationonseverityoftricuspidregurgitation.JournaloftheAmericanSocietyofEchocardiography,2014;27(11):1164–1175.35.MedirattaA,AddetiaK,YamatM,etal.3Dechocardiographiclocationofimplantabledeviceleadsandmechanismofassociatedtricuspidregurgitation.JACCCardiovascularImaging,2014;7(4):337–347.CHAPTER3TransesophagealEchocardiographyJeremyJ.Thaden,JosephF.Maalouf,andJaeK.OhINTRODUCTIONIn1987,clinicaltransesophagealechocardiography(TEE)wasintroducedatMayoClinic(1).Thistechnologyhasinexorablychangedthediagnosticstrategyfornumerouscardiovasculardiseasesand,inmanycircumstances,hasbecomethediagnosticprocedureofchoice.TheprincipalreasonforthischangeinpracticeisthatTEEprovidessuperbclarityandeasilyinterpretableimages.TEEisrelativelyeasytoperform,uncomplicated,andcapableofprovidinguniqueinsightintocardiothoracicstructuresanywhereatthepatient’sbedside,evenincriticallyillpatientsorduringinterventional/surgicalprocedure.TEEincorporatesallthefunctionalityoftransthoracicechocardiography(TTE),includingthree-dimensionalimaging,whichcanreliablyinterrogatecardiovascularanatomy,function,hemodynamics,andbloodflow.BeforetheintroductionofTEE,echocardiographywasfrequentlyusedasascreeningtoolthathadtobecomplementedbyotherdiagnosticmodalities.Definitivemanagementofvalvulardisease,aorticdissection,endocarditis,atrialfibrillation,congenitalheartdisease,andintracardiacmassesandtumorscanbeaccomplishedonthebasisofacompleteechocardiographyexamination,includingTEE(2–10).Inthisclinicalcontext,TEEwillcontinuetohaveamajorroleinthemanagementofvirtuallyallcardiovasculardiseases.Approximately5%to10%ofpatientswhohaveaTTEexaminationrequiretheadditionofTEE.Also,TEEhasbecomeanintegralpartofcardiovascularsurgeryandagrowinglistoftranscatheterstructuralheartprocedureswhereitisusefultoassesscandidacyforanoperation,guidetheoperation,andassesstheresultsoftheoperation(seeChapter23).AsintheearliereditionsofTheEchoManual,TEEisdiscussedthroughoutthetextinrelationtothediagnosisandmanagementofspecificcardiovasculardiseases.INDICATIONSTheindicationsforTEEproceduresatMayoClinicarelistedinTable3-1.ThedistributionofindicationsforTEEvariesfrominstitutiontoinstitution,dependingonthepatientpopulation.Themostcommonindicationhasbeenforevaluationofapotentialcardiacsourceofembolism(35%)andatrialfibrillation(34%).Besidestheseindications,TEEisnowconsideredessentialintheevaluationofmitralvalvelesions,leftatrial(LA)orLAappendagethrombus,intracardiacmass,atrialseptaldefect,endocarditisanditscomplications,thoracicaorticlesions(inparticular,aorticdissection),andcriticallyillpatients(11–16).Becauseof1)anincreasingnumberofpatientswithatrialfibrillation,2)awell-establishedpracticemodelforTEE-guidedcardioversion,and3)ablationprocedures,atrialfibrillationhasbecomeoneofthemorecommonreasonsforreferralforTEE.PREPARATIONANDPOTENTIALCOMPLICATIONSTEEisasemiinvasiveprocedurethatcanbeuncomfortableinunpreparedpatients.PatientsshouldbeinformedaboutthepotentialrisksandbenefitsandbefamiliarizedwiththeTEEprocedure.Thepreprocedurediscussionshouldincludeevenuncommoncomplications(70%methemoglobin),exchangetransfusionordialysismaybeneeded.Ashort-actingsedativeoramnesticagentsuchasmidazolam(Versed),1to10mg(meandose,3.6±2.3mg),andfentanyl,25to100mgintravenously,areusedalmostroutinelytomaketheTEEexaminationmorecomfortableforthepatient.Theseagentsshouldbeusedwithcautionindebilitatedorelderlypatientsbecauseofpotentialrespiratorysuppressionorhypotension.However,midazolamcanberapidlyreversedinabout60secondswithflumazenil,0.2to0.4mgintravenously.Naloxoneataninitialdoseof0.4mgcanbegivenintravenouslytoreversetheeffectoffentanyl.Occasionally,ithasbeennecessarytoparalyzeanagitatedcriticallyillpatient.AnasogastricorendotrachealtubeusuallydoesnotinterferesubstantiallywithesophagealintubationwiththeTEEprobeorprohibittheacquisitionofsatisfactoryimages.EsophagealperforationisararebutdisastrouscomplicationofTEE(19).TEEshouldnotbeperformedinpatientswithdysphagiawithoutfurtherevaluationoftheesophagus.IntubationofaTEEprobeshouldnotbeforced.ProlongedintubationofaTEEprobeduringanoperationmayincreasetheriskofperforation.WhentheTEEprobeisnotusedintraoperatively,itmaybedisconnectedfromthemachinetoreducethermalinjury.Also,theTEEprobeshouldnotbeleftintheesophagusorthestomachinalockedposition.INSTRUMENTATIONTheTEEprobeisamodifiedgastroesophagealendoscopyprobe,typicallywitha3-to7-MHzultrasoundtransduceratthetip.Itcanbemaneuveredtovariouspositionsintheesophagusandstomach,fromwhichtheheartandothercardiovascularandsurroundingstructurescanbevisualized.Thediameteroftheadulttransducertipis9to14mm,andthisisminiaturizedtolessthan3mmforpediatric,neonatal,andevenfetaluse.Alladultprobesusemultiplanetransducersthatcanberotated180degrees.Thetransducerusuallyisrotatedbyaswitchattheproximaloperatorend.Thetipoftheprobealsocanbeanteflexed(anteriorflexion)orretroflexed(posteriorflexion)ormovedlaterally(sidetoside)bylargerknobsattheproximalend.Whenperformedelectively,theexaminationbeginswiththepatientintheleftlateraldecubitusposition.Theprocedureroomisequippedwithoralsuction,oxygensupply,pulseoximeter,andcardiopulmonaryresuscitationcapabilities.Incriticallyillpatientsforwhomtransferisdifficult,theexaminationisperformedatthebedside.Ifthepatientismechanicallyventilated,theTEEprobeisoftenintroducedwiththepatientsupine.WeuseabiteguardtoprotecttheTEEscope,unlessthepatientisedentulous.Whenthescopeisintroduced,theimagingsurfaceofthetransducerfacesthetongue,whichdirectstheultrasoundbeamfromtheposteriorlylocatedesophagusanteriorlytowardtheheart.Adigitaltechniquemaybeusedforesophagealintubation.Whentheprobeisintroduced,theposteriorportionofthetongueisdepressedwiththeleftindexfingertominimizetonguemovement,andthetipofthetransducerisplacedovertheleftindexfingertoapositionatthecenterofthetongue.Afterthetransducerisinthecorrectposition,theleftindexfingerisplacedoverthedistalshaftortipoftheprobeanddepresseddirectlydownwardontothetongue.Thisplacesthetipoftheprobeindirectalignmentwiththeposteriorlylocatedesophagusandawayfromtheanteriorlylocatedtrachea.Thetipofthetransducerisadvancedsmoothlyandslowlyposteriorlytowardtheesophagus.Atthistime,thepatientisaskedtoswallow.ThetipoftheTEEtransducershouldbeadvancedintotheesophaguswithoutforceornotableresistance.Thedistancefromtheincisorstothemidesophagus,adjacenttotheLA,isapproximately30cm.TRAININGOFPHYSICIANSANDTHEROLEOFSONOGRAPHERSTEEcomplementstheTTEexamination.Therefore,itisadvisedthataphysicianwhoperformsTEEhascompetencyinTTE,whichincludespersonallyperformingmorethan300documentedsurfaceechocardiogramsbeforeperformingTEE.ItiscriticalthatthephysicianknowsthefunctionofallknobstobeabletocaptureallappropriateimagesandDopplersignalswithintheshortesttimepossible.ThephysicianalsoneedstolearnthetechniqueofesophagealintubationunderthesupervisionofanendoscopistorotherechocardiologistexperiencedinTEEprocedure.Weconsideraminimumof50esophagealintubationsnecessarytoprovideadequatetraininginintubation.ThesonographerortrainedassistanthasanessentialroleinpreparingpatientsforTEEandinassistingthephysicianduringtheexamination.TheroleofthesonographerorassistantinTEEissummarizedinTable3-3(Table3-2).Inourlaboratory,aregisterednurseornursesonographercoordinatesandassistswithTEEexaminations.BecauseTEEissemiinvasive,theskillsofaregisterednursearepreferredforcloselymonitoringthepatient,thatis,forobtainingvitalsigns,administeringmedications,insertingintravenouscatheters,andusingsuction,oxygen,orotheremergencyequipment.Aproperlytrainedassistantcanperformthesefunctionsexceptforintravenousadministrationofmedications.BecauseTEEhasasmallbutdefiniteriskforthepatient,itgenerallyisconsiderednecessaryfortheproceduretobeperformedbyaphysician.Also,physiciansandalliedhealthpersonnelinvolvedinperformingTEEarerequiredtohaveannualtraininginconsciousormoderatesedation.TABLE3-2PreparationforTransesophagealEchocardiographyPreparationInquiryabouthistoryofdysphagiaoresophagealabnormalityReduceriskofpulmonaryaspirationForhealthypatientsundergoingelectiveprocedures6hoursfasting(lightmealconsistingoftoastandclearliquids)6hoursmilk2hoursclearliquidsNorestrictionifpatientistracheallyintubatedInveryurgentsituations,trachealintubationand/orupperesophagealsuctionisnecessaryLocalanesthesiasprayIntravenousaccesswiththree-waystopcockMedicationsDryingagent(optional)toreducesalivationGlycopyrrolate(Robinul),0.2mgintravenous2–3minbeforeexaminationSedationMidazolamhydrochloride(Versed),1–10mg(lowdosesinolderpatients)Reversal:flumazenil(Romazicon),0.2–0.4mg,ifneededforrapidreversalofmidazolamhydrochlorideAnalgesiaFentanyl,25–100mg*intravenous(lowerdosageinolderpatients)Reversal:Naloxone(Narcan)(1mg/mLvial),upto0.1mg/kgFortreatmentofmethemoglobinemia(mostoftenassociatedwithbenzocaineproductsusedforlocalanesthesia)Methyleneblue,1–2mg/kgintravenouslyMusclerelaxant(occasionaluseinspecialcircumstances)Paralyzingagentinconjunctionwithsedationforagitatedpatientonmechanicalventilator*Higherdosesarerarelynecessary.MULTIPLANETRANSESOPHAGEALECHOCARDIOGRAPHYIMAGINGVIEWSThemultiplaneTEEtransducerconsistsofasinglearrayofcrystalsthatcanberotatedelectronicallyormechanicallyaroundthelongaxisoftheultrasoundbeaminanarcof180degrees(Fig.3-1).Withrotationofthetransducerarray,multiplaneTEEproducesacontinuumoftransverseandlongitudinalimageplanes(22).TABLE3-3SummaryoftheRoleoftheSonographer/AssistantinTransesophagealEchocardiographyBeforeprocedurePreparationofequipmentandsuppliesAssemblesuppliesMedications,normalsalineflushes,andcontrastmediumIntravenoussupplies(angiocatheter,three-waystopcock)LidocainesprayandtonguebladeScopelubricant:lubricatingjellyorviscouslidocaineGloves,safetyglasses,TEEprobe,andbiteblockMaintainandchecksuction,oxygen,andbasiclife-supportequipmentPatientpreparationConfirmthatpatienthashadnooralintakeforatleast6hoursbeforeTEEObtainbriefhistoryofdrugallergiesandcurrentmedicationsExplainproceduretopatientObtainbaselinevitalsignsandmonitorrhythmRemovepatient’sdentures,oralprostheses,andeyeglassesEstablishintravenouscatheterforadministrationofmedicationsPlacepatientintheleftlateraldecubituspositionwithwedgesupportandsafetyrestraintsAssistpatientduringesophagealintubation,suchasheadposition,breathing,andreassuranceDrugsPharyngealanesthesia(seeTable3-2)Dryingagent(optional)Sedationand/oranalgesia(seeTable3-2)DuringprocedurePositionandmaintainbiteblockMonitorvitalsigns:rhythm,respiration,bloodpressure,andoxygensaturationUseoralsuctionifnecessaryHavebasiclife-supportequipmentavailableAfterprocedureOptionalreversalofmidazolamsedationwithflumazenil(seeTable3-2)Assistpatientduringrecoveryperiod(patientmustbefullyawakeand/oraccompaniedatdeparture)RemoveintravenouscatheterInstructpatientnottodrivefor12hoursifsedationwasusedRecordvitalsignsandpatient’sconditionondismissalArrangeforescortifpatientisnotcompletelyrecoveredCleanscopewithenzymesolutionandglutaraldehydedisinfectantMultiplaneimagesareidentifiedbyanicontoindicatethedegreeoftransducerrotation(Fig.3-2).ThisdesignationhelpstheoperatortounderstandtheorientationoftheultrasoundbeamandtoconducttheTEEexaminationmoreefficiently.Thetransverseesophagealplane,whichisintheshortaxisofthebody,isdesignatedas0degrees.Thelongitudinalesophagealplane,whichisinthelongaxisofthebody,isdesignatedas90degrees.TheTEEtransducercanberotatedinacontinuumthroughout180degrees,resultinginversatilityoftheexaminationandeaseofunderstanding.Normally,fromthemidesophagus,theshortaxisoftheheartisimagedat45degreesofrotationanditslongaxisat135degrees.Byconvention,thetransducerlocationisdisplayedatthetopofthepage(20),although,ifpreferred,thetransducerlocationcanbedisplayedatthebottomofthescreentoreplicatetransthoracicimageformat(22).FIGURE3-1Arrayrotationsofselecteddegrees(0,45,90,135,and180degrees)permitalogicalsequenceofstandardtransducerorientationsandresultantimages.Suchadisplayhelpstheexamineracquirethedesiredviews:0-degreetransverseorientation,whichishorizontaltothechestatthemidesophageallevel;45-degreeshort-axisorientationtothebaseoftheheartfromthemidesophagus;90-degreelongitudinalorientation,whichisinthesagittalplaneofthebody;135-degreelongaxisorientationtotheheartfromthemidesophagus;and180-degreerotation,whichproducesamirror-imagetransverseplane.(FromSewardJB,etal.MayoClinProc,1993;68:523–551.UsedwithpermissionofMayoFoundationforMedicalEducationandResearch.)PrimaryViewsStandardTEEimagingwindowsincludetheupperesophagus,themidesophagus,andtransgastricviews(Fig.3-3).Theheartanditsanatomycanbecompletelyvisualizedfromtheseprimaryimagingwindowsbyadvancingtheprobe,withdrawingtheprobe,anteflexion(anteriorflexion),retroflexion(posteriorflexion),lateralflexion,rightward(clockwise)andleftward(counterclockwise)rotationoftheprobe,andadjustmentofthemultiplanetransducerangle.UpperEsophagealViewsTheupperesophagealwindowisadjacenttothegreatvesselsandaorticarchandthusprovideshigh-resolutionimagesofthesestructuresandadjacentanatomy.Fromthisposition,theascendingaortalongaxiscanbereliablyvisualizedatamultiplaneangleof90to110degreeswiththeimagingplaneorientedanteriorlyandfrequentlywithslightanteflexionoftheprobe(Fig.3-4A).Fromthisviewofthemidascendingaortalongaxis,decreasingthetransducerangleto0to30degreesallowsvisualizationofashort-axisviewoftheascendingaortaandthebifurcationofthepulmonaryartery(Fig.3-4B).Byrotatingthetransducershaftclockwise,thelongaxisoftherightpulmonaryarteryandtheshortaxisofthesuperiorvenacavaandtherightupperpulmonaryveinareviewedadjacenttotheascendingaorta.Thisisthebestviewforidentifyingananomalousconnectionoftherightupperpulmonaryveinwiththesuperiorvenacava(11).Byrotatingthetransducershaftcounterclockwise,theproximalportionoftheleftpulmonaryarterycanbevisualized.FIGURE3-2Fourmultiplanetransesophagealechocardiographic(TEE)imagesobtainedbyrotatingthetransducerarrayfrom0to135degrees.Theicon(inthe

corner)indicatesthepositionofthetransducer.A:Four-chamberview(0degreeswithretroflexionofthetransducertip).B:Short-axisview(45–60degrees)oftheaorticvalve.Asterisk,Leftatrial(LA)appendage.C:Two-chamberview(65–100degreeswithleftwardrotationofTEEshaft).Arrow,LAappendage.D:Long-axisview(125–140degrees)oftheleftventricle(LV).Ao,aorta;RA,rightatrium;RV,rightventricle;RVOT,rightventricularoutflowtract.00:00/00:00Video3-2A00:00/00:00Video3-2B00:00/00:00Video3-2C00:00/00:00Video3-2DFurtherleftward(counterclockwise)rotationfromtheleftmainpulmonaryarterywithatransducerangleof0to10degreesresultsinvisualizationofthedescendingthoracicaortainshortaxis(Fig.3-5).Theanatomicrelationshipbetweenthethoracicaortaandtheesophagusisintimate.TheproximitybetweenthesetwostructuresallowssuperbvisualizationoftheaortawithTEE.Theaorticarchandthedistalportionoftheascendingaortamaynotbeaccessiblewithtransverseimagingbecauseoftheinterposedtrachea,butmultiplaneTEEusuallyallowscompletevisualizationoftheremainderofthethoracicaorta.Whilekeepingthedescendingthoracicaortainview,advancetheprobeandrotatetheshafttovisualizesequentiallythelowerthoracicandupperabdominalaorta.Withsimilarcaretokeeptheaortacontinuouslyinview,withdrawtheprobetovisualizetheupperthoracicaorta.Conversely,withthetransducerarrayat90to100degrees,thelongitudinalviewoftheaortaisobtained(Fig.3-5).Withthistransducerorientation,itisusuallypossibletovisualizethetakeoffoftheleftsubclavian,leftcarotid,andinnominatearteriesfromanupperesophagealwindowadjacenttotheaorticarch.FIGURE3-3Standardtransesophagealechocardiographic(TEE)imagingwindows.Theupperesophagealwindowliesincloseproximitytotheaorticarch,pulmonaryarterybifurcation,andtheupperdescendingthoracicaorta,makingitanidealpositiontoimagethesestructures.Themidesophagealwindowisidealforimagingthecardiacvalves,leftatrium,leftatrialappendage,theinteratrialseptum,andisalsousefultoassessbiventricularfunction.Thetransgastricanddeeptransgastricviewsarefrequentlyusefulforvisualizationofleftventricularfunctionandregionalwallmotion,thetricuspidvalve,andforspectralDopplerassessmentoftheaorticvalve.(CopyrightMayoFoundationforMedicalEducationandResearch.)FIGURE3-4Ascendingaortaandthepulmonaryarterybifurcation.A:Atatransducerangleof90to110degreeswiththetransducerdirectedanteriorly,alongitudinalviewoftheascendingaortaisseen.B:Fromthistransducerposition,reducingthetransducerangleto0to30degreesprovidesvisualizationofthepulmonaryarterybifurcation.Ao,aorta;LPA,leftmainpulmonaryartery;PA,mainpulmonaryartery;RPA,rightmainpulmonaryartery.MidesophagealViewsWhenthetransducerisinthemidesophagealimagingwindow,itresidesimmediatelyposteriortotheleftatrium.Thiscloseproximityallowsforhighresolutionimagesoftheleftatrium,LAappendage,pulmonaryveins,mitralvalve,andinteratrialseptum.Fromthemidesophagealwindow,onecanalsoreadilyevaluatebiventricularfunctionandthefunctionofallfourcardiacvalves.FourprimarymultiplaneTEEviewscanbeobtainedbyrotatingthetransducerarrayfrom0to135degreesfromthemidesophagealwindow:1)0degrees(transverseplane):obliqueviewofbasalstructuresincludingLAappendageandthefour-chamberviewbyretroflexionandanteflexionofthetransducertip,2)45degrees:short-axisviewoftheaorticvalve,3)90degrees:thisproducesimagesobliquetothelongaxisoftheheartincludingtheatrialseptum,bothvenacavaeand2chamberviewoftheLV;and4)135degrees:thestandardleftventricularoutflowtract(LVOT)view.FIGURE3-5Descendingthoracicaorta.Biplaneimagingshowssimultaneoustransverse(left)andlongitudinal(right)viewsofthedescendingthoracicaorta.00:00/00:00Video3-5Atypicalfourchamberviewoftheheartisvisualizedwiththetransducerangleat0to10degrees(Fig.3-6A).Slightretroflexionfromthispositionisfrequentlyrequiredtoavoidforeshorteningtheleftventricularapex.Rightward(clockwise)rotationresultsinadedicatedrightventricularview,whileleftward(counterclockwise)rotationresultsinadedicatedleftventricularview.Frequently,visualizationofthetricuspidvalveisoptimizedfromthispositionbyadvancingthetransducertoaloweresophagealwindow.Withtheleftventriclecenteredintheframe,increasingthetransducerangleto80to100degreescreatesatwo-chamberview(Fig.3-6B)andfurtherincreasingtheangletoapproximately120to140degreesprovidesalong-axisviewoftheleftventricleandLVOT(Fig.3-6C).FIGURE3-6Leftventricularfunctionandregionalwallmotion.Fromthemidesophagus,multiplaneimaginganglesof0to10degrees(A),80to100degrees(B),and120to140degrees(C)producetheleftventricularfourchamber,twochamber,andlong-axisviews,respectively.LA,leftatrium;LV,leftventricle;RA,rightatrium;RV,rightventricle.Zoomed,high-resolutionviewsofthemitralvalvecanbeobtainedfromthemidesophagealwindow.Interrogationofthemitralvalvefrommultipleimagingplanesiscriticaltobesurethevalveisvisualizedinitsentirety(Fig.3-7).Inourlab,thisistypicallyaccomplishedbyscanningthemitralvalvefrom0to120to140degrees(ortheangleofatypicallong-axisview)in30-degreeincrements.Preciselocalizationofmitralleafletpathologycanbeachievedintwosteps(Fig.3-8).Thefirststepinvolvesdeterminingwhetherthepathologiclesioninvolvestheanteriororposteriorleaflet.Thiscanbedeterminedinanyviewbutoftenisreadilyapparentinthelong-axisview(110to140degreetransducerangle)(Fig.3-8A)orinthefour-orfive-chamberviewwiththetransducerangleat0to10degrees.Ineachoftheseviews,theleafletassociatedwiththeaorticvalveisidentifiedastheanteriormitralleaflet.Thesecondstepinvolvesdeterminingthemedialtolaterallocationoftheleafletpathology,andthisistypicallybestdeterminedinthemitralcommissuralviewwithatransducerangleof50to70degrees(Fig.3-8B).ThisviewtypicallyprovidesvisualizationoftheP1,A2,andP3scallopsfromrighttoleft(lateraltomedial)(Figs.3-7and3-8B).Lateralleafletpathology(A1orP1)isseenontherightsideoftheimage(adjacenttotheLAappendage),medialpathology(A3orP3)isseenontheleftsideoftheimage(adjacenttotheatrialseptum),andmiddleleafletpathology(A2orP2)isseeninthemiddle.Thisisalsooneoftheviewstodetectandvisualizemitralprostheticparavalvularleak(Fig.3-9).Fromthelevelofthemitralvalvewiththetransducerangleatapproximately35to55degrees,slightwithdrawaloftheprobewillallowvisualizationoftheaorticvalveinshortaxis(Fig.3-2B).Increasingthetransduceranglefurtherto120to140degreesprovidesatypicallong-axisviewoftheaorticvalve(Fig.32D).Fromthislong-axisview,leftward(counterclockwise)rotationwillresultinvisualizationoftheLAappendage.TheLAappendageisnormallymultilobedandthereforeshouldbeinterrogatedatmultipleanglestoensureitisvisualizedinitsentirety.FIGURE3-7A:Anatomicspecimenofthemitralvalve(CourtesyofJ.Maleszewski,MD).B:Aschematicdiagramofthemitralvalveviewedfromtheleftatrium(surgeon’sview).Themitralvalveisbisectedbymultiplanarimagingfromthemidesophagealwindow.Fromthisposition,theentiretyofthemitralvalvevisualizedbyrotatingthemultiplaneimaginganglebetween0and140degrees.C:Mitralleafletpathologyasviewedfromthemidesophagealimagingwindowatapproximately60degrees(commissuralview).Thecorrespondinglocationofvariousposteriorleafletflailscallopsisshown.00:00/00:00Video3-7WhenviewingtheLAappendageatapproximately90to110degrees,furtherleftward(counterclockwise)rotationallowssimultaneousvisualizationoftheleftupperandleftlowerpulmonaryveinsasa“Y”configurationenteringtheleftatrium(Fig.3-10,left).Fortherightpulmonaryveins,setthetransducerarrayto45to70degreesandrotatetheshaftofthetransducertothepatient’sextremeright(clockwiserotationofthetransducershaft);thisallowstherightupperandlowerpulmonaryveinstobevisualizedsimultaneously,whichappearasa“Y”configuration,wheretheyentertheleftatrium(Fig.3-10,right).Sometimes,weseemorethan2(Inferiorandsuperior)pulmonaryveinsateachside.Theconnectionofthepulmonaryveinswiththeleftatriumarealsovisualizedfromthetransverseview(0degrees)withthetransducerbehindtheleftatrium.Theupperpulmonaryveinsareeasiertosee,butthelowerveinsalsoareseenbyslightlyadvancingtheprobefromthepositionusedfortheupperpulmonaryveins.Increasingthetransduceranglebackto90to110degreesandrotatingthetransducerleftward(counterclockwise)fromtheright-sidedveinsresultsinabicavalviewprovidingvisualizationoftheatrialseptumandthesuperiorandinferiorvenacavasimultaneously(Fig.3-11).ThisisthebestTEEimagingviewtoassesspatentforamenovaleby2-D,colorflowimaging,andadministrationofagitatedsaline.FIGURE3-8Mitralleafletscallopsbytransesophagealechocardiography.A:Discriminationbetweenanteriorandposteriormitralleafletpathologyisreadilyapparentfromthelong-axisviewat120to140degrees.Inthisview,theanteriormitralleaflet(AML)isseentotheright,adjacenttotheaorticvalve(AV)andaflailposteriormitralleaflet(PML)isseentotheleft(arrow).B:Medial-lateraldiscriminationoftheleafletpathologyistypicallybestperformedfromthemitralvalvecommissuralviewat50to70degrees.Inthisview,themostlateralportionoftheposteriorleaflet,theP1scallop,isseenontherightandthemedialmostscallopoftheposteriorleaflet,P3,isseenontheleft.Themiddlescallopoftheanteriorleaflet,A2,istypicallyseeninthemiddle.Inthiscase,ashort-axisviewoftheflailposteriorleafletisalsoseenposteriortotheA2scallop,correspondingtoaP2flailsegment(arrow).A2,A2mitralscallop;AML,anteriormitralleaflet;AV,aorticvalve;LA,leftatrium;P1,P1mitralscallop;P2,P2mitralscallop;P3,P3mitralscallop;PML,posteriormitralleaflet.00:00/00:00Video3-8A00:00/00:00Video3-8BTheproximalportionsofthecoronaryarteriesarenormallyseenwithTEE.Theleftcoronaryarteryisvisualizedbestfromthetransversebasalshort-axisview(0degrees).TheleftmaincoronaryarteryislocatedimmediatelybelowtheleveloftheLAappendage.FromthetransverseLAappendageview,theprobeneedstobewithdrawnslightlytodemonstratetheleftmaincoronaryarteryanditsbifurcationintotheleftanteriordescendingandcircumflexcoronaryarteries(Fig.3-12).At90degreesoftransducerorientationandleftwardrotationoftheprobe,ashort-axisviewoftheleftmaincoronaryarteryisobtained.Withfurtherleftwardrotation,along-axisviewoftheleftanteriordescendingandshort-axistolong-axisviewofthecircumflexcoronaryarterycanbeobtained.Theproximalrightcoronaryarteryisvisualizedbestinthelongitudinalplane(90to135degrees),arisingfromtheanteriorlylocatedrightaorticsinus,about1to2cmabovetheaorticvalve(Fig.3-12B).Anomalouscoronaryarteries,coronaryaneurysms,andcoronaryfistulascanbediagnosedwithTEE.FIGURE3-9ColorflowimagingfrommidesophagealTEEviewofseveremitralperiprostheticregurgitation.TransgastricViewsFromthemidesophagealviews,onecanstraightentheprobeandadvancetheprobeintothestomach.Withthetransducertipinthefundusofthestomach(about40to45cmfromtheincisors)andthetransducerarrayat0to10degrees,ashort-axisviewoftheLVandrightventricle(RV)isseen(Fig.3-13A).Frequently,somedegreeofanteflexionisrequiredinthispositiontomaintainadequatecontactwiththestomachwall.Furtheranteflexion(orwithdrawal)createsabasalshort-axisviewoftheleftventricle,andretroflexion(oradvancement)createsanapicalshort-axisviewoftheleftventricle.Similartothemidesophagealviews,atwochamberviewiscreatedwithatransducerangleof90to110degrees(Fig.3-13B)andalong-axisviewiscreatedwithatransducerangleofapproximately120to140degrees(Fig.3-13C).Fromaleftventriculartwochamberview,rightward(clockwise)rotationofthetransducerwillcreateatricuspidinflowview(Fig.3-13D).Fromthislongaxisview,decreasingthetransducerangleto0to20degreesresultsinashortaxisviewofthetricuspidvalve.Thetricuspidvalveisfrequentlybestvisualizedfromashallowtransgastricordeepesophagealwindow.FIGURE3-10Pulmonaryveins.Left-sidedpulmonaryveinsaretypicallyviewedina“Y”configurationatatransducerangleof90to110degrees(A)andright-sidedpulmonaryveinsaretypicallyviewedatatransducerangleof45to60degrees(B).Colorflowimagingoftheleft-sidedPV(C)andright-sidedPV(D).Pleasenotethethreedifferentright-sidedPVs.LLPV,leftlower(inferior)pulmonaryvein;LUPV,leftupper(superior)pulmonaryvein;RLPV,rightlower(inferior)pulmonaryvein;RUPV,rightupper(superior)pulmonaryvein.00:00/00:00Video3-10CAVEATSTEEhasimprovedthevisualizationnotonlyofcardiovascularstructurespreviouslyseenwithTTEbutstructuresthatwerenotwellappreciatedwithTTE.UnderstandingunfamiliarbutnormalstructureshelpstominimizemisinterpretationofTEEfindings.PreviouslyunrecognizednormalstructuresseenwithTEEarethemostfrequentreasonsformisinterpretation.ThemostfrequentlymisinterpretedTEEimagesareshowninFigure3-14.Alargehiatalhernia,pneumopericardium,oramechanicalvalveprosthesismayinterferewithimagingtheheartwithTEE.FIGURE3-11BicavalTEEview.IVC;inferiorvenacava;SVC;superiorvenacava.3DTransesophagealEchocardiography:BasicConceptsandClinicalApplicationsIntroductionofthematrixarraytransducerintoclinicalpracticehasallowedforacquisitionof3Dvolumetricechocardiographicdatasets.3DTEEisincreasinglyutilizedduringroutineclinicalpracticetoassesscomplexcardiacanatomyandpathology,toevaluatecandidacyforstructuralheartprocedures,toguideagrowinglistoftranscatheterheartprocedures,andforechocardiographicquantitation.FIGURE3-12A:Transverseviewabovetheaorticvalveshowingtheleftmain(largearrow)coronaryarteryanditsbifurcationintothecircumflex(Cx)andleftanteriordescending(LAD)coronaryarteries.B:Long-axisviewoftheaorta(Ao)showingtheostiumoftherightcoronaryarteryinapex-downformat(arrow).(SeeChapter7fortransesophagealimagingofabnormalcoronaryarteries.)LA,leftatrium;RV,rightventricle;SVC,superiorvenacava;VS,ventricularseptum.FIGURE3-13Transgastricviewsoftheleftandrightventricle.A:Amidventricularshort-axisviewisshownwithatransducerangleof0to20degrees.Increasingthetransducerangleto90to110degreesproducesatransgastrictwo-chamberview(B)andfurtherincreasingtheangleto120to140degreesproducesatransgastriclongaxisview(C).D:Rotationofthetransducershafttotheright(clockwise)anddecreasingtheangleto90to110degreesallowsvisualizationofthetransgastricrightventricularinflowview.AV,aorticvalve;LA,leftatrium;LV,leftventricle;RA,rightatrium;RV,rightventricle.FIGURE3-14Frequentlyencounterednormalvariantswithtransesophagealechocardiography.Aprominenteustachianvalve(A,arrow)isfrequentlyseenatthejunctionoftheinferiorvenacava(IVC)andrightatrium(RA)inthebicavalview.Theeustachianvalveisaremnantofthefetalvalveoftheinferiorvenacava,whichfunctionstofacilitateright-to-leftshuntingduringfetaldevelopment.AChiarinetwork(B,arrows)isanotherstructurefrequentlyseenatthejunctionoftheIVCandRA.Thisstructureischaracterizedbymultiplethin,filamentous,andhighlymobileprojectionsarisingfromtheeustachianorthebesianvalves(arrows).Prominentlipomatoushypertrophyoftheatrialseptum(C,arrows)iscommonlyencounteredandcanbemistakenforanintracardiacmassortumor.Lipomatoushypertrophyoftheatrialseptumtypicallysparesthefossaovalis,resultingina“dumbbell”appearanceoftheatrialseptum(C).Thewarfarinridge,or“Q-tip,”isanormalstructure(D,arrows)thatseparatestheleftsuperiorpulmonaryvein(LSPV)fromtheleftatrialappendage(LAA).Particularlyearlyintheexperiencewithtransesophagealechocardiography,thiswasoccasionallymistakenforanintracardiacmassorthrombus.Aprominentcristaterminalis(E,arrows)canalsobemistakenforarightatrialmass,oftenseenarisingneartheconfluenceoftherightatriumwithsuperiorvenacavaorinferiorvenacava(E,leftpanel).However,rotationofthetransducershafttotheright(E,rightpanel)createsanoff-axisview,whichconfirmsthatthisisacontinuousridgeextendingfromthesuperiorvenacavatotheinferiorvenacava,whichischaracteristicofthecristaterminalis.PanelFisabasalshort-axisviewshowingseveralsofttissuemasses(arrow)inaspacebetweentheleftatrium(LA)andaorta(Ao).Thespaceisthetransversesinus.ThesofttissuemassesareeitherfibrinorfatmaterialinpericardialeffusionorthetipoftheLAappendage.Ao,aorta;IVC,inferiorvenacava;LA,leftatrium;LAA,leftatrialappendage;LSPV,leftsuperiorpulmonaryvein;RA,rightatrium;RVO,rightventricularoutflowtract.00:00/00:00Video3-14A00:00/00:00Video3-14B00:00/00:00Video3-14CCurrentlyavailable3Dtransesophagealechocardiographicsystems,comparedto2Dimagingmodes,arelimitedinspatialandtemporalresolution.Incontrastto2Dechocardiographicimagingmodesthatacquireplanarimagesoftheheart,3Dimagingsystemsacquirepyramidal-shapedvolumetricdatasetsconsistingofinformationintheaxial,lateral,andelevationdimensions(Fig.3-15).Spatialresolutionofcurrent3Dechocardiographicsystemsisapproximately0.5mmintheaxialdimension.Resolutioninthelateralandelevationdimensionsistypically2to3mmbutvarieswithimagingdepth,withnear-fieldresolutionbeingbetterthanfar-fieldresolution.Acquireddatasetsarethencroppedasnecessarytovisualizeanatomyofinterestoranalyzedtoobtainquantitativemeasurements.Increasingly,systemsareutilizingautomatedorsemiautomatedtechniquestoimprovetheefficiency,accuracy,andreproducibilityofquantitative3Danalysis.FIGURE3-15Three-dimensionaltransesophagealechocardiographyusingamatrixarraytransducer.Thematrixarraytransducerfacilitatesacquisitionofthreedimensional,pyramidal-shapedvolumetricdatasets.Thethreedimensionsintheacquiredvolumearedenotedasaxial,lateral,andelevationdimensions.Currentlyutilized3Dechocardiographicimagingmodesincludesingle-beat(realtime)andmultibeat(ECG-gated)acquisitions.Single-beatacquisitionshavetheadvantageofshowingcardiacstructuresinrealtime,butcomparedto2Dimagingmodes,theyarelimitedbyrelativelylowtemporalresolution(lowvolumerates).Limitedvolumeratesof3Dimagingcanbeovercomebydecreasingthespatialresolution,whichsacrificesthe“crispness”oftheimageforbettervolumerates(Fig.3-16).Alternatively,somemachineshavethecapabilitytoacquireECG-gatedmultibeatacquisitions,whichimprovevolumeratewithoutcompromisingimagequality(Fig.3-17).Multibeatacquisitionstypicallyrequireabreath-holdandaregularcardiacrhythmtoavoidstitchartifact.TheadditionofcolorDopplernotonlyprovides3Dvisualizationofbloodflowinthecontextofthesurface-rendered3Dimagebutalsofurtherlimitstemporalresolution.3DcolorDopplerimagingishelpfultopreciselylocateregurgitantlesions,differentiatedropoutartifactfromatruedefect,andthedatasetscanbeusedforquantitativeanalysisofregurgitantlesions.Manyoftheimagingartifactsencounteredin2Dechocardiographyarealsoencounteredin3Dechocardiography,but3Dechocardiographyalsohasfrequentlyencounteredartifactswhichareunique(Fig.3-18).Stitchartifact,mentionedpreviously,iscommonlyencounteredinthemultibeatacquisitionimagingmodewheneverthereismovementoftheheartinrelationshiptothetransducerduringtheacquisition.Thiscommonlyoccursastheresultofanirregularheartrhythmorrespiratorymotionandappearsasstraightlineswithintheacquiredvolumecorrespondingtoeachwedge-shapedsubvolume.Asecondcommonlyencounteredartifactin3Dechocardiographyisdropoutartifact.Acousticshadowingcanresultintissuedropoutandcangivethefalseimpressionofatissuedefectwhenoneisnottrulypresent.Dropoutartifactfrequentlyoccursinsituationswheretherearestructuresthatcausesignificantacousticshadowing,suchasprostheticvalvesorbulkycalcification.Dropoutartifactcanalsooccurwhenattemptingtoimagethinstructures,particularlyiftheyareatapoorinsonationangle(e.g.,paralleltotheultrasoundbeam).TheadditionofcolorDopplerimagingcanbeemployedtointerrogateforbloodflowthroughtheapparentdefecttohelpdifferentiatedropoutartifactfromatruedefect.Thereareseveralimportantprinciplesthatwillfacilitateacquisitionofhighquality3Ddatasets.Giventhesomewhatlimitedspatialandtemporalresolutionofcurrent3Dimaging,structuresofinterestshouldbeimagedinthenear-fieldwheneverpossibletooptimizeresolution.Gainlevelsshouldtypicallybeinthemidrange;ifgainsaretoohigh,thiscandegradeimagequalityandcausenoiseartifact,andifgainsaretoolow,thiscancausedropoutartifact.Biplane-guidedimageacquisitioncanalsobeemployedtooptimizevolumesizeto1)ensurethatallstructuresofinterestarewithinthe3Dvolumeand2)tomorepreciselyreducethevolumesizetooptimizespatialandtemporalresolution.3DTEEisparticularlysuitedforevaluationofcomplexmitralvalveanatomygiventhecloseproximityofthemitralvalvetothemidesophagealimagingwindow.While2Dechocardiographyprovidesageneralunderstandingofthemitralvalveanatomy,3Dechocardiographyprovidesamorecomprehensiveunderstandingofmitralvalvepathologyand3Dspatialrelationships.Thisinformationisoftencriticalforthepreproceduralassessmentandguidanceofproceduressuchastranscatheteredge-to-edgemitralvalverepair(Fig.3-19).3Dechocardiographyhasalsoshownutilityforcharacterizationofmitralprosthesisparavalvularregurgitationandguidanceoftranscatheterparavalvularleakclosureprocedures(Fig.3-20).Additionally,3Dvolumetricdatasetscanbemanipulatedusingmultiplanarreconstructiontoobtainanumberofquantitativemeasurements.3Dechocardiographicmeasurementsofmitralvalvestenoticorificearea(Fig.3-21),mitralvalveregurgitantorificearea(Fig.3-22),aorticannulusdimensions(Fig.3-23),andLAappendagedimensions(Fig.3-24)havealreadybeenvalidatedincomparisontoreferencetechniques(23–26).Itislikelythatthefutureapplicationsof3Dechocardiographywillgrowasthetechnologycontinuallyimproves.FIGURE3-16Spatialresolutioninthree-dimensionalechocardiography.Thisillustrationrepresentsasurface-renderedimageofthemitralvalveusingalowscanlinedensity,seenintheleftpanel,versusahigherscanlinedensity,seenintherightpanel.Thespatialordetailresolutionofathreedimensional,surface-renderedimageisdefinedbytheultrasoundscanlinedensity,whichisdirectlyrelatedtonumberof2Dsectorsinthevolumeofinterestandnumberofultrasoundlinesina2Dsector.Scanlinedensitycanbereduced(leftpanel)toimprovetemporalresolution,butthisisattheexpenseofspatialresolutionorthe“crispness”oftheimage.Ahigherscanlinedensity(rightpanel)producesamorecrispimage,butthisisattheexpenseoftemporalresolution,whichisoftenlimitedwithcurrentgenerationthree-dimensionalechocardiographicsystems.FIGURE3-17ECG-gatedmultibeatacquisition.Onemethodtoovercomethelimitedspatialandtemporalresolutionofcurrentlyavailablethree-dimensionalechocardiographicsystemsistoperformanECG-gatedmultibeatacquisition.Inthisimagingmode,multiplewedge-shapedsubvolumesarecapturedduringeachcardiaccycleandarethen“stitched”togethertoformthefullvolumedataset.Advantagesofthisimagingmodeincludeimprovedspatialandtemporalresolutionwiththeabilitytoacquirelargerdatasets.Notethatthe3Dvolumerateinmultibeatacquisitionisdeterminedbythetimeneededtoacquireasubvolume.FIGURE3-183Dtransesophagealechocardiographicimagingartifacts.AnECGgated,multibeatacquisitionprovidesimprovedspatialandtemporalresolutionbutintroducespotentialforstitchartifact.Whentheimagedcardiacstructuremovesinrelationshiptotheultrasoundtransducerduringacquisition,stitchartifactisproduced.Despitecarefulattentiontominimizeprobemovementandduringheldpatientrespiration,subtlestitchartifactisobservedoverthemitralvalveasstraightlinesmarkingtheedgesofthewedge-shapedsubvolumes(A,arrows).Dropoutartifactcanalsobeobservedwhenimagingthinstructures,particularlywhenthetissueliesatapoorinsonationangle(e.g.,perpendiculartotheultrasoundbeam)whichfurtherreducesreflectionofultrasoundwaves.Forthesereasons,dropoutartifactisrelativelycommonwhenimaginganormalaorticvalvefromthemidesophagealimagingwindow(B,asterisks).FIGURE3-193DTEEformitralvalveassessment.Allmitralleafletscallopscanbeexaminedwithathorough,multiplane2DTEEexam.Thelong-axis,zoomedviewofthemitralvalvetypicallydisplaystheA2andP2scallops(A,arrows).InpanelA,bileafletmitralvalveprolapseinvolvingA2andP2isshown.2DcolorDopplerimaging(B)revealsacomplexjetofmitralregurgitationwithasmallanteriorlydirectedjet(B,singlearrow)andalargerposteriorlydirectedjet(B,doublearrows).PanelCshowsanenfaceviewofthemitralvalvefromtheperspectiveoftheleftatrium,the“surgeon’sview.”ThisviewdemonstratesthatthemitralvalveprolapseisnotconfinedtoA2-P2butinsteadinvolvestheentiremedialportionoftheanteriorandposteriorleafletscallops(C,arrows).Mitralannularcalcificationisalsoappreciatedinthelateralportionofthemitralannulus(C,asterisk).3DcolorDopplerimagingconfirmsthelargerposteriorlydirectedjet(D,doublearrows)occursatA2-P2butalsoextendsasabroad,continuousjettothemedialcommissure.Thesmalleranteriorlydirectedjetseenonthe2DimagingisconfinedprimarilytotheA2-P2region(D,singlearrow).3DTEEoffersincrementalinformationbeyondthatobtainedby2DTEE,whichcanbehelpfulinplanningbothsurgicalandtranscathetermitralvalverepair.AV,aorticvalve;LA,leftatrium;LAA,leftatrialappendage;LV,leftventricle.FIGURE3-203DTEEformitralparavalvularregurgitation.2DTEEwithcolorDopplerdemonstratesalargeanterolateraljetofparavalvularregurgitation(A,asterisk)adjacenttotheleftatrialappendage(LAA)andasecondposterolateraljetofparavalvularregurgitation(B,arrow).C:3DTEEwithcolorDopplerimagingprovidesmorepreciselocalizationandvisualizationofthecircumferentialextentoftheanterolateral(asterisk)andposterolateral(arrow)paravalvularregurgitantjets.D:Live3DTEEcanbeusedforproceduralguidancetoassistwithcannulationanddeploymentofpercutaneousclosureofmitralparavalvularregurgitation.PanelDshows2plugs(arrows)deployedintheposterolateralparavalvularjetandtheguidecatheter(asterisk)crossingtheatrialseptumingoodpositiontocannulatetheanterolateraldefectadjacenttotheleftatrialappendage(LAA).Ao,aorta;LA,leftatrium;LAA,leftatrialappendage;LV,leftventricle.00:00/00:00Video3-20A00:00/00:00Video3-20B00:00/00:00Video3-20CFIGURE3-21Mitralvalveareaby3Dplanimetry.3Dechocardiographyvolumetricdatasetswithmultiplanarreconstructionallowforalignmentofthemitralstenoticorificeintwoorthogonalplanes(panelsAandB).Byaligningwiththetipofthemitralleaflets,ashort-axisviewofthestenoticorificeisproducedinpanelC.Thisallowsfordirectplanimetryofthestenoticorificeinshortaxis(C,asterisk).SimultaneousdisplayofthetomographicplanesandtheirspatialrelationshipsareshowninpanelD.LA,leftatrium;LV,leftventricle.FIGURE3-223DcolorDopplerplanimetryofthemitralregurgitationvenacontractaarea.3DcolorDopplerdatasetsareutilizedtoperformdirectplanimetryofthemitralregurgitationvenacontractaarea.Orthogonalplanesareusedtoalignwiththevenacontracta(AandB),resultinginashort-axisviewofthevenacontractabycolorDoppler(C,arrow).Asurfaced-rendered3DimageofthemitralvalveandsystolicflowconvergencefromtheperspectiveoftheleftventricleisshowninpanelD.Notetheellipticalshapeofthevenacontractainthispatientwithsecondarymitralregurgitation.LA,leftatrium;LV,leftventricle.FIGURE3-23Aorticannularmeasurementby3DTEE.A3Dechocardiographicdatasetoftheaorticannulusisusedtoalignwiththeaorticannulus(Ann)intwoorthogonalviews(panelsAandC).Properalignmentwiththenadiroftheaorticleafletsresultsinashort-axisviewoftheaorticannulusinpanelB,whichallowsfordirectplanimetryandmeasurementoftheminimumandmaximumdiameters.SimultaneousdisplayofthetomographicplanesandtheirspatialrelationshipsareshowninpanelD.Ann,aorticannulus;Ao,aorta;LA,leftatrium;LVOT,leftventricularoutflowtract.FIGURE3-24Leftatrialappendageostialmeasurementby3DTEE.Giventhecloseproximityoftheleftatrialappendagetothemidesophagealwindow,high-resolution3Dechocardiographicimagescanbeobtained(D).3Ddatasetscanbealignedwiththeostiumoftheleftatrialappendageintwoorthogonalviews(AandB)toproduceashort-axisviewoftheostiumforplanimetry(C).Asurfaced-rendered3DimageoftheostiumoftheLAappendagefromtheperspectiveoftheLAisshowninpanelD.REFERENCES1.SewardJB,KhandheriaBK,OhJK,etal.Transesophagealechocardiography:Technique,anatomiccorrelations,implementation,andclinicalapplications.MayoClinProc,1988;63:649–680.2.ErbelR,EngberdingR,DanielW,etal.Echocardiographyindiagnosisofaorticdissection.Lancet,1989;1:457–461.3.FreemanWK,SchaffHV,KhandheriaBK,etal.Intraoperativeevaluationofmitralvalveregurgitationandrepairbytransesophagealechocardiography:incidenceandsignificanceofsystolicanteriormotion.JAmCollCardiol,1992;20:599–609.4.RandolphGR,HaglerDJ,ConnollyHM,etal.Intraoperativetransesophagealechocardiographyduringsurgeryforcongenitalheartdefects.JThoracCardiovascSurg,2002;124:1176–1182.5.KleinAL,GrimmRA,MurrayRD,etal.Useoftransesophagealechocardiographytoguidecardioversioninpatientswithatrialfibrillation.NEnglJMed,2001;344:1411–1420.6.DanielLB,GriggLE,WeiselRD,etal.Comparisonoftransthoracicandtransesophagealassessmentofprostheticvalvedysfunction.Echocardiography,1990;7:83–95.7.deBruijnSF,AgemaWR,LammersGJ,etal.Transesophagealechocardiographyissuperiortotransthoracicechocardiographyinmanagementofpatientsofanyagewithtransientischemicattackorstroke.Stroke,2006;37:2531–2534.8.EltzschigHK,RosenbergerP,LofflerM,etal.Impactofintraoperativetransesophagealechocardiographyonsurgicaldecisionsin12,566patientsundergoingcardiacsurgery.AnnThoracSurg,2008;85:845–852.9.WietSP,PearceWH,McCarthyWJ,etal.Utilityoftransesophagealechocardiographyinthediagnosisofdiseaseofthethoracicaorta.JVascSurg,1994;20:613–620.10.ShapiroSM,YoungE,DeGuzmanS,etal.Transesophagealechocardiographyindiagnosisofinfectiveendocarditis.Chest,1994;105:377–382.11.PascoeRD,OhJK,WarnesCA,etal.Diagnosisofsinusvenosusatrialseptaldefectwithtransesophagealechocardiography.Circulation,1996;94:1049–1055.12.KaralisDG,BansalRC,HauckAJ,etal.Transesophagealechocardiographicrecognitionofsubaorticcomplicationsinaorticvalveendocarditis.Clinicalandsurgicalimplications.Circulation,1992;86:353–362.13.AgmonY,KhandheriaBK,MeissnerI,etal.Relationofcoronaryarterydiseaseandcerebrovasculardiseasewithatherosclerosisofthethoracicaortainthegeneralpopulation.AmJCardiol,2002;89:262–267.14.KleinAL,MurrayRD,BeckerER,etal.Economicanalysisofatransesophagealechocardiographyguidedapproachtocardioversionofpatientswithatrialfibrillation:TheACUTEeconomicdataateightweeks.JAmCollCardiol,2004;43:1217–1224.15.MasJL,ArquizanC,LamyC,etal.Recurrentcerebrovasculareventsassociatedwithpatentforamenovale,atrialseptalaneurysm,orboth.NEnglJMed,2001;345:1740–1746.16.SohnDW,ShinGJ,OhJK,etal.Roleoftransesophagealechocardiographyinhemodynamicallyunstablepatients.MayoClinProc,1995;70:925–931.17.BrinkmanWT,ShanewiseJS,ClementsSD,etal.Transesophagealechocardiography:Notaninnocuousprocedure.AnnThoracSurg,2001;72:1725–1726.18.NovaroGM,AronowHD,MilitelloMA,etal.Benzocaine-inducedmethemoglobinemia:experiencefromahigh-volumetransesophagealechocardiographylaboratory.JAmSocEchocardiogr,2003;16:170–175.19.MinJK,SpencerKT,FurlongKT,etal.Clinicalfeaturesofcomplicationsfromtransesophagealechocardiography:Asingle-centercaseseriesof10,000consecutiveexaminations.JAmSocEchocardiogr,2005;18:925–929.20.HahnRT,AbrahamT,AdamsMS,etal.Guidelinesforperformingacomprehensivetransesophagealechocardiographicexamination:RecommendationsfromtheAmericanSocietyofEchocardiographyandtheSocietyofCardiovascularAnesthesiologists.JAmSocEchocardiogr,2013;26:921–964.21.SharmaSC,RamaPR,MillerGL,etal.Systemicabsorptionandtoxicityfromtopicallyadministeredlidocaineduringtransesophagealechocardiography.JAmSocEchocardiogr,1996;9:710–711.22.SewardJB,KhandheriaBK,FreemanWK,etal.Multiplanetransesophagealechocardiography:Imageorientation,examinationtechnique,anatomiccorrelations,andclinicalapplications.MayoClinProc,1993;68:523–551.23.NuciforaG,FaletraFF,RegoliF,etal.Evaluationoftheleftatrialappendagewithreal-time3dimensionaltransesophagealechocardiography:Implicationsforcatheter-basedleftatrialappendageclosure.CircCardiovascImaging,2011;4:514–523.24.LittleSH,PiratB,KumarR,etal.Three-dimensionalcolorDopplerechocardiographyfordirectmeasurementofvenacontractaareainmitralregurgitation:Invitrovalidationandclinicalexperience.JACCCardiovascImaging,2008;1:695–704.25.SchlosshanD,AggarwalG,MathurG,etal.Real-time3Dtransesophagealechocardiographyfortheevaluationofrheumaticmitralstenosis.JACCCardiovascImaging,2011;4:580–588.26.KhaliqueOK,KodaliSK,ParadisJM,etal.Aorticannularsizingusinganovel3-dimensionalechocardiographicmethod:Useandcomparisonwithcardiaccomputedtomography.CircCardiovascImaging,2014;7:155–163.CHAPTER4DopplerEchocardiographyandColorFlowImaging:ComprehensiveNoninvasiveHemodynamicAssessmentJaeK.OhandWilliamR.MirandaHemodynamicassessmentisanintegralpartofcardiacevaluationfordiagnosis,monitoring,andmanagementdecisionprocess.Dopplerechocardiographyandcolorflowimaging,whichprovidereliablehemodynamicassessment,notonlyhavereplacedmanyinvasivehemodynamicproceduresbutcanalsobesuperiortothemundercertaincircumstances(1).Beforediscussingallmajorclinicalimpactsofechocardiographichemodynamicassessmentinourdailypractice,itisimportanttorecognizepioneerswhohaveadvancedapuretheoryof“Dopplereffect”bytheAustrianphysicistChristianDopplerin1842toastandardhemodynamictool.TheNorwegiancardiologistLivHatleandhercolleaguesshouldbecreditedasthemostresponsibleindividualsformakingDopplerechocardiographyaclinicaltool(2)andtheJapanesecardiacsurgeon,Dr.Omoto,andhisteamforcolorflowimaging(3).TherearenumerouscliniciansandscientistswhosubsequentlyvalidatedandappliedtheirobservationsinDopplerechocardiographyandcolorflowimaging(4–9).Consequently,wecannowcalculateandassessstrokevolume(SV),cardiacoutput,intracardiacpressures,pressuregradients,regurgitantvolume,effectiveorificearea,vascularresistance,andintracardiacbloodflowpatternreliably.Becausemanytherapeuticdecisions,includingsurgicalandtranscatheterinterventions,arebasedonechocardiography,itiscriticalthateveryoneinvolvedinthecareofcardiacpatientsaswellasinperformingechocardiographyunderstandhowahemodynamicassessmentisperformedbyechocardiographyandknowitsadvantagesandpotentiallimitations.DOPPLERECHOCARDIOGRAPHYDopplerechocardiographymeasuresvelocitiesofbloodflowandmyocardialtissueaccordingtotheDopplereffect(2).TheDopplereffectdescribesthephenomenonthatsoundfrequencyincreasesasasoundsourcemovestowardtheobserver(orthetransducer)anddecreasesasthesourcemovesawayfromtheobserver.Intheheart,themovingtargetcanbetheredbloodcellormyocardialtissuesuchasmitralannulus.Whenanultrasoundbeamwithknownfrequency(fo)isreflectedbytheredbloodcells(RBSs)ormyocardialtissue,thefrequencyofthereflectedultrasoundwaves(fr)increaseswhentheredbloodcellsorthemyocardiumismovingtowardthesourceofultrasound.Conversely,thefrequencyofreflectedultrasoundwavesdecreaseswhentheredbloodcellsaremovingawayfromthesource.Thechangeinfrequencybetweenthetransmittedsoundandthereflectedsoundistermedthefrequencyshift(Δf)ortheDopplershift(fr−fo).TheDopplershiftdependsonthetransmittedfrequency(fo),thevelocityofthemovingtarget(v),andtheangle(θ)betweentheultrasoundbeamandthedirectionofthemovingtargetasexpressedintheDopplerequation(Fig.4-1):wherecisthespeedofsoundinblood(1,540m/s).Iftheangleθis0degree(i.e.,theultrasoundbeamisparallelwiththedirectionofbloodflow),themaximalfrequencyshiftismeasuredbecausethecosineof0degreeis1.Notethatasangleθincreases,thecorrespondingcosinebecomesprogressivelylessthan1,andthiswillresultinunderestimationoftheDopplershift(Δf)andhencepeakvelocity,becausepeakflowvelocityisderivedfromΔfbyrearrangingtheDopplerequation:BloodflowvelocitiesdeterminedbytheDopplerechocardiographyareused,inturn,toderivevarioushemodynamicdata(seebelow).Dopplerechocardiographyisperformedeitherbythepulsedwaveorbythecontinuouswave(Fig.4-2).Inthepulsedwavemode,asingleultrasoundcrystalsendstoandreceivessoundbeamsfromasinglelocationbyplacingthe“samplevolume.”Thecrystalemitsashortburstofultrasoundatacertainfrequency(pulserepetitionfrequency).Theultrasoundisreflectedfrommovingredbloodcellsandisreceivedbythesamecrystal.Therefore,themaximalfrequencyshiftthatcanbedeterminedtoonedirectionbypulsedwaveDopplerisone-halfthepulserepetitionfrequency;thisiscalledtheNyquistfrequency.IfthefrequencyshiftishigherthantheNyquistfrequency,aliasingoccurs;thatis,theDopplerspectrumorrecordingiscutoffattheNyquistfrequency,andtheremainingfrequencyshift(translatedintovelocity)isrecordedonthetoporbottomoftheoppositeside.Inotherwords,whenthehighestvelocityapulsedmodecanmeasureis130cm/sinonedirection,anyvelocityhigherthanthealiasingvelocityisrecordedfromthetop(whentheactualflowmovesawayfromthetransducer)orfromthebottom(whentheactualflowmovestowardthetransducer)oftherecordingscreenorpaper(Fig.4-3).Thepulsedrepetitionfrequencyvariesinverselywiththedepthofthesamplevolume:theshallowerthelocationofthesamplevolume,thehigherthepulsedrepetitionfrequencyandtheNyquistfrequency(orDopplervelocity).FIGURE4-1DiagramoftheDopplereffect(seetextforexplanation).RBCs,redbloodcells.FIGURE4-2DrawingofpulsedwaveandcontinuouswaveDopplerechocardiographyfromtheapicalview(seetextforexplanation).Blackrectangleinleftindicatesthesamplevolumeintheleftventricularoutflowtract.Ao,aorta;LA,leftatrium;LV,leftventricle;RA,rightatrium;RV,rightventricle.Inthecontinuouswavemode,thetransducerhastwocrystals:onetosendandtheothertoreceivethereflectedwavescontinuously.Therefore,themaximalfrequencyshiftthatcanberecordedisnotlimitedbythepulsedrepetitionfrequencyortheNyquistphenomenon.UnlikepulsedwaveDoppler,continuouswaveDopplermeasuresallthefrequencyshifts(i.e.,velocities)presentalongitsbeampath;hence,itisusedtodetectandrecordthehighestflowvelocityaccessible.Occasionally,recordingofahigh-velocityflowisthefirstcluetoanunsuspectedlesionwithinthepathofacontinuouswaveDopplerbeam.ContinuouswaveDopplerisusuallyperformedwitheitheranimage-guidedoranonimagingtransducer.Asmallnonimagingtransducer(PEDOF:PulsedEchoDopplerFlowvelocitymeter)(10)ismoresuitableforinterrogationofahighvelocityjetfrommultiplewindows,includingareasbetweentheribs.PEDOFprobewasdesignedtorecordcontinuouswaveDopplervelocities.Animageguidedcontinuouswaveexaminationismorehelpfulwhenthedirectionofbloodflowiseccentricortheamountofdesiredbloodflowistrivial.ThecharacteristicsandclinicalapplicationsoftheseDopplermodalitiesaresummarizedinTable4-1.Table4-2liststhemeanandrangeofmaximalvelocitiesrecordedfromnormalsubjectsbyDopplerechocardiography.EchocardiographersshouldbefamiliarwiththecharacteristicconfigurationandtimingofnormalandabnormalDopplersignals(Figs.4-4and4-5).FIGURE4-3RepresentativepulsedwaveandcontinuouswaveDopplerspectrafroma60-year-oldpatientwhohasaorticstenosis(AS)andaorticregurgitation(AR).(Top)ThepulsedwaveDopplersamplevolumeisplacedattheleftventricularoutflowtract(LVOT),andtheDopplerspectrumshowssystolicLVOTvelocityandturbulentdiastolicsignalofaorticregurgitation(AR)recordedonbothsidesofthebaseline.AlthoughARflowistowardthetransducer,aliasing(velocitywraparoundfromthebottomoftherecording)occursbecauseofthehighvelocity(4–5m/s).(Bottom)ContinuouswaveDopplerdetectsflowvelocitiesallalongitsbeam(LVOTandaorticvalve)andisabletorecordhighvelocity.Systolicflowawayfromthetransducer(spectrumbelowthebaseline)representsflowacrossAS,anddiastolicflowisfromAR.PeakASvelocityacrossthestenoticvalvevaries(5.0–5.5m/s)becauseofatrialfibrillation.PULSEDWAVEDOPPLERECHOCARDIOGRAPHYPulsedwaveDopplerechocardiographymeasuresbloodpoolortissuevelocitiesatadesignatedlocationbyplacingthesamplevolumewhosesizecanbechanged.Followinglocationsprovideclinicallyusefulhemodynamicdata(11).TABLE4-1ComparisonofPulsedWaveandContinuousWaveDopplerPulsedWaveContinuousWaveMeasuresspecificbloodflowvelocitybyplacingMeasuresbloodflowvelocitiesalongtheaxisofthe“samplevolume”attheregionofinteresttheentireultrasoundbeam(rangeambiguity)Maximalmeasureablevelocitywithoutaliasingisusually15cm/sinyounghealthysubjects)thanthatfromthemedialannulus(normally>10cm/s)(Fig.51).Themostrecent2016guidelines(4)recommendstheuseofaveragede’velocityfrombothannuli,buttheuseofe’fromonelocationisacceptableinmostclinicalsituations.SituationswhereanaveragedvalueispreferredareLBBB(Fig.5-3),pacemakerrhythm,pulmonaryhypertension,andseptalorlateralmyocardialinfarction.Regionalwallmotionabnormalitiesorvalvularsurgeryinvolvingthemitralannulusmayaffectmitralannulusvelocities.Alocalizeddiseaseprocess,suchaslateralmyocardialinfarction,canresultinmitralannulusvelocitiesbeingloweratthelateralannulusthanattheseptalannulus.Inourlaboratory,mitralannulusvelocitiesareusuallyobtainedfrombothlocations,butthemediale’velocityisusedfortheassessmentofLVfillingpressure(seeChapter8).Comparisonofe’fromthemedialandlateralannulusisalsohelpfulinthediagnosisofconstrictivepericarditis(seeChapter12).Latediastolicvelocity(a′)ofthemitralannulusatthetimeofatrialcontractionincreasesduringearlydiastolicdysfunction,asisthecaseforthemitralinflowAwave,butdecreasesasatrialfunctiondeteriorates.a’hasbeencorrelatedwithleftatrial(LA)function(11).EvaluationofRegionalandGlobalSystolicFunctionTheextentofsystolicmovementofthemitralannuluscorrelateswithLVsystolicfunctionandstrokevolume.Normally,thesystolicvelocity(S′)ofthemitralannulusismorethan6cm/s.AlthoughTDIofthemitralannulusreflectstheglobalsystolicanddiastolicfunctionoftheLV,segmentalorregionalfunctioncanbeassessedbyperformingTDIofvariousLVsegmentsbyplacingthesamplevolume(2–5mm)intheregionofinterest.Thesizeofthesamplevolumedependsonthelocationandintensityofthesignalandisusuallybetween2and5mm.Furtherclinicalexperiencewiththisvariablewilldetermineifs’canreplaceothermorecommonlyusedsystolicvariables.However,itappearsthatthes’isdependentontheextentofdiastolicmotionoftherespectiveannulusanditisalsoincreasedinpatientswithconstrictivepericarditis,whichhasdecreasedstrokevolumedespiteincreasedmediale’velocity.CardiacTimeIntervalsCardiactimeintervalsareregulatedbythemechanicsandfunctionsofthemyocytes;therefore,theseintervalscouldbeutilizedasameasureofcardiacfunction.TDIiswellsuitedfordeterminingthetimingofmyocardialevents.Theprecisetimingoftheseeventsishelpfulinunderstandingthemechanismofmyocardialrelaxationandmyocardialsuctionduringearlydiastolicfilling(12–14).Inhealthyhearts,inwhichefficientmyocardialrelaxationisusedeffectivelytosuckbloodfromtheLAintotheLVduringearlydiastole,thetimeofonsetofmitralinflow(E)coincideswiththatofmyocardialearlydiastolicmotion(relaxation)ofthemitralannulus(e’).However,inheartswithdelayedmyocardialrelaxationandincreasedfillingpressure,diastolicfilling(onsetoftheEwave)dependsmoreontheincreasedLApressureandoccursearlierthantheonsetoftheearlydiastolicmotionofthemitralannulus(e’).Therefore,thetimeintervalbetweentheonsetofmitralEvelocityandthatofthemitralannulusdiastolicmotion(e’)increases,andthisincreasedintervalhasbeenproposedasanothervariabletoassessLVfillingpressures(seeChapter8).FIGURE5-2TissueDopplerrecordingsoftheseptalmitralannulusfromnormal(A),borderlinenormalintheelderly(B),andmarkedlyabnormalwithreducedrelaxationincardiomyopathy(C).FIGURE5-3TissueDopplerrecordingof(A)theseptalormedialmitralannuluswithe’of5cm/s(arrow)and(B)lateralmitralannuluswithe’of9cm/s(arrow)fromapatientwithleftbundlebranchblock.Alimitationofmeasuringcardiactimeintervalsbypulsed-waveDopplerechocardiographyisnonsimultaneitybecausedifferentcardiaccyclesareusuallyneededtomeasurevariousintervals,whichinturnareusedtogether.Onesolutionistohavethecapabilityofobtainingmultiplepulsed-waveDopplerrecordingssimultaneously.AnothercreativemeanstomeasurecardiacintervalsfromasinglecardiaccycleistousetissueDoppleranatomiccolorM-modefromtheanteriormitralleaflet(15)(Fig.5-4).Fromthistechnique,isovolumiccontractiontime,isovolumicrelaxationtime,andLVejectiontimecanbemeasuredreliablyfromasinglecardiaccycle.EvaluationofThickWallsTheventricularwallsbecomethickforseveralreasonsincludingLVhypertrophy,hypertrophiccardiomyopathy(HCM),hypertension,infiltrativecardiomyopathy,restrictivecardiomyopathy,andathleticheart.Theseentitiescanusuallybedifferentiatedonthebasisofclinicalandlaboratoryfindings,butdifferentiatingthemcanoccasionallybedifficult.TheevaluationofmyocardialrelaxationwithTDIisabletodistinguishbetweenathickathleticnormalheartandotherdiseaseconditions(16).Mitralannulusmotioniswellpreservedintheathleticheartbecausemyocardialrelaxationispreserved,butitisreducedinallotherconditionsthathaveimpairedrelaxation.Strainshouldalsobenormalormildlyabnormal(17,18)inathlete’sheartwithincreasedwallthickness.However,strainisreducedinallformsofmyopathieswithcharacteristicpatternsinHCM,cardiacamyloidosis,Fabrydisease,andsarcoidosis(seebelow).FIGURE5-4TissueDoppleranatomicM-modeoftheanteriormitralleafletwasobtainedfromcolortissueDopplerimaging.Mitralmotionrecordedthetimingofmitralvalveclosure(MVC),aorticvalveopening(AVO),aorticvalveclosure(AVC),andmitralvalveopening(MVO).E/e’asaprognostictoolBecauseE/e’canestimateLVfillingpressuresandpatientswithincreasedfillingpressureshavehigherratesofmorbidityandmortality,itisexpectedthatahighE/e’predictsapooroutcome(19).E/e’wascorrelatedwithsimultaneouslyobtainedintra-atrialLApressure(20).LApressurewashigherthan15mmHgmostoftimeswhenE/e’greaterthan15.AnE/e’morethan15wasfoundtobeassociatedwithincreasedmortalityofpatientswithacutemyocardialinfarction(21).Byitself,e’isalsoagoodpredictorforclinicaloutcome.Invariousclinicalconditions,patientswhohaveane’lessthan5cm/saremorelikelytohaveamuchhighermortalitythanthosewithane’morethan5cm/s(19).E/e’isalsoelevatedinasubsetofasymptomaticstageAindividuals.WhetherthesepatientscanbereclassifiedasstageBheartfailureneedsfurtherclinicalinvestigations(22).Inasymptomaticpatients,increasedE/e’wasfoundtobeoneofmajorpredictorsfordevelopingheartfailure(23).2-DIMENSIONALSPECKLETRACKINGECHOCARDIOGRAPHY(2D-STE)Inthelastdecade,myocardialstrain(S)andstrainrate(SR)imaginghasbecomeausefultoolforthequantitativeassessmentofregionalandglobalmyocardialmechanics(19,24,25).Strainrateistherateofchangeinlengthcalculatedasthedifferencebetweentwovelocitiesnormalizedtothedistancebetweenthem;itisexpressedasseconds−1(19–22)(Fig.5-5A).Byconvention,shorteningisrepresentedbynegativevaluesandlengtheningbypositivevaluesforbothstrainandstrainrate:Strainrate=(Va−Vb)/dwhereVa−Vbistheinstantaneousvelocitydifferenceatpointsaandb,anddisthedistancebetweenthetwopoints.Strain(ε)isthepercentagechangeinlengthduringmyocardialcontractionandrelaxationandisexpressedasapercentage(Fig.5-5B):whereL0istheoriginallength,L1isthefinallength,andΔListhechangeinlength.Straincanbederivedechocardiographicallybythefollowing:wherestrain(ε)isthesumoftheinstantaneousstrainrate(SR)valuesfromstartingtime(t0)toendingtime(t).FIGURE5-5A:Diagramfortheconceptofstrainimaging.Anarrowsectorwidthwasusedtoattempttoalignthedirectionofmyocardialmovementinparallelwiththedirectionoftheultrasoundbeam.(Seetextfordetailsabouthowtoobtainstrainandstrainrate.)B:SchematicdiagramofLVattheenddiastolewiththemyocardiallengthofLo(arrowintheleft)andattheendsystolewiththemyocardiallengthofL(arrowintheright).00:00/00:00Video5-5WhilestrainimagingbasedontissueDopplerisangledependent,2D-STEisanangle-independentmethodandhasbecomethetechniqueofchoiceforstrainimaging.Itutilizesframe-by-frametrackingwithinaregionofinterestofsmallpatternsofechodensitiesinthegray-scaleBmodeimages.Theseuniquemyocardialfeaturesarecalled“kernels,”“markers,”or“speckles”(26,27)(Fig.5-6).Animportantadvantageof2D-STEisthesemiautomatedandquantitativeapproachbywhichregionalandglobalventricularfunctionismeasuredfromtwo-dimensionalimages.Globalsystolicstrain(S)refersitselftotheaveragestrainvaluefromallindividualsegmentscontainedinadesignateddirection(longitudinal,circumferential,orradialdirection)(Fig.5-7)withitspeakvaluealmostalwayscoincidingwithaorticvalveclosureinnormallycontractingheart(Fig.5-6).Strainrateistherateofchangeinlengthcalculatedasthedifferencebetweentwovelocitiesnormalizedtothedistancebetweenthem,expressedasseconds−1.Itcanprovidemoreinformationforthewholecardiaccycleandcanbecalculatedfromdifferentportionsofcardiaccyclesuchassystolic(SRs)andearly(SRe)andlatediastolic(SRa)(Fig.5-8).Anotheradvantageisthatitreflectsregionalfunctionandisindependentoftranslationalmotion(28),beingthereforeabletoprovidelocalinformationonthedeformationandrateofdeformationofaparticularsegment,segmentsorterritories(i.e.,LAD,RCA,etc.).FIGURE5-6A:Apicallong-axisviewshowingmultiple(white)specklesintheanteriorventricularseptum(VS)andinferolateral(posterior)wall.Thesespecklesorkernelsarethewhitedotsseeninsidethemyocardialwall(left).Theregionofinterestwasdrawn,anddifferentcolorsrepresentseparatewallsegments.Thewidthofthestrainimagingcanbeadjusted(right).B:LVstrainvaluesaredisplayedbycolormapwithbluecolordemonstratinglengtheningandredcolorrepresentingshortening.However,thecolormapcanbedifferentforanothervendor(seebelow).Whitecolordemonstratesthelackofcontraction.Thestraincurvealongthetime-lineanditsvalueaswellasdirectionisdisplayed(upperright),andcolorM-modeofthestrainisalsoshown(lowerright).Inferolateralsegmentsatthebasalandthemidleveldohavebluecolorindicatingbulging.Apicalandmidventricularseptalstrainisbestpreservedinthisexamplefromcardiacamyloidosis.C:Anexampleofnormalstrainwithacompositebull’s-eyedisplay(lowerright).Notethatpeaksystoliclongitudinalstrainofallwallsoccursatthetimeofaorticvalveclosure(AC).Sincestrainvalueindicatestheamountofdeformation,systoliclongitudinalandcircumferentialstrainnormallyhasnegativevalueswithshorteningofmyocardiumintherespectivedirection,whileradialstrainispositivewithlengtheningofmyocardiuminthatdirection.FIGURE5-7Typesofstrain.00:00/00:00Video5-7A00:00/00:00Video5-7BForlongitudinalorcircumferentialstrain,ifthefinallength(L)is10andtheinitiallengthis8,thedeformationwouldbe−20%;forradialstrain,ifLis15andLois10,thedeformationwouldbe50%(5-5B).FIGURE5-8A:Strainimaging(left)andstrainrateimaging(right)ofapatientwithpostsystolicshortening(arrow).Postsystolicshorteningwaspresentinthemidseptum(aquacolor).AVC,aorticvalveclosure;AVO,aorticvalveopening.B:Exampleoflongitudinalstrainratecurvesfromtheendocardialsurface.NotethefirstpeakthatisdefinedasSRsorsystolicstrainrate.SecondpeakSReisearlydiastolicstrainrateandSRaislatediastolicstrainrate.Thestraincurveresemblespulsed-waveDopplerrecordingfromLVOT(systole)andmitralinflow(diastole)velocities.Invivoandinvitromodelsoftwo-dimensional(2D)SandSRhavedemonstratedgoodcorrelationandagreementwithtaggedmagneticresonanceimaging(MRI)andsonomicrometryaswellaswiththepreviousTDI-derivedtechnique(29).Ingeneralfortheeverydayuseinabusyechocardiographylaboratory,frameratesbetween40and80frames/swouldnotaltertoomuchthepeakstrainvalueinanindividualwithanormalheartrate(30).SandSRmeasurementby2D-STEcanbeperformedwithvendor-specificandvendorindependentsoftwarewithdifferentmyocardialtrackingalgorithms.Recognizingthat2D-STEisanimportanttoolintheevaluationofregionalandglobalLVandRVmyocardialmechanics,ataskforcefromtheEACVI/ASE/Industry(28)hasinvitedrepresentativestoparticipateinaconcertedefforttostandardizedeformationimagingacrossallexistingplatformsandreduceintervendorvariabilityforGLS.Atotalof1,302echocardiogramswereperformedwithsevenultrasoundsystemson62volunteers,andendocardialGLSwasmeasuredbyninedifferentsoftwares(7fromtherespectivemanufacturecompanyand2fromtheindependentsoftwareonlyvendors).Absolutevaluesaredetailedinthenormalvaluessectionbelow.Therewasmoderateintervendorvariability,andtheinter-andintraobserverreproducibilitywassuperiororequaltothatofLVEF.AfinalrecommendationofthetaskforcewasthatGLSmeasurementsshouldbeinterpretedrelativetopreviousexamandhopefullyperformedinthesamemachineorsoftware.Imageacquisitionisveryimportant,andspecialemphasisonthedepthandsectorsizeisveryimportantaswellasavoidinganyforeshorteningoftheapex.Thesizeoftheregionofinterestshouldbeatleast85%to90%ofthemyocardiumthickness,andsincetrackingoccursinsystoleanddiastole,aspaceofatleast5mmshouldbeleftbetweentheepicardiumindiastoleandthesectorwidth(Fig.5-6A).RVandLVFunctionTheLVmyocardiumisastructurethathastwogeometrichelicalfiberswiththesubendocardialinaright-handedhelicalconfigurationwhilethesubepicardialhasaleft-handedpattern.Thefibersaremainlylongitudinallyorientedinthesubendocardiumwithfibersinthemidwallinthecircumferentialdirectionandtoanobliqueorientationinthesubepicardium(31,32).Theselayerscontractsimultaneouslyfrombasetoapexwithclockwiserotationatthebaseandcounterclockwiseintheapex(whenviewedfromtheapex)withagreaterdeformationattheendocardiallevelandlessattheepicardium(Fig.5-9)(33).Ontheotherhand,theRVhasamoredefinedanatomycomposedmainlyoflongitudinalfibersatthebaseandmid,sharingtheapexwiththeLV,withlessdegreeofradialfibers(34)(Fig.5-10).Instrainimagesanalyzed,vendor-specificsoftwareutilizesitsownimagesorDICOM(DigitalImagingandCommunicationsinMedicine)formattoderivestrainandstrainrate.SomearespecificfortheUSmachineandsomeareindependentwiththeonlyrequirementofhavingimportedimagesinDICOMformat.FIGURE5-9Exampleofdifferentregionsofinterestanddifferentplacementoftheregionsofinterest.A:Full-thicknessregionofinterest.Noticethevaluesandaverageof−19.9andtheregionofinterestisatleast90%ofthefullmyocardialthickness.B:Regionofinterestmainlylocalizedintheendo-andmidmyocardium.Notethevaluesaresimilartothepreviousfigure,whichareendocardialvaluesoflongitudinaldeformation.C:Midmyocardialregionofinterest.NotethevaluesthatarestillsimilartoAandB.D:Epicardialregionofinterest.Notethelowervaluesduetothelowerdeformationofthesefibers.Longitudinal,circumferential,andradialstrainandstrainratecanbederivedaswellastwist,untwist,andtorsion.Inclinicalpractice,however,longitudinalstrainismostwellvalidatedanditcanbemeasuredeasilyandreliableduringaroutineechocardiographyexamination,withgoodinter-andintraobservervariabilityoncetheteamhashadanadequaterun-inphasetopracticeontheacquisitionandanalysismethodology.Thedegreeoftorsionandtwistingcanbeassessedbystrainimaging,butitistime-consumingwithnosignificantclinicalapplication.FIGURE5-10StrainimagingofnormalRVwithcolordisplay(left),straincurve(rightupper),andcolorM-mode(rightlower).NormalValuesItisveryimportantwhenyouarestarting2D-STEtohaveadedicatedteamforitsimplementation.Togainconfidenceanddecreaseinter-andintraobservervariability,itissuggestedtoanalyzenormalpatientsanddefinenormalvaluesinyourlaboratoryfirst.NormalvaluesforthemorefrequentusedsoftwareareshowninTable5-1(30).Ingeneral,thesubendocardialstrainvaluesarehigherthantheepicardial(35)aswellasanapextobasegradientwithhighervaluesattheapex;someplatformshavedemonstrateddifferentvaluesformenandwomenandchangesinSReasageprogresses.TheASE/EACVIindustrytaskforcedefinedabsolutevaluesforGLSwitharangefrom−18.0%to−21.5%,withanabsolutedifferencebetweenvendorsof3.7%strainunits(36).ValuesforthemostcommonsoftwarearedisplayedinTable5-1.TABLE5-1NormalValuesofStrainandSystolicStrainRate(SandSRs)withStandardDeviation(SD)forDifferentVendorsRadialLongitudinalLongitudinalCircumferentialCircumferentialRadialStrain%Strain%Strain%SRssecSRssec−1SRssec−1−1GE−18.6±5.1−22.9±4.454.6±12.6VVI−17.3±2.5−1.0±0.1−21.9±4.0−1.3±0.344.8±21.72.3±0.7TOMTEC(54FPS)−18.4±2.0−0.99±0.1−22.1±4.1−1.4±0.343.9±12.12.2±0.6Toshiba−19.9±2.4−30.5±3.851.4±8.0Philips−18.9±2.5−22.2±3.236.3±8.2SRs,systolicstrainrate.RVFunctionTherightventricleisaneasierstructuretoevaluateforstrainsinceitiscomposedmainlyoflongitudinalfibersinitsendocardium(70%)andcircumferentialepicardialfibersinitsfreewallatthebaseandmidlevel,andsharestheapicalfiberswiththeLV(34).Ingeneral,thelongitudinalstrainisobtainedmostfrequentlyfromtheapical4-chamberview.Thestrainvaluesfromtheseptumandthefreewallcanbeaveraged,butthelatteristhemostfrequentlyutilizedforexpressingRVsystolicfunction(Fig.5-10).ItsapplicationinRVfunctionisdiscussedinmoredetailinChapter9.Pulmonaryarterialhypertension(PAH):Rightventricularfreewalllongitudinalstrain(RVFWS)hasbeencorrelatedwithpulmonarypressures,pulmonaryvascularresistance,survival,andresponsetotherapy(37,38).Inagroupofpatientswhowereseriallyfollowed,therewasameanincreaseinRVsystolicstrainafterPAHtreatment.ThegroupofpatientswhohadworseningofRVfreewallstraindespitetreatmenttolessthan−12.5%hadpoorersurvival(39).InthosepatientswithRVdysfunction,ifLVdeformationisimpaireddespitenormalLVejectionfraction,avalueofGLSlessthan−13%hasbeenassociatedwithincreasedmortalityover2years(40).Insomeclinicalscenarios,itisimportanttodifferentiatebetweenacutepulmonaryemboliandchronicPAH.Inastudy(41)of45patientswithacutePE(withCTscanwithin48hoftheechocardiogram)comparedto45patientswithmildPAH,RVFWShadabetterdiscriminationpowerthandidtheMcConnellsign;acutoffvalueof−17.9%hadasensitivityof87.5%andaspecificityof62.5%COPD:Earlyinthenaturalhistoryofthedisease,thereisanasymptomaticincreaseinpulmonarypressures;probablyduetoanincreaseinarterialstiffness,(42)subtlechangesinfreeRVwallstrainandsystolicstrainratehavebeendescribed(37,42).LVFunctionAbnormalitiesinLVstraininthethreedomainsofcontractilityhavebeenshowntobepresentinpatientsdespitenormalejectionfraction,andthishasbeenmorerobustforlongitudinalstrainsincetheendocardiallayeristheoneinitiallycompromised.Inthepyramidalapproachofpatientswithpredispositionforheartfailure,2DSTEplaysapivotalroleinthosepatientsinstageA(presenceofriskfactors,i.e.,hypertension,coronaryarterydisease)andstageB(structuralchangesasdecreasedEForabnormaltissueDopplervelocitiesorstrain/strainratevalues,withoutsymptoms)forearlyidentificationofanunderlyingcardiomyopathy.Inasymptomaticpatientswithnonischemiccardiomyopathyolderthan65years(23)instageBHF(SBHF),GLSwasastrongpredictoroftheoccurrenceofHFwithanincrementalvaluetootherparametersafterafollow-upperiodofupto18months.Thishasalsobeenvalidatedinacommunitysetting(43)andinALamyloidpatientsinSBHFwhohaveanincreasedmortalitywhencomparedtothoseinstageA(44).InstageCorD,(45)whensymptomsofHFarepresent,arecentmeta-analysis(45)ofover5,000patientsshowedthatGLSwassuperiortoLVEFinpredictingmajoradversecardiacevents.HypertrophicCardiomyopathyIngeneral,longitudinalsystolicstrainvaluesarelowerintheregionswherethemyocardiumisthicker(Fig.5-11).Straincurvemorphologycanalsobeabnormal,insomecasesshowingelongationorlengtheninginsteadofshortening(Fig.5-11B)withpositivecurvesorstrainvaluesintheseregions.FibrosisinHCMismainlylimitedtotheseptumatthebasalandmidregions(46,47).LongitudinalstrainwasfoundtocorrelatewellwiththepresenceoffibrosisderivedfromdelayedenhancementquantifiablebycardiacMRIinagroupofover200patients(48).Differentcharacteristicbull’s-eyepatternscanalsoprovideinsightinthetypeofHCM(Fig.5-11AandB).RVstrainofthefreewallisalsofrequentlyabnormalinpatientswithHCM(49).Athlete’sheartRemodelingoftheathlete’sheartdependsonwhetherthetypeofexerciseisisometricorisotonic(17).OneofthekeyclinicalpointsisitsdifferentiationfromHCM.DopplertissuevelocitiesandstrainvaluesaresignificantlylowerinHCMpatientsthaninathletes.Usually,systolicstrainvaluesarenormalinallthreedirections(18,50).AllcomponentsofstrainweresignificantlyreducedinptswithHCM(GLS:−8.1±3.8%;P<0.001)whencomparedwithathletes(−15.2±3.6%)andcontrolsubjects(−16.0±2.8%).Ingeneral,therewasnosignificantdifferencebetweenthestrainvaluesoftheathletesandthecontrolgroup,butinsomeofthesegments,thestrainvaluesofthecontrolgroupweresignificantlyhigherthanthoseintheathletes.AcutoffvalueofGLSlessthan−10%forthediagnosisofpathologichypertrophy(HCM)resultedinasensitivityof80.0%andaspecificityof95.0%(40).Usingsegmentalstraininprofessionalsoccerplayers,acutoffvalueofinferoseptallongitudinalstrainoflessthan−11%hadasensitivityof60%andspecificityof96%toidentifypathologicalhypertrophy.AmyloidHeartDisease:(SeeChapter18)Primarylight-chain(AL)amyloidosisisaplasmacelldyscrasiacharacterizedbytheextracellulardepositionofinsolublefibrillaryamyloidproteinsinmultipleorgans.Intheheart,itischaracterizedbyamyloiddepositionintheinterstitium,resultinginmarkedincreaseofwallthickness;ingeneral,theseby-productsinfiltratetheheartfromendocardiumtoepicardiumandfrombasetoapex,thisregionoftheheartbeingthelasttobecompromised(apicalsparing).Classically,amyloidheartdiseasehasbeendefinedasanincreaseinwallthicknessgreaterthan12mm(septumplusposteriorwall/2),butotherentitiescouldalsoincreasemyocardialthickness(51).Ideally,atechniquethatcanaidinthediagnosiswhentheLVEFisstillnormalwouldbeofgreatclinicalhelp.InpatientswithALamyloidosiswithorwithoutincreasedLVwallthickness,basalsegmentsareaffectedfirst,followedbymidsegmentswitharelativeapicalsparing(44)(Fig.5-12).InpatientswithconfirmedTTRandsenileamyloidwithnormalejectionfraction,longitudinalstrainwillalsofollowthispatternandatalaterstageespeciallywhenEFislessthan40%circumferentialandradialstrainwillbecompromised.LongitudinalRVandLVvaluesinpatientswithALamyloidheartdiseaseandnormalEFhavebeencorrelatedwithsurvival(52–54).LVlongitudinalstrainvalueslessthan−15.5%andRVlessthan−12%weresignificantlyassociatedwith5-yearmortality(44,54).Strainimagingmaybemoresensitiveinmonitoringtheresponsetotherapy(seeChapter18).FIGURE5-11Hypertrophiccardiomyopathy.A:2-Dparasternalshort-axisviewatthebasallevel(left)andstrainimaging(right)ofapatientwithhypertrophiccardiomyopathy.Thereisasymmetricseptalhypertrophy(*)andmarkedreductionoflongitudinalstrainintheanteroseptalandanteriorwallatthebase.B:2-Dapical4chamberview(left)andcharacteristicstraindisplayinbull’s-eyeformat(right)inapicalhypertrophiccardiomyopathy.Noteasmallapicalstrainwithbluecolorindicatinglengtheningoftheregioninsteadofthickening.Theregionappearstobedyskineticin2-Dapicalviews.00:00/00:00Video5-11A00:00/00:00Video5-11B00:00/00:00Video5-11C00:00/00:00Video5-11DMyocarditisClassically,myocarditisinvolvesallthelayersofthemyocardium.Therefore,alldomainsofcontractility(longitudinal,circumferential,andradial)wouldbecompromised(55).Inpatientswithsuspicionofcoronaryarterydisease,strainisofparticularhelpsinceonlythelongitudinaldomainwouldbeaffectedintheformergroupwhencomparedtomyocarditispatients(56).Strainvaluescanalsopredictcomplicationsinthisdiseasegroup.FIGURE5-12AmyloidosisStrainimagingbull’s-eyedisplayincardiacamyloidosis2yearsapart.Strainisreducedfirstinthebasalportion(left),progressedtothemidlevelsparingtheapex(right).CoronaryArteryDisease/IschemiaInpatientswithestablishedCAD,differentresearchershavedescribedadecreaseinlongitudinalstrain,butprobablythemostimportantfindingispostsystolicshortening(PSS),whichhasbeendemonstratedtooccurbeforeischemiaandalsoasamarkerofviability(Figs.5-8Aand5-13)(57,58).Intheacutechestpainsetting,straincouldbeofvalueasitcandetectchangesinlongitudinalstrainwhentheEKGandcardiacenzymesarenotdiagnosticandcouldalsosuggesttheaffectedcoronaryterritory(59)(Fig.5-14).InwomenwithdocumentedsignificantCADandnormalEF,thepresenceoflongitudinaldyssynchrony(>45msSDofthetimetopeak)hadasensitivityof97%andsensitivityof89%(AUC0.96)foritsdiagnosis(60).Diastolicdysfunctionisoneoftheearliestmanifestationsofmyocardialischemiaandstaysforupto24hoursafterresolutionofwallmotionabnormality(Fig.5-15).MayoClinichasperformedaprospectivestudytoassesstheclinicalroleofdiastolicstrainimagingin300patients.Normaldiastolicstraininpatientswithchestpainsyndromewasfoundtohaveanexcellentnegativepredictivevalue,butitspositivepredictivevaluewaslow(Sasakietal.Unpublished).We,however,confirmedthatdiastolicstrainofischemicregionremainsabnormalfor24hoursafterthedisappearanceofchestpain(Fig.5-16).Ifweareabletoassessdiastolicstrainonlineduringtheechocardiographyexamination,itmayhaveanincrementaldiagnosticandtriageroleforthepatientswithchestpainsyndromeintheofficeandtheemergencydepartment.FIGURE5-13Normalcircumferentialstrainvaluesontheleft;noticethatallcurvesarepeakingatthesametime.Ontheright,thedifferentpeaksthatthestraincurveshavewithpostsystolicshorteningandevidenceofdyssynchrony.HypertensionIngeneral,longitudinalstrainvaluesareclosetonormalinpatientswithnormalgeometry,whileinthosewithconcentricoreccentrichypertrophyandconcentricremodeling,GLSandGLSRsarelower(61).ThesevaluesarestillabovetheonesdefinedforHCM.FIGURE5-14A:Bull’s-eyestraindisplayfroma73-year-oldmalewhopresentedwithheartfailureandtroponinelevation.TherewerenoECGabnormalities,and2-Dechocardiographyshowednoobviousregionalwallmotionabnormalities.Therewasmoderatereductioninlongitudinalstrainvaluesinmostareasexceptforthebasalinferiorwall.Coronaryangiographydemonstratedseverethree-vesselcoronaryarterydiseasewith50%leftmain,90%leftanteriordescending,100%obtusemarginal,and90%midrightcoronaryarterystenosis.B:Bull’s-eyestraindisplayfromapatientwithischemiccardiomyopathywithleftventricularejectionfractionof30%.Anteriorandanteroseptalsegmentsareakinetic,andinferior/lateralwallmotionispreserved.00:00/00:00Video5-14A00:00/00:00Video5-14B00:00/00:00Video5-14C00:00/00:00Video5-14D00:00/00:00Video5-14EChronicRenalFailureSometimesitisdifficulttodifferentiatethisentityfromamyloidheartdiseasesincebothhavethesamesparklingappearancetothemyocardiumandthereisincreasedwallthickness.Ingeneral,valuesoflongitudinalstrainarelowerthannormalbutnotascompromisedforthesamedegreeofwallthicknessasamyloidheartdisease.FIGURE5-15Transversestraincurvedemonstratingnormal(a)andabnormal(b)diastolicradialstrain.A:Whendiastolicfunctionisnormal,normalmyocardialrelaxationlengthensthemyocardiumrapidlysothattheradialstainisquicklyreduced(fromAtoB)duringtheinitialone-thirdofthediastole.B:Whendiastolicfunctionisabnormal,relaxationisdelayedandtheextentofmyocardiallengtheningisreducedduringtheinitialone-thirdofthediastole.00:00/00:00Video5-15CardiacTransplantAftercardiacallografttransplantation,thereismyocardialthickeningduetothegraft

versushostreaction.Deformationvariablesinnormaltransplantedheartsarelowerthannormalduetothisreason,(62)especiallylongitudinalstrain.Inpatientswithseverevasculopathy(ISHLT3),strainisalsocompromisedwhencomparedwithnormaltransplantedhearts(63).ThisalsoholdstrueforsevererejectionwithnormalEFwerebesides(64).FIGURE5-16Transversestrainimagingfromanapicallong-axisviewdemonstratingdelayeddiastolicrelaxationattheapicalseptal(AS)indicatedbyanarrowandapicallateral(AL)segments(left).Thestraincurve(right)demonstrateddelayeddiastolicrelaxationinthoseareas(arrow),whileothersegmentsdorelaxrapidlyduringtheinitialone-thirdofthediastole.Thiswasobtained24hoursafterterminationofchestpaininanelderlymalewithnormalECGandtroponinwhenpresentedtotheemergencydepartment.Subsequentcoronaryangiographyshowedacriticalmid–leftanteriordescendingcoronaryarterystenosis.00:00/00:00Video5-16Cardio-OncologyInthepasttwodecades,therehasbeenaremarkableimprovementinthemanagementofcancerpatients.Thecombinationofearlydiagnosis,useofnoveltargetedtherapies,newchemotherapeuticagents,protonandphotonradiationtherapy,andbettersurgicaltechniqueshavedecreasedcancer-relatedmortalitysignificantly,andthereforethenumberofsurvivorshasincreased.Patientswithbreastcancerandlymphomaarethemaingroupwhoaspartoftheirregimenreceiveanthracyclines,+/−trastuzumab,andradiotherapyandaccountforupto20%ofcardiactoxicityandlaterinlifethedevelopmentofcongestiveheartfailure.ItiscrucialinthesepatientstofollowtheimagingalgorithmssuggestedbytheexpertconsensusstatementfromtheAmericanSocietyofEchocardiography(ASE)andtheEuropeanAssociationofCardiovascularimaging(EACVI)(65).Thedocumentdefinedcardiotoxicityasadropofgreaterthan10%inEFtoavaluelessthan53%(65)andincorporatestheevaluationofstrainaspartoftheprotocol(Fig.5-17),sincemanystudieshaveshownthatachangeinstrainorstrainratevaluescanpredictafuturedropinEF.Weandothershaveshownthatadecreaseoflongitudinal,circumferential,orradialstrainorcircumferentialorlongitudinalearlydiastolicstrainrateeitheraloneorincombinationcanpredictcardiotoxicitybeforeadropinejectionfractionoccurs(53,66,67).Theexpertconsensuspaper(65)alsorecommendedtheuseofstraintomonitorpatientsreceivingchemotherapeuticagentswithpotentialtypeIcardiotoxicity(mainlyanthracyclines)ortypeII(trastuzumabmorefrequentlyusedinthiscategory),anditissuggestedthatadropofgreaterthan15%oranabsoluteof3%decreaseinGLSbelowthelowerlimitofnormalbasedonvendor,gender,andagecouldsuggestearlymyocardialdysfunction.Amajorimpactofstrainimaginginthispatientpopulationisintheearlydetectionofcardiotoxicityandalsodevelopingastrategytopreventorminimizingthecardiotoxicity.Severalclinicaltrialsareunderwayusingstrainimagingthisarea.FIGURE5-17Bull’s-eyedisplaysoflongitudinalstrainfromthesamepatientatbaseline(left)andafterchemotherapy(right)whiletherewasnoobviousreductioninLVejectionfractionorappearanceofregionalwallmotionabnormality.00:00/00:00Video5-17A00:00/00:00Video5-17BCardiorheumatologyPatientswithrheumatoidarthritishaveahigherincidenceofCADatanearlierage;longitudinalstraincouldbeabnormalinthispatientpopulation,suggestingtotheclinicianthatadditionaltestingshouldbeperformedtoruleoutthiscondition(68).ValvularHeartDiseaseIngeneral,itsbiggestvaluewouldbeinpatientswithseverestenosisorinsufficiencywhentheconventionalclinicalorechocardiographiccriteriaarestillmisleading.AorticStenosisInthisgroupofpatients,thereiscollagendepositionwithdevelopmentoffibrosisfromsubendocardiumtoepicardium;therefore,dependingontheextensionoffibrosis,thedomainsofcontractilitywillbecompromised.ThedetectionofsystolicmyocardialdysfunctionwhenthegradientorthevelocityishighinanasymptomaticpatientwithnormalEFcouldbeofaidintheclinicaldecisionalgorithm(69).Asubsetofpatientsinwhomitcouldbemorebeneficialisthosewithlow-flowlow-gradientnormalEFaorticstenosiswherethevalvuloarterialimpedanceishighwithreducedlongitudinalsystolicfunction,(70)againalsoasatoolforbetterclinicaldecision-making.AorticInsufficiencyVolumeoverloadassociatedwiththisdiseasecanalterthemechanicsoftheLV,therebyleadingtoabnormaldeformation.(71)LVandRVstrainhashelpedinasymptomaticpatientsinthetriageforsurgery(72).Formitralstenosis,mitralinsufficiency,andtricuspidinsufficiency,algorithmsarebeingdevelopedtoincorporatestraininthesevalvulardiseases.EvaluationofDyssynchronyandPositiveresponsetoCRTThePROSPECTmulticentertrialdidnotshowaverygoodsensitivityandspecificityofmechanicaldyssynchronytopredictCRTresponseusingDopplertissueimagingandtissue-derivedstrain(73).Mechanicaldyssynchronyismeasuredbytimeintervalsbetweenpeakejectionsystolicvelocitiesorpeakstrainofmultiplemyocardialsegments,asdiscussedbelow.Upto4%to6%ofnormalheartscanexperiencesystolicintraventriculardyssynchronymanifestedasabnormalsegmentalcontractionafteraorticvalveclosure.Thissystolicmechanicaldyssynchronycanbedefinedastheuncoordinatedtimingofcontractionindifferentregionsoftheheart.Thatis,myocardialsegmentalcontractionsdonotoccursimultaneously.SystolicdyssynchronyiscommonlymanifestedasprolongationoftheQRSdurationonsurfaceelectrocardiography(ECG),butithasalsobeendemonstratedinpatientswithnormalQRSduration.QRSprolongation(>120milliseconds)hasbeendescribedinone-fourthtoone-halfofpatientswhohaveheartfailure(74).Systolicdyssynchronycanbedividedintointraventricular(withintheLV)andinterventricular(betweentheLVandrightventricle[RV])dyssynchrony.Intraventriculardyssynchronyresultsinafragmentedprofileofineffectivecontraction,withprolongationoftheisovolumiccontractionandrelaxationtimes.Theregional“shifting”ratherthanejectionofbloodfromtheLVworsensregionalwallstressandaggravatesmitralregurgitation.Thesefactors,incombinationwithactivationofneurohormonalandproinflammatorycytokinepathways,acceleratecardiacdilatation,resultinginprogressiveLVdilatationandcardiacremodeling.However,mechanicaldyssynchronypurelybasedonthedifferencebetweensegmentalcontractionsdoesnotincorporatetheviabilityorcontractilityoftheunderlyingmyocardialsegments.Ifthedyssynchronousunderlyingmyocardiumdoesnothavemyocardialviability,correctionofthedyssynchronydoesnotimprovecardiacfunction.Therefore,itiscriticaltoincorporatetheassessmentofviabilitywhenwetrytoidentifythepatientswhocanbenefitfromcardiacresynchronizationtherapy.Interventriculardyssynchrony,especiallyinthepresenceofparadoxicalseptalmotioninsystole,mayadverselyaffectRVfunction,furtherimpedingvenousreturntotheLV.RVdyssynchronyontheotherhandcanalsoaffectLVfunctionbythesamemechanism.AnewmethodtoevaluateLVintraventriculardyssynchronyhasbeentermedLVmechanicaldiscoordinationthatusesradial,longitudinal,circumferentialstrainratecurvesandaveragesthickening(normalsystolicevent)andthinning(abnormaldiscoordination)ofthedifferentsegmentsduringsystoleorejectiontime(75).WhenLVisperfectlycoordinatedmechanically,allsegmentscontractandrelaxalmostsimultaneously(Fig.5-18).TherationaletousemechanicaldiscoordinationmetricstoidentifythepatientswhomostlikelybenefitfromCRTisthatthereisdyssynchronousactivationofthefailingheartwithdiscoordinatedcontractionandrelaxationbetweenearly-andlate-activatedsegments(Fig.5-19)(75,76).Inpatientswithdyssynchronousactivationduetoleftbundlebranchblock,theventricularseptumcontractsfirstduringisovolumiccontraction.Ifotherwallsareviable,theydilateorstretchduringtheisovolumiccontractiontimewhiletheseptumgetsactivated.Duringtheejection,theout-ofphaserelaxation(thinningorstretching)ofearly-activatedsegmentscounteractsthestrokeworkoflate-activatedsegments(thickeningorshortening).Mechanicaldiscoordinationindexmeasurestheoverallinefficiencyoftheheartbycomparingthecounteractingdeformationwiththeamountofcontractiledeformation(Fig.5-18).Inischemiccardiomyopathy,decreasedregionalcontractilityorelasticityinearly-activatedsegmentsduetomyocardialischemiaorscardiminishesthecounteractingforce,andthereforealowvalueofmechanicaldiscoordinationisusuallyobserved.Quantitativemeasurementsofdiscoordinationallowintegrationofallamplitudeinformationwithincriticaltiming(ejectionperiod)intooneindexandthereforeappeartobeusefulinCRT.Thedegreeofmechanicaldis-coordinationcanbeeasilydetectedbycolorMmodeofradialstrainrate(Fig.5-20).Ourstudydemonstratedthatthemechanicaldiscoordinationindexobtainedfromradialstrainatthemidventricularlevelofgreaterthan38%couldpredictreverseremodelingclinicalresponseandmortality(75).AnotherpotentialapplicationofstrainimagingforCRTistoidentifyanoptimallocationforleftheartleadlocation.TheTARGETstudyrandomizedthepatientswithLBBBtoradialstrain–guidedversusroutineunguidedleadplacement(77).Theleftheartleadplacementwasattemptedatthesitewiththelatestactivationhavinggreaterthanabsolutevalueof10%strainvalue.Thespeckledstrain-guidedleadplacementyieldedbetterresponsetoCRTandbetterclinicaloutcome.Nosubsequentstudies,however,havevalidatedthedataintermsofimprovedclinicaloutcome(78).FIGURE5-18Anexampleofnormalradialstrain(left)andstrainrate(right).Thereisnostretchingduringtheejection.00:00/00:00Video5-18A00:00/00:00Video5-18BFIGURE5-19A:Anexampleofdiscoordinationcomputationinaresponder.Tracingsofthestrainandstrainrateofsixventricularsegmentsarepresentedascoloredlines(left).B:Strainratesignalsareseparatedintopositive(thickeningontopinred)andnegative(thinningonbottominblue)signalsandaveragedseparately.Theaveragepositiveandnegativestrainratesignalsarerepresentedasredandbluelines.C:Myocardialthinningandthickeningarerepresentedasblueandredareas,respectively(top).Theradialdiscoordinationindex(RDI)iscalculatedastheratioofmyocardialthinningtothickeningduringejection(bottom).(WithpermissionfromWangCL,PowellBD,RedfieldMM,etal.Leftventriculardiscoordinationindexmeasuredbyspeckletrackingstrainrateimagingpredictsreverseremodellingandsurvivalaftercardiacresynchronizationtherapy.EurJHeartFail,2012;14(5):517–525.PublishedonbehalfoftheEuropeanSocietyofCardiology.Allrightsreserved.©2012theAuthors.)FIGURE5-20ColorM-modeoftheradialstrainrate:aquickwaytoidentifysignificantventriculardiscoordination.Yellow-orangecolorrepresentsthickening,andbluecolorrepresentsthinning.Theareaoccupiedbybluecolorduringtheejectionperiod(fromAVOtoAVC)correlateswiththeamountofdiscoordination.Theorangeareaduringisovolumiccontractionattheseptalsegmentisanalogoustoseptalflash.Left:Theearlyterminationofseptalcontraction(orangecolor)anddiscoordinatedseptalthinning(bluecolor)duringtheejectionperiodcanbeeasilyidentifiedinapatientwithreverseremodelingafterCRT.Right:Nosignificantventriculardiscoordination(i.e.,verylittlebluecolorduringejectionperiod)isshowninapatientwithoutreverseremodelingafterresynchronizationtherapy.AVO,aorticvalveopening;AVC,aorticvalveclosure.(WithpermissionfromWangCL,PowellBD,RedfieldMM,etal.Leftventriculardiscoordinationindexmeasuredbyspeckletrackingstrainrateimagingpredictsreverseremodellingandsurvivalaftercardiacresynchronizationtherapy.EuropeanJournalofHeartFailure,2012;14:517–525.)PredictionofClinicalOutcomeorVentricularArrhythmiaAlthoughLVejectionfractionisastrongpredictorforcardiovascularoutcomewhenitisreduced,asubsetofthepatientswithpreservedLVEFhaveasimilarlypooroutcome.IthasbeenshownthatparticularlyinpatientswithLVEFgreaterthan35%,globallongitudinalstrain(GLS)valuehasanindependentandincrementalprognosticvalue.When428asymptomaticstageBheartfailurepatientswithpreservedejectionfractionwerefollowed,globallongitudinalstrain,LAvolumeindex,LVmass,andE/e’wereindependentpredictorsfornewheartfailure,butgloballongitudinalstrainwasfoundtohavethebestincrementalpredictivevalue(23).Ameta-analysisof5,721subjectsdemonstratedthatGLSisamorepowerfulpredictorthanLVEFofallMACEsandcardiacdeaths.(45).VALIANTtrialalsoshowedthatstrainratewasanindependentprognosticparameterinpatientswithacutemyocardialinfarction(79).GLSisreducedinasymptomaticpatientswithdiabetesmellitus,hypertension,coronaryarterydisease,valvularheartdisease,chemotherapy,orunderlyingcardiomyopathy.FurtherclinicalinvestigationswilldemonstratehowGLSdatacanbeusedtopreventandmanagedevelopmentofheartfailureorothercardiovascularoutcomes.IndicationsforstrainimagingforGLSarewellillustratedbyPotterandMarwick(80)(Fig.5-21).Postsystolicshorteningconsideredtoreflectmyocardialdysfunctioniseasilyevaluatedbystrainimaging.Postsystolicshorteningisdefinedasgreaterthan20%postsystolicindex,whichis[(maximumstrainincardiaccycle_peaksystolicstrain)/(maximumstrainincardiaccycle)].When1296low-riskindividualsingeneralpopulationwerefollowedfor11years,thepresenceofPSSingreaterthanorequaltotwosegmentswasassociatedwithsignificantincreaseintheMACEandcardiacdeath(81).LAand3-DSpeckledLVStrainSpeckledstrainimaginghasbeenappliedtotheleftatriumtodetermineitslongitudinalnegative(contraction)andpositive(filling)aswellasitstotalstrain(Fig.5-22)(82).PreliminarydatasuggestthatLAstrainisusefulinestimatingLVfillingpressure,butitisnotmatureenoughtobeusedclinicallywithoutfurtherinvestigations.Speckledimagingisalsousedfor3-Dstrain.Toobtain3Dstrain,3-Dspeckle-trackingsoftwareisusedtotrackspecklesfrom3-DLVcreatedfromapical-4,apical-2,apicallong-axis,and3short-axisviews.NagataandOtsujietal.reportedthat3-DGLSwasthemostrobustpredictorforfuturecardiaceventsinasymptomaticpatientswithsevereaorticstenosis(83).Thistechniqueneedstobemadeeasier,tobemademorepractical,andrequiresmoreclinicalinvestigations.FIGURE5-21Prognosticandmanagementimplicationsofabnormalstrainmeasurementincommonclinicalscenarios.(AR,aorticregurgitation;AS,aorticstenosis;AVR,aorticvalvereplacement;CAD,coronaryarterydisease;CTRCD,cancertherapeutics–relatedcardiacdysfunction;CV,cardiovascular;DD,diastolicdysfunction;GLS,globallongitudinalstrain;HF,heartfailure;HFpEF,heartfailurewithpreservedejectionfraction;HFrEF,heartfailurewithreducedejectionfraction;HCM,hypertrophiccardiomyopathy;ICA,invasivecoronaryangiography;LV,leftventricular;LVD,leftventriculardysfunction;LVEF,leftventricularejectionfraction;LVH,leftventricularhypertrophy;MR,mitralregurgitation;post-op,postoperative;RWMA,restingwallmotionabnormality;SBHF,stageBheartfailure.)(ReprintedfromMiglioranzaMH,BadanoLP,MihăilăS,etal.PhysiologicDeterminantsofLeftAtrialLongitudinalStrain:ATwo-DimensionalSpeckle-TrackingandThree-DimensionalEchocardiographicStudyinHealthyVolunteers.JAmSocEchocardiogr,2016;29(11):1023–1034.e3.Copyright2016bytheAmericanSocietyofEchocardiography.Withpermission.)FIGURE5-22LALSmeasurementusing2DSTE.ColorcodingofthesixmyocardialsegmentsoftheLAregionofinterestforthemeasurementofLAstrainindedicatedfour-andtwo-chamberviews(AandD,respectively).IndividualLAsegmentLSvaluesindedicatedfour-andtwo-chamberviews(BandE,respectively).AverageLALS/timecurveobtained(whitedottedlines)fromthefour-andthetwo-chamberviewsusingthepeakofthePwaveontheelectrocardiographictracing(yellowdotsandyellowverticallines)asthezero-referencepointforthegenerationofthestraincurves(CandF,respectively).Measurements(double-headedarrows)ofLSneg,LSpos,andLStotareshownforthededicatedfour-chamberview(C).(ReprintedfromPotterE,MarwickTH.AssessmentofLeftVentricularFunctionbyEchocardiography:TheCaseforRoutinelyAddingGlobalLongitudinalStraintoEjectionFraction.JACCCardiovascImaging,2018;11(2Pt1):260–274.Copyright©2018bytheAmericanCollegeofCardiologyFoundation.Withpermission.)REFERENCES1.IsaazK,ThompsonA,EthevenotG,etal.Dopplerechocardiographicmeasurementoflowvelocitymotionoftheleftventricularposteriorwall.AmericanJournalofCardiology,1989;64:66–75.2.McDickenWN,SutherlandGR,MoranCM,etal.ColourDopplervelocityimagingofthemyocardium.UltrasoundinMedicineandBiology,1992;18:651–654.3.SohnDW,ChaiIH,LeeDJ,etal.AssessmentofmitralannulusvelocitybyDopplertissueimagingintheevaluationofleftventriculardiastolicfunction.JournaloftheAmericanCollegeofCardiology,1997;30:474–480.4.NaguehSF,SmisethOA,AppletonCP,etal.Recommendationsfortheevaluationofleftventriculardiastolicfunctionbyechocardiography:AnupdatefromtheAmericanSocietyofEchocardiographyandtheEuropeanAssociationofCardiovascularImaging.JournaloftheAmericanSocietyofEchocardiography,2016;29(4):277–314.5.NaguehSF,SunH,KopelenHA,etal.HemodynamicdeterminantsofthemitralannulusdiastolicvelocitiesbytissueDoppler.JournaloftheAmericanCollegeofCardiology,2001;37:278–285.6.HaJW,OhJK,PellikkaPA,etal.Diastolicstressechocardiography:AnovelnoninvasivediagnostictestfordiastolicdysfunctionusingsupinebicycleexerciseDopplerechocardiography.JournaloftheAmericanSocietyofEchocardiography,2005;18:63–68.7.SohnDW,SongJM,ZoJH,etal.Mitralannulusvelocityintheevaluationofleftventriculardiastolicfunctioninatrialfibrillation.JournaloftheAmericanSocietyofEchocardiography,1999;12:927–931.8.NaguehSF,MiddletonKJ,KopelenHA,etal.Dopplertissueimaging:Anoninvasivetechniqueforevaluationofleftventricularrelaxationandestimationoffillingpressures.JournaloftheAmericanCollegeofCardiology,1997;30:1527–1533.9.OmmenSR,NishimuraRA,AppletonCP,etal.ClinicalutilityofDopplerechocardiographyandtissueDopplerimagingintheestimationofleftventricularfillingpressures:AcomparativesimultaneousDoppler-catheterizationstudy.Circulation,2000;102:1788–1794.10.NaguehSF,MikatiI,KopelenHA,etal.Dopplerestimationofleftventricularfillingpressureinsinustachycardia.Anewapplicationoftissuedopplerimaging.Circulation,1998;98:1644–1650.11.KhankirawatanaB,KhankirawatanaS,PetersonB,etal.PeakatrialsystolicmitralannularvelocitybyDopplertissuereliablypredictsleftatrialsystolicfunction.JournaloftheAmericanSocietyofEchocardiography,2004;17:353–360.12.OhJK,TajikJ.Thereturnofcardiactimeintervals:Thephoenixisrising.JournaloftheAmericanCollegeofCardiology,2003;42:1471–1474.13.HasegawaH,LittleWC,OhnoM,etal.Diastolicmitralannularvelocityduringthedevelopmentofheartfailure.JournaloftheAmericanCollegeofCardiology,2003;41:1590–1597.14.DiwanA,McCullochM,LawrieGM,etal.Dopplerestimationofleftventricularfillingpressuresinpatientswithmitralvalvedisease.Circulation,2005;111:3281–3289.15.KjaergaardJ,HassagerC,OhJK,etal.MeasurementofcardiactimeintervalsbyDopplertissueMmodeimagingoftheanteriormitralleaflet.JournaloftheAmericanSocietyofEchocardiography.2005;18:1058–1065.16.DerumeauxG,MulderP,RichardV,etal.TissueDopplerimagingdifferentiatesphysiologicalfrompathologicalpressure-overloadleftventricularhypertrophyinrats.Circulation,2002;105:1602–1608.17.SimsekZ,HakanTasM,DegirmenciH,etal.Speckletrackingechocardiographicanalysisofleftventricularsystolicanddiastolicfunctionsofyoungeliteathleteswitheccentricandconcentrictypeofcardiacremodeling.Echocardiography,2013;30:1202–1208.18.ButzT,vanBuurenF,MellwigKP,etal.Two-dimensionalstrainanalysisoftheglobalandregionalmyocardialfunctionforthedifferentiationofpathologicandphysiologicleftventricularhypertrophy:Astudyinathletesandinpatientswithhypertrophiccardiomyopathy.InternationalJournalofCardiovascularImaging,2011;27:91–100.19.WangM,YipGW,WangAY,etal.PeakearlydiastolicmitralannulusvelocitybytissueDopplerimagingaddsindependentandincrementalprognosticvalue.JournaloftheAmericanCollegeofCardiology,2003;41:820–826.20.RitzemaJL,RichardsAM,CrozierIG,etal.SerialDopplerechocardiographyandtissueDopplerimaginginthedetectionofelevateddirectlymeasuredleftatrialpressureinambulantsubjectswithchronicheartfailure.JACC:CardiovascularImaging,2011;4:927–934.21.HillisGSMJ,PellikkaPA.NoninvasiveestimationofleftventricularfillingpressurebyE/e′:Apowerfulpredictorofsurvivalfollowingacutemyocardialinfarction.JournaloftheAmericanCollegeofCardiology,2003;41:452A.22.KosmalaW,JellisCL,MarwickTH.Exerciselimitationassociatedwithasymptomaticleftventricularimpairment:AnalogywithstageBheartfailure.JournaloftheAmericanCollegeofCardiology,2015;65:257–266.23.YangH,NegishiK,WangY,etal.Echocardiographicscreeningfornon-ischaemicstageBheartfailureinthecommunity.EuropeanJournalofHeartFailure,2016;18:1331–1339.24.LangelandS,D’HoogeJ,WoutersPF,etal.Experimentalvalidationofanewultrasoundmethodforthesimultaneousassessmentofradialandlongitudinalmyocardialdeformationindependentofinsonationangle.Circulation,2005;112:2157–2162.25.CollierP,PhelanD,KleinA.ATestincontext:Myocardialstrainmeasuredbyspeckle-rrackingechocardiography.JournaloftheAmericanCollegeofCardiology,2017;69:1043–1056.26.Mor-AviV,LangRM,BadanoLP,etal.Currentandevolvingechocardiographictechniquesforthequantitativeevaluationofcardiacmechanics:ASE/EAEconsensusstatementonmethodologyandindicationsendorsedbytheJapaneseSocietyofEchocardiography.JournaloftheAmericanSocietyofEchocardiography,2011;24:277–313.27.LeitmanM,LysyanskyP,SidenkoS,etal.Two-dimensionalstrain—anovelsoftwareforreal-timequantitativeechocardiographicassessmentofmyocardialfunction.JournaloftheAmericanSocietyofEchocardiography,2004;17:1021–1029.28.VoigtJU,PedrizzettiG,LysyanskyP,etal.Definitionsforacommonstandardfor2Dspeckletrackingechocardiography:ConsensusdocumentoftheEACVI/ASE/IndustryTaskForcetostandardizedeformationimaging.EuropeanHeartJournalCardiovascularImaging,2015;16:1–11.29.AmundsenBH,Helle-ValleT,EdvardsenT,etal.Noninvasivemyocardialstrainmeasurementbyspeckletrackingechocardiography:Validationagainstsonomicrometryandtaggedmagneticresonanceimaging.JournaloftheAmericanCollegeofCardiology,2006;47:789–793.30.FineNM,ShahAA,HanIY,etal.Leftandrightventricularstrainandstrainratemeasurementinnormaladultsusingvelocityvectorimaging:Anassessmentofreferencevaluesandintersystemagreement.InternationalJournalofCardiovascularImaging,2013;29:571–580.31.CovellJW.Tissuestructureandventricularwallmechanics.Circulation,2008;118:699–701.32.ChengA,NguyenTC,MalinowskiM,etal.Heterogeneityofleftventricularwallthickeningmechanisms.Circulation,2008;118:713–721.33.SenguptaPP,KhandheriaBK,KorinekJ,etal.Apex-to-basedispersioninregionaltimingofleftventricularshorteningandlengthening.JournaloftheAmericanCollegeofCardiology,2006;47:163–172.34.HoSY,NihoyannopoulosP.Anatomy,echocardiography,andnormalrightventriculardimensions.Heart,2006;92(Suppl1):i2-i13.35.AbouR,LeungM,KhidirMJH,etal.InfluenceofAgingonLevelandLayer-SpecificLeftVentricularLongitudinalStraininSubjectsWithoutStructuralHeartDisease.AmJCardiol.2017Dec1;120(11):2065-2072.36.FarsalinosKE,DarabanAM,UnluS,etal.Head-to-headcomparisonofgloballongitudinalstrainmeasurementsamongninedifferentvendors:TheEACVI/ASEInter-VendorComparisonStudy.JournaloftheAmericanSocietyofEchocardiography,2015;28:1171–1181.e2.37.KittipovanonthM,BellaviaD,ChandrasekaranK,etal.Dopplermyocardialimagingforearlydetectionofrightventriculardysfunctioninpatientswithpulmonaryhypertension.JournaloftheAmericanSocietyofEchocardiography,2008;21:1035–1041.38.SachdevA,VillarragaHR,FrantzRP,etal.Rightventricularstrainforpredictionofsurvivalinpatientswithpulmonaryarterialhypertension.Chest,2011;139:1299–1309.39.HardegreeEL,SachdevA,VillarragaHR,etal.Roleofserialquantitativeassessmentofrightventricularfunctionbystraininpulmonaryarterialhypertension.AmericanJournalofCardiology,2013;111:143–148.40.HardegreeEL,SachdevA,FenstadER,etal.Impairedleftventricularmechanicsinpulmonaryarterialhypertension:Identificationofacohortathighrisk.Circulation:HeartFailure,2013;6:748–755.41.WrightL,DwyerN,PowerJ,etal.Rightventricularsystolicfunctionresponsestoacuteandchronicpulmonaryhypertension:Assessmentwithmyocardialdeformation.JournaloftheAmericanSocietyofEchocardiography,2016;29:259–266.42.SabitR,BoltonCE,FraserAG,etal.Sub-clinicalleftandrightventriculardysfunctioninpatientswithCOPD.RespiratoryMedicine,2010;104:1171–1178.43.TunthongR,KaneG,KaronB,etal.Leftventricularsystolicstrainpredictssubsequentheartfailure:Acommunitystudy.JournaloftheAmericanCollegeofCardiology,2013;61:E1033.44.Barros-GomesS,WilliamsB,NholaLF,etal.PrognosisoflightchainamyloidosiswithpreservedLVEF:Addedvalueof2Dspeckle-trackingechocardiographytothecurrentprognosticstagingsystem.JACC:CardiovascularImaging,2017;10:398–407.45.KalamK,OtahalP,MarwickTH.PrognosticimplicationsofglobalLVdysfunction:Asystematicreviewandmeta-analysisofgloballongitudinalstrainandejectionfraction.Heart,2014;100:1673–1680.46.KuribayashiT,RobertsWC.Myocardialdisarrayatjunctionofventricularseptumandleftandrightventricularfreewallsinhypertrophiccardiomyopathy.AmericanJournalofCardiology,1992;70:1333–1340.47.TanakaM,FujiwaraH,OnoderaT,etal.Quantitativeanalysisofmyocardialfibrosisinnormals,hypertensivehearts,andhypertrophiccardiomyopathy.BritishHeartJournal,1986;55:575–581.48.ManochaKK,YoungP,GeskeJ,etal.Canwemeasurewithstrainimagingtheamountofcardiacfibrosisinpatientswithhypertrophiccardiomyopathy?JournaloftheAmericanCollegeofCardiology,2014;63:1132–1133.49.D’AndreaA,CasoP,BossoneE,etal.Rightventricularmyocardialinvolvementineitherphysiologicalorpathologicalleftventricularhypertrophy:Anultrasoundspeckle-trackingtwo-dimensionalstrainanalysis.EuropeanJournalofEchocardiography,2010:11(6):492-500.50.RichandV,LafitteS,ReantP,etal.Anultrasoundspeckletracking(two-dimensionalstrain)analysisofmyocardialdeformationinprofessionalsoccerplayerscomparedwithhealthysubjectsandhypertrophiccardiomyopathy.AmericanJournalofCardiology,2007;100:128–132.51.GertzMA,ComenzoR,FalkRH,etal.Definitionoforganinvolvementandtreatmentresponseinimmunoglobulinlightchainamyloidosis(AL):Aconsensusopinionfromthe10thInternationalSymposiumonAmyloidandAmyloidosis,Tours,France,18–22April2004.AmericanJournalofHematology,2005;79:319–328.52.GomesSB,WilliamsB,MaloufJF,etal.Intervendorstrainprognosisandreproduciblityinpatientswithimmunoglobulinlightchainamyloidheartdisease.JournaloftheAmericanSocietyofEchocardiography,2014;27:B59.53.XuY,HermannJ,PellikkaPA,etal.Canearlychangesin2-dimensionalspeckletrackingechocardiographypredictafuturedecreaseinleftventricularejectionfractioninlymphomapatientsundergonganthracyclinechemotherapy?JournaloftheAmericanSocietyofEchocardiography,2013;26:B52.54.PayneBD,SilenP,HsiaoJF,etal.Rightventricularstrainandstrainrateasadiagnosticandprognosticindicatorinpatientswithamyloidosis.JournaloftheAmericanCollegeofCardiology,2011;57:E230.55.HsiaoJF,KoshinoY,BonnichsenCR,etal.Speckletrackingechocardiographyinacutemyocarditis.InternationalJournalofCardiovascularImaging,2013;29:275–284.56.HsiaoJF,KoshinoY,BonnichsenCR,etal.Differentiatingacutemyocarditisfromacutemyocardialinfarction:diagnosticvalueofleftventriculardeformationby2-Dspeckletrackingechocardiography.JournaloftheAmericanCollegeofCardiology,2011;2011:E309.57.YuY,VillarragaHR,SalehHK,etal.Canischemiaanddyssynchronybedetectedduringearlystagesofdobutaminestressechocardiographyby2-dimensionalspeckletrackingechocardiography?InternationalJournalofCardiovascularImaging,2013;29:95–102.58.HoitBD.Strainandstrainrateechocardiographyandcoronaryarterydisease.Circulation:CardiovascularImaging,2011;4:179–190.59.DahlslettT,KarlsenS,GrenneB,etal.Earlyassessmentofstrainechocardiographycanaccuratelyexcludesignificantcoronaryarterystenosisinsuspectednon-ST-segmentelevationacutecoronarysyndrome.JournaloftheAmericanSocietyofEchocardiography,2014;27:512–519.60.HubbardRT,ArciniegasCalleMC,Barros-GomesS,etal.2-dimensionalspeckletrackingechocardiographypredictsseverecoronaryarterydiseaseinwomenwithnormalleftventricularfunction:acase–controlstudy.BMCCardiovascularDisorders,2017;17:231.61.HareJL,BrownJK,MarwickTH.Associationofmyocardialstrainwithleftventriculargeometryandprogressionofhypertensiveheartdisease.AmericanJournalofCardiology,2008;102:87–91.62.SalehHK,VillarragaHR,KaneGC,etal.Normalleftventricularmechanicalfunctionandsynchronyvaluesbyspeckle-trackingechocardiographyinthetransplantedheartwithnormalejectionfraction.JournalofHeartandLungTransplantation,2011;30:652–658.63.EstofanLJF,VillarragaHR,EdwardsBS,etal.Canstrainechocardiographybesuedasanoninvasivemethodtopredictcardiacallograftstage3vasculopathyinHTxrecipientswithnormalejectionfraction?TheJournalofHeartandLungTransplantation,2012;31(4):S172.64.TsengAC,ClavellAL,PelikkaPA,etal.Canstrainechocardiographypredictrejectioninhearttransplantrecipientswithnormalejectionfraction?JournaloftheAmericanCollegeofCardiology,2013;61(10),E1124.65.PlanaJC,GalderisiM,BaracA,etal.Expertconsensusformultimodalityimagingevaluationofadultpatientsduringandaftercancertherapy:AreportfromtheAmericanSocietyofEchocardiographyandtheEuropeanAssociationofCardiovascularImaging.JournaloftheAmericanSocietyofEchocardiography,2014;27:911–939.66.SandhuNP,SpoonJ,HerrmannJ,etal.Twodimensionalspeckletrackingechocardiographypredictspreclinicalcardiotoxicityinbreastcancerpatients.JournaloftheAmericanCollegeofCardiology,2014;63:A829.67.VillarragaHR,HerrmannJ,NkomoVT.Cardio-oncology:Roleofechocardiography.ProgressinCardiovascularDiseases,2014;57:10–18.68.FineNM,CrowsonCS,LinG,etal.Evaluationofmyocardialfunctioninpatientswithrheumatoidarthritisusingstrainimagingbyspeckle-trackingechocardiography.AnnalsoftheRheumaticDiseases,2014;73:1833–1839.69.PibarotP,DumesnilJG.Longitudinalmyocardialshorteninginaorticstenosis:Readyforprimetimeafter30yearsofresearch?Heart,2010;96:95–96.70.AddaJ,MielotC,GiorgiR,etal.Low-flow,low-gradientsevereaorticstenosisdespitenormalejectionfractionisassociatedwithsevereleftventriculardysfunctionasassessedbyspeckle-trackingechocardiography:Amulticenterstudy.Circulation:CardiovascularImaging,2011:5(1):27-35.71.TayyareciY,YildirimturkO,AytekinV,etal.Subclinicalleftventriculardysfunctioninasymptomaticsevereaorticregurgitationpatientswithnormalejectionfraction:AcombinedtissueDopplerandvelocityvectorimagingstudy.Echocardiography,2010;27:260–268.72.KusunoseK,AgarwalS,MarwickTH,etal.Decisionmakinginasymptomaticaorticregurgitationintheeraofguidelines:Incrementalvaluesofrestingandexercisecardiacdysfunction.Circulation:CardiovascularImaging,2014;7:352–362.73.ChungES,LeonAR,TavazziL,etal.ResultsofthePredictorsofResponsetoCRT(PROSPECT)trial.Circulation,2008;117:2608–2616.74.BaldasseroniS,OpasichC,GoriniM,etal.Leftbundle-branchblockisassociatedwithincreased1-yearsuddenandtotalmortalityratein5517outpatientswithcongestiveheartfailure:AreportfromtheItaliannetworkoncongestiveheartfailure.AmericanHeartJournal,2002;143:398–405.75.WangCL,PowellBD,RedfieldMM,etal.Leftventriculardiscoordinationindexmeasuredbyspeckletrackingstrainrateimagingpredictsreverseremodellingandsurvivalaftercardiacresynchronizationtherapy.EuropeanJournalofHeartFailure,2012;14:517–525.76.WangCL,WuCT,YehYH,etal.Leftbundle-branchblockcontractionpatternsidentifiedfromradialstrainanalysispredictsoutcomesfollowingcardiacresynchronizationtherapy.InternationalJournalofCardiovascularImaging,2017;33(6):869–877.77.KhanFZ,VirdeeMS,PalmerCR,etal.Targetedleftventricularleadplacementtoguidecardiacresynchronizationtherapy:TheTARGETstudy:arandomized,controlledtrial.JournaloftheAmericanCollegeofCardiology,2012;59(17):1509–151878.SommerA,KronborgMB,NørgaardBL,etal.Multimodalityimaging-guidedleftventricularleadplacementincardiacresynchronizationtherapy:Arandomizedcontrolledtrial.EuropeanJournalofHeartFailure,2016;18(11):1365–1374.79.HungCL,VermaA,UnoH,etal.Longitudinalandcircumferentialstrainrate,leftventricularremodeling,andprognosisaftermyocardialinfarction.JournaloftheAmericanCollegeofCardiology,2010;56:1812–1822.80.PotterE,MarwickTH.Assessmentofleftventricularfunctionbyechocardiography:Thecaseforroutinelyaddinggloballongitudinalstraintoejectionfraction.JACC:CardiovascularImaging,2018;11(2Pt1):260–274.81.BraininP,Biering-SørensenSR,MøgelvangR,etal.Postsystolicshorteningbyspeckletrackingechocardiographyisanindependentpredictorofcardiovasculareventsandmortalityinthegeneralpopulation.JournaloftheAmericanHeartAssociation,2018;7(6):e008367.82.MiglioranzaMH,BadanoLP,MihăilăS,etal.Physiologicdeterminantsofleftatriallongitudinalstrain:Atwo-dimensionalspeckle-trackingandthree-dimensionalechocardiographicstudyinhealthyvolunteers.JournaloftheAmericanSocietyofEchocardiography,2016;29(11):1023–1034.83.NagataY,TakeuchiM,WuVC,etal.PrognosticvalueofLVdeformationparametersusing2Dand3Dspeckle-trackingechocardiographyinasymptomaticpatientswithsevereaorticstenosisandpreservedLVejectionfraction.JACC:CardiovascularImaging,2015;8(3):235-245.CHAPTER6ContrastEchocardiographySaharS.AbdelmoneimandSharonL.MulvaghContrastuseinultrasoundhasbeenavailablesincetheearlystageofechocardiography,whenindocyaninegreenandagitatedsalinewereusedtoidentifycardiacstructuresseenonM-modeandtwo-dimensional(2D)echocardiographybyenhancementofthereturningechoesfromwithinthebloodpool(1,2).Theadventandevolutionofclinicallyuseful,commerciallyavailableultrasoundcontrastagents(UCA)consistingofmicrobubblescontaininghighmolecularweightgasesencapsulatedbyinsolubleshells,andcapableoftraversingthepulmonarycirculation,expandedtheclinicalapplicationsofcontrastechocardiographytoincludeimproveddelineationoftheendocardialborder,augmentationofDopplervelocitysignals,andassessmentofmyocardialperfusion.Inanechocardiographypractice,agitatedsalineoracommerciallyavailablecontrastagentisuseddailyin10%to15%ofallstudiesandin30%to40%ofstresstests.ThischapterdiscussestheroutineclinicaluseandpotentialfutureapplicationsofcontrastechocardiographyincludingbothagitatedsalinecontrastechocardiographyandUCA-enhancedechocardiography.ThetermUCAwaschangedtoultrasoundenhancingagent(UEA)in2018Guideline(3),andUEAisusedinthisManual.AGITATEDSALINECONTRASTECHOCARDIOGRAPHYAgitatedsalinecontrastechocardiographyhaslongbeenusedfordetectionofintracardiacshuntingwithright-to-leftfloworpulmonaryarteriovenousfistulaethatmayoccurinchronicliverdisease,detectionofresidualshuntsaftercardiacdefectclosure,enhancementofright-sidedintracardiacDopplersignals,andneedlelocalizationduringpercutaneousdrainageofpericardialeffusion(4).Themostcommonlyusedcontrastagentforthedetectionofshuntsisagitatedsaline.EVALUATIONOFSHUNTSThemostfrequentshuntlesionevaluatedinanechocardiographylaboratoryisanatrialshuntthroughapatentforamenovale(PFO),whichisacommonfinding,occurringinapproximately25%ofthepopulation.Theevaluationcanbemadewitheithertransthoracicortransesophagealechocardiography(TEE)(Figs.6-1and6-2).Withtransthoracicechocardiography,eithertheapicalfourchambervieworsubcostalviewisused.WithTEE,the0-degreetransverseor90-degreebicavalviewisoptimalforimaging.Theuseoftissueharmonicsisrecommendedtooptimizetheagitatedsalinebubblereflectionsandimprovethesensitivityforshuntdetection.Anintravenouscatheterisrequired(usuallyinanarmvein),withathree-waystopcockandtwo12-mLsyringestoagitatethesalineimmediatelybeforeitisinjected.Bubblescreatedbyagitatedsalinedonotnormallycrossthepulmonarycircuitanddonotappearintheleftsideoftheheartunlessthereisacommunicationbetweentherightandleftchambers.Withathree-waystopcock,10mLofsaline(9mLofbacteriostaticnormalsalineagitatedwith0.5–1.0mLofroomair)canbesquirtedbackandforth(i.e.,agitated)betweentwosyringesatleastfivetimesbeforethesalineisinjectedintothevenouscirculation.Tofacilitatethesalineinjection,theupperarmismassagedwithtwohandssoonaftertheinjectionismade.Theinjectionshouldbecoordinatedwiththepersonwhoperformsechocardiographysothatthemostoptimalimagingviewforidentifyingasuspectedshuntlesionisshownonthescreenwhenthesalineisinjected.Ifanatrialshuntispresent,bubblesfromtheagitatedsalinewillappearimmediately(within2–3cardiaccycles)intheleftatriumafterinitiallybeingseenintherightatrium(“positivecontrast”effect).Incaseofaleft-to-rightshunt,a“negativecontrast”effectmaybeseenasasharplydesalinatedwashoutphenomenon(blackarea)appearingontherightatrialsideoftheatrialseptumincontinuitywiththecontrast-freeleftatrium.Ifthepatienthasanintrapulmonaryshunt,morethanthreecardiaccyclesareneededforthebubblestogothroughthepulmonarycirculationbeforetheyappearintheleftatriumandthusischaracterizedbythelate(seenafter>3–4cardiaccyclesintherightatrium)appearanceofbubblesintheleftatrium(seeFigure18-27).DuringTEE,anintrapulmonaryshuntcanbelocatedbyvisualizationoftheappearanceofcontrastwithinthepulmonaryveinsastheyentertheleftatrium(Fig.6-3).Thedegreeofrighttoleftshuntisgradedasfollowing:GradeI(mild)iffewmicrobubbleswerevisualizedintheleftheartwithoutappreciablechangeindensityoftheleftventricularcavity,GradeII(moderate)ifmicrobubbleswerevisualizedinleftheartwithlessthan50%ofcomparabledensityintherightheart,orGradeIII(severe)ifmicrobubbleswerevisualizedintheleftheartwith≥50%ofcomparabledensityintherightheart.FIGURE6-1Leftandright:Transthoracicechocardiogramsdemonstrating,withagitatedsaline,aright-to-leftshunt.Becauseofashuntthroughapatentforamenovale,thecontrastmicrobubbles(arrows)appearimmediatelyintheleftatrium(LA)afterappearingintherightatrium(RA).Incontrast,ifthepatienthasapulmonaryatrialventricularshunt,themicrobubblesappearintheLAseveralcardiaccyclesaftertheyappearintheRA.Theapicalfour-chamberviewisbestforevaluatinganatrialshunt,butasubcostalviewmaybeused.LA,leftatrium;LV,leftventricle;RA,rightatrium;RV,rightventricle.FIGURE6-2Withagitatedsaline,transesophagealechocardiographycandemonstrateapatentforamenovaleandright-to-leftshunt.A:Noshuntthroughtheatrialseptum(arrows)withthetransduceratthebottomofthescreen.B:Largerightto-leftshuntviapatentforamenovale(arrowintheleft)shownbycontrastfromrightatriumtoleftatrium(arrowsintheright)withthetransduceratthetopofthescreen.Apacemakercatheterisseenintherightatrium.Theechocardiographyprobeissetata60-to90-degreeangletoobtaintheatrialseptal–superiorvenacava(SVC)view.TheconnectionoftheSVCwiththerightatrium(RA)iswellvisualized,asisthepatentforamenovaleandatrialseptum.Agitatedsalineisinjected.Aftertheagitatedsalineisinjectedintoanarmvein,itappearsintheSVCandthentheRA.Becauseofapatentforamenovale,agitatedsalinemicrobubblesappearimmediatelyintheleftatrium(LA).Somepatientsmayhavearight-to-leftshuntonlywhentheyperformaValsalvamaneuverorcough.Therefore,imagingshouldbedonewithagitatedsalineandwiththepatient’scoughoruponreleaseoftheValsalvamaneuver.Anotherindicationforagitatedsalineistheevaluationofapersistentleftsuperiorvenacava.Inthiscase,agitatedsalineinjectedintoaleftarmveinwillappearasopacificationinthedilatedcoronarysinus,whichisseenintheleftatrioventriculargroove(Fig.6-4),althoughboththeleftandrightsuperiorvenacavacandrainintothecoronarysinus.Assessmentforpotentialresidualshuntafterdeviceclosureofanatrialorventricularseptaldefect(ASDorVSD)orPFOisalsodonewithagitatedsalinecontrastechocardiography(5)(Fig.6-5).FIGURE6-3Visualizationofleftpulmonaryvein.Left:Leftupperpulmonaryvein(arrow).Right:Contrast(arrows)demonstratesthelocationofanintrapulmonaryshunt.PA,pulmonaryartery.Pitfallsofagitatedsalinecontrastechocardiographyforshuntdetectioncanoccurincaseswherethereareinadequatecontrastinjectionsandhenceinadequaterightatrialopacification.Thiscanbecorrectedbyincreasingthecontrastinjectiondoseorbyoptimizingthemachinesettingsusingharmonics.Additionally,false-negativeresultscanoccurifthereisfailureofperformanceofanadequateValsalvamaneuver(toincreaserightatrialpressureaboveleftatrialpressure),orwheninjectedagitatedsalinecontrastisstreamedalongalargeEustachianvalvedirectlyintotherightventricle(6).AUGMENTATIONOFTHEDOPPLERVELOCITYSIGNALBubblescreatedbyagitatedsalinestrengthenDopplervelocitysignalsfromtherightheartchambers.Toestimaterightventricular(RV)andpulmonaryarterysystolicpressure,itisnecessarytorecordtricuspidregurgitationvelocity,whichmaynotbedetectablein30%ofpatients.Insomepatients,thetricuspidregurgitationsignalisfaintandastrongersignalisneededtoprovideareliableestimateofRVsystolicpressure.Agitatedsaline(preparedasdescribedabove)improvesthechanceofobtainingtricuspidregurgitationsignals(seeChapter9).However,iftricuspidregurgitationisnotdetectedwithcolorflowimaging,itssignalisnotlikelytoappearevenwiththeinjectionofagitatedsaline.AugmentationoftheDopplervelocitysignalfromtheleftheartchambersrequiresgas-filledmicrobubbles.AgoodexampleisaugmentationoftheDopplersignalfromaorticstenosisoracoronaryartery(7–9).FIGURE6-4Left:Parasternallong-axisviewshowingalargecoronarysinus(arrow).LA,leftatrium;LV,leftventricle;RV,rightventricle.Center:AgitatedsalineinjectedintotherightarmopacifiestheRV,butnocontrastinthecoronarysinus(arrow).Right:AgitatedsalineinjectedintotheleftarmopacifiesthecoronarysinusbeforeRV,indicatingapersistentleftsuperiorvenacava.Arrows,Opacificationofthecoronarysinus.MISCELLANEOUSINDICATIONSFORAGITATEDSALINECONTRASTECHOCARDIOGRAPHYTheechocardiographicguidanceofcatheterlocalizationintothepericardialspaceduringpercutaneousdrainageofpericardialeffusioncanbeconfirmedbytheinjectionofagitatedsaline.Theappearanceofcontrastinthepericardialsacconfirmsthecatheterposition(10)(Fig.6-6).FIGURE6-5Left:Transesophagealechocardiogramat93degreeshowingbicavalviewdemonstratingpatentforamenovaleclosurewithoccluderdevice(arrow)betweenrightatrium(RA)andleftatrium(LA).Center:Withagitatedsalineadministration,contrastentersRAviasuperiorvenacava(SVC).PacificationofSVCisshown.Right:TheentireRAisopacifiedwithnoresidualshuntpostpatentforamenovaleclosureasnocontrastmicrobubblesappearintheleftatrium(LA)afterappearingintherightatrium.ECHOCARDIOGRPAHYWITHULTRASOUNDENHANCINGAGENT(UEA)Toenhanceimagesoftheleftheart,UEAsmustbesmallenoughtotraversethepulmonarycirculationintactandalsobedurabletohavealastingeffectfordetectionthroughouttheechocardiographicexamination.UEAmicrobubblesare2-to5-μmspheresandhaveanintravascularrheologyandsimilarvelocityprofiletoredbloodcells.Theycanpassfreelythroughpulmonaryandsystemiccapillaries,donotcoalesceoraggregate,arebiologicallyinert,remainentirelywithinthevascularspace,andareeliminatedfromthebodyviathereticuloendothelialsystemwiththeirgasescapingfromthelungs(11).Themicrobubbleshellconsistsoflipid,polymer,galactose,surfactant,albumin,oracombinationofthese(12).Thegascontentsareusuallyperfluorocarbonsandsulfurhexafluoride.Microbubblesundergovolumetricoscillationsuponexposuretoultrasoundwaves.Theseoscillationscreatetheacousticsignalsthatopacifycardiacchambersorotherareasofbloodflow(13).Currently,themostfrequentindication(perAmericanSocietyofEchocardiography[ASE]2008updatedguidelines(11)fortheuseofUEA)istoenhancethedefinitionoftheendocardialborderdetection(EBD)byleftventricularopacification(LVO)(11,12,14).FIGURE6-6Left:Transthoracicechocardiogramsparasternallongaxisviewdemonstratingpericardialeffusion(asterisk).Right:Agitatedsalinecontrastinjectionforassessmentofpositionofcatheterduringpericardiocentesisdemonstratingopacificationofthepericardialspace(asterisk)aftersalinecontrastinjection.LA,leftatrium;LV,leftventricle;VS,ventricularseptum.RV,rightventricle.TheUnitedStates(US)FoodandDrugAdministration(FDA)hasapprovedtwocommerciallyavailableUEAs,bothcontainingperfluoropropane(PFC)andindicatedforEBDandLVOinpatientswithsuboptimalbaselineimages:Optison(GEHealthcareInc.,Princeton,NJ),approvedin1998,andDefinity(LantheusMedicalImaging,NorthBillerica,MA),approvedin2001.Optisoncontainsoctafluoropropanegasinsidealbuminmicrospheres,whereasDefinitycontainsoctafluoropropanegasinsideaphospholipidshell(11).Recently,LumasonUEA(knowninEuropeasSonoVue,BraccoDiagnosticsInc.Princeton,NJ,USA)wasapprovedbytheFDAin2014.LumasoncontainssulfurhexafluoridegasinsidealipidtypeAshell(15).FIGURE6-7Diagramdemonstratingsecondharmonicimaging.A:Ultrasoundbeamwithfundamentalfrequencyfoisaimedatabloodcavitycontainingmicrobubbles.B:Whenthefundamentalfrequencyultrasoundbeamisreflectedbythemicrobubbles,notonlythefundamentalfrequencybutalsotheresonatingharmonicfrequencyultrasoundbeamreturnsbecauseoftheoscillationofthemicrobubblesandtheirnonlinearbehavior.Dependingonthepoweroftheultrasoundbeam,thesizeofmicrobubbleschangesnonlinearly,whichisimportantforthedevelopmentofsecondharmonicimaging.CONTRASTAGENT–ULTRASOUNDINTERACTIONUltrasoundgeneratespositiveandnegative(sinusoidal)pressures,andmicrobubblesarecompressedandexpandedbytheultrasoundacousticenergyinanonlinearfashioniftheacousticpressureissufficientlyhighattheresonantfrequencyofthemicrobubbles.Thisnonlinearpropertyofmicrobubblesgeneratesharmonicsignalswhenthemicrobubblesarecontactedbyultrasoundwaves(Fig.6-7).Whenultrasoundwavesaretransmittedathighfrequency(fundamentalfrequency)tothemicrobubbles,returningsignalshavenotonlythefundamentalfrequency,fo,butalsoasecondharmonicfrequency,2fo(frequencytwicethatofthefundamentalfrequency)(Fig.6-8).Myocardialtissuealsogeneratessignalswithasecondharmonicfrequencybutamuchsmalleramountthanthenonlinearlybehavingmicrobubbles.Therefore,modifyingtheimagingdevicetoreceivethesignalswiththesecondharmonicfrequency(secondharmonicimaging)enhancesthedetectionofmicrobubbles.Evenwithoutmicrobubblesinthecardiacchambers,secondharmonicimagingoftissuealsoimprovestheimagequalityofmyocardialstructures.Althoughthesecondharmonicimagingsignalsincreasewithhigherultrasoundpower,themicrobubblesaredeformedbyhigherpositiveandnegativepressurestothepointofbeingdestroyed.FIGURE6-8A:Acousticsignalreturningfromcontrastgas-filledmicrobubbles.Imagingwasatafundamentalfrequencyof3.75MHz;returningsignalscontainbothfundamentalfoandsecondharmonic(2fo)signals.B:Improvedmicrobubblesignalrelativetotissueandreceivedassecondharmonic(2fo)ratherthanasfundamentalfrequencyfo.Signalamplitudeisgreaterfrommicrobubblesthanfromtissueatthesecondharmonicfrequency.(AReprintedfromBurnsPN,PowersJE,SimpsonDH,etal.HarmonicImaging:Principlesandpreliminaryresults.ClinRadiol,1996;51(SupplI):50–55.Copyright©1996Elsevier.Withpermission.BReprintedfromLindnerJR.Contrastechocardiography.CurrProblCardiol,2002;27(11):454–519.Copyright©2002Elsevier.Withpermission.)Theultrasoundacousticpowerisexpressedasthemechanicalindex,whichisproportionaltotheacousticpressureandinverselyproportionaltothesquarerootoftheultrasoundfrequency.Mechanicalindex(MI)isamajorparameteraffectingmicrobubbleoscillation.TheseoscillationscanresultinweaknonlinearbackscatterataverylowMI(PVd)(Fig.8-10).WithareducedLVfillingduringearlydiastole,flowfromthepulmonaryveintotheLAisreduced.Withatrialcontraction,increasedLApressurepumpsthelargeamountofbloodfromtheLAtotheLV.ThedurationandvelocityofPVaareusuallynormalaslongasLVEDPisnotelevated,buttheymaybeincreasediftheLVEDPishigh(withoutanincreaseinmeanLVdiastolicpressure).AttheonsetofLVcontraction,theLAisrelativelyemptywithreducedpressure,allowingincreasedfillingorvelocityfromthepulmonaryveintotheLA.InasubgroupofpatientswithE/A≤0.8,e′velocityormyocardialrelaxationismarkedlyreduced,andE/e′is>14withmitralEvelocityusuallyhigherthan50cm/s(Fig.8-21).Thispatternhasbeendesignatedasgrade1adiastolicdysfunctionatMayoClinictoemphasizethatfillingpressureisincreasedinthepresenceofatypicalgrade1mitralinflowvelocitypattern(E/A≤0.8).IntheASE/EACVIrecommendation,thispatternisclassifiedasgrade2dysfunctionsincetheprognosisofthepatientswiththispatternissimilartothatofmoretypicalgradediastolicdysfunction(39).FIGURE8-21Acompositeofmitralinflow,tricuspidregurgitationvelocity,andmitralannulusvelocityingrade1A(atMayo)dysfunctionorgrade2accordingtoASE/EACVIrecommendation.E=60cm/s,A=75cm/swithE/A=0.8.Mediale′=5withE/e′=12andlaterale′=7withE/e′=8.However,TRvelocityis3m/sandLAisenlarged.Grade2DiastolicDysfunctionAsdiastolicfunctiondeteriorates,themitralinflowpatterngoesthroughaphasethatresemblesanormaldiastolicfillingpattern,thatis,theE/Aratiois0.8to2.0,andDTisnormalat160to240milliseconds.ThisistheresultofamildtomoderatelyincreasedLApressuresuperimposedonarelaxationabnormality.Thisisreferredtoasthe“pseudonormalized”mitralflowfillingpattern,anditrepresentsamoderatestageofdiastolicdysfunction.Thiscanbeachallengingpatterntobeclassifiedsinceitresemblesandneedstobedistinguishedfromatruenormalpattern.ASE/EACVIguidelinerecommendsinthissituationthat3followingcriteriabeevaluated:E/e′,TRvelocity,andLAVI,especiallywhenLVEFisreducedordiastolicdysfunctionisalreadyknowntobepresent(Fig.819).Itshouldbeemphasizedthatitisassumedinthissituationthatmyocardialrelaxationore′velocityisreduced.Therefore,unlessLVEFismarkedreduced(≤40%),weneedtomakesurethate′velocityisreduced.Again,themajoritydecidesthediastolicfunctiongradingandfillingpressure.If≥2of3criteria(E/e′>14or15,TRvelocity>2.8m/s,andLAVI>34mL/m2)arepositive,LVfillingpressureorLApressureiselevatedasgrade2diastolicdysfunction(Fig.8-22).If≥2arenegativeornormal,LApressureisnormalasgrade1diastolicdysfunction.Ifonlytwoofthose3criteriaareavailableandtheirvaluesaresplitbetweennormalandabnormalvalues(e.g.,E/e′is16,TRvelocityis2.6m/s,andLAVIcouldnotbemeasuredwhenE/Aratiois1.2),additionalparametersshouldbeevaluated.Inabovesituation,PVs/PVd<1.0favorsgrade2diastolicdysfunctionwithincreasedfillingpressure.OnepitfallinthisalgorithmofassumingdiastolicdysfunctionisthattheassumptionmaynotbecorrectsinceayoungsubjectwithHCMorEFof40%afteracutemyocardialinfarctioncanstillmaintainclinicallynormaloradequatemyocardialrelaxation,althoughreducedforone’sage(Fig.8-23).Toavoidthispitfall,werecommendalwaysusing4parametersincludingmitralannuluse′velocityespeciallywhenLVEFispreserved.Followinginformationcanbealsohelpfulindetermininggrade2diastolicdysfunction.FIGURE8-22A:Acompositeofmitralinflow,tricuspidregurgitationvelocity,andmitralannulusvelocityingrade2diastolicdysfunction.Mediale′=3cm/sandlaterale′=6cm/swithE/e′of40and20,respectively.TRvelocityishigherthan2.8m/s.B:(Left)Pulmonaryveinvelocitiesarelowerduringsystolecomparedtodiastole.(Right)WithValsalvamaneuver,E/Adecreasesfrom1.0to0.5.1.WhenmyocardialrelaxationismarkedlyprolongedandLApressureiselevated,thereisamid-diastolicmitralinflowtermed“Lwave”duetoamiddiastolicdropinLVdiastolicpressureaftertheearlydiastolicriseinLVpressure(23,40)(Fig.8-22).Lwaveisalsofrequentlyseeninhealthyyoungsubjectswithaslowheartrate,butitspeakvelocityisusually30cm/s(Fig.8-24).LwavecanbealsoseeninmitralannulusvelocityandPVflowvelocity(Fig.8-24C).2.Adecreaseinpreload,byhavingthepatientsit,performtheValsalvamaneuver,ortakesublingualnitroglycerin,maybeabletounmasktheunderlyingimpairedrelaxationoftheLV(Figs.8-6and8-22B),causingtheE/Aratiotodecreaseby0.5ormoreandreversaloftheE/Aratio.Innormalsubjects,boththeEandAvelocitiesdecreasemoreproportionallywithadecreaseinfilling.3.IfLApressureiselevated,LVEDPisalwayshigh.Therefore,mitralAdurationisshorterthanPVaduration.4.Normally,activemyocardialrelaxationinitiatesLVdiastolicfillingsothattheonsetofe′velocityprecedesfewmillisecondsoralmostissimultaneouswiththeonsetofmitralinflow.WhenLApressureiselevated,theincreasedLApressureopensthemitralvalveinitiatingLVfillingfollowedbymyocardialrelaxation(Fig.8-25).Hence,theonsetofmitralinflowEvelocityisearlierthanthatofmitralannuluse′velocity(Fig.8-26)(35,42,43).FIGURE8-23A:Mitralinflowandannulusvelocityina23-year-oldmanwithhypertrophiccardiomyopathywithseptalthicknessof20mm(*).Ifdiastolicdysfunctionisassumedbecauseofhypertrophiccardiomyopathy,thenE/Aratiosuggestsgrade3diastolicdysfunction.However,medialandlaterale′velocitiesarenormal,althoughlowerthanexpectedfor23yearold.Thisisanexampleofnormalfillingpressureandlow-normaldiastolicfunctioninthesettingofamassivehypertrophicseptum.Normal“L”waveisseen(arrow).B:MitralinflowandPVDopplervelocitiesinthis23-year-oldpatientwithhypertrophiccardiomyopathydemonstratethatPVatrialreversal(PVar)durationislongerthanthedurationofmitralAflow(arrowspointingtheendingofmitralAandPVatrialreversalinrelationshiptothetimingofQRS)indicatingthatLVend-diastolicpressureisincreasedwhilemeanLVorpre-Adiastolicpressureisnotelevated.00:00/00:00Video8-23FIGURE8-24A:Acompositeofmitralinflow,colorMmode,andmitralannulusvelocitiesdemonstrating“L”wave(arrows).Lwaveisgeneratedbydelayedmyocardialrelaxation.B:Aprominent“L”wavewithValsalvamaneuver.C:UpperpanelshowspulmonaryveinDopplerwith“L”wave(arrowafterdiastolicflowvelocity.Lowerpanelshowscorresponding“L”waveinthemitralinflow(arrow).Grade3DiastolicDysfunction(RestrictiveFilling)Thetermrestrictivediastolicfilling,orrestrictivephysiology,shouldbedistinguishedfromrestrictivecardiomyopathy.RestrictivephysiologycanbepresentinanycardiacabnormalityorinacombinationofabnormalitiesthatproducedecreasedLVcomplianceandmarkedlyincreasedLApressure.Examplesincludedecompensatedcongestivesystolicheartfailure,advancedrestrictivecardiomyopathy,severecoronaryarterydisease,acutesevereaorticregurgitation,andconstrictivepericarditis.IncreasedLApressureshortensIVRT,andhighEvelocity.EarlydiastolicfillinginanoncompliantLVcausesarapidincreaseinearlyLVdiastolicpressure,withrapidequalizationofLVandLApressuresproducingashortenedDT.AtrialcontractionincreasesLApressure,butAvelocityanddurationareshortenedbecauseLVpressureincreasesevenmorerapidly.WhenLVdiastolicpressureismarkedlyincreased,theremaybediastolicmitralregurgitationduringmid-diastoleorwithatrialrelaxation.Therefore,restrictivephysiologyorgrade3diastolicdysfunctionischaracterizedbymitralflowvelocitiesthatshowincreasedEvelocity,decreasedAvelocity(E/A≥2.0),andshortenedDT(2.8m/s(Fig.8-28)andLAVIis>34mL/m2.ItispossiblethatE/Aratiois≥2.0inhealthyindividualsandnormalmyocardialrelaxationorwell-preservede′isexpected(usuallymediale′≥10cm/sorlaterale′≥15cm/s)withE/e′≤8.0.Systolicforwardflowvelocityinthepulmonaryvein(PVs)isdecreasedbecauseofincreasedLApressureanddecreasedLAcompliance.Pulmonaryveinforwardflowstopsatmidtolatediastole,reflectingtherapidincreaseinLVpressure;atatrialcontraction,theincreaseinLApressurecanproduceaprolongedPVa;however,PVamaynotbeseenifatrialcontractionoccurswhenthepulmonaryveinflowvelocityisrelativelyhigh(Fig.8-27).TheValsalvamaneuverisrarelynecessaryinclassifyinggrade3diastolicdysfunctionexceptthatitmayreversearestrictivefillingpatterntoagrade1or2pattern,indicatingthereversibilityofhighfillingpressure.However,eveniftherestrictivefillingpatterndoesnotchangewiththeValsalvamaneuver,reversibilitycannotbeexcludedbecausetheValsalvamaneuvermaynotbeadequateorfillingpressuremaybetoohightobealteredbythemaneuver.Therefore,thegrade4dysfunctionindicating“irreversiblerestrictive”fillingisnotincludedintheASE/EACVIrecommendation.FIGURE8-25AfiguredemonstratingthatincreasedLApressurepushesthemitralvalveopen(arrowtowardtheleft)withminimalannulusmotion(arrowtowardtherightorLA)becauseofreducedmyocardialrelaxation.FIGURE8-26Acompositeofmitralinflow(top)andannulus(bottom)Dopplervelocitiesdemonstrating(A)asimultaneousonsetofbothflowsinasubjectwithnormalfillingpressureand(B)earlieronsetofmitralinflowinasubjectwithincreasedfillingpressure.Arrowsindicatetheonsetofeachflow,andstraightlineisdrawntoalignthetimingofbothflowatthesameQRScomplex.TheclassificationofdiastolicfillingpatternsbasedonmitralinflowandtissueDopplervelocitypatternissummarizedinFigure8-28.FIGURE8-27Acompositeof2D,mitralinflow,medialannulus(e’of5cm/s)andpulmonaryveinvelocitiesinapatientwithadvancedcardiacamyloidosisandrestrictiveorgrade3diastolicdysfunction.00:00/00:00Video8-2700:00/00:00Video8-25StrainImagingforDiastolicFunctionAssessmentDiastolicfunctionisintimatelycoupledwithsystolicfunction,andLVsystolicstrainisusuallyabnormalinpatientswithpreservedEFanddiastolicdysfunction(Fig.8-29).InRELAXtrial,thebaselineLVgloballongitudinalstrainwas−14.6%andabnormal(≥−16%)inalmost2/3ofthepatientswithHFpEF(44).TherewasamodestlinearrelationshipbetweenLVlongitudinalsystolicstrainandNT-proBNP,butnotwith6-minutewalkdistanceorpeakVO2.Wewillneedadditionalclinicalinvestigationstoknowwhethersystolicstraincanhelpclassifydiastolicdysfunction.LVtorsionwasmeasuredinpatientswithdiastolicdysfunction,anditwasinterestingthatitwasfoundtobeincreasedingrade1diastolicdysfunctioncomparedwithcontrolandthennormalizedinmoderateandreducedinseverediastolicdysfunction(45).WhetherincreasedLVtorsionisacompensatorymechanismforreducedmyocardialrelaxationoraconsequenceofreducedfillingintheearlystageofdiastolicdysfunctionisnotclear,butitprobablydoesnotaddgreatlytotheclassificationofdiastolicdysfunction.LeftatrialfunctionalsodependsonLVdiastolicfunctionandfilling.Itsreservoir,conduit,andboosterfunctionsdependonLAsize,pressure,andmitralregurgitation.SinceLAvolumeincreaseswithdiastolicdysfunction,itisoneof4principalvariablestoevaluatediastolicdysfunction,buthasasignificantoverlapamongdifferentgradingsorstagesofdiastolicdysfunction.IthasbeenshownthatpeakLAstrainallowsamoreaccuratecategorizationofdiastolicdysfunctionwithprogressivereductionwithworseningofdiastolicdysfunction(Fig.8-30)(46).FIGURE8-28Asummaryofgradingdiastolicfunctionbasedonmitralinflow,tissueDopplerrecodingofmitralannulusvelocity,tricuspidregurgitationvelocity,andLAvolumeindex.PleasenotethatLAVIcanbenormalorincreasedingrade1diastolicdysfunction(*).WhetherpeakLAstrainhasincrementalvaluetoothersimplerechocardiographymeasurementsintheevaluationofLVdiastolicfunctionrequiresfurtherclinicalobservationsandinvestigations.FIGURE8-29Acompositeofmitralinflow,longitudinalglobalstrainbull’seyepattern,mitralannulusvelocity,andtricuspidregurgitationvelocitydemonstratinggrade3diastolicdysfunction.ThegloballongitudinalstrainisseverelyreducedinthebaseandmidleveloftheLV,ande′velocityisseverelyreduced(4cm/s)withseverepulmonaryhypertension.Thereisalso“L”waveinthemitralinflow(arrow).00:00/00:00Video8-29FIGURE8-30A:Theapical4-chamberviewwiththeentiretyoftheleftatrium(LA)ispictured,withtheendocardiumoftheLAtraced(left).LAstrainovertimecurveandanelectrocardiogramsignalareshownontheright.B:Atthe4corners,compositeLAstraincurvesaredepictedasmeanofeachsubgroup(solidlines)withstandarddeviation(dottedlines)innormaland3diastolicgradings.Centerpanelshowsall4LAstraincurvesinasingleplottofacilitatecomparisons.(FromSinghetal.(46),withpermission.)EvaluationofDiastolicFunctioninSpecificSituationsNotalldiastolicDopplervelocitypatternsfitconvenientlyorperfectlyintooneparticularfillingpattern.Thespectrumiswidebecauseofthedifferentcontributionsanddegreesoftheunderlyingdisease,abnormalrelaxation,changesincompliance,andvolumestatus.Thesamedegreeofdecreaseincomplianceorvolumechangewillproducedifferentmitralflowvelocitycurvesdependingonwhetherrelaxationisabnormal.IfLVhypertrophyismarked,DTstillcanbeprolongedevenwithincreasedLApressure,whereasasimilarincreaseinpressureinotherpatientsshortensDT.ThismayhelpexplainwhytheuseofmitralfillingpatternsinestimatingfillingpressuresworkslesswellinHCM(seebelow).InsevereLVhypertrophy,atriphasicmitralflowpatternwithprominentmid-diastolicflowcanresultfromamarkedlyprolongedrelaxationcontinuingintomid-diastole(23,40).EveniftheinitialslopeofEgivesashortDT,thecontinuedfillingindicatesthatabnormalrelaxation,notadecreaseincompliance,isthemainproblem.Thismid-diastolicdelayinmyocardialrelaxationisalsoevidentfromthemitralannulusmid-diastolicvelocity(Fig.824).Anoppositeexampleisconstrictivepericarditis,inwhichdecreasedcomplianceduetothickpericardiummayresultinmarkedlyshortenedmitralDTwhilee′velocityisnormalorevenincreased.Thesevariationsillustratetheimportanceofevaluatingthediastolicfillingpatternbyintegratingallavailableinformationinsteadofrelyingonasinglevariabletocharacterizeit.Thisapproachhelpsavoidinterpretiveerrorsmadebytryingtofitallpatientsintorigiddiagnosticalgorithms.FIGURE8-31A:PulsedwaveDopplerrecordingofmitralinflowvelocityinanasymptomaticpatientwithatrialfibrillationafteraorticreplacement.AllEvelocitieswerecompletedbeforetheonsetofQRS,andtheirdecelerationtimerangesfrom200to230ms.B:PulsedwaveDopplerrecordingofmitralinflowvelocityfromanelderlywomanwithcongestiveheartfailureinthesettingofatrialfibrillation.PeakEvelocityanddecelerationtime(DT)varydependingoncardiaccyclelength.WhenEvelocityisterminatedbeforetheonsetofQRS(third,fifth,andsixthsignals),DTisshorter(100–110ms)thanthat(120–140ms)ofmitralinflowvelocity,whichwascompletedbeforetheQRS(first,second,fourth,andseventhsignals).AtrialFibrillationandSinusTachycardiaTheusualcriteriaforclassifyingdiastolicfillingpatternscannotbeappliedtopatientswithatrialfibrillationandvaryingcyclelengths.ThereisnoAwaveinmitralinflow,andsystolicforwardflowinthepulmonaryveinisalmostalwaysdiminished.PeakvelocityandDTofmitralEvarywiththelengthofthecardiaccycle.PeakaccelerationrateofEvelocity(≥1,900cm/s2)wasfoundtocorrelatewellwithincreasedLVfillingpressure,(46)butitisdifficulttomeasure.ItappearsfromclinicalobservationsthatDTisshortenedwithincreasedLVfillingpressure,asinpatientswithsinusrhythm,especiallywhenLVsystolicfunctionisdecreased(47,48).DT≤160millisecondsisassociatedwithincreasedfillingpressure.However,DTshouldbemeasuredonlywhenEvelocityendsbeforetheonsetofQRS(Fig.8-31A).Whenthediastolicfillingperiodistooshort,EvelocityisterminatedprematurelywithashorterDT(Fig.8-31B).Inpatientswithatrialfibrillation,diastolicflowispredominantlypulmonaryveinforwardflow.ThedurationandinitialDTofpulmonaryveindiastolicflow(≤220milliseconds)maybeusefulinpredictingincreasedLVfillingpressure(48).E/e′≥11(usingmediale′)correlateswellwithincreasedPCWPinpatientswithatrialfibrillation(Fig.8-32)(49).ASE/EACVIguidelinealsorecommendsusingthedifferencebetweentheonsetofEande′(TE-e′),butitisoftendifficultandtime-consumingtomeasurewithasignificantvariability.Insinustachycardia,EandAvelocitiesfrequentlyfuse,whichmakesitdifficulttodeterminethediastolicfillingpattern.Eveninthissituation,E/e′≥15usuallyindicatesincreasedPCWP(50,51).Itisalsoworthwhiletryingagentlecarotidsinusmassagetoslowtheheartratedownifthereisnocarotidbruit(Fig.8-33).FIGURE8-33Fusedmitralinflow(top)andannulusvelocities(bottom),whichareseparatedbyagentlecarotidmassage.FIGURE8-32A:Mitralinflowandannulusvelocityfromapatientwithatrialfibrillation.Thereisalso“L”wave(arrowleft).Mitralannuluse′velocityvaries(arrowsinright)duetodifferentcardiaccyclelengths.E′valuesneedtobeaveragedover3to5cycles.B:E/e′>11indicatesLVfillingpressure>15mmHg.(ReprintedfromSohnDW,SongJM,ZoJH,etal.Mitralannulusvelocityintheevaluationofleftventriculardiastolicfunctioninatrialfibrillation.JAmSocEchocardiogr,1999;12(11):927–931.Copyright©1999AmericanSocietyofEchocardiography.Withpermission.)HypertrophicCardiomyopathyAlmostallpatientswithHCMhaveasignificantdiastolicdysfunctionwithabnormalmyocardialrelaxation;hence,e′velocityisreduced.BecauseHCMhasmultiplephenotypesandhemodynamicabnormalitiesofLVOTobstruction,mitralregurgitation,orapicalpouchaffectingdiastolicfunction,itischallengingtoperformdiastolicfunctionassessment.SimultaneousstudiesofinvasivehemodynamicmeasurementsandechocardiographicdiastolicfunctionassessmentinsymptomaticpatientsshowedthattherewasnosignificantcorrelationbetweenE/A,DT,orIVRTandpre-AormeanLApressure,buttherewasamoderatecorrelationbetweenE/e′(usingmediale′)anddiastolicpressures(52,53).InGeske’sstudy,almostallpatientswithHCMhadE/e′>8,and25%ofthepatientswithE/e′>15werefoundtohavenormalfillingpressure(Fig.834).ThisisquiteoppositetothesituationswithoutHCMwhereE/e′>15isrelativelyspecificforincreasedfillingpressure.However,inHCM,E/e′≤15isusuallyassociatedwithnormalfillingpressureduetomarkedreductionine′velocitywithhypertrophy.When132patientswithHCMwerefollowedforameanof3.8years,E/e′>15wasassociatedwithahigherincidenceofmajoradversecardiacevents(death,heartfailurehospitalization,stroke,andatrialfibrillation)(54).ItwasabetterpredictorthanBNP.Studieshavedemonstratedasignificantimprovementine′,E/e′,andPASPaftermyectomy(55,56).WhenpatientswithHCMareclassifiedaccordingtoPASP,patientswithpulmonaryhypertensiondohaveincreasedfillingpressures(E/A1.6vs.1.0,E/e′medial25vs.15,andLAVI65vs.44mL/m2)comparedtothepatientswithoutpulmonaryhypertensionalthoughtherewasnodifferenceine′velocity(5cm/sformedialand6cm/sforlateralannulus)(55).Therefore,itisrecommendedtouseE/e′ratio,LAVI,TRvelocity,andPVarvelocity(Fig.8-35).1)Diastolicfillingpressureisdecidedbythemajorityrule.LAstrain,earlydiastolicvortices,torsion,anduntwistinghavebeenrelatedtodiastolicfunctioninHCM,buttheyaredifficulttoapplyinclinicalpractice,andtherearenodefinitedatashowingincrementalvaluetothestandardparametersmentioned.FIGURE8-34A:MeanLApressureversusmeanE/e′ratioinpatientswithHCM.(ReprintedwithpermissionfromGeskeJB,SorajjaP,NishimuraRA,etal.EvaluationofleftventricularfillingpressuresbyDopplerechocardiographyinpatientswithhypertrophiccardiomyopathy:correlationwithdirectleftatrialpressuremeasurementatcardiaccatheterization.Circulation,2007;116(23):2702–2708.)B:LVfillingpressurevs.E/e′ratioinpatientswithoutHCM.(FromOmmenSR,etal.Circulation,2000;102(15):1788–1794,withpermission.)RestrictiveCardiomyopathyVsConstrictivePericarditisBothrestrictivecardiomyopathyandconstrictivepericarditisarepredominantlyaproblemwithlimiteddiastolicfilling,theformerrelatedtoabnormalandfibrosedventriclesandthelatterrelatedtononcompliantandscarredpericardium.Theircharacteristichemodynamicandechocardiographicfeaturesaredetailedinthecardiomyopathyandthepericardialdiseasechapter.Amajordistinguishingdiastolicfeatureisthemitralannulusvelocity,whichismarkedlyreducedinrestrictivecardiomyopathyandispreservedorevenaugmentedinconstrictivepericarditis(18,20).Inaddition,respiratoryvariationinventricularseptalmotionandhepaticveinDopplervelocitiesareuniquetoconstrictivepericarditis(seeChapters10and12).ValvularHeart

DiseasesEstimationoffillingpressureisimportantinallvalvularheartdiseases,butcanbechallenginginsomeconditionsduetotheimpactofvalvulardiseaseondiastolicparameters.Inmitralregurgitation,mitralEvelocityincreaseswithincreasingamountofregurgitantvolumesothatE/e′maynotbereliableinestimatingLVdiastolicpressures.Significantmitralregurgitationreducessystoliccomponentofpulmonaryveinflow.However,studieshaveshownagoodcorrelationbetweenDTofmitralinflowandLVfillingpressure(57).Inaddition,E/e′>15wasfoundtobeassociatedwithincreasedPASPandclinicaloutcome(58).ItalsohadasignificantcorrelationwithLApressurewhenLVEFisreduced.OtherusefulparametersareIVRTandtheratioofIVRTtoTE-e′.Thesameparameterscanbeusedinpatientswithmitralstenosis(1).Usually,LVdiastolicpressureisnormalinpatientswithMS,butinasubsetofpatientswithMS,LVdiastolicpressureisalsoelevatedduetounderlyingmyocardialanddiastolicdysfunction.Mostofthepatientswithaorticstenosisdohavediastolicdysfunctionsinceitoccursintheelderly,especiallywithtricuspiddegenerativeaorticvalvedisease.WithLVpressureoverload,LVhypertrophyoccursandmyocardialrelaxationbecomesabnormal;hence,mitralannuluse′velocityisusuallyreduced.Asaorticstenosisbecomesmoresevere,diastolicfunctionbecomesalsoworsenedwithgrade2or3dysfunction.WhenpatientswithASdevelopdyspnea,diastolicfillingpatternisatleastgrade2whilediastolicfunctionislesssevereinpatientswhopresentwithchestpainorsyncope(58).E/e′hasbeenshowntobeprognosticinsymptomaticaswellasasymptomaticpatientswithaorticstenosisandpatientsmaycontinuetoexperiencedyspneaafteraorticvalvereplacementifdiastolicdysfunctionisprogressedtoseveredegreeatthetimeofvalvereplacement(59).Inchronicaorticregurgitation,LVbecomescompliantduetoitsgradualdilatation,anddiastolicpressuredoesnotincreaseforalongtime.However,inacuteorsubacuteaorticregurgitationwhereLVisnotdilated,LVdiastolicfillingpressurerisesrapidlyresultingingrade2or3fillingpattern(60).Therapidriseinfillingpressuremayforcethemitralvalvetocloseprematurely.FIGURE8-35A:ApicalHCMin73-year-oldwoman.E′velocityismarkedlyreduced,moresointhemediallocationthanfromlaterallocation.Hence,E/e′is40usingthemediale′and15usingthelateral.InHCM,weneedtoseemoredatatobesureaboutfillingpressureinthissituation.B:Systolicstrainisreducedintheapexandanterolateralareas.TRvelocityis3m/sindicatingthatherfillingpressureiselevated.00:00/00:00Video8-35A00:00/00:00Video8-35BMitralAnnulusCalcificationInpatientswithmitralannuluscalcification,E/e′ratiocanbefalselyelevatedduetoincreasedmitralEfromslightlynarrowedmitralorificeanddecreasedmitralannuluse′velocity(Fig.8-36A).Itwasreportedthate′velocityisabout20%lowerandE/e′isabout40%higherinpatientswithmoderatetoseveremitralannuluscalcificationcomparedtoindividualswithnosignificantcalcification(61).Therefore,parametersotherthanE/e′shouldbeusedinpatientswithmoderatetoseveredegreeofmitralannuluscalcification.Figure836BshowsanalgorithmtouseE/AandIVRTtoassessLVfillingpressureinthesettingofsignificantmitralannuluscalcification.PulmonaryveinvelocityalongwithTRvelocityisanotherreliablewaytoassessLVfillingpressureinthissituation.FIGURE8-36Froma76-year-oldwomanwithseveremitralannuluscalcification.A:Mitralinflow(left),mitralannulusvelocitiesfrommedial(center),andlaterallocation(right).Evelocityis100cm/sandE/e′is33and25usingmedialandlaterale′velocity,respectively.B:PulmonaryveinDopplervelocity(left)andtricuspidregurgitationvelocityof2.4m/sindicatenormalfillingpressuredespitetheincreasedE/e′ratio.C:AproposedalgorithmforevaluationofLVfillingpressureinpatientswithmitralannuluscalcificationusingE/AratioandIVRT.(FromAbudiabMM,etal.JACCCardiovascImaging,2017Dec;10(12):1411-1420,withpermission.)00:00/00:00Video8-36DiastolicExerciseTestWhendiastolicfunctionisnormal,LVfillingaugmentswithoutasignificantincreaseinfillingpressuretomeetbodilydemandswithstressorexertionduetoappropriatelyincreasedmyocardialrelaxationandsuction.Asdiastolicworsens,adequateLVfillingmayoccurwithexertion,butattheexpenseofincreasedfillingpressureresultingindyspnea,orLVfillingislimitedevenwithincreasedfillingpressure.However,fillingpressuremaynotbeelevatedatrestingstate.Ananalogoussituationiswhenweevaluatepatientsforcoronaryarterydisease.Normalwallmotionorcoronaryperfusionatrestingstatedoesnotmeanthereisnocoronarystenosis.Weperformastresstestinthatsituationtoseewhetheranindividualdevelopsnewwallabnormalityorperfusiondefect.Therefore,anabilitytodetermineLVfillingpressurewithaformofexerciseishelpfultoevaluateapatientwithexertionaldyspneawhohasnormalfillingpressurewithanevidenceofdiastolicfunction(i.e.,grade1diastolicdysfunction)(1,62)(seediastolicevaluationalgorithminFig.8-20).IthasbeenwellproventobefeasibleandreliabletoestimatePCWPwithexercisebyrecordingmitralinflowandannulusvelocitywithexerciseaswellasatrestingstate(63–66).Inthenormalpopulationwithnormaldiastolicfunction,fillingpressureincreasesslightlywithexercise.MitralinflowEvelocityandannuluse′velocityincreasesamepercentagewithexerciseinnormalsubjectssothatE/e′ratioremainsunchangedwithexercise(Fig.8-37).Ourinitialstudyinmiddle-agedhealthyindividualsandasubsequentstudyinyoungnormalsubjectsyieldedaverysimilarE/e′ratioatrestandwithexercise(67,68)(Table8-3).FIGURE8-37Mitralinflow(left)andmedialmitralannulusvelocity(right)atrest(top)andwithexercise(bottom)inanelderlynormalsubject.Evelocityincreasesfrom75cm/sto108cm/s,ande′increasesfrom6.7cm/sto10.8cm/s.E/e′is11and10,respectively.TABLE8-3NormalValuesofMitralE,e’andE/e’ForMiddleAgedandYoungatrestandwithexerciseVariablesRestExerciseRestExerciseMeanAge(y)59±1429±6MitralE(cm/s)73±1990±2581±14132±15Mediale′(cm/s)12±415±514±320±3E/e′ratio6.7±2.26.6±2.56.7±1.47.1±1.1Insubjectswithdiastolicdysfunction,myocardialrelaxationormitralannuluse′velocitydoesnotimprovemuch,comparedtonormalindividuals,withexerciseorwithincreasedpreloadwhilemitralEvelocityincreasesduetoincreasedLVfilling(Figs.8-38and8-39).Asaresult,E/e′increaseswithexercise.SeveralstudieshaveshownthatE/e′ratiocorrelateswellwithLAorpulmonarycapillarywedgepressurewithexerciseaswellasatrest(63–66).Althoughourinitialfeasibilitystudywasperformedusingasupinebikeinorderforustorecordchangesinindividualparametersatvariousstagesofexercise,(69)wenowperformmostofdiastolicexercisetestsusingtreadmillexerciseprotocolsincemostofourpatientsalsoneedtohaveanevaluationforcoronaryarterydisease.Wehaveshownthatoncediastolicfillingpressureisincreasedwithexercise,ittakesseveralminutesforthepressuretoreturntorestinglevel(Fig.8-40).Withpeakexercise,mitralinfloworannulusearlyandlatediastolicvelocitiesarefrequentlyfusedduetotachycardia.Therefore,LVwallmotionsarecapturedfirstimmediatelyafterterminationoftreadmillexercise,andotherhemodynamicvariablesareobtainedforevaluationofdiastolicfillingpressureandPASP.IncreasedTRvelocitywithexercisesupportsdiastolicdysfunctionandincreasedfillingpressurewithahigherspecificity,andTRvelocityisanintegralpartofdiastolicexercisetest.Table8-4showsdiastolicexercisetestprocedureatMayoClinic.FIGURE8-38A:Positivediastolicexercisetestusingasupinebike.Mitralinflow(top)andannulusvelocity(bottom)wereobtainedseriallyatrest,25W,50W,75W,andrecovery.Atrest,E=50cm/sandmediale′=5cm/swithE/e′=10.Therewasnosignificantincreaseine′withexercise,butEvelocityincreasedto80cm/swithmildexerciseandthento90cm/sat75WyieldingE/e′=18.Thepatientwashavingdyspneafrom50Wlevelofexercise.Mitralinflowreturnedtothebaselinegradually.B:Anotherexampleofpositivediastolicexercisetestusingtreadmillexercise.Mitralinflowwasobtainedatrest(topleft)andpostexercise(topright).Correspondingtricuspidregurgitationvelocitiesareshown(bottom).Evelocityincreasedfrom35cm/sto90cm/swithnomajorchangeine′4cm/s(notshown)yieldingE/e′of8and23,respectively,atrestandexercise.TRvelocityincreasedfrom2.2m/sto4.0m/s.AlthoughASE/EACVIguidelinesrecommendaveragevalueformitralannuluse′velocity,itischallengingtoobtainbothvalueswithexercisetestsinceseveralparametersneedtobeacquiredinashortperiod.MayoCliniccontinuestousethemediale′velocityaloneforbothrestingandexercisediastolicfunctionevaluationsincetherehasbeennostudydemonstratingadefiniteadvantageorsuperiorityofusingtheaveragevaluecomparedtoonelocationformostofclinicalsituations.Anothersimplediastolicstresstestcanbedonewithelevationoflegsfor3minutes,whichincreasesvenousreturntotheheart.Inpatientswithsignificantdiastolicdysfunction,fillingpressurewouldincreaseandE/e′ratioincreases.However,thisisnotaverysensitivewaytodetectdiastolicdysfunctionalthoughcanbeperformedsimplyattheexaminationtable.Wedonotrecommenddobutaminestresstestforevaluationofdiastolicfunctionwithstressalthoughapersistentrestrictivefillingwithdobutamineinfusionwasfoundtobepredictiveofapoorclinicaloutcomeinpatientswithischemiccardiomyopathy(70).Dobutamineisavasodilatorandtendstodecreasefillingpressureandisnotphysiologicwhenweassesspatientswithexertionaldyspnea.FIGURE8-39Anothertreadmilldiastolicexercisetestinapatientwithexertionaldyspnea.Restingmitralannulus,mitralinflow,andTRvelocityareshowninthetop.Withexercise,therewasnochangeine′velocityof5cm/s,butmitralEincreasedfrom48cm/sto94cm/sandTRvelocityincreasedfrom2.6m/sto3.5m/s.FIGURE8-40Mitralinflowandannulusvelocityfromapositiveexercisediastolicstresstestshowingmarkedincreaseinmitralinflowwith25Wofexerciseandittook10minutestoreturntobaseline.Dyspneaisthemostcommonreferralreasonforexercisetest,andthepatientswithdyspneahaveworseprognosisthandothepatientswithreferralreasonofchestpain(71).Manyofthepatientswithdyspneadohavenormalstresstestformyocardialischemia.Whendiastolicevaluationisincorporatedintoanexerciseechocardiography,theyieldforapositivestudyisdoubledinpatientswithreferralreasonofdyspneaatMayoClinic(Fig.8-41).Severalstudieshavereportedthatexercisediastolicfunctiontestpredictslong-termoutcome(72–74)andhelpfulfordiagnosingpatientswithHFpEF(66,74).Atimehascometoincorporatethissimpleandhelpfuldiagnostictestintoourroutineclinicalpracticetoevaluatethepatientswithexertionaldyspnea(75,76).TABLE8-4DiastolicExerciseTest1.PrepareforanexercisetestwithECGandpulseoximetryaswellasvitalsigns2.Restingechocardiograma.LVsize,EF,andwallmotionb.Mitralinflowvelocityc.Mitralannulusvelocityd.TRvelocitye.ColorflowimagingforMR(ifexercise-inducedMRissuspected)3.Exerciseprotocol(treadmillorsupinebike)withmonitoring4.Immediatelyafter(treadmill)orpeak(supinebike)exercisea.ObtainLVsize,EF,andwallmotion(within60to90s)b.RepeatDopplermeasurementsc.ObtainTRvelocityfirstd.MitralinflowandannulusvelocitywhenEandAunfused5.Positivediastolicexercisetesta.Reducede′atrest(13(usinglaterale′)c.TRvelocity>2.8m/sClinicalApplicationsofDiastolicFunctionEvaluationManagementofHeartFailureNoninvasiveestimatesofPCWPallowmoreoptimaltreatmentofheartfailure.Thediastolicfillingpatternandfillingperiodcanprovideaguidetoamoreselectivemanagementofheartfailure.Grade1diastolicdysfunction:thisisthebestdiastolicfillingpatterninpatientswithdiastolicdysfunctionorclinicalheartfailure.E/Aratiobetween0.6and0.8appearstobethebestfillingpatternforthepatientswithischemiccardiomyopathy(Fig.8-42),andprobablyforotherheartfailureconditions.Thepatientsinthisgroupareusuallyasymptomaticaslongasthediastolicfillingperiodissufficientlylongtoaccommodatethedelayinnecessarymyocardialrelaxation.Thekeytomanagementisthepreventionofexercise-inducedtachycardiaorthedevelopmentofatrialfibrillation.β-Blockertherapyishelpfulinminimizingtachycardia,andthecontroloffactorsthatfurtheraggravatediastolicdysfunctionishelpful(i.e.,managementofhypertension,obesity,diabetesmellitus,ischemia).Grade2diastolicdysfunction:patientsinthisgrouphaveamoderateincreaseinfillingpressureinadditiontoimpairedrelaxation.Hence,adecreaseinpreloadorvenouscongestionisrequiredaswellasneurohormonalmodulationwithanangiotensin-convertingenzyme(ACE)inhibitororangiotensinreceptorblocker.Grade3diastolicdysfunction:patientsinthisgrouphaveamarkedlyincreasedfillingpressure,anddiastolicfillingoccursmostlyduringearlydiastole,witharelativelyfixedstrokevolume.Patientsmaynottolerateβ-blockadesincestrokevolumecannotbeaugmentedwitbradycardia.Diuresisistheinitialtreatmentofchoice,andtreatmentwithanACEinhibitororangiotensinreceptorblockercanbetitrated.Patient’sprognosisandsymptomsimproveifthediastolicfillingpatterncanbechangedtograde1(optimally)or2.DiastolicfunctionassessmentcanalsoidentifymorestageBheartfailurepatients,comparedtothecurrentrecommendationofusingLVEFandLVH(77,78).FIGURE8-41Apiediagramdemonstratingtheresultofexercisetestin421patients≥60yearsofagewhowereevaluatedfordyspnea.Positivetestforischemiawasfoundin32%,butitincreasedto63%ifdiastolictestresultwasincluded.(CourtesyofKaneG.andMcCullyR.)FIGURE8-42A5-yearmortalityratebasedonE/Aratioinpatientswithischemiccardiomyopathy.(FromSTICHTrial.)PrognosisDiastolicechocardiographicvariables(E,E/A,DT,E/E′)andLAvolumearepowerfulprognosticindicatorsforvariousconditions(79).Eveninasymptomaticpatients,thepresenceofdiastolicdysfunctionportendsapoorclinicaloutcome(80).WhentheinitialOlmstedasymptomaticpatientswerefollowedfor4years,theprevalenceofdiastolicdysfunctionincreasedfrom24%to39%.Diastolicfunctionwasworsenedin24%ofthepopulation,whichwasrelatedtoolderage.Heartfailureincidenceincreasedwhendiastolicfunctionbecameworsewhileithappenedonlyin2.6%whendiastolicfunctionwasremainednormalornormalized(Fig.8-43)(81).Maintainingnormaldiastolicfunctionmaybethekeytocardiacimmortality.Althoughdiastolicfillingisaffectedbyvariousfactors,thedirectionofitschangeorprogressionispredictableinpatientswithknownheartdisease.Therefore,anassessmentofthediastolicfillingpatternallowsLVfillingpressuresandLVcomplianceandrelaxationtobeestimatedandunderstoodsothatoptimaltreatmentstrategiescanbeprovidedtosymptomaticpatientswithdiastolicdysfunction.Anotherimportantapplicationistoprovideaprognosisincasesofvariouscardiacdiseases.Arestrictivefillingpatternindicatesapoorprognosis,andtreatmentsaimedatmakingdiastolicfillinglessrestrictiveimprovetheclinicaloutcomeofpatients.TheDopplerechocardiographicevaluationofthediastolicfillingpatternmaybehelpfulinassessingtheresponsetotreatmentofpatientswithheartfailure.FIGURE8-43Progressionofleftventriculardiastolicdysfunctionandriskofheartfailure.(WithpermissionfromKaneetal.JAMA,2011;306(8):856–863.)DiagnosisofDiastolicHeartFailure,Cardiomyopathies,andConstrictivePericarditisKnowledgeofdiastolicfillingpatternandfillingpressuresallowsthedetectionofcardiacdiseasesthatarefrequentlymissedornotsuspectedclinically,especiallywhentheLVEFisnormal.TheevidenceisstrongthattissueDopplerevaluationofmyocardialrelaxationcanbeusedtodiagnosevariousformsofcardiomyopathy(HCM,Fabrydisease,amyloidosis)evenbeforeanyfrankphenotypicmanifestation.Withtheuseofechocardiographicdiastolicvariables,ithasbeenmucheasiertodetectconstrictivepericarditis.Comprehensive2DandDopplerechocardiographycanassessabnormalrelaxation,detectchangesincomplianceorstiffness,anddifferentiatetheleveloffillingpressurefromtherateofchangeinpressureduringdiastole,whichtogetherwiththestructuralinformationobtainedfrom2Dechocardiographyprovidesaclinicallyrelevantassessmentofdiastolicfunction(82)(Fig.8-44).Theinterplaybetweenthebasicdiastolicpropertiesandthefillingpressurecanbeappreciatedbythecombinedassessmentofmitralinflow,tissueDoppler,and2Dimaging.ManymyocardialandnonmyocardialconditionscancauseheartfailureinapatientwithnormalLVEF.However,abnormaldiastolicfunctionisthemostcommoncauseofheartfailurewithnormalLVEF,whichiseasilydiagnosedbyechocardiographywithevidenceofabnormalrelaxation,increasedfillingpressure,anddecreasedcomplianceaswellasnormal(ordecreased)LVdimensionandpreservedLVEF.Thisiswhatdiastolicheartfailurerepresents.Currently,echocardiographyisthediagnosticmethodofchoiceforidentifyingsuchpatientswithdiastolicheartfailureorHFpEF.RecommendationforDiastolicFunctionAssessmentAslongasweunderstandthephysiologyofdiastolicfunctionandwhichcomponentofdiastolicvariablesdetermineseachecho-Dopplerparameter,weshouldbeabletoassessdiastolicfunctionorfillingpressurereliablyinmostpatients.Followingisasummaryofourapproachtodiastolicfunctionassessmentinclinicalpractice,whichdiffersslightlyfromtheASE/EACVIrecommendation.1.Sincethesinequononoraprerequisiteofdiastolicdysfunctionisabnormalorreducedmyocardialrelaxation,normalmyocardialrelaxation,hence,trulynormale′velocity(mediale′≥8cm/s)withE/Aratio>0.8shouldindicatetrulynormaldiastolicfunction,exceptforinthecaseofconstrictivepericarditis.Inthissituation,TRvelocityshouldbenormal,butLAVIcanbeincreasedifstrokevolumeisincreasedforawell-trainedheart,bradycardia,orhigh-outputheartfailurewithoutmyocardialdisease.2.Theeasiestdiastolicdysfunctiontorecognizeisthegrade1patterncharacterizedbyE/A≤0.8andE≤50cm/s,regardlessofunderlyingLVEF.Thisindicatesnormalfillingpressureinthesettingofabnormalmyocardialrelaxationorreducede′.ThecurrentguidelinemakesthispatternasnormaldiastolicfunctionifE/e′,TRvelocity,andLAVIarelessthanthecutoffvalue.Thereasonforthisisthattheguidelineconsidersage-relatedreducedmyocardialrelaxationasnormal,butweshouldcallthatasearlystageofdiastolicdysfunction(withnormalfillingpressure)orreduceddiastolicreserve.AnotherwaytoreportthispatternisnormalLVfillingpressurewithabnormalmyocardialrelaxation(Fig.8-17).3.Werecommendthatthefirstparametertoreviewfordiastolicfunctionassessmentistoseewhetherthereisanabnormalityinmyocardialrelaxation.Ife′velocityislowerthanage-relatednormalvalues,theASE/EACVIalgorithmforreducedEForknowndiastolicdysfunctioncanbeused(Fig.819).Wewanttoemphasizethatwemusthaveanevidencethatmyocardialrelaxationisreduced.Patients(especiallyyoung)withaclinicalhistoryofhypertension,coronaryarterydisease,cardiomyopathy,diabetesorincreasedwallthicknessmayhavenormalmyocardialrelaxation,hencenormaldiastolicfunction.Makesurethate’isreducedbeforeusingtherecommendedalgorithmforknowndiastolicdysfunction.4.E/e′>15(mediale′)or>14(averagee′)isveryspecificforincreasedLVfillingpressureespeciallyifcombinedwithTRvelocity≥2.8m/s.However,weshouldnotuseE/e′forthepatientswithatleastmoderatedegreeofmitralannuluscalcificationormitralvalveprosthesis.5.Ifdiastolicfunctionassessmentisindeterminateafterreviewinge’,E/e’,LAVIandTRvelocity,pulmonaryveinvelocitypatternisveryuseful.IVRTcanbehelpfulalsoifitissignificantlyshortened(120milliseconds)fordelayedrelaxationandnormalfillingpressure.ComparisonoftheonsetofmitralinflowEvelocityandtheonsetofmitralannuluse′canbehelpful.Ifwelldone,theValsalvamaneuvercanalsohelpdifferentiatenormalfrompseudonormalizedmitralinflowvelocity.FIGURE8-44Top:Threesimilarmitralinflowvelocityrecordingsfromanormalsubject(centercolumn),apatientwithdiastolicheartfailure(leftcolumn),andapatientwithleftventricular(LV)remodelingaftermyocardialinfarction(rightcolumn).Itisdifficulttoidentifytheirdiastolicfunctionorfillingpressuresbymitralinflowvelocitypatternalone.Middle:TissueDopplervelocityrecordingfromtheseptalcornerofrespectiveindividualswithmitralinflowvelocitiesshownonthetoppanel.Inthemiddlecolumn,mitralannulusearlydiastolicvelocity(Ea)isnormal(11cm/s),indicatingthatmyocardialrelaxationisnormalwithnormalfillingpressure(E/Ea=80/11≤8).Intheleftcolumn,Eaismarkedlyreducedto5cm/s,withE/Eaof20(=100/5).Intherightcolumn,Eaisalsoreducedto3cm/swithE/Eaof33(=90/3).BasedonmitralinflowvelocityandtissueDopplermitralannulusvelocity,thepatientsintheleftandrightcolumnswerefoundtohaveincreasedfillingpressureandabnormalrelaxationofLV.However,theunderlyingreasonforincreasedfillingpressureisnotclearwithoutstructuralinformationshownatthebottom.Twodimensionalechocardiographyshowscompletelynormalcardiacstructuresfornormalsubjectinthecenter,abnormalheart(increasedwallthicknessandenlargedLAsize),butnormalLVsizeandejectionfraction(EF)(inrealtime)intheleftcolumn,typicalofdiastolicheartfailure,withleftward/upward-shiftedend-diastolicpressure-volumerelationship,andabnormalheart(enlargedLVsizeandreducedEFinrealtime)intherightcolumn,typicalofremodelingwithrightward/downward-shiftedend-diastolicpressure-volumerelationship.REFERENCES1.NaguehSF,etal.Recommendationsfortheevaluationofleftventriculardiastolicfunctionbyechocardiography:AnupdatefromtheAmericanSocietyofEchocardiographyandtheEuropeanAssociationofCardiovascularImaging.JAmSocEchocardiogr,2016;29(4):277–314.2.EbashiS.Excitation-contractioncouplingandthemechanismofmusclecontraction.AnnuRevPhysiol,1991;53:1–16.3.BrutsaertDL,etal.Effectsofdamagingtheendocardialsurfaceonthemechanicalperformanceofisolatedcardiacmuscle.CircRes,1988;62(2):358–366.4.CainBS,etal.HumanSERCA2alevelscorrelateinverselywithageinsenescenthumanmyocardium.JAmCollCardiol,1998;32(2):458–467.5.OkuraH,etal.Age-andgender-specificchangesintheleftventricularrelaxation:ADopplerechocardiographicstudyinhealthyindividuals.CircCardiovascImaging,2009;2(1):41–46.6.WuY,etal.Changesintitinandcollagenunderliediastolicstiffnessdiversityofcardiacmuscle.JMolCellCardiol,2000;32(12):2151–2162.7.BorbelyA,etal.Moleculardeterminantsofheartfailurewithnormalleftventricularejectionfraction.PharmacolRep,2009;61(1):139–145.8.LeWinterMM,GranzierH.Cardiactitin:Amultifunctionalgiant.Circulation,2010;121(19):2137–2145.9.ZileMR,etal.Myocardialstiffnessinpatientswithheartfailureandapreservedejectionfraction:Contributionsofcollagenandtitin.Circulation,2015;131(14):1247–1259.10.NaguehSF,etal.HemodynamicdeterminantsofthemitralannulusdiastolicvelocitiesbytissueDoppler.JAmCollCardiol,2001;37(1):278–285.11.SohnDW,etal.AssessmentofmitralannulusvelocitybyDopplertissueimagingintheevaluationofleftventriculardiastolicfunction.JAmCollCardiol,1997;30(2):474–480.12.NaguehSF,etal.Dopplertissueimaging:Anoninvasivetechniqueforevaluationofleftventricularrelaxationandestimationoffillingpressures.JAmCollCardiol,1997;30(6):1527–1533.13.OmmenSR,etal.ClinicalutilityofDopplerechocardiographyandtissueDopplerimagingintheestimationofleftventricularfillingpressures:acomparativesimultaneousDoppler-catheterizationstudy.Circulation,2000;102(15):1788–1794.14.AppletonCP,HatleLK,PoppRL,Relationoftransmitralflowvelocitypatternstoleftventriculardiastolicfunction:NewinsightsfromacombinedhemodynamicandDopplerechocardiographicstudy.JAmCollCardiol,1988;12(2):426–440.15.CaballeroL,etal.EchocardiographicreferencerangesfornormalcardiacDopplerdata:ResultsfromtheNORREStudy.EurHeartJCardiovascImaging,2015;16(9):1031–1041.16.RossvollO,HatleLK.PulmonaryvenousflowvelocitiesrecordedbytransthoracicDopplerultrasound:Relationtoleftventriculardiastolicpressures.JAmCollCardiol,1993;21(7):1687–1696.17.MatsudaY,etal.Changeofleftatrialsystolicpressurewaveforminrelationtoleftventricularenddiastolicpressure.Circulation,1990;82(5):1659–1667.18.WelchTD,etal.Echocardiographicdiagnosisofconstrictivepericarditis:Mayocliniccriteria.CircCardiovascImaging,2014;7(3):526–534.19.HurrellDG,etal.UtilityofpreloadalterationinassessmentofleftventricularfillingpressurebyDopplerechocardiography:AsimultaneouscatheterizationandDopplerechocardiographicstudy.JAmCollCardiol,1997;30(2):459–467.20.SyedFF,SchaffHV,OhJK,Constrictivepericarditis—acurablediastolicheartfailure.NatRevCardiol,2014;11(9):530–544.21.KhankirawatanaB,etal.PeakatrialsystolicmitralannularvelocitybyDopplertissuereliablypredictsleftatrialsystolicfunction.JAmSocEchocardiogr,2004;17(4):353–360.22.LittleWC,OhJK.Echocardiographicevaluationofdiastolicfunctioncanbeusedtoguideclinicalcare.Circulation,2009;120(9):802–809.23.FrommeltPC,PelechAN,FrommeltMA.Diastolicdysfunctioninanunusualcaseofcardiomyopathyinachild:InsightsfromDopplerandDopplertissueimaginganalysis.JAmSocEchocardiogr,2003;16(2):176–181.24.Gonzalez-VilchezF,etal.ComparisonofDopplerechocardiography,colorM-modeDoppler,andDopplertissueimagingfortheestimationofpulmonarycapillarywedgepressure.JAmSocEchocardiogr,2002;15(10Pt2):1245–1250.25.AppletonCP.HemodynamicdeterminantsofDopplerpulmonaryvenousflowvelocitycomponents:Newinsightsfromstudiesinlightlysedatednormaldogs.JAmCollCardiol,1997;30(6):1562–1574.26.KinnairdTD,ThompsonCR,MuntBI.Thedeceleration[correctionofdeclaration]timeofpulmonaryvenousdiastolicflowismoreaccuratethanthepulmonaryarteryocclusionpressureinpredictingleftatrialpressure.JAmCollCardiol,2001;37(8):2025–2030.27.KaneG,etal.Impactofageonpulmonaryarterysystolicpressuresatrestandwithexercise.EchoResPract,2016;3(2):53–61.28.MillerWL,etal.Contributionofventriculardiastolicdysfunctiontopulmonaryhypertensioncomplicatingchronicsystolicheartfailure.JACCCardiovascImaging,2011;4(9):946–954.29.BoonyaratavejS,OlsonL,BeckK.RespiratoryvariationofsuperiorvenacavaDopplerinpatientswithsevereemphysema:Correlationwihtintrapleuralandintraabdominalpressure[abstract].JAmCollCardiol,1996;27:212A.30.OhJK,TajikJ.Thereturnofcardiactimeintervals:Thephoenixisrising.JAmCollCardiol,2003;42(8):1471–1474.31.WeisslerAM,HarrisWS,SchoenfeldCD.Systolictimeintervalsinheartfailureinman.Circulation,1968;37(2):149–159.32.ManciniGB,etal.Theisovolumicindex:Anewnoninvasiveapproachtotheassessmentofleftventricularfunctioninman.AmJCardiol,1982;50(6):1401–1408.33.TeiC,etal.Newindexofcombinedsystolicanddiastolicmyocardialperformance:Asimpleandreproduciblemeasureofcardiacfunction—Astudyinnormalsanddilatedcardiomyopathy.JCardiol,1995;26(6):357–366.34.OgiharaY,etal.UtilityofrightventricularTei-indexforassessingdiseaseseverityanddeterminingresponsetotreatmentinpatientswithpulmonaryarterialhypertension.JCardiol,2014;63(2):149–153.35.KusunoseK,etal.IntervalfromtheonsetoftransmitralflowtoannularvelocityisamarkerofLVfillingpressure.JACCCardiovascImaging,2013;6(4):528–530.36.AppletonCP,etal.Dopplerevaluationofleftandrightventriculardiastolicfunction:Atechnicalguideforobtainingoptimalflowvelocityrecordings.JAmSocEchocardiogr,1997;10(3):271–292.37.OhJK,etal.Thenoninvasiveassessmentofleftventriculardiastolicfunctionwithtwo-dimensionalandDopplerechocardiography.JAmSocEchocardiogr,1997;10(3):246–270.38.LesterSJ,etal.Unlockingthemysteriesofdiastolicfunction:DecipheringtheRosettaStone10yearslater.JAmCollCardiol,2008;51(7):679–689.39.KuwakiH,etal.Redefiningdiastolicdysfunctiongrading:CombinationofE/A≤0.75anddecelerationtime>140msandE/ε′≥10.JACCCardiovascImaging,2014;7(8):749–758.40.HaJW,etal.Triphasicmitralinflowvelocitywithmiddiastolicfilling:Clinicalimplicationsandassociatedechocardiographicfindings.JAmSocEchocardiogr,2004;17(5):428–431.41.KerenG,etal.Interrelationshipofmid-diastolicmitralvalvemotion,pulmonaryvenousflow,andtransmitralflow.Circulation,1986;74(1):36–44.42.Rivas-GotzC,etal.TimeintervalbetweenonsetofmitralinflowandonsetofearlydiastolicvelocitybytissueDoppler:Anovelindexofleftventricularrelaxation:Experimentalstudiesandclinicalapplication.JAmCollCardiol,2003;42(8):1463–1470.43.HasegawaH,etal.Diastolicmitralannularvelocityduringthedevelopmentofheartfailure.JAmCollCardiol,2003;41(9):1590–1597.44.DevoreA.Impairedleftventriculargloballongitudinalstraininpatientswithheartfailurewithpreservedejectionfraction:InsightsfromtheRELAXtrial.EurJHeartFail,2017;19(7):893–900.45.OhJK,ParkSJ,NaguehSF.Establishedandnovelclinicalapplicationsofdiastolicfunctionassessmentbyechocardiography.CircCardiovascImaging,2011;4(4):444–455.46.SinghA,etal.LAStrainforCategorizationofLVDiastolicDysfunction.JACCCardiovascImaging,2017Jul;10(7):735–743.47.HurrellDG,etal.ShortdecelerationtimeofmitralinflowEvelocity:Prognosticimplicationwithatrialfibrillationversussinusrhythm.JAmSocEchocardiogr,1998;11(5):450–457.48.ChirilloF,etal.EstimatingmeanpulmonarywedgepressureinpatientswithchronicatrialfibrillationfromtransthoracicDopplerindexesofmitralandpulmonaryvenousflowvelocity.JAmCollCardiol,1997;30(1):19–26.49.SohnDW,etal.Mitralannulusvelocityintheevaluationofleftventriculardiastolicfunctioninatrialfibrillation.JAmSocEchocardiogr,1999;12(11):927–931.50.NaguehSF,etal.Dopplerestimationofleftventricularfillingpressureinsinustachycardia.Anewapplicationoftissuedopplerimaging.Circulation,1998;98(16):1644–1650.51.SohnDW,etal.EvaluationofleftventriculardiastolicfunctionwhenmitralEandAwavesarecompletelyfused:Roleofassessingmitralannulusvelocity.JAmSocEchocardiogr,1999;12(3):203–208.52.GeskeJB,etal.Therelationshipofleftatrialvolumeandleftatrialpressureinpatientswithhypertrophiccardiomyopathy:Anechocardiographicandcardiaccatheterizationstudy.JAmSocEchocardiogr,2009;22(8):961–966.53.GeskeJB,etal.EvaluationofleftventricularfillingpressuresbyDopplerechocardiographyinpatientswithhypertrophiccardiomyopathy:Correlationwithdirectleftatrialpressuremeasurementatcardiaccatheterization.Circulation,2007;116(23):2702–2708.54.KitaokaH,etal.TissueDopplerimagingandprognosisinasymptomaticormildlysymptomaticpatientswithhypertrophiccardiomyopathy.EurHeartJCardiovascImaging,2013;14(6):544–549.55.GeskeJB,etal.Surgicalmyectomyimprovespulmonaryhypertensioninobstructivehypertrophiccardiomyopathy.EurHeartJ,2014;35(30):2032–2039.56.Tower-RaderA,etal.Effectsofseptalmyectomyonleftventriculardiastolicfunctionandleftatrialvolumeinpatientswithhypertrophiccardiomyopathy.AmJCardiol,2014;114(10):1568–1572.57.BruchC,etal.UsefulnessoftissueDopplerimagingforestimationoffillingpressuresinpatientswithprimaryorsecondarypuremitralregurgitation.AmJCardiol,2004;93(3):324–328.58.ParkSJ,etal.Hemodynamicpatternsforsymptomaticpresentationsofsevereaorticstenosis.JACCCardiovascImaging,2013;6(2):137–146.59.ChangSA,etal.Noninvasiveestimateofleftventricularfillingpressurecorrelatedwithearlyandmidtermpostoperativecardiovasculareventsafterisolatedaorticvalvereplacementinpatientswithsevereaorticstenosis.JThoracCardiovascSurg,2010;140(6):1361–1366.60.OhJK,etal.CharacteristicDopplerechocardiographicpatternofmitralinflowvelocityinsevereaorticregurgitation.JAmCollCardiol,1989;14(7):1712–1717.61.CodolosaJN,etal.Effectofmitralannularcalciumonleftventriculardiastolicparameters.AmJCardiol,2016;117(5):847–852.62.LancellottiP,etal.Theclinicaluseofstressechocardiographyinnon-ischaemicheartdisease:RecommendationsfromtheEuropeanAssociationofCardiovascularImagingandtheAmericanSocietyofEchocardiography.EurHeartJCardiovascImaging,2016;17(11):1191–1229.63.TalrejaDR,NishimuraRA,OhJK,EstimationofleftventricularfillingpressurewithexercisebyDopplerechocardiographyinpatientswithnormalsystolicfunction:Asimultaneousechocardiographiccardiaccatheterizationstudy.JAmSocEchocardiogr,2007;20(5):477–479.64.BurgessMI,etal.Diastolicstressechocardiography:Hemodynamicvalidationandclinicalsignificanceofestimationofventricularfillingpressurewithexercise.JAmCollCardiol,2006;47(9):1891–1900.65.RitzemaJL,etal.SerialDopplerechocardiographyandtissueDopplerimaginginthedetectionofelevateddirectlymeasuredleftatrialpressureinambulantsubjectswithchronicheartfailure.JACCCardiovascImaging,2011;4(9):927–934.66.ObokataM,etal.TheroleofdiastolicstresstestingintheevaluationforHFpEF:Asimultaneousinvasive-echocardiographicstudy.Circulation,2017;135:825–883.67.HaJW,etal.Effectsoftreadmillexerciseonmitralinflowandannularvelocitiesinhealthyadults.AmJCardiol,2003;91(1):114–115.68.StuderBruenggerAA,etal.Diastolicstressechocardiographyintheyoung:Astudyinnonathleticandendurance-trainedhealthysubjects.JAmSocEchocardiogr,2014;27(10):1053–1059.69.HaJW,etal.Diastolicstressechocardiography:AnovelnoninvasivediagnostictestfordiastolicdysfunctionusingsupinebicycleexerciseDopplerechocardiography.JAmSocEchocardiogr,2005;18(1):63–68.70.DuncanAM,etal.Effectofdobutaminestressonleftventricularfillinginischemicdilatedcardiomyopathy:Pathophysiologyandprognosticimplications.JAmCollCardiol,2005;46(3):488–496.71.AbidovA,etal.Prognosticsignificanceofdyspneainpatientsreferredforcardiacstresstesting.NEnglJMed,2005;353(18):1889–1898.72.BorlaugBA,etal.Exercisehemodynamicsenhancediagnosisofearlyheartfailurewithpreservedejectionfraction.CircHeartFail,2010;3(5):588–595.73.HollandDJ,PrasadSB,MarwickTH.Prognosticimplicationsofleftventricularfillingpressurewithexercise.CircCardiovascImaging,2010;3(2):149–156.74.HaJW,etal.Abnormalleftventricularlongitudinalfunctionalreserveinpatientswithdiabetesmellitus:ImplicationfordetectingsubclinicalmyocardialdysfunctionusingexercisetissueDopplerechocardiography.Heart,2007;93(12):1571–1576.75.KaneGC,OhJK.Diastolicstresstestfortheevaluationofexertionaldyspnea.CurrCardiolRep,2012;14(3):359–365.76.OhJK,KaneGC.Diastolicstressechocardiography:Thetimehascomeforitsintegrationintoclinicalpractice.JAmSocEchocardiogr,2014;27(10):1060–1063.77.KosmalaW,JellisCL,MarwickTH.Exerciselimitationassociatedwithasymptomaticleftventricularimpairment:AnalogywithstageBheartfailure.JAmCollCardiol,2015;65(3):257–266.78.OhJK,BorlaugBA.StageBheartfailure:Isitmorecommonthanwethink?JAmCollCardiol,2015;65(3):267–269.79.GrewalJ,etal.Leftventricularfunctionandexercisecapacity.JAMA,2009;301(3):286–294.80.RedfieldMM,etal.Burdenofsystolicanddiastolicventriculardysfunctioninthecommunity:Appreciatingthescopeoftheheartfailureepidemic.JAMA,2003;289(2):194–202.81.KaneGC,etal.Progressionofleftventriculardiastolicdysfunctionandriskofheartfailure.JAMA,2011;306(8):856–863.82.OhJK,etal.Diastolicheartfailurecanbediagnosedbycomprehensivetwo-dimensionalandDopplerechocardiography.JAmCollCardiol,2006;47(3):500–506.CHAPTER9RightHeartAssessmentandPulmonaryHypertensionGarvanC.KaneandSung-AChangEchocardiographicevaluationoftherightheartishamperedbythecomplexshapeoftherightventricle(RV),theproximitytothesternum,thethinnessoftheRVwall,andthecomplexityofRVfunction.Yet,thereisincreasedrecognitionoftheimportanceoftherightheartinvariousdiseasestatesincludingthosethatprimarilyaffecttheleftheart,suchasheartfailurewithreducedorpreservedejectionfraction(EF)aswellasvalvularheartdiseases,andthoseacquiredheartdiseasesthatprimarilyaffecttherightsidesuchaspulmonaryhypertension(PH).TransthoracicechocardiographyplaysanintegralpartintheassessmentofthepatientwithknownorsuspectedPH.Echocardiographyprovidesareasonablyaccurateestimationofpulmonaryartery(PA)hemodynamics,oftenprovidinginformationthathelpswiththedeterminationofthemechanismofpulmonaryhypertension,andmostimportantlyconveysdataonmanycriticalprognosticvariables.Thesemeasuresofdiseaseseveritymayincludemeasuresofrightheartsize,RVsystolicfunction,andintegrativehemodynamicvariables.RIGHTATRIALSIZETherightatrium(RA)ismostcommonlymeasuredfromanapicalfour-chamberview,byamonoplanemethodofdiscs.TheRAareaandlengthmeasuresaretakenatventricularendsystole,whentheRAislargest,justpriortotricuspidvalveopening.Thechamberareaistracedattheblood-tissueinterfacestartingatthemedialtricuspidannulusandfinishingatthemedialannulus.ThelengthismeasuredparalleltothelongaxisoftheRA.Theintra-atrialseptumismeasuredinaneutralpositionexcludinganycomponentofanatrialseptalaneurysm,inferiorvenacava(IVC),superiorvenacava(SVC),appendage,andtheareabetweentheleafletsandtheannularplane(Fig.9-1).Imageoptimizationincludesavoidingaforeshortenedimageandoptimizationofthefocusdepthandgain.OurlaboratoryreportsRAvolumesinpatientswithknownorsuspectedrightheartdiseasebutnotinthosepatientswhohaveundergonemechanicaltricuspidvalvereplacementorcardiactransplantation.TheAmericanSocietyofEchocardiography(ASE)recommendstheupperlimitofnormaloftheRAvolume,asmeasuredbythismethod,as33mL/m2inwomenand39mL/m2inmen(1).RAvolumesmayalsobemeasureddirectlyby3Dechocardiography(seeChapter2).Unliketheleftatrium,dataregardingtheassociationofRAsizewithclinicaloutcomesarelesswellestablished(2,3)butmaybehelpfulintheserialassessmentofpatients.EmergingdataassessingRAfunctionhaveidentifiedimpairmentsinbothreservoirandpassiveconduitfunctionsinpulmonaryarterialhypertension(4).RIGHTVENTRICLEAnumberofkeyfeaturesdistinguishtheRVfromtheleftventricle(LV),andthesemustbekeptinmindwhenassessingRVanatomyandpathophysiology.TheRVsuppliesahigh-flow,low-pressurepulmonarycircuitwitharesistanceone-tenththatofthesystemicresistance,withtheRVpoisedtotoleratechangesinvolumeloadingbetterthanpressureloading.LocatedanteriortotheLV,theRVfreewallisthinandcompliantformingahemiellipsoidshapethatwrapsaroundtheLV,sittinglargelybehindthesternum.TheRViscomposedofthreecomponents:theinlet,apicaltrabecular,andoutletportions.UnliketheLV,theRVlacksfibrouscontinuitybetweentheinlet(tricuspid)andoutflow(pulmonary)valves.ThemainportionoftheRVismuchmoretrabeculatedthantheLVandhasamoderatorband,abandofmusculartissuethatstretchesfromthebaseoftheanteriorpapillarymuscletotheventricularseptum.Whileadedicatedrightheart–focusedfour-chamberviewisveryhelpfulintheassessmentoftheRV,itisimportantthatallavailableviewsareusedtoprovideacomprehensiveintegratedechocardiographicassessmentoftheRV.TheseincludetheparasternalshortandlongaxisinadditiontotheRVinflowandoutflowviewsaswellasapicalandsubcostalviews(1).FIGURE9-1Measurementofrightatrium(RA)fromtheapicalfour-chamberview.TheRAismeasuredbythemonoplanemethodofdisctechnique,withthemaximumareaandlengthmeasuredatventricularendsystole.RIGHTVENTRICULARWALLTHICKNESSThenormalRVfreewallisthin,approximately2to3mminthickness.AnincreaseinRVwallthickness,areflectionofRVhypertrophy,typicallyoccursinresponsetoanincreaseinRVafterloadsuchaswithPH;however,itmayalsobeseeninhypertrophicandinfiltrativecardiomyopathies.ThinningoftheRVwallmayoccurwithprimarycardiomyopathysuchasRVdysplasia.ThethicknessoftheRVwallisbestmeasuredfromthesubcostalviewatthepeakoftheRwave(Fig.9-2)withcaretakentodistinguishtheRVfreewallcarefullyfromthetrabeculations,epicardialfat,andpericardium.Wherepossible,fundamentalimagingispreferredoverharmonicimaging.Atruewallthicknessinexcessof5mmisconsideredthickened.FIGURE9-2ThesubcostalviewisusedtomeasureRVwallthickness(arrows),whichneedstobedifferentiatedfromthechambertrabeculations.Thisimageisfromapatientwhohascardiacamyloidosis,withthickwallsandenlargedatria,andasmallpericardialeffusion(PE).Ao,aorta;LV,leftventricle;RA,rightatrium;SVC,superiorvenacava.RIGHTVENTRICULARLINEARDIMENSIONSUsingtwo-dimensional(2D)echocardiography,theRVcanbevisualizedinmanyviews.However,itisrecommendedthatthelinearmeasuresareperformedfromtheRV-focusedapicalfour-chamberview,preferredoverthestandardapicalfour-chamberview.ToobtaintheRV-focusedview,thetransducerisangledmedially.WhiletheLVapexremainsattheapexoftheimagingplane,themitralannulusisswungoutwardwiththetricuspidlateralannulusbroughtmorecentrallyintheimagingwindow.ThisbringsthewholeRVintoview(Fig.9-3).Fromthisview,threelinearmeasurementsshouldbeobtainedatenddiastole(theframewhentheRVislargest).Thethreemeasuresare1)thebasalRVdiameter,2)themidRVcavitydiameter,and3)theRVlength.Thebasaldiameterisnotthetricuspidannulardiameterbutratherthemaximumshort-axisdimensionofthebasalone-thirdoftheRVseenonthisRV-focusedfourchamberview.Itistypicallyinthemidportionofthebasalsegment.ThemiddiameterismeasuredinthemiddleoftheRVattheapproximateleveloftheLVpapillarymuscles.ThelongitudinaldimensionisdrawnfromtheplaneofthetricuspidannulustotheRVapex(Fig.9-4).Whilethelineardimensionsarepronetointerstudyvariation,itisparticularlyhelpfultocomparestudiessidebysideforcomparisontoensurethemeasurementsweretakenfromsimilarviews.ItisalsoimportanttovisuallycomparetheRVtotheLV.WhiletheRVvolumeisgreaterthantheLVvolume,intheapicalfour-chamberview,theRVshouldappearapproximatelytwo-thirdsthesizeoftheLV.WhentheRVenlarges,itistypicallytheapicalsegmentsthatdilatefirst.Hence,iftheRVsharestheapexinshortaxiswiththeLV,thentheRVistypicallyatleastmildlyenlarged.IftheRVappearsaslargeastheLVintheapicalfour-chamberview,theRVistypicallymoderatelyenlarged.WhileviewsoftheRVoutflowtract(RVOT)canbeobtainedfromparasternalimaging,measuresparticularlyinthelongaxisarenotreproducibleand,hence,arenotrecommended.RVareameasurescanbetakenfromtheRV-focusedapicalfour-chamberviewandmaybeofsomevalueinaserialassessmentofapatientwithRVdisease.Whiletheassessmentofpulmonaryhemodynamicsisdiscussedlaterinthischapter,thedetectionofRVdilatationmaybethefirstcluetoRVpressureorvolumeoverload.FIGURE9-3Rightventricular(RV)-focusedapicalfour-chamberview(right)ispreferredoverthestandardapicalfour-chamberview(left)forassessingRVchambersize.ToobtaintheRV-focusedview,thetransducerisangledmedially.00:00/00:00Video9-3A00:00/00:00Video9-3BFIGURE9-4(A)SchematicoflineardimensionmeasurementoftheRV,(B)RVlineardimensionmeasurementfromtheRVcenteredapicalfour-chamberview.TheRVlengthisthelineardimensiontakenfromthemidpointofthetricuspidannularplanetotheRVapex.Themidchamberdimensionistakenatthelevelofthemidpointoflongaxisandperpendiculartothelongaxisoftheventricle(centerinA).TheRVbasaldimensionistheshort-axisdimensionofthebasalone-thirdoftheRV(rightinA).RIGHTVENTRICULARVOLUMESThree-dimensional(3D)echocardiography,nowavailableonanumberofcommercialclinicalsystems,ispoisedtorevolutionizetheechocardiographicassessmentoftheRV(Fig.9-5).DiscussedindetailinChapter2,3DvolumesoftheRVarefeasibleandreproducibleandhavebeenvalidatedagainstanimalspecimens,castmodels,aswellascomputedtomography–andmagneticresonanceimaging–derivedRVvolumes.AswiththeassessmentofLVvolumes,itisimportantnottoundermeasureRVvolumesparticularlyduetotheincreaseddegreeoftrabeculation.Volumeshouldbemeasuredattheinterfacebetweenacompactedandnoncompactedmyocardiumtoobtainthemostreliablemeasurestoreducethedegreeofvolumeunderestimation(5).EmergingdatasuggestthatitisbesttoindexRVend-diastolicvolumesforbodysurfacearea(5,6).GuidelinessuggesttheupperreferencelimitforanindexRVend-diastolicvolumeis89mL/m2,withindexvolumebeing10%to15%lowerinwomenthaninmen(1).FIGURE9-5Therightventricularend-diastolic(EDV)andend-systolicvolumes(ESV),strokevolume(SV),andejectionfraction(EF)canbemeasuredwiththeuseofsemiautomatedsoftwarethatconstructsathree-dimensionalsurfacemodelaftertheechocardiographerdefinesaseriesoftwo-dimensionallandmarks.A:RV3Dmodelsfromnormal(left)andpulmonaryhypertension(right).B:RVvolumecurvewithcalculatedEDV,ESV,SV,andRVEF.00:00/00:00Video9-5A00:00/00:00Video9-5BRIGHTVENTRICULARSYSTOLICFUNCTIONNormalRVsystolicfunctionisacomplexprocesswithanumberofcontributingfeatures,whichincludeinherentmyocardialcontractility,systemicvenousreturndeterminingpreload,pulmonaryvascularstatusdeterminingRVafterload,interventricularseptalcontraction,andpericardialcompliance.UnliketheLV,whichhasasignificantproportionofendocardialandepicardialtransversemyocardialfibers,theRVmyocardialfibersarepredominantlyalignedinthelongitudinalplane.Hence,amuchgreaterproportionofRVcontractilityislongitudinalwiththebaseoftheventriclemovingdowntowardtheapexinsystole.Itisthisdistinctionthatishighlightedbythevalueofechocardiographicmeasuresoflongitudinalmotionsuchastricuspidannularplanesystolicexcursion(TAPSE),annularpeakvelocity,andlongitudinalsystolicstrain.AsRVafterloadislowinthenormalpulmonaryvasculatureandtheRVwallthicknessisthin,theRVstrokeworkinanormalpatientrequiresonly15%to20%oftheenergyexpenditureoftheLV.UnliketheLV,whichhandleschangesinafterloadwithrelativeease,theRVishighlysensitivetoincreasesinafterloadtypicallyresultinginRVdilatationandareductioninsystolicfunction.LONGITUDINALMEASURESOFRIGHTVENTRICULARSYSTOLICFUNCTIONTAPSEandS′InthenormalRV,themajorityofcontractionoccurswiththebasemovingtowardastationaryapexduringsystole.Hence,measurementsofthelongitudinalcontractilityservewelltoreflectoverallRVsystolicfunction.Simplemeasuresincludethepeakvelocityoftricuspidannularmotionandtheabsolutedistancetraveledinsystoleofthefreewalltricuspidannulus.TheformerismeasuredbyplacingthesamplevolumeonthelateraltricuspidannulusandmeasuringpeaksystolicforwardvelocitybytissueDoppler,socalledSprimeorS′(Fig.9-6).AnormalS′velocityoftheRVisgreaterthan10cm/s.Similarly,placingthecursoronthetricuspidannulusandmeasuringthedistanceofsystolicannularmotionbyM-modeprovidestheTAPSE.TheTAPSEismeasuredastheverticaldistanceofthelateraltricuspidannulusbetweenenddiastoleandendsystole(7)(Fig.9-7A).ColorM-modemaybehelpfultodistinguishenddiastoleandendsystoleandallowmeasurementofTAPSE(Fig.9-7B).Duetoitssimplicityandrelativereproducibility,theASErecommendsTAPSEasaroutinesimplemethodofestimatingRVsystolicfunction.Alowerreferencevalueofimpairedfunctionis16mm(1).Whilethesemeasuresarerelativelyeasytoperform,theyhavesomelimitations.Apartfromthepotentialofpoorcursoralignment,thesemeasuresareintrinsicallymeasuresofregionalannularsystolicfunction.Frequently,theRVwillhaveregionalvariationindysfunction,anditisnotuncommontoseeapatientwithrobustannularmotionbutrelativelyimpairedgeneralizedcontractility.Furthermore,inthesettingofnormalLVcontractility,frequentlytherewillbealeftwardshiftoftheRVapexandRVfreewallleadingtorelativelynormalS′andTAPSEmeasureseveninthesettingofquitesignificantimpairmentofRVcontractility.FIGURE9-6ObtainedfrompulsewaveDopplersamplingfromthelateraltricuspidannulus,thepeaksystolicvelocity(S′)isameasureofrightventricularlongitudinalsystolicfunction.FIGURE9-7PlacementofthecursoronthelateraltricuspidannulusallowsmeasurementofthesystolicdistanceofannularmotionbyM-mode,thetricuspidannularplanesystolicexcursion,orTAPSE.A:TheTAPSEismeasuredastheverticaldistanceofthelateraltricuspidannulusbetweenenddiastole(ED)andendsystole(ES).B:ColorM-modemaybehelpfultodistinguishEDandESandallowmeasurementofTAPSE.RVStrainImagingTwo-dimensionalstrainimagingofthemyocardiumprovidesaregionalandglobalquantitativeassessmentofventricularsystolicmotion(seeChapter5).Automatedtechniquesthattrackuniquemyocardialspeckles,framebyframe,allowassessmentofmyocardialdeformation.Thistechnique,establishedintheassessmentoftheLV,hasbeenappliedmorerecentlytotheRV(Fig.9-8).Havingtheadvantagesofangleindependenceandnotsubjecttotheeffectsoftethering,strainimaginghasthecapacitytomeasuretheregionalandmoreglobalfreewalllongitudinalcontractility.LongitudinalsystolicstrainoftheRVfocusedfour-chamberviewshouldbeusedwithadefaultregionofinterest(ROI)widthof5mm(8).AlthoughtheinterventricularseptumcontributessignificantlytoRVsystolicperformance,strainassessmentoftheseptumpredominantlyreflectstheLV,withseptalstrainbeinglowerthanfreewallstrain(9,10).Hence,assessmentoftheRVfreewallispreferred(Fig.9-8B)(8,9).Studiesinavarietyofconditionsincludingvariouscongenitalandacquiredheartdiseases,mostnotablyPH,havesuggestedmeasuresofRVsystolicstrainmayserveasmeasuresofRVsystolicperformancethatmaypredictrightheartfailuredecompensationandoutcomebetterthanothermeasuresincludingTAPSE(9,11–13).Duetothecurrentvendor-to-vendorvariation,itisrecommendedthatserialassessmentwithstrainimagingbeperformedonthesameplatformeachtime(1).MYOCARDIALPERFORMANCEINDEXTherightventricularindexofmyocardialperformance(RIMP)orTeiindexisaglobalestimationofmyocardialfunctionreflectingbothsystolicanddiastolicfunctionoftheRV.Itisareflectionofacomparisonoftheworkofnonejection(i.e.,theisovolumictime)toejection(reflectedintheejectiontime).Itisrelativelyindependentofheartrate.Originallyitwasfelttobeindependentofloadingconditions,butmorerecently,ithasbecomeclearthatRIMPisunreliableinthesettingofelevatedRVpreload.AstheRApressure(RAP)increases,particularlyacutely,thereismorerapidequalizationofpressuresbetweentheRAandRV,whichshortenstheisovolumicrelaxationtimeresultinginpseudonormalizationofthemyocardialperformanceindex.Traditionallymeasuredusingthecontinuous-waveDopplersignalsoftricuspidvalveregurgitationandthesystolicprofilethroughtheRVOT(Fig.9-9),RIMPmayalsobemeasuredusingthepulsewavetissueDopplerprofile.ThishastheadvantageofallmeasuresbeingtakenfromthesameR-Rinterval.TheuppernormalvalueforRIMPbypulsewaveDoppleris0.43andbytissueDoppler0.54(1),howeverRIMPshouldnotbeusedasthesingularlyassessmentofrightheartfunction.RV2DFRACTIONALAREACHANGEFractionalareachange,thatis,thepercentchangeinRVareaasmeasuredinthefour-chamberview,providesanestimateofglobalRVsystolicfunction.Ithastheadvantageofincorporatingchangesinboththelongitudinalandradialmotion.Aswithareatracings,itisimportanttomeasurethecompactednoncompactedmyocardialinterfaceandincludethetrabeculations(Fig.9-10).AnRVfractionalareaofchange(FAC)lessthan35%indicatessystolicdysfunction.RV3DEJECTIONFRACTIONRVEFmaybecalculatedaccuratelyby3Dechocardiography(seeFig.9-5),beingextensivelyvalidatedagainstcardiacmagneticresonanceimaging.ThelimitationsofEFincludethedependencyonloadingconditions,theneedforgoodimagequality,andaregularrhythmasgenerallyamultibeatacquisitionisrequired.WhiledemonstratedtocorrelatewellwithothermeasuresofRVEF,theprognosticvalueofRVEFinmanydiseasestatesisnotwellestablished.OnepotentialreasonforthismightbethehighprevalenceofseverefunctionaltricuspidvalveregurgitationinpatientswithsignificantRVdysfunction,leadingtoapseudonormalizationofEFandhenceanunderestimationofdiseaseseverity.FIGURE9-8A:LongitudinalsystolicstrainoftheRVisobtainedbyapplyingtheleftventriclestrainpackagetotherightheartintheapicalfour-chamberview.Careismadetoensureallsegmentstrackcorrectlywiththethreefreewallsegmentsreportedseparatelyandasanaverage.RVwasplacedintheleftsideoftheapicalimage.B:OnlyRVfreewallstrainwasobtainedinapatientwithpulmonaryhypertension.RVwasplacedintherightsideoftheapicalimage.00:00/00:00Video9-8FACandEFmayhaveparticularlyadvantageinpatientswhohaveundergonecardiacsurgery.AsconventionalmeasuresoflongitudinalRVsystolicfunction,suchasTAPSE,S′,orlongitudinalstraintendtobereducedfollowingpericardiotomy(14,15)andhencelesswellreflectsystolicfunction.Theretypicallyisacompensatoryincreaseinradialmotion.FIGURE9-9Therightindexofmyocardialperformance(RIMP)isaglobalmeasureofrightventricularfunctionthatisaratiooftheisovolumicrelaxation(IVRT)andcontraction(IVCT)timestothetimeofrightventricularejection(RVET).Thesumofisovolumictimesiscalculatedbythedifferencebetweentricuspidvalveclosuretoopeningtime(TVCOt)takenfromthecontinuous-waveDopplertricuspidregurgitationprofileandtheRVETfromsamplingoftheRVoutflowtract.PULMONARYARTERYIMAGINGOntransthoracicechocardiography,themainPA,bifurcation,andtheproximalportionsoftheleftandrightbranchescanbeseenfromtheparasternalbasalshort-axisview.Inthisview,themainPAwillbeshowninlongaxisandisroughlyperpendiculartotheascendingaorta.Transesophagealechocardiography(TEE)providesasimilarviewandtypicallyprovidessuperbvisualizationofthemainpulmonarytrunk,rightPA,andproximalportionoftheleftPA(seeChapters3–4).FIGURE9-10TracingofRVendocardiumtomeasureRVareaduringdiastole(left)andsystole(right).PULMONARYVEINSNormally,fourpulmonaryveins(twofromtherightsideandtwofromtheleftside)areconnectedwiththeLA,typicallytwoupperveinsandtwothatarelower.However,thereissignificantvariabilitywiththemostcommonnormalvarianthavingthreeright-sidedveins,withathirdveindrainingfromtherightmiddlelobe.Congenitally,fromonetoallfourpulmonaryveinscanbeconnectedwithordrainintotherightsideoftheheartinsteadoftheleftside.Theanomalousvenousconnection(s)canoccurinisolationorinassociationwithothercongenitaldefects.Althoughtransthoracicechocardiographymaybesufficienttovisualizetheconnectionsofallfourpulmonaryveins,TEEprovidesbettervisualizationofthepulmonaryveins.Thepulmonaryveinscanbeseenoftransthoracicechocardiographyfromanumberofdifferentviews.Theinferiorveins,particularlytherightinferiorpulmonaryvein,arewellseenfromtheapicalfour-chamberview(Fig.9-11).ThebesttransthoracicviewforvisualizingtheconnectionsofallfourpulmonaryveinstotheLAisthesuprasternalshort-axisview(seeFig.1-14).ColorflowimagingcanhelpidentifypulmonaryveindrainageintotheLA.ThisviewisalsobestforvisualizinganomalousconnectionswiththeRAorSVC.Oneofthepulmonaryveinsmaydrainintotheverticalvein,whichconnectswiththeinnominatevein,andisalsobestseenfromthesuprasternalview.Colorflowimagingdemonstratesflowtowardthetransducerpositionintheverticalvein,nexttotheaorta(seeFig.1-15C).TEEdemonstratesallpulmonaryveinsinallpatients.PulmonaryveinsmaybeseendrainingintotheLAfromaneutral0-degreeviewwithslightcounterclockwiserotationtobringintheleft-sidedveinsandclockwiserotationtoseetheright-sidedveins.At0degree,typicallyaslightupanddownorrotationalmovementoftheprobeintheesophagus,willdemonstratetheupperandlowerveins.Tovisualizetheveinsinthesameplane,therightpulmonaryveinsareseentypicallyfroma60-to70-degreetransducerpositionwiththeproberotatedclockwise,andleft-sidedpulmonaryveinsareseenfrom120to140degreeswiththeproberotatedcounterclockwise.TheleftupperveinisseenbesidetheleftatrialappendageandtherightupperveinbesidetheSVC.Dopplerandcolorflowimagingofthepulmonaryveinsisusefulinassessingtheseverityofmitralregurgitation,diastolicfillingpressures,andpulmonaryveinstenosis.FIGURE9-11A:(Left)Colorflowimagingofnormalrightinferiorpulmonaryvein,asitdrainsintotheleftatriumontransthoracicapicalfour-chamberview,showsredcolor.(Right)Colorflowimagingoftherightpulmonaryveinshowsbrighteryellowandturbulentcolorduetomildpulmonaryveinstenosis.B:Dopplerdemonstratesincreasedpulmonaryveinvelocitiesduringbothsystoleanddiastole.00:00/00:00Video9-11A00:00/00:00Video9-11BPulmonaryVeinStenosisPulmonaryveinstenosismaybeassociatedwithcongenitaldefectsbutmayrarelybeacquiredfollowingleftatrialcatheterablationforthetreatmentofatrialarrhythmiaparticularlyatrialfibrillation.Ablationintheregionofthepulmonaryveinsmayresultinscarringandhemodynamicallysignificantpulmonarystenosis(16).Actualnarrowingofthepulmonaryveinmaybedifficulttovisualizewithsurface2Dechocardiography,butincreasedflowvelocityfromastenoticpulmonaryveiniseasilyrecognizedwithcolorflowimaging(Fig.9-11),followedbyDopplerexaminationfromanapical,orsometimesparasternal,view(Fig.9-11B).Allfourpulmonaryveinsareclearlyvisualized,andtheirhemodynamicsareeasilyassessedwithTEE(17,18)(Fig.9-12)andintraproceduralintracardiacechocardiography.Indeed,duetotheincreasinguseofintracardiacultrasonographyandchangesinablationtechniques,therehasbeenareductionintheincidenceofpulmonaryveinstenosis.PULMONARYARTERYHEMODYNAMICSThedeterminationofPApressureisaroutinepartofanechocardiographicexamination.Althoughcertain2Dechocardiographicfeaturessuggestpulmonaryhypertension,Dopplerechocardiographyistheprimarymethodfordeterminingactualpulmonarypressures.AcomprehensiveassessmentofPAhemodynamicsinvolvestheassessmentofsystolic,diastolic,andmeanPApressuresaswellasintegrativemeasuresofpulmonaryvascularresistance(PVR)(seeFig.4-42)andcapacitance.PASystolicPressureThemostfrequentlyassessedmeasureofPAhemodynamicsistheestimationofPAsystolicpressure.Colorflowandcontinuous-waveDopplerinterrogationoftheRVOTisrequiredtoexcludeevidenceofaDopplergradientbetweentheRVandthePA.IntheabsenceofpulmonicstenosisorRVOTobstructionwithapeakCWDopplervelocityoflessthanorequalto1cm/s,RVsystolicpressureisequaltoPAsystolicpressure.Tricuspidregurgitationvelocity(TRV)reflectsthepressuredifferenceduringsystolebetweentheRVandtheRA(seeFigs.4-19and4-20)(19–21).TheRVsystolicpressureisestimatedfromthesimplifiedBernoulliequationtoestimatethetranstricuspidpressuregradient.ThispressuregradientbetweentheRAandpeakRVsystolicpressureisacquiredfromtheequationthatistranstricuspidgradient=4×(peakTRV)2,whichcanbesimplifiedtoalsobeequalto(2×peakTRV)2.TheTRVusuallyisobtainedwithcontinuous-waveDoppler(usingeitheranimagingduplextransduceroranonimagingtransducer)fromtheRVinflowortheapicalfour-chamberviewposition.Fromtheapicalposition,thetransducerneedstobeangledmoremediallyandinferiorlyfromthemitralvalvesignal.ThePAsystolicpressureisthenestimatedasthesumofthetranstricuspidgradientandanestimationofRAP.Ifthisisnotknown,itshouldbeestimatedbasedontheintegrationofthesizeandrespiratorymotionoftheIVCandtheDopplerprofileinthehepaticveins(seebelow).ThenormalTRVis1.7to2.3m/satrest.Ahighervelocityindicatespulmonaryhypertension,RVOTobstruction,orpulmonicstenosis.FourdifferentTRVrecordingsareshowninFigure9-13.TRVmaybelessthan2.0m/swhenRAPismarkedlyincreasedbecauseofRVinfarct,RVfailure,orseveretricuspidregurgitation(Fig.9-14).Therefore,increasedTRVrepresentsincreasedRVsystolicpressure,nottheseverityoftricuspidregurgitation.TRVusuallyvarieswithrespiration,beinglowerwithinspiration,whichincreasesthevolumeoftricuspidregurgitationanddecreasesthetranstricuspidgradient.Rightventricularpressurefallsmuchgreaterthanrightatrialpressurewithinspiration(Fig.9-15).Toavoidrespiratoryvariation,TRVusuallyisobtainedwithapatientinheldexpiration.AsTRVincreases,thereisagreaterpotentialtomiscalculatePAsystolicpressurebymakingaslighterrorinTRVmeasurements.FIGURE9-12A:Transesophagealechocardiographicview(left)oftheleftpulmonaryveins(asterisk),withstenosisoftheveinontherighttreatedwithastent(arrows).Colorflowimaging(right)showsincreasedflowvelocity.LA,leftatrium.B:Continuous-waveDopplerrecordedpeakpulmonaryveinvelocityof1.8m/s.Meangradientis10mmHg.C:Moreseverestenosisoftwoseparatepulmonaryveinswith2.9and1.9m/s.Itiscriticallyimportantthatthe“fuzz”or“beard”ontheDopplerprofilerelatedtotheintrinsicspectralbroadeningisnotmeasured,andthereby,pressuremeasurementisnotoverestimated(seeFig.4-21)(22).Sothatthiscanbeaccomplished,itisimportanttoensurethattheDopplergainisnottoohigh,therejectisturnedup,andthemodalsignalprofile,thatwiththemaximumspectralintensity,ismeasuredastoensurethatthetruepeakvelocityismeasured(22).FIGURE9-13Representativetricuspidregurgitationvelocities(2.5,2.9,4.3,5.3).ThenumbersinparenthesesarepressuregradientsderivedfrompeakvelocitiesusingthesimplifiedBernoulliequation.FIGURE9-14Continuous-waveDopplervelocityofseveretricuspidregurgitationwithitspeakvelocitylessthan1.5m/s.Tricuspidregurgitationispresentinmorethan75%ofthenormaladultpopulationandgreaterthan90%ofpatientswithpulmonaryhypertension(23).Whenthetricuspidregurgitationjetistrivialanditscontinuous-waveDopplerspectrumissuboptimal,injectionofagitatedsalinesolutionorechocontrastintoanarmveinenhancestheTRVsignal(Fig.9-16)andmayaidinDopplerassessment.RecentreporteddataareconsistentwiththeASEguidelines,whichstatethataTRVgreaterthan2.8to2.9m/susuallycorrespondstoaPAsystolicpressureofapproximately36mmHg,assumingaRAPof3to5mmHg(22,24).TheechoassessmentofPAsystolicpressuremaybechallenginginthesettingofseveretricuspidvalveregurgitation(Fig.9-14).Ofteninthissetting,RAPwillexceed20mmHgthatis,generally,therecommendedupperlimitofnoninvasivelyestimatedRAP(Fig.9-17).Therefore,ifRAPisunderestimatedthanRV,systolicpressurewillbeunderestimatedinthissetting.Furthermore,inthesettingofalargeeffectiveregurgitantorificeinveryseveretricuspidvalveregurgitation,therecanbe“ventricularization”oftheatrialpressures.ThiswillrenderthesimplifiedBernoulliequationunsuitable,astheproximalvelocityisnolongersignificantlylessthanthedistalvelocityandthereforecannotbediscounted.Therefore,intorrentialtricuspidvalveregurgitation,theclassicestimationofRVsystolicpressurecannotbereliedupon,andanalternativemethodshouldbeconsidered.FIGURE9-15SimultaneouscontinuousDopplerrecordingoftricuspidvalveandrightheartpressuretracingswithinspiration(Insp)andexpiration(Exp).RA,rightatrium;RV,rightventricle.Pulmonarypressuresincreasemodestlywithexerciseinnormalsubjects(25,26).Withincreasingcardiacoutput,thereisincreasingtranspulmonaryflowandslightlyhigherpressure.However,inhealthyhigh-performanceathletes,theincreaseincardiacoutputwithexercisemaybesosignificantthatonemayseeaTRvelocityinexcessof3.1m/swithoutdisease(27).Also,perhapsduetoagingeffectsonthepulmonaryvasculature,asymptomaticolderpatientsmayalsodisplayaTRvelocityinexcessof3.1m/swithoutevidenceofdisease(25,26).FIGURE9-16Continuous-waveDopplerrecordingoftricuspidregurgitationvelocitywithout(left)andwith(right)injectionofagitatedsaline.RightAtrialPressureRAPisbestestimatedusingacombinationof2DimagingoftheIVCandpulsed-waveDopplerimagingofthehepaticvein(HV).TheIVCisimagedinlongaxisfromthesubcostalview.MeasurementoftheIVC,inthesettingoffreebreathingwithacomparisonofmaximumandminimumdimensions,providesaninsightintoRAP.ThenormalIVCdimensionislessthan17to20mmandshouldreduceinsizebyatleast50%(Fig.9-17)(1).ItisrecognizedtheIVCmaybedilatedinyoungpeople.IfoneseesanotherwisedistendedIVCwithoutotherfeaturestosuggestanelevatedRAP,itisadvisabletoreassesstheIVCsizeandcollapsibilityintheleftlateralposition.Indeed,someadvocatethattheIVCshouldbeassessedinthispositioninallpatients.InthesettingofanormalorlowRAP,thereisasignificantsystolicpressuregradientbetweentheHVandtheRA,therebyleadingtoasystolicpredominantforwardflowpattern(Fig.9-17).AstheRAPrises,thepressuregradientbetweentheHVandRAdropsleadingtoadiminutioninsystolicforwardflowandanincreaseinsystolicforwardflow.ApatternofdiastolicpredominantforwardflowsuggeststhepresenceofahighRAP(Fig.9-17).Acharacteristicvelocitypatterninhepaticvenousflowisseeninpatientswithpulmonaryhypertension.ThereisaprominentatrialflowreversalintheHVcausedbyincreaseddiastolicpressureanddecreasedcomplianceoftheRV.Thereisverylittlerespiratoryvariationofatrialflowreversalinpulmonaryhypertension,unlikethevariationseeninrestrictivecardiomyopathyorconstrictivepericarditis.ThereislittlecorrelationbetweenRAPandtranstricuspidgradient.Therefore,itisimportanttoestimateRAPindependentofthepeakTRvelocity.TheechocardiographershouldnotthereforeassumetheRAPiselevatedsolelybecausetheTRvelocityishigh.FIGURE9-17Therightatrial(RA)pressureshouldbeestimatedbasedonanintegrativeassessmentoftheinferiorvenacava(IVC)size,changeinsizewithasnifforinspiration,andthehepaticvein(HV)pulsed-wave(PW)Dopplerprofile.TheHVDopplerprofilehassystolic(S)-predominantforwardflowinthesettingofnormalorlowRApressureanddiastolic(D)predominantwhentheRApressureishigh.PADiastolicPressureThevelocityofPVregurgitationreflectsthepressuregradientbetweenthePAandtheRV.Atenddiastole,thisvelocitywillreflecttheend-diastolicPA-RVpressuregradient(seeFig.4-22).Asatenddiastole,intheabsenceofTVstenosis,RVpressureshouldbeequaltoRAP.Therefore,wherePAEDPisPAend-diastolicpressureandPREDVispulmonaryregurgitationend-diastolicvelocity.Becausepulmonaryregurgitation(PR)velocityusuallyreflectssmallpressuredifferencesbetweenthePAandtheRV,atrialcontractionwithincreasedRVpressurecreatesaunique“dip”inthevelocitycurve.Normally,thePRenddiastolicpressuregradientislessthan5mmHg.Anincreaseinthispressuregradient(>5mmHg)hasbeenfoundtocorrelatewithsystolicdysfunction,diastolicdysfunction,increasedbrainnatriureticpeptide,anddecreasedfunctionalstatus(28).MeanPAPressureWhileRVsystolicpressureisthemostcommonlymeasuredandreportedPAhemodynamicbyechocardiography,thepresenceofPHisdefinedbasedonthemeanPApressure(mPAP),atavaluegreaterthan25mmHg.ThemeanPApressurecanbeestimatedinavarietyofwaysbyechocardiography.mPAPbyPASPThereisarelativelyfixedrelationshipbetweenthePAsystolic(PASP)andPAmeanpressureacrossthespectrumofclinicalpressureswiththemPAP=(0.67×PASP)+0.5.IfoneestimatesPASPbyecho,thenthePAmeanpressurecanbeestimatedinturnbythemeanPASPequatingto2/3rdthePAsystolicpressure.mPAPbyMeanTRGradientMeanPApressurecanalsobeestimatedfromthemeanpressuregradientbetweentheRAandtheRV.ThisgradientmaybemeasuredbytracingthesystolicDopplerprofileofthetricuspidregurgitantjet.ThisislikelythemostaccuratemPAPpressureestimatebutisdependentonaclearandcompleteTRsystolicenvelope.Inthissetting,mPAP=TRsystolicmeangradient+RApressure(Fig.9-18)(29,30).AswiththepeakTRvelocity,itisimportantthatthedenser,modalspectralprofileistracedavoidingthe“fuzz”onthesignal(22).mPAPbyPASPandPAEDPMPAPcanalsobeobtainedasPAEDP+1/3(PASP−PAEDP).mPAPbyPeakPRVelocityInthesettingofacompletepulmonaryregurgitantprofile,thepeakearlydiastolicPRvelocityisalsousefulinestimatingmeanPApressure(mPAP;Fig.9-18)(31,32).FIGURE9-18Meanpulmonaryarterypressure(mPAP)maybeestimatedbythesumofthemeansystolicgradientobtainedfromthetricuspidregurgitation(TR)profileandtherightatrialpressure(RAP)(leftpanel)orfromthesumoftheRAPand4×(peakPRregurgitantvelocity)2(rightpanel).ApeakPRvelocityof3m/sequatestoanmPAPof36mmHgplusRAP.mPAPbyAccelerationTimeTheRVOTflowvelocityhasacharacteristicpatternasPApressureincreases(Fig.9-19).TheaccelerationphasebecomesshorterwithincreasedPApressure.SeveralinvestigatorshavederivedregressionequationstoestimateMPAPfromtheRVOTaccelerationtime(AcT)(33).Mahan’sequationisthesimplestandpreferredforestimatingmPAP:ItshouldbenotedthatAcTisdependentoncardiacoutputandheartrate(34,35).Withincreasedoutputthroughthecardiacchambersontherightside(asinatrialseptaldefect),AcTmaybenormalevenwhenPApressureisincreased.Iftheheartrateisslowerthan60beatsperminuteormorethan100beatsperminute,AcTneedstobecorrectedforheartrate.Thismethodislessaccuratethantheothermethodsdiscussedabove,andwedonotrecommendthatitbeusedinourpractice.FIGURE9-19Rightventricularoutflowtract(RVOT)flowvelocityrecordingsbypulsed-waveDopplerechocardiography.Thesamplevolumeisplacedintheregionofthe

pulmonaryvalveannulus.Left:Normalflowpattern.Accelerationtime(AcT)isthetimeintervalbetweenthebeginningoftheflowanditspeakvelocity(betweenthetwoverticalarrows).Itis130ms(normal,≥120ms).Right:Flowvelocityinpulmonaryhypertension.ThearrowindicatespeakRVOTvelocitywithashortAcT.AcTisshortenedto40milliseconds.Meanpulmonaryarterypressure=79−(0.45×40)=61mmHg,usingMahan’sregressionequation.CAVEATSINPULMONARYARTERYPRESSURECALCULATIONTheaccuracyofthePApressureestimationisgreatlydeterminedbythequalityoftheechocardiogram.AswithallDopplerdata,theaccuracyisonlyasgoodasthequalityofthedata.Assessmentisrequiredfrommultiplewindowstoensurethesignalsareobtainedascloseaspossibletoparalleltoflow.Hence,PApressureestimateisnotrecommendedbyTEEasitisunusualtobeabletoobtaintheappropriatewindowswhereonecanaligntheDopplerinterrogationparalleltothedirectionofflow.EitherpooralignmentoranincompleteDopplerprofilewillleadtoanunderestimationofpressure.Alternatively,PAarterypressuremaybeoverestimatedifanovergainedsignalistracedorinthepresenceofpulmonaryvalvestenosis.WhileitisusuallyappropriatetousethesimplifiedBernoulliequation,therearetimeswhenthisbecomesinvalidsuchasstatesofincreasedbloodviscosityorwhenthereistorrentialtricuspidvalveregurgitation.AccurateassessmentofRAPisalsokeytoaccuratelyestimatepulmonarypressure.Finally,itisimportanttorecognizethatpulmonarypressureisnotastaticvariable.PatientswithimplantablePAmonitorshavetaughtusthatpulmonarypressuresvarydramaticallyduringtheday,particularlyinpatientswithPH(36).Pulmonarypressuresvarywithactivitylevels,varioustherapeuticinterventions,andhypoxiaandinpatientswithleftheartdiseasechangeswithsystemicbloodpressure.RVOTDOPPLERPROFILEWhiletheAcToftheRVOTDopplerprofiledoesnotprovideanaccurateestimateofPApressure,thepatternofthisprofileprovideshelpfulinsightintothePAhemodynamics.ThedistinctDopplerpatternwithanotchinthesystolicprofile,oftenreferredtoasthe“Wsign”ofpulmonaryhypertension,istheDopplercorrelateofhighRVafterload.Thisdistinctpatternsuggestsacompromisedpulmonaryvascularbedwithhighresistance.TheearlytimetopeakoftheprofiletendstocorrelatewithelevatedPApressurewithreflectancewavesfromthevascularbedimpedingsystolicforwardflowleadingtomidsystolicnotching(37).ThedecelerationtimeisinverselyproportionaltotheelevatedPVresistance.Asthepulmonaryvasculardiseaseadvancesandtherightheartfails,thelatesystolicflowprofilebecomesincreasingdiminutive.Thesedistinctprofiles(Fig.9-20)havebeenfoundtoassociatetooutcomeinPAHandmaybeusefulindeterminingthepresenceofpulmonaryvasculardiseaseinpatientsatrisk(37).FIGURE9-20Pulsed-waveDopplerinterrogationoftherightventricularoutflowtractprovidesinsightintopulmonaryarteryhemodynamics.Flowthroughtherightventricularoutflowtractinthenormalsettinghasasymmetricalparabolicshape(1).Asthepulmonarypressuresincrease,(2)theprofilehasashorteningofthetimeuntilthepeakvelocity.Withelevatedpressuresandresistanceinthepulmonaryvascularbed,theprofiletakesonthedistinctpatternwithasystolicnotch,oftenreferredtoasthe“Wsign”ofpulmonaryhypertension(3).Asthepulmonaryvasculardiseaseadvancesandtherightheartfails,thelatesystolicflowprofilebecomesincreasinglydiminutive(4).PulmonaryVascularResistancePVRisanimportanthemodynamicvariableinthemanagementofpatientswithsevereheartfailureorcongenitalheartdiseaseandintheevaluationofcandidatesforcardiactransplantation.Traditionally,PVRisobtainedbycardiaccatheterization,withtheuseofthefollowingformula:wherePCWPispulmonarycapillarywedgepressureandCOiscardiacoutput.AfewattemptshavebeenmadetoestimatePVRwithDoppler(29,38,39)andcolorM-mode(40)echocardiography.ThesimplestDopplermethodforestimatingPVRistodivideTRVbytheRVOTtimevelocityintegral(TVI)andmultiplyingtheresultby10.Althoughtheactualregressionformula(29)ismorecomplex,thissimplemethodprovidesareasonableestimateofPVR.Acutoffvalueof2for10(TRV/RVOTTVI)separatesagroupwithPVRgreaterthan2Woodunits.ShandasandcolleaguesusedcolorM-mode–derivedpropagationvelocityofthePAflowtoestimatePVR(40).TheslopeofthealiasinglineonthecolorMmodeofthemainPAflowdecreasesasPVRincreases.However,wedonotadvocatethattheecho-derivedequationforPVRbeusedasasubstitutefortheinvasiveassessmentofPVRasitdoesnothavetheprecisiontomakeimportantclinicaldecisions(22,24).However,incorporatingecho-PVRintothecomprehensiveevaluationofthepatientwithknownorsuspectedpulmonaryvasculardiseaseisofmerit.Echo-PVRmayhelpexplainsituationswherePAsystolicpressureisincreasedduetohighflow(e.g.,inthesettingofhighoutputheartfailurefromanemia,obesity,orhyperthyroidism)orinadvancedrightheartfailureortorrentialTRwhenPAsystolicpressurefallsduetolowstrokevolume.Itisalsoimportanttohighlightthattheecho-PVRequationwhilecorrelatingwithcath-PVRreflectstotalPVRratherthanpulmonaryarteriolarresistanceasitdoesnotincorporateameasureofpulmonarycapillarywedgepressure.PulmonaryVascularCapacitancePulmonaryarteriolarcapacitancemeasuresthecapacityforthepulmonaryarteriolartreetodilatewithRVcontractionandthereforeinverselyreflectsthedynamicworkloadoftherightheart.PACcanbeapproximatedbydividingthestrokevolumebythePApulsepressure(41).Byecho,thePACiscalculatedastheSV/4×(TRvel2−PRvel2).PACasmeasuredinvasivelyornoninvasivelyhasbeenshowntobeassociatedwithall-causemortalityinpatientswithpulmonaryvasculardisease(41).DETERMINATIONOFTYPEOFPULMONARYHYPERTENSIONBYECHOCARDIOGRAPHYPulmonaryhypertensionisclassifiedintofivegroupsbasedonitsunderlyingcause(42):Group1=pulmonaryarterialhypertension,Group2=duetoleftheartdiseases(aorticormitralvalvediseaseaswellasHFPEF),Group3=duetolungdiseaseand/orhypoxia,Group4=duetochronicthromboembolicpulmonaryhypertensionandotherPAobstructions,andGroup5=duetoanunclearand/ormultifactorialmechanisms.AfterechocardiographyhasestablishedthatPApressureisincreased,thepotentialcausesofthisincreaseshouldbeevaluatedthoroughlywith2D,Doppler,andcolorflowimaging.Fromtheperspectiveofeitherechocardiographyorcatheterization,pulmonaryhypertensivedisorderscanbeseparatedaseitherprecapillaryorpostcapillary.PrecapillaryPHconditionsarethosecharacterizedbyanelevatedPApressureinthesettingofanormalpulmonaryvenouspressure(e.g.,pulmonaryarterialhypertension,PHsecondarytohypoxicorparenchymallungdisease,chronicthromboembolicPH).Thisisincontrasttopostcapillary(Group2)conditionsrelatedtoleft-sidedabnormalities(e.g.,LVsystolicordiastolicdysfunction,severeleft-sidedvalvestenosisorregurgitation).Mostleft-sidedabnormalitiesthatmaygiverisetosignificantPHareeasilyidentifiedbytransthoracicechocardiography,althoughdistinguishingpulmonaryarterialhypertensionfrompatientswithheartfailurewithpreservedEFandadvancedPHcanbechallenging.InheartfailurewithpreservedEF,approximately80%ofpatientshaveelevatedpulmonarypressures,themajorityofwhomtendtohavemodestlyelevatedpressuresthatareproportionatetothedegreeofleftatrialhypertension.ThesepatientstendtohaveawiderPApulsepressure.However,approximately20%ofpatientswithheartfailurewithpreservedEFhavepulmonarypressuresoutofproportiontoleftatrialhypertension,haveanelevatedPVRatcardiaccatheterization,andtendtohaveenlargedanddysfunctionalRVs(43).Thisisthesubgroupthatcanbequitechallengingtocharacterizebyechocardiographyastheyhavehemodynamicfeaturesofbothprecapillaryandpostcapillarydisease.ThenoninvasiveassessmentofwhetherthepatientmayhavePHinthesettingofHFpEForPAHshouldbeanintegrationofthepresenceofclinicalfeaturessuchasincreasedage,systemichypertension,diabetes,atrialfibrillation,episodesofpulmonaryedema,andvariousechocardiographicfindings(Table9-1).SomehaveproposedsimpleclinicalandechocardiographicscorestodiagnoseHFpEF(44)andtoidentifythemechanismofPHinthesepatients(45).Scaliaandcolleagueshaveproposedasimpleechocardiographicparameter,toaidinthedifferentiationofprecapillaryfrompostcapillarypulmonaryhypertension.Theechocardiographicpulmonarytoleftatrialratio(ePLAR)iscalculatedasthemaximumcontinuous-waveDopplertricuspidregurgitantpeakvelocity(m/s)dividedbytheE/e′ratio(46).AnormalePLARisapproximately0.30.PatientswithpostcapillaryPHtendtohavevaluesof0.25orlowerandthosewithprecapillaryPHover0.40(46).Finally,itshouldberecognizedthatinsomeseries,upto50%ofpatientswithapulmonarycapillarywedgepressureinexcessof25mmHg(i.e.,HFpEF)haveanormalrestingpulmonarycapillarywedgepressure,andhence,assessmentofLVfillingpressuresbothatrestandwithexercise,eitherbyechocardiographyorhemodynamiccatheterization,shouldbeconsideredinpatientswithsuspectedHFpEF(47–49).TABLE9-1MayoClinicPulmonaryHypertensionProtocolEchocardiographyInadditiontothestandardtransthoracicechocardiogram,theprotocolhasthefollowingcomponents.InclusioncriteriaReferralfor:Theevaluationofknownorsuspectedpulmonaryhypertension(e.g.,scleroderma,liverdisease,HHT)FindingofTRvelocity≥3.5intheabsenceofleft-sideddiseaseCWDopplerthroughRVOTExcludepulmonarystenosisMeasurementofendPR(diastolicPApressure)MeasurementofpeakPR(meanPApressure)PWDopplerofRVOTAppearanceandpresenceofnotchingRVoutflowtracttimevelocityintegralCWDopplerofTRPeakvelocity(systolicPApressure)Meangradient(meanPApressure)Four-chamberviewofRVRA—monoplaneSimpson’sTAPSETissueDoppler—S′RV-focusedApicalfour-chamberviewRVdimensions:base,mid,andlengthRVareaandfractionalareachangeRVgloballongitudinalstrainRV3DvolumesandejectionfractionSubcostalIVC2DandhepaticveinPWDoppler—toassessRApressureAgitatedsalinebubblestudyperformedAttimeoffirststudyQ6monthsinpatientswithadvancedliverdiseaseorHHTWhenhypoxiarefractorytosupplementaloxygendevelopsPulseoximetryPerformanceofechoonusualrestingoxygenprescriptionOxygensaturationmeasuredandreported2D,two-dimensional;3D,three-dimensional;CW,continuouswave;HHT,hereditaryhemorrhagictelangiectasia;PA,pulmonaryartery;PR,pulmonaryregurgitation;PW,pulsewave;RA,rightatrium;RV,RightVentricle;S′,peaksystolictissueDopplervelocity;TAPSE,tricuspidannularplanesystolicexcursion;TR,tricuspidregurgitation.MitralInflowVelocityPatterninPulmonaryHypertensionPulmonarypressureusuallyisincreasedinpatientswithincreasedLVfillingpressures.WhenLVfillingpressuresareincreased,themitralinflowvelocitypatternbecomesrestrictive(↑Evelocity,↓Avelocity,E/A>2.0,and↓decelerationtime).Therefore,itisprobablethatpulmonaryhypertensionisrelatedtoaprecapillaryprocessifmitralinflowshowsanonrestrictivediastolicfillingpattern(50).RVpressureoverloadmayinduceLVfillingabnormalitybecauseoftheshiftoftheventricularseptum.Adelayedrelaxationpatterniscommoninpatientswithadvancedprecapillaryrightheartdisease,correlateswithRVenlargementanddysfunction,andhasbeenshowntopredictpooroutcome(50).Inpatientswithchronicobstructivepulmonarydisease,mitralinflowvelocitymaydemonstratearespiratoryvariationsimilartothedegreeofvariationseeninconstrictivepericarditis;however,therespiratorychangeinSVCsystolicforwardflowvelocitiesis20cm/sorlessinconstrictionandismuchhigherorevenmonophasicwithinspirationinchronicobstructivepulmonarydisease.Indiseasesthataffecttherightheartbutsparetheleft,forexample,idiopathicpulmonaryarterialhypertension,intrinsicLVmyocardialrelaxationshouldbenormal,reflectedbynormallateralannulare′velocities.However,asthemedialannulusreflectsseptalrelaxation,e′velocitiesmaybereducedinadvancedrightheartdiseaseastheyareinfluencedbybothRVandLVdisease(51).ASSESSINGSEVERITYOFPULMONARYHYPERTENSIONBYECHOCARDIOGRAPHYAllpatientswithknownorsuspectedpulmonaryhypertensionshouldhaveacomprehensiveechocardiogramwithassessmentofpulmonarypressuresandrightheartsizeandfunction(Table9-1).Thedegreeofrightheartenlargementanddysfunctionisakeymarkerofpulmonaryhypertensionseverity.Inpatientswithadvancedpulmonaryhypertension,therightheartdilates,theinterventricularseptumshiftstotheleft,andtheLVtendstobesmallerandunderfilled(Fig.9-21).Inshortaxis,theD-shapedLVcavityandenlargedRVcavityaretypicalfindingsinPH.AsimilarappearanceisalsoseeninRVvolumeoverload;however,flatteningoftheventricularseptumpersistsduringtheentirecardiaccycleinRVandPApressureoverload,butitdisappearsduringsystoleinRVvolumeoverload.Apericardialeffusionmaybeseen,typicallyreflectingachronicelevationincentralvenouspressure(Fig.9-22)(52).SomehaveadvocatedadefinitionofPHseveritybasedsolelyonthedegreeofpressureelevation,forexample,mildPH(RVsystolicpressure40–55mmHg),moderate(55–70mmHg),andsevere(RVsystolicpressure>70mmHg).However,thisisnotrecommended.Whilethepresenceofpulmonaryhypertensionisuniversallyassociatedwithworseprognosis,regardlessoftype,thedegreeofpressureelevationinthosewithPHispoorlyassociatedwithoutcome(53).Toassesstheseverityofpulmonaryhypertensivedisorders,theechocardiographer,andclinician,mustintegratethedegreeofpressureelevationwiththestateoftherightheart.Aspulmonaryhypertensivedisordersprogress,thepulmonarypressuresriseinitiallybutthenplateauandultimatelydecline.Theselatterchangesrelatetoadeclineinrightheartfunction.Thosewithdecompensated,end-stagerightheartfailurewillhavemuchlowerpulmonarypressuresthanthosewithcompensatedrightheartfunction.Hence,thedegreeofpulmonarypressureelevation,inisolation,doesnotreflecttheseverityofdiseasewell.Manyechocardiographicvariableshavebeenassociatedwithpooroutcomeinpatientswithpulmonaryhypertension(Table9-2),andtheseparametersshouldbemeasuredandreportedinpatientsreferredforechocardiography;however,PApressures,whileimportantintheassessmentofapatientwithPH,donotdefineseveritywell(11,37,52–54).ACUTECORPULMONALEANDPULMONARYEMBOLISMTransthoracicEchocardiographyInpatientswhodevelopacuteseverecorpulmonale(e.g.,secondarytoalargepulmonaryembolus),therightheartchambersaredilated,andtheLVisrelativelysmallandhyperdynamicwiththeventricularseptumdeviatedtotheleftbecauseofincreasedRVpressure(Fig.9-23).Inthisacutesetting,theRVisunabletoadaptandgenerateasystolicpressuremuchhigherthan60mmHg.TheflowpatternthroughtheRVOTtypicallyisearlypeakingandnotched,andtheRVoftenhasacharacteristicpatternofgeneralizedseverehypokinesiswithrelativesparingoftheRVapex(McConnell’ssign)(55).Whileinitiallyfelttobespecificfortheechocardiographicfindingsinacutepulmonaryembolus,McConnell’ssignsignmaybeseeninthesettingofmanydifferentetiologiesofacutecorpulmonaleincludingsepsis,acuterespiratorydistresssyndrome,andpulmonaryhemorrhage.StrainstudieshavesuggestedtheRVapexisactuallyalsodysfunctionalandonlyappearsnormalduetoatetheringeffectfromthehyperdynamicLVapex(56).FIGURE9-21A:(Left)Parasternalshort-axisviewdemonstratingtheD-shapedleftventricular(LV)cavityandenlargedrightventricular(RV)cavityinpulmonaryhypertension.AsimilarappearanceisseeninRVvolumeoverload;however,flatteningoftheventricularseptum(VS)persistsduringtheentirecardiaccycleinRVandpulmonaryarterypressureoverload,butitdisappearsduringsystoleinRVvolumeoverload.(Right)Correspondingpathologyspecimen.B:Inthenormalpatient(left),therightventricle(RV)appearsinshortaxisasacresenticchamberthatwrapsanteriorlyaroundthecircularleftventricle(LV).Intheapicalfour-chamberview,theRVappearssmallerthantheLV.Inthepatientwithpulmonaryhypertension(right),theRVandrightatrium(RA)enlargewiththeRVtakingonamoreovalappearanceinshortaxisandtheinterventricularseptumshiftingleftward.LA,leftatrium.FIGURE9-22Parasternallong-axisviewinapatientwithadvancedpulmonaryhypertension,demonstratingrightventricular(RV)hypertrophy(increasedRVwallthicknessbetweenarrows),RVenlargement,interventricularseptumshiftedtotheleft,asmallleftventricle(LV),andacircumferentialpericardialeffusion(PE).00:00/00:00Video9-22TABLE9-2EchocardiographicFactorsintheSettingofPulmonaryHypertensionthatFavorPulmonaryArterialHypertensionVersusThosethatFavorPulmonaryHypertensionintheSettingofHeartFailurewithPreservedEjectionFractionEchoVariablesPAHHFpEF-PHLeftatrialsizeNormalEnlargedLVmassNormalIncreasedRA/LAsizeratioRA>>LALA>RAIntra-atrialseptumBowstoleftBowstorightMitralinflowpatternDelayedrelaxationpatternRestrictiveMedialE′MaybelowLowLateralE′NormalLowePLAR(TRVmax/E:e′)>0.3050mmHg,thennoprovocationmaneuversneedtobeperformed.Ifthegradientis50mmHgisnotpresentwithValsalva,thenprovocativetestingsuchasamylnitriteorsquat-tostandmaneuverispursued.LVOTobstructioninHCMisdynamicanddependsonLVloadingconditionsandcontractility,withgradientvaryingonaminute-tominutebasis(58,59).FIGURE10-14Apicallong-axisviewdemonstratingmidcavitaryobstruction(*)inthesettingofthickenedleftventricular(LV)wallsandpapillarymusclehypertrophy.MitralRegurgitationMitralregurgitationfrequentlyaccompaniestheobstructiveformofHCM.Typically,thejetisdirectedposterolaterally(Fig.10-18).Thepresenceofamorecentraloranteriorjetshouldraisesuspicionsofconcomitantorganicmitralvalvedisease(Fig.10-19),whichispresentin10to15%ofHCMpatients.Temporally,mitralregurgitationoccursaftertheonsetofLVOTobstruction:ejection→obstruction→leak.Itproducesahigh-velocityjetawayfromtheapex,whichcanbeconfusedwiththeLVOTvelocity.FlowdurationandDopplerspectralconfigurationhelptodifferentiatemitralregurgitationfromLVOTobstruction.ColorflowimaginghelpstoseparatethemitralregurgitationfromLVOTflowandtoguidethecontinuous-waveDopplerbeam.Colorflowimagingisalsothebestmethodforassessingtheseverityofmitralregurgitation.ThepeakvelocityofthemitralregurgitantjetcanalsobeusedtodeterminethemagnitudeofLVOTobstruction,forexampleFIGURE10-15Two-dimensionalechocardiogramsofapicalHCMwith(right)andwithout(left)contrastadministration.Theapicalwallthicknessismarkedlyincreased(arrowsonleft),andtheapicalcavityisnearlyobliteratedexceptforasmallslit(*)duringsystolewhichisbetterseenwithcontrastadministration(right).LA,leftatrium;LV,leftventricle;RA,rightatrium;RV,rightventricle.00:00/00:00Video10-15A00:00/00:00Video10-15BFIGURE10-16Continuous-waveDopplerspectraobtainedfromtheapexdemonstratingdynamicleftventricular(LV)outflowtractobstruction.Notethetypicallate-peakingconfigurationresemblingadaggerorskislope(leftandright,arrow).Thebaseline(left)velocityis2.8m/s,correspondingtothepeakLVoutflowtractgradientof31mmHg(=4×2.82).WiththeValsalvamaneuver(right),thevelocityincreasedto3.5m/s,correspondingtoagradientof50mmHg.FIGURE10-17Continuous-waveDopplerrecordingofapatientwithHOCMwithLVOTvelocity2.5to3m/sduringaregularsinusrhythm,increasedto5.5m/safteraventricularectopicbeat(arrow).DiastolicFillingPatternandTissueDopplerImagingThepredominantdiastolicabnormalityinHCMismarkedlyimpairedmyocardialrelaxationduetothehypertrophiedmyocardium(60).SomedegreeofdiastolicdysfunctionispresentinvirtuallyallpatientswithHCM.However,noninvasiveassessmentofLVfillingpressuresinHCMcanbechallenging.BecausethedecreaseinLVpressureafteraorticvalveclosureisslower,isovolumicrelaxationtime(IVRT)isprolonged,earlyrapidfilling(E)isreduced,DTisprolonged,andatrialfilling(A)isincreasedaslongasleftatrialpressureisnotelevated.AtrialcontractioncontributessignificantlytoLVfillingduringanearlystageofdiastolicdysfunction.Ifatrialcontractioniscompromisedbecauseoftachycardiaoratrialfibrillation,cardiacoutputdecreasesandpulmonaryvenouscongestioncanoccur.AstheLVbecomeslesscompliantandLApressureincreases,earlyfillinggraduallyincreasesandDTdecreases;however,thesamedegreeofincreaseinLApressuredoesnotproducesimilarshorteningofDTinpatientswithHCMasitdoesinthosewithDCM,becauseDTismarkedlyprolongedatbaseline.Hence,thereisnosignificantcorrelationbetweenDTandLVfillingpressuresinpatientswithHCM(61).Mitralannuluse’velocityisalsomarkedlyreducedsothatE/e’ratiocanbefalselyelevatedwhenLVfillingpressureisnotelevated.Ontheotherhand,LVfillingpressureisalmostalwaysnormalwhenE/e’is7cm/s).Strainimagingfindingsarenormal(85).Leftatrialsizeistypicallynormalorminimallydilated.MarkedrestingSAMshouldnotbepresent.Occasionally,itisdifficulttodifferentiateHCMfromhypertrophycausedbyhypertension.Nunezandcolleagues(84)demonstratedthataglobalfunctionindex(GFI)isusefulindistinguishingthem:whereEismitralearlydiastolicflowvelocity,e′ismitralannulusearlydiastolicvelocity,andS′ismitralannulussystolicvelocity.AGFIgreaterthan1.77wasfoundtosupportthediagnosisofHCM.RESTRICTIVECARDIOMYOPATHYPrimaryRCMischaracterizedbyrestrictedventricularfillingresultingfromanidiopathicnonhypertrophiedmyocardialabnormality(i.e.,stiffeningfibrosis,decreasedcompliance,orboth)(6).Ventricularsystolicfunctionusuallyiswellpreservedintheinitialstage,butdiastolicpressureiselevated,whichinturnresultsinincreasedatrialpressuresandmarkedbiatrialenlargement.Therefore,thecharacteristicmorphologicfeaturesofprimaryRCMon2Dechocardiographyincludeventricularcavitiesofnormalsize;normalwallthicknesses,relativelypreservedglobalsystolicfunction(butthiscanvary),andbiatrialenlargement(Fig.10-25A).ThemostcommonRCMiscardiacamyloidosis(seeChapter18).ThetypicalhemodynamicfeatureofRCMisthedip-and-plateau,or“squarerootsign”,configurationintheventriculardiastolicpressuretracing(Fig.10-26).ThishemodynamicfeatureproducesashortenedDTofearlyrapidfilling(E)onmitralinflowDoppler(Fig.10-25B).WiththeincreaseinLApressure,themitralvalveopensatahigherpressure,resultinginadecreaseinIVRT.Highatrialpressurealsoresultsinanincreasedtransmitralpressuregradient,increasedmitralEvelocity,anddecreasedsystolicpulmonaryvenousflowvelocity(Fig.10-25D).Becauseofhighventricularpressureatenddiastole,atrialcontractiondoesnotcontributesignificantlytoventricularfilling,andtheAvelocityisusuallydecreased.Asaresult,theE/Aratioismarkedlyincreased(>2.0).Becauseoftheincreaseinatrialpressure,venousflowvelocitydecreasesduringsystoleandincreaseswithdiastole.Incontrasttoconstrictivepericarditis,hepaticveindiastolicflowreversalsaregreaterduringinspiration(Fig.10-26E).Myocardialrelaxationisuniversallyimpaired,sothemitralannuluse′velocityisusuallylessthan7cm/s(whenobtainedfromtheseptalannulus)(Figure10-25C)(86).FIGURE10-25A:Apicalfour-chamberviewofatypicalcaseofRCMwithlow-normalleftventricular(LV)cavitysize,normalLVejectionfraction,andmarkedbiatrialenlargement.B:Mitralinflowpulsed-waveDopplervelocityrecordingshowsarestrictivefillingpatternwithEvelocityof80cm/sandAvelocityof20cm/s(E/A=4)alongwithaveryshortdecelerationtimeof140ms.C:Mitralannulustissuevelocityrecordingdemonstratingeof4cm/sindicatingamarkedreductioninmyocardialrelaxation,characteristicofmyocardialdisease.D:Pulsed-waveDopplerofthepulmonaryveinshowsdiastolic(D)predominancewithashortdecelerationtime(arrow).E:Hepaticveinpulsed-waveDopplershowsamarkeddiastolicflowreversal(arrow)withinspiration.Forwardflowvelocity(belowthebaseline)isalsoincreasedwithinspiration,whichincreasesvenousreturn.Thisisincontrasttoenhanceddiastolicflowreversalswithexpiration,seeninconstrictivepericarditis(Chapter12).F:StrainimagingfromapatientwithRCM.Straindecreasesatthebasalsegmentsfirstandthenprogressestomidandapicalsegment.LA,leftatrium;RA,rightatrium;RV,rightventricle.00:00/00:00Video10-25TypicalDopplerfeaturesinRCMareasfollows:1.Mitral(M)andtricuspid(T)inflowIncreasedEvelocity:M>1m/s,T>0.7m/sDecreasedAvelocity:M5mm)ormyxomatous.Ifastricterdefinitionofmitralvalveprolapseisused,theprevalence(1.7%–2.4%)isnotashighaspreviouslyreported(61,62).Theclassicpatternofmitralvalveprolapsehasbeenassociatedwithanincreasedriskofendocarditis,severemitralvalveregurgitation,andmitralvalverepairorreplacement(61–64).Auscultatoryfindingsarenotadequatetoidentifyahigh-riskgroupofpatientswithmitralvalveprolapse.Themyxomatousfeatureofmitralvalveprolapsemostlikelyrepresentsabiochemicaldefectinvolvingconnectivetissue.Accordingtoareviewof833patientsinOlmstedCounty,Minnesota,whohadmitralvalveprolapse,theywereagenerallyhealthypopulationwithameanageof47years(65).Also,mostofthemhadanormalejectionfraction,and8%hadatrialfibrillation.The10-yearcardiovascularmortalityratewas9%±2%;themostpowerfulpredictorwasmoderatetoseveremitralregurgitation,followedbyanLVejectionfractionlessthan50%.Arecentcardiacmagneticresonanceimagingstudyfoundfocalmyocardialfibrosiswithlategadoliniumenhancementinabouthalfofthemitralvalveprolapsestudypatients(65a).Weneedmorestudiestoseewhetherfocalmyocardialfibrosishasanysignificantassociationwitharrhythmiaorapoorclinicaloutcome.FIGURE13-32Classificationofmitralregurgitation.(ReprintedfromElSabbaghA,ReddyYNV,NishimuraRA.MitralValveRegurgitationintheContemporaryEra:InsightsIntoDiagnosis,Management,andFutureDirections.JACCCardiovascImaging,2018;11(4):628–643.Copyright©2018bytheAmericanCollegeofCardiologyFoundation.Withpermission.)MitralvalvebecomesflailwhenitsleaflettippointtotheLAduringsystoleduetolengtheningand/orruptureofthesupportingchordae(Fig.13-33B).ItisusuallyassociatedwithsevereMRalthoughnonsignificantMRhasbeenobservedin14of706(2%)patients(66)andMRseveritydidnotprogressinallbutone.ThisisthemostfrequentetiologyofMRformitralvalverepair.AlthoughthereisstillacontroversyregardingitsmanagementinasymptomaticpatientswithsevereMRduetoflailmitralvalve,therecentdataoverwhelminglysupportearlierrepairroboticallyorbyanopen-heartsurgerybeforetheydevelopLVdysfunctionoratrialfibrillation(67,68).OneofthereasonsforanearlyrepairistheabilityoftransthoracicandTEEtodiagnosetheconditionandmonitorthesurgicalresultintraoperatively(Chapter23).Withincreasingtranscatheterinterventionstrategiesformitralvalve,echocardiographyisanessentialtoolintheinterventionalorhybridsuite(Chapter22).FunctionalMitralRegurgitationMitralregurgitationcausedbyregionalorglobalLVremodelingwithoutstructuralabnormalitiesofthemitralvalveistermedfunctionalmitralregurgitation.Itisfrequentandcausesincreasingclinicalsymptomsinischemic(type3B)ordilatedcardiomyopathy(type1).Thefunctionalregurgitantjetisusuallycentralinnonischemiccardiomyopathyordilatedmitralannulus.However,itsjetcanbeeccentricinpatientswithischemiccardiomyopathyusuallywithtetheringofoneleaflet(Fig.13-33FandG).Whenmitralvalvetentingareacomitralleafletistethered,themitralvalveismoretented(Fig.1334),andatentingareaof6cm2ormoreusuallyindicatesgrade3orhighermitralregurgitation(69).FIGURE13-33A:Left:Parasternallong-axisviewdemonstratingposteriormitralvalveprolapse(arrow)withtheleaflet5mmbelowtheannulus(dottedline)Right:Colorflowimagingshowseccentricmitralregurgitationtowardtheaorta.B:Acompositeofparasternallong-axis(upperleft),TEE3D(upperright),andapicallongaxis2D(lowerleft)imageofflailposterior(P3)mitralleaflet(arrows),andcolorflowimagingofmitralregurgitation(arrow)withPISA(lowerright).C:Acompositeofparasternallong-axis2D(upperleft),colorflowimaging(upperright),short-axisview(lowerleft),and3DTEEview(lowerright)ofacleftintheanteriormitralleaflet(arrow)withseveremitralregurgitation.D:(Left)2-DTEEviewofcalcificmitralleaflets(arrows)withcolorflowimaging(right)showingsevereregurgitation.E:Perforationofposteriormitralleafletshownby2-D(arrowinleft)and3-D(arrowinright)TEE.F.ParasternallongaxisviewofthesamepatientsasinEshowingperforation(arrowinleft)withsevereeccentricmitralregurgitation(right).G:Apicalfour-chamberviewdemonstratingrestrictivecardiomyopathy,annulusdilation,andseveremitralregurgitation.H:Transthoracicapicalfour-chamberviewshowingtetheredposteriormitralleaflet(arrow)andseverefunctionalmitralregurgitation.Thepatienthasinferiorwallmotionabnormality.I:Asystolicframeoftransthoracic3Dechocardiographyofthemitralvalvewithagap(arrows)betweenanteriorandposteriorleafletsduetotetheredposteriorleaflet.LA,leftatrium;LV,leftventricle;RA,rightatrium;RV,rightventricle;Ao,aorta.00:00/00:00Video13-33A00:00/00:00Video13-33B00:00/00:00Video13-33C00:00/00:00Video13-33D00:00/00:00Video13-33E00:00/00:00Video13-33F00:00/00:00Video13-33G00:00/00:00Video13-33HFIGURE13-34A:Diagramofthemitralvalveapparatus.B:Tentingarea(T)fromanapicalview,definedasanareawithboundariesofthemitralannulus(X–X)andtwomitralleaflets.LA,leftatrium;LV,leftventricle.STICHtrialdemonstratedlong-termoutcomebenefitofperformingadditionalmitralvalveprocedureatthetimeofcoronaryarterybypasssurgeryinpatientswithischemiccardiomyopathy(70).However,therewasnosignificantbenefitfrommitralvalveprocedureinpatientswithmoderatedegreeofMR(71).However,itisdifficulttostandardizedeterminationofMRseveritysincetherearemanyparameterstoanalyzeandsomeofthemmayprovideadiscordantresult.Moreover,thereisaconfusionoverwhatisthemostobjectiveandquantitativecriteriaforseverefunctionMRwithdifferentrecommendations(seebelow)fromtheAmericanCollegeofCardiologyandEuropeanSocietyofCardiology(2,3).SemiquantitativeAssessmentofMRSeverityColorflowimaging,althoughqualitative,isthemostpracticalinitialmethodtoassesstheseverityofmitralregurgitation.Whentheareaoftheturbulentregurgitantjetismorethan40%oftheLAareaorreachestheposteriorwalloftheLA,mitralregurgitationisusuallysevere(53).TheareaoftheregurgitantjetrelativetothesizeoftheLA(Fig.13-35)ismostcloselyrelatedtotheregurgitantseveritydeterminedwithangiography.Colorflowimagingofvalvularregurgitationdependsonthegainsetting,pulsedrepetitionfrequency,fielddepth,directionofjet,andloadingconditions.Adjacentcardiacwallsinfluencethesizeoftheregurgitantcolorflowiftheregurgitantjetiseccentric.Aflowjetdirectedagainsttheatrialwallappearssmallerthanafreejetofthesameregurgitantvolume(Coandaeffect).Therefore,thesizeofthejetseenoncolorflowimagingshouldbeinterpretedinthecontextofjetgeometryandthesurroundingsolidboundaries(72).ColorflowjetareausuallyoverestimatesMRseveritywhenitiscentral\indilatedcardiomyopathy(73)andunderestimatesitwhenitiseccentric.FIGURE13-35Diagramsofcolorflowimagingofmitralregurgitationfromapicalfourchamberview(upperandlowerleft)andparasternallong-axis(upperright)andshortaxis(lowerright)views.Leftatrialarea(LAA)andregurgitantjetarea(RJA)aremeasuredbyplanimetry.Ao,aorta;AV,aorticvalve;H,height;L,length;LA,leftatrium;LV,leftventricle;MV,mitralvalve;PA,pulmonaryartery;RA,rightatrium;RV,rightventricle;TV,tricuspidvalve;W,width.(RedrawnfromHelmckeF,NandaNC,HsiungMC,etal.ColorDopplerassessmentofmitralregurgitationwithorthogonalplanes.Circulation,1987;75(1):175–183.Usedwithpermission.)FIGURE13-36Mitralinflow(left)andcontinuous-waveDopplervelocity(right)ofseveremitralregurgitation(MR).Mitralinflowdecelerationtimeis120milliseconds,andMRpeakvelocityis3.5m/s(equivalenttoatransmitralsystolicgradientof49mmHg).ThiswasobtainedfromapatientwithcardiogenicshockduetosevereMRandsevereleftventricularsystolicdysfunction.Pulmonarycapillarywedgepressurewas54mmHg,andsystolicbloodpressurewas100mmHg.Inmitralregurgitation,antegradeflow(mitralinflow)velocityincreaseswithsevereregurgitation(Evelocityisusually>1.2m/sinsevereMR)(Fig.13-36),andthecontinuous-waveDopplervelocityofmitralregurgitationtendstobelower(5m/sormitralvalvearea≤1cm2,rapidprogression,ventriculardysfunction,orventriculardilation),valvularinterventionisrecommended.ThecutoffvaluesforLVdilation,LVEF,andRVmeasurementcontinuetoberevised.Thecurrentguidelinerecommends50%asthecutoffforaorticregurgitationandaorticstenosis,butthemostrecentdataindicatethattheclinicaloutcomeinaorticstenosispatientswithLVEFlessthan60%isworsecomparedtothepatientswithLVEF≥60%(30,31).WhetherasymptomaticpatientswithLVEFlessthan60%dobetterwithanearliersurgerywillrequiremoreclinicalinvestigationsortrials.TheunderlyingmyocardialfibrosisinpatientswithvalvularheartdiseasecanbebetterevaluatedbycardiacMRIandstrainimaging.ManyhavereportedthatabnormalitiesincardiacMRIandstrainimagingareassociatedwithapoorclinicaloutcomeinpatientswithvalvularheartdisease,andagain,itwillrequiremoreclinicalexperiencetoseewhetherthosenewerimagingmodalitiescanimproveindecidingoptimaltimingofvalvularinterventioninasymptomaticpatients.Currently,thetimingofsurgeryisusuallydeterminedonthebasisofechocardiographicfindingsatrestandwithexercisealongwithclinicalsymptomsinmostpatients.FIGURE13-56Automatic3DPISAextraction,visualizedasgreenoverlayona3DcolorDopplerimage(topthreereferenceplanes:left,four-chamberview;center,twochamberview;right,short-axisview)and3D-renderedPISAinthevolume-renderedimage(bottomleft).ERO,Effectiveregurgitantorifice.(ReprintedfromdeAgustinJA,VilianiD,VieiraC,etal.Proximalisovelocitysurfaceareabysingle-beatthreedimensionalcolorDopplerechocardiographyappliedfortricuspidregurgitationquantification.JAmSocEchocardiogr,2013;26(9):1063–1072.Copyright©2013AmericanSocietyofEchocardiography.Withpermission.)FIGURE13-57A:Transthoracicbasalshort-axisview(left)withcolorflowimagingdemonstratingmildpulmonaryregurgitationjet(arrow)and(right)continuous-waveDopplerrecordingshowscharacteristicconfigurationofmildpulmonaryregurgitation.ThejetoccupiesathirdoftheRVoutflowtract(RVOT),andthereisnodiastolicflowreversalinthepulmonaryartery(PA).B:(Left)ColorflowshowsalaminardiastolicflowoccupyingtheentirewidthoftheRVOTalongwithdiastolicflowreversalinthepulmonaryartery(arrow)consistentwithseverepulmonaryregurgitation.(Right)Pulsed-waveDopplershowsarapiddecelerationtime(arrow)ofpulmonaryregurgitationflowcharacteristicofseverepulmonaryregurgitation.C:ContinuouswaveDoppleracrossthepulmonicvalvedemonstratesrapiddeceleration(downwardarrow)anddiastolicforwardflow(upwardarrow)withprematureopeningofthepulmonicvalve.00:00/00:00Video13-57REFERENCES1.NishimuraRA,OttoCM,BonowRO,etal.AmericanCollegeofCardiology/AmericanHeartAssociationTaskForceonPractice,G.2014AHA/ACCguidelineforthemanagementofpatientswithvalvularheartdisease:areportoftheAmericanCollegeofCardiology/AmericanHeartAssociationTaskForceonPracticeGuidelines.JournaloftheAmericanCollegeofCardiology,2014;63(22):e57–e185.2.NishimuraRA,OttoCM,BonowRO,etal.2017AHA/ACCFocusedUpdateofthe2014AHA/ACCguidelineforthemanagementofpatientswithvalvularheartdisease:AreportoftheAmericanCollegeofCardiology/AmericanHeartAssociationTaskForceonClinicalPracticeGuidelines.Circulation,2017:135(25):e1159-e1195.3.BaumgartnerH,FalkV,BaxJJ,etal.;ESCScientificDocumentGroup..2017ESC/EACTSguidelinesforthemanagementofvalvularheartdisease.EuropeanHeartJournal,2017;38(36):2739–2791.4.RosseboAB,PedersenTR,BomanK,etal.;SEASInvestigators.Intensivelipidloweringwithsimvastatinandezetimibeinaorticstenosis.TheNewEnglandJournalofMedicine,2008;359(13):1343–1356.5.ChanKL,TeoK,DumesnilJG,etal.EffectofLipidloweringwithrosuvastatinonprogressionofaorticstenosis:Resultsoftheaorticstenosisprogressionobservation:measuringeffectsofrosuvastatin(ASTRONOMER)trial.Circulation,2010;121(2):306–314.6.SyvarantaS,Alanne-KinnunenM,OorniK,etal.Potentialpathologicalrolesforoxidizedlow-densitylipoproteinandscavengerreceptorsSR-AI,CD36,andLOX-1inaorticvalvestenosis.Atherosclerosis,2014;235(2):398–407.7.KongWK,DelgadoV,PohKK,etal.Prognosticimplicationsofrapheinbicuspidaorticvalveanatomy.JAMACardiology,2017;2(3):285–292.8.OhJK,TaliercioCP,HolmesDRJr,etal.PredictionoftheseverityofaorticstenosisbyDoppleraorticvalveareadetermination:ProspectiveDoppler-catheterizationcorrelationin100patients.JournaloftheAmericanCollegeofCardiology,1988;11(6):1227–1234.9.ThadenJJ,NkomoVT,LeeKJ,etal.Dopplerimaginginaorticstenosis:Theimportanceofthenonapicalimagingwindowstodetermineseverityinacontemporarycohort.JournaloftheAmericanSocietyofEchocardiography,2015;28(7):780–785.10.CurriePJ,SewardJB,ReederGS,etal.Continuous-waveDopplerechocardiographicassessmentofseverityofcalcificaorticstenosis:asimultaneousDoppler-cathetercorrelativestudyin100adultpatients.Circulation,1985;71(6):1162–1169.11.GarciaD,DumesnilJG,DurandLG,etal.DiscrepanciesbetweencatheterandDopplerestimatesofvalveeffectiveorificeareacanbepredictedfromthepressurerecoveryphenomenon:practicalimplicationswithregardtoquantificationofaorticstenosisseverity.JournaloftheAmericanCollegeofCardiology,2003;41(3):435–442.12.DumesnilJG,PibarotP,AkinsC.Newapproachestoquantifyingaorticstenosisseverity.CurrentCardiologyReports,2008;10(2):91–97.13.GorlinR,GorlinSG.Hydraulicformulaforcalculationoftheareaofthestenoticmitralvalve,othercardiacvalves,andcentralcirculatoryshunts.I.AmericanHeartJournal,1951;41(1):1–29.14.SkjaerpeT,HegrenaesL,HatleL.NoninvasiveestimationofvalveareainpatientswithaorticstenosisbyDopplerultrasoundandtwo-dimensionalechocardiography.Circulation,1985;72(4):810–818.15.BaumgartnerH,HungJ,BermejoJ,etal.Recommendationsontheechocardiographicassessmentofaorticvalvestenosis:AfocusedupdatefromtheEuropeanAssociationofCardiovascularImagingandtheAmericanSocietyofEchocardiography.JournaloftheAmericanSocietyofEchocardiography,2017;30(4):372–392.16.MinnersJ,AllgeierM,Gohlke-BaerwolfC,etal.Inconsistenciesofechocardiographiccriteriaforthegradingofaorticvalvestenosis.EuropeanHeartJournal,2008;29(8):1043–1048.17.MaloufJ,LeTourneauT,PellikkaP,etal.Aorticvalvestenosisincommunitymedicalpractice:determinantsofoutcomeandimplicationsforaorticvalvereplacement.JournalofThoracicandCardiovascularSurgery,2012;144(6):1421–1427.18.RusinaruD,MalaquinD,MarechauxS,etal.Relationofdimensionlessindextolong-termoutcomeinaorticstenosiswithpreservedLVEF.JACC.CardiovascularImaging,2015;8(7):766–775.19.EleidMF,SorajjaP,MichelenaHI,etal.Flow-gradientpatternsinsevereaorticstenosiswithpreservedejectionfraction:clinicalcharacteristicsandpredictorsofsurvival.Circulation,2013;128(16):1781–1789.20.DumesnilJG,PibarotP,CarabelloB.Paradoxicallowflowand/orlowgradientsevereaorticstenosisdespitepreservedleftventricularejectionfraction:implicationsfordiagnosisandtreatment.EuropeanHeartJournal,2010;31(3):281–289.21.ChinCWL,DingZP,LamCSP,etal.Paradoxicallow-gradientaorticstenosis:TheHFpEFofaorticstenosis.JournaloftheAmericanCollegeofCardiology,2016;67(20):2447–2448.22.DayanV,VignoloG,MagneJ,etal.OutcomeandimpactofaorticvalvereplacementinpatientswithpreservedLVEFandlow-gradientaorticstenosis.JournaloftheAmericanCollegeofCardiology,2015;66(23):2594–2603.23.MoninJL,QuereJP,MonchiM,etal.Low-gradientaorticstenosis:operativeriskstratificationandpredictorsforlong-termoutcome:amulticenterstudyusingdobutaminestresshemodynamics.Circulation,2003;108(3):319–324.24.RibeiroHB,LerakisS,GilardM,etal.Transcatheteraorticvalvereplacementinpatientswithlow-flow,low-gradientaorticstenosis:TheTOPAS-TAVIregistry.JournaloftheAmericanCollegeofCardiology,2018;71(12):1297–1308.25.GenereuxP.Low-flow,low-gradientaorticstenosis:TAVRin,dobutaminestressechocardiographyout?JournaloftheAmericanCollegeofCardiology,2018;71(12):1309–1312.26.AlsidawiS,KhanS,PislaruSV,etal.Aorticvalvehemodynamicsinatrialfibrillation:ShouldthehighestDopplersignalbeusedtoestimateseverityofaorticstenosis?Echocardiography,2018;35(6):869–871.27.BermejoJ,Garcia-FernandezMA,TorrecillaEG,etal.EffectsofdobutamineonDopplerechocardiographicindexesofaorticstenosis.JournaloftheAmericanCollegeofCardiology,1996;28(5):1206–1213.28.HachichaZ,DumesnilJG,PibarotP.Usefulnessofthevalvuloarterialimpedancetopredictadverseoutcomeinasymptomaticaorticstenosis.JournaloftheAmericanCollegeofCardiology,2009;54(11):1003–1011.29.MilavetzDL,HayesSN,WestonSA,etal.Sexdifferencesinleftventriculargeometryinaorticstenosis:Impactonoutcome.Chest,2000;117(4):1094–1099.30.ItoS,MirandaWR,NkomoVT,etal.Reducedleftventricularejectionfractioninpatientswithaorticstenosis.JournaloftheAmericanCollegeofCardiology,2018;71(12):1313–1321.31.TaniguchiT,MorimotoT,ShiomiH,etal.Prognosticimpactofleftventricularejectionfractioninpatientswithsevereaorticstenosis.JACC.CardiovascularInterventions,2018;11(2):145–157.32.ParkSJ,Enriquez-SaranoM,ChangSA,etal.Hemodynamicpatternsforsymptomaticpresentationsofsevereaorticstenosis.JACC.CardiovascularImaging,2013;6(2):137–146.33.EgbeAC,KhanAR,BolerA,etal.Roleofdiastolicfunctionindicesintheriskstratificationofpatientswithmixedaorticvalvedisease.EuropeanHeartJournalCardiovascularImaging,2017;19(6):668–674.34.BinerS,RafiqueAM,GoykhmanP,etal.PrognosticvalueofE/E′ratioinpatientswithunoperatedsevereaorticstenosis.JACC.CardiovascularImaging,2010;3(9):899–907.35.ChangSA,ParkPW,SungK,etal.Noninvasiveestimateofleftventricularfillingpressurecorrelatedwithearlyandmidtermpostoperativecardiovasculareventsafterisolatedaorticvalvereplacementinpatientswithsevereaorticstenosis.JournalofThoracicandCardiovascularSurgery,2010;140(6):1361–1366.36.SalaunE,CasaltaAC,DonalE,etal.Apicalfour-chamberlongitudinalleftventricularstraininpatientswithaorticstenosisandpreservedleftventricularejectionfraction:analysisrelatedwithflow/gradientpatternandassociationwithoutcome.EurHeartJCardiovascImaging,2018Aug1;19(8):868–878.36a.NgACT,etal.Leftventriculargloballongitudinalstrainispredictiveofall-causemortalityindependentofaorticstenosisseverityandejectionfraction.EurHeartJCardiovascImaging,2018Aug1;19(8):859–867.37.MaloufJF,Enriquez-SaranoM,PellikkaPA,etal.Severepulmonaryhypertensioninpatientswithsevereaorticvalvestenosis:clinicalprofileandprognosticimplications.JournaloftheAmericanCollegeofCardiology,2002;40(4):789–795.38.OttoCM,BurwashIG,LeggetME,etal.Prospectivestudyofasymptomaticvalvularaorticstenosis.Clinical,echocardiographic,andexercisepredictorsofoutcome.Circulation,1997;95(9):2262–2270.39.RosenhekR,BinderT,PorentaG,etal.Predictorsofoutcomeinsevere,asymptomaticaorticstenosis.TheNewEnglandJournalofMedicine,2000;343(9):611–617.40.PellikkaPA,SaranoME,NishimuraRA,etal.Outcomeof622adultswithasymptomatic,hemodynamicallysignificantaorticstenosisduringprolongedfollow-up.Circulation,2005;111(24):3290–3295.40a.KangDH,etal.Earlysurgeryversusconventionaltreatmentinasymptomaticverysevereaorticstenosis.Circulation,2010Apr6;121(13):1502–1509.41.MagneJ,LancellottiP,PierardLA.Exercisetestinginasymptomaticsevereaorticstenosis.JACC.CardiovascularImaging,2014;7(2):188–199.42.LancellottiP,PellikkaPA,BudtsW,etal.Theclinicaluseofstressechocardiographyinnon-ischaemicheartdisease:RecommendationsfromtheEuropeanAssociationofCardiovascularImagingandtheAmericanSocietyofEchocardiography.JournaloftheAmericanSocietyofEchocardiography,2017;30(2):101–138.43.HoffmannR,FlachskampfFA,HanrathP.Planimetryoforificeareainaorticstenosisusingmultiplanetransesophagealechocardiography.JournaloftheAmericanCollegeofCardiology,1993;22(2):529–534.44.AbascalVM,WilkinsGT,ChoongCY,etal.Echocardiographicevaluationofmitralvalvestructureandfunctioninpatientsfollowedforatleast6monthsafterpercutaneousballoonmitralvalvuloplasty.JournaloftheAmericanCollegeofCardiology,1988;12(3):606–615.45.CannanCR,NishimuraRA,ReederGS,etal.Echocardiographicassessmentofcommissuralcalcium:asimplepredictorofoutcomeafterpercutaneousmitralballoonvalvotomy.JournaloftheAmericanCollegeofCardiology,1997;29(1):175–180.46.WunderlichNC,BeigelR,SiegelRJ.Managementofmitralstenosisusing2Dand3Decho-Dopplerimaging.JACC.CardiovascularImaging,2013;6(11):1191–1205.47.DreyfusJ,BrochetE,LepageL,etal.Real-time3Dtransoesophagealmeasurementofthemitralvalveareainpatientswithmitralstenosis.EuropeanJournalofEchocardiography,2011;12(10):750–755.48.RifkinRD,HarperK,TigheD.Comparisonofproximalisovelocitysurfaceareamethodwithpressurehalf-timeandplanimetryinevaluationofmitralstenosis.JournaloftheAmericanCollegeofCardiology,1995;26(2):458–465.49.FaletraF,PezzanoAJr,FuscoR,etal.Measurementofmitralvalveareainmitralstenosis:Fourechocardiographicmethodscomparedwithdirectmeasurementofanatomicorifices.JournaloftheAmericanCollegeofCardiology,1996;28(5):1190–1197.50.SongJK,KangDH,LeeCW,etal.Factorsdeterminingtheexercisecapacityinmitralstenosis.AmericanJournalofCardiology,1996;78(9):1060–1062.51.Barros-GomesS,EleidMF,DahlJS,etal.Predictingoutcomesafterpercutaneousmitralballoonvalvotomy:theimpactofleftventricularstrainimaging.EuropeanHeartJournalCardiovascularImaging,2017;18(7):763–771.52.FawzyME,MercerEN,DunnB,etal.Dopplerechocardiographyintheevaluationoftricuspidstenosis.EuropeanHeartJournal,1989;10(11):985–990.53.ZoghbiWA,AdamsD,BonowRO,etal.Recommendationsfornoninvasiveevaluationofnativevalvularregurgitation:AreportfromtheAmericanSocietyofEchocardiographyDevelopedinCollaborationwiththeSocietyforCardiovascularMagneticResonance.JournaloftheAmericanSocietyofEchocardiography,2017;30(4):303–371.54.SamstadSO,HegrenaesL,SkjaerpeT,etal.HalftimeofthediastolicaortoventricularpressuredifferencebycontinuouswaveDopplerultrasound:ameasureoftheseverityofaorticregurgitation?BritishHeartJournal,1989;61(4):336–343.55.OhJK,HatleLK,SinakLJ,etal.CharacteristicDopplerechocardiographicpatternofmitralinflowvelocityinsevereaorticregurgitation.JournaloftheAmericanCollegeofCardiology,1989;14(7):1712–1717.56.NishimuraRA,VonkGD,RumbergerJA,etal.SemiquantitationofaorticregurgitationbydifferentDopplerechocardiographictechniquesandcomparisonwithultrafastcomputedtomography.AmericanHeartJournal,1992;124(4):995–1001.57.TribouilloyCM,Enriquez-SaranoM,FettSL,etal.Applicationoftheproximalflowconvergencemethodtocalculatetheeffectiveregurgitantorificeareainaorticregurgitation.JournaloftheAmericanCollegeofCardiology,1998;32(4):1032–1039.58.PerryGJ,HelmckeF,NandaNC,etal.EvaluationofaorticinsufficiencybyDopplercolorflowmapping.JournaloftheAmericanCollegeofCardiology,1987;9(4):952–959.59.CarpentierA,ChauvaudS,FabianiJN,etal.Reconstructivesurgeryofmitralvalveincompetence:Tenyearappraisal.JournalofThoracicandCardiovascularSurgery,1980;79(3):338–348.60.ElSabbaghA,ReddyYNV,NishimuraRA.Mitralvalveregurgitationinthecontemporaryera:Insightsintodiagnosis,management,andfuturedirections.JACC.CardiovascularImaging.2018;11(4):628–643.61.FreedLA,LevyD,LevineRA,etal.Prevalenceandclinicaloutcomeofmitral-valveprolapse.TheNewEnglandJournalofMedicine,1999;341(1):1–7.62.DevereuxRB,JonesEC,RomanMJ,etal.Prevalenceandcorrelatesofmitralvalveprolapseinapopulation-basedsampleofAmericanIndians:TheStrongHeartStudy.AmericanJournalofMedicine,2001;111(9):679–685.63.NishimuraRA,McGoonMD,ShubC,etal.Echocardiographicallydocumentedmitral-valveprolapse.Long-termfollow-upof237patients.TheNewEnglandJournalofMedicine,1985;313(21):1305–1309.64.MarksAR,ChoongCY,SanfilippoAJ,etal.Identificationofhigh-riskandlow-risksubgroupsofpatientswithmitral-valveprolapse.TheNewEnglandJournalofMedicine,1989;320(16):1031–1036.65.AvierinosJF,GershBJ,MeltonLJIII,etal.Naturalhistoryofasymptomaticmitralvalveprolapseinthecommunity.Circulation,2002;106(11):1355–1361.65a.PradellaS,etal.Cardiacmagneticresonanceinpatientswithmitralvalveprolapse:FocusonlategadoliniumenhancementandT1mapping.EurRadiol,2018Aug(Epub).66.KehlDW,RaderF,SiegelRJ.Echocardiographicfeaturesandclinicaloutcomesofflailmitralleafletwithoutseveremitralregurgitation.JournaloftheAmericanSocietyofEchocardiography,2017;30(12):1162–1168.67.SuriRM,ClavelMA,SchaffHV,etal.Effectofrecurrentmitralregurgitationfollowingdegenerativemitralvalverepair:Long-termanalysisofcompetingoutcomes.JournaloftheAmericanCollegeofCardiology,2016;67(5):488–498.68.SuriRM,SchaffHV,Enriquez-SaranoM.Mitralvalverepairinasymptomaticpatientswithseveremitralregurgitation:pushingpastthetippingpoint.SeminarsinThoracicandCardiovascularSurgery,2014;26(2):95–101.69.YiuSF,Enriquez-SaranoM,TribouilloyC,etal.Determinantsofthedegreeoffunctionalmitralregurgitationinpatientswithsystolicleftventriculardysfunction:Aquantitativeclinicalstudy.Circulation,2000;102(12):1400–1406.70.DejaMA,GrayburnPA,SunB,etal.Influenceofmitralregurgitationrepaironsurvivalinthesurgicaltreatmentforischemicheartfailuretrial.Circulation,2012;125(21):2639–2648.71.MichlerRE,SmithPK,ParidesMK,etal.Two-yearoutcomesofsurgicaltreatmentofmoderateischemicmitralregurgitation.TheNewEnglandJournalofMedicine,2016;374(20):1932–1941.72.CapeEG,YoganathanAP,WeymanAE,etal.AdjacentsolidboundariesalterthesizeofregurgitantjetsonDopplercolorflowmaps.JournaloftheAmericanCollegeofCardiology,1991;17(5):1094–1102.73.McCullyRB,Enriquez-SaranoM,TajikAJ,etal.Overestimationofseverityofischemic/functionalmitralregurgitationbycolorDopplerjetarea.AmericanJournalofCardiology,1994;74(8):790–793.74.RobertsBJ,GrayburnPA.Colorflowimagingofthevenacontractainmitralregurgitation:technicalconsiderations.JournaloftheAmericanSocietyofEchocardiography,2003;16(9):1002–1006.75.Enriquez-SaranoM,SewardJB,BaileyKR,etal.Effectiveregurgitantorificearea:anoninvasiveDopplerdevelopmentofanoldhemodynamicconcept.JournaloftheAmericanCollegeofCardiology,1994;23(2):443–451.76.RecusaniF,BargiggiaGS,YoganathanAP,etal.AnewmethodforquantificationofregurgitantflowrateusingcolorDopplerflowimagingoftheflowconvergenceregionproximaltoadiscreteorifice.Aninvitrostudy.Circulation,1991;83(2):594–604.77.Enriquez-SaranoM,SinakLJ,TajikAJ,etal.Changesineffectiveregurgitantorificethroughoutsystoleinpatientswithmitralvalveprolapse.Aclinicalstudyusingtheproximalisovelocitysurfaceareamethod.Circulation,1995;92(10):2951–2958.78.RossiA,DujardinKS,BaileyKR,etal.Rapidestimationofregurgitantvolumebytheproximalisovelocitysurfaceareamethodinmitralregurgitation:Cancontinuous-waveDopplerechocardiographybeomitted?JournaloftheAmericanSocietyofEchocardiography,1998;11(2):138–148.79.TopilskyY,MichelenaH,BicharaV,etal.Mitralvalveprolapsewithmid-latesystolicmitralregurgitation:Pitfallsofevaluationandclinicaloutcomecomparedwithholosystolicregurgitation.Circulation,2012;125(13):1643–1651.80.JamilM,AhmadO,PohKK,etal.Feasibilityofultrasound-basedcomputationalfluiddynamicsasamitralvalveregurgitationquantificationtechnique:Comparisonwith2-Dand3-Dproximalisovelocitysurfacearea-basedmethods.UltrasoundinMedicine&Biology,2017;43(7):1314–1330.81.MatsumuraY,SaracinoG,SugiokaK,etal.Determinationofregurgitantorificeareawiththeuseofanewthree-dimensionalflowconvergencegeometricassumptioninfunctionalmitralregurgitation.JournaloftheAmericanSocietyofEchocardiography,2008;21(11):1251–1256.82.MarsanNA,WestenbergJJ,YpenburgC,etal.Quantificationoffunctionalmitralregurgitationbyrealtime3Dechocardiography:comparisonwith3Dvelocity-encodedcardiacmagneticresonance.JACC.CardiovascularImaging,2009;2(11):1245–1252.83.BinerS,RafiqueA,RafiiF,etal.Reproducibilityofproximalisovelocitysurfacearea,venacontracta,andregurgitantjetareaforassessmentofmitralregurgitationseverity.JACC.CardiovascularImaging,2010;3(3):235–243.84.RossiA,DujardinKS,BaileyKR,etal.Rapidestimationofregurgitantvolumebytheproximalisovelocitysurfaceareamethodinmitralregurgitation:Cancontinuous-waveDopplerechocardiographybeomitted?JournaloftheAmericanSocietyofEchocardiography,1998;11(2):138–148.85.LancellottiP,TroisfontainesP,ToussaintAC,etal.Prognosticimportanceofexercise-inducedchangesinmitralregurgitationinpatientswithchronicischemicleftventriculardysfunction.Circulation,2003;108(14):1713–1717.86.NathJ,FosterE,HeidenreichPA.Impactoftricuspidregurgitationonlong-termsurvival.JournaloftheAmericanCollegeofCardiology,2004;43(3):405–409.87.TopilskyY,NkomoVT,VaturyO,etal.Clinicaloutcomeofisolatedtricuspidregurgitation.JACC.CardiovascularImaging,2014;7(12):1185–1194.88.LinG,NishimuraRA,ConnollyHM,etal.Severesymptomatictricuspidvalveregurgitationduetopermanentpacemakerorimplantablecardioverter-defibrillatorleads.JournaloftheAmericanCollegeofCardiology,2005;45(10):1672–1675.89.LinG,BradyPA.Devicelead-inducedtricuspidregurgitation:doesitmatter?Heart,2014;100(12):900–901.90.GongoraE,DearaniJA,OrszulakTA,etal.Tricuspidregurgitationinpatientsundergoingpericardiectomyforconstrictivepericarditis.TheAnnalsofThoracicSurgery,2008;85(1):163–170;discussion70–1.91.TopilskyY,KhannaAD,OhJK,etal.Preoperativefactorsassociatedwithadverseoutcomeaftertricuspidvalvereplacement.Circulation,2011;123(18):1929–1939.92.RiveraJM,MeleD,VandervoortPM,etal.Effectiveregurgitantorificeareaintricuspidregurgitation:clinicalimplementationandfollow-upstudy.AmericanHeartJournal,1994;128(5):927–933.93.TopilskyY,TribouilloyC,MichelenaHI,etal.Pathophysiologyoftricuspidregurgitation:quantitativeDopplerechocardiographicassessmentofrespiratorydependence.Circulation,2010;122(15):1505–1513.94.TribouilloyCM,Enriquez-SaranoM,CappsMA,etal.Contrastingeffectofsimilareffectiveregurgitantorificeareainmitralandtricuspidregurgitation:aquantitativeDopplerechocardiographicstudy.JournaloftheAmericanSocietyofEchocardiography,2002;15(9):958–965.95.deAgustinJA,VilianiD,VieiraC,etal.Proximalisovelocitysurfaceareabysingle-beatthreedimensionalcolorDopplerechocardiographyappliedfortricuspidregurgitationquantification.JournaloftheAmericanSocietyofEchocardiography,2013;26(9):1063–1072.96.ChenTE,KwonSH,Enriquez-SaranoM,etal.Three-dimensionalcolorDopplerechocardiographicquantificationoftricuspidregurgitationorificearea:comparisonwithconventionaltwo-dimensionalmeasures.JournaloftheAmericanSocietyofEchocardiography,2013;26(10):1143–1152.97.ManivarmaneR,TaylorR,KhattarR.Acaseofisolatedbicuspidpulmonaryvalve.EchoResearchandPractice,2017.98.DellasC,KammererL,GravenhorstV,etal.Quantificationofpulmonaryregurgitationandpredictionofpulmonaryvalvereplacementbyechocardiographyinpatientswithcongenitalheartdefectsincomparisontocardiacmagneticresonanceimaging.TheInternationalJournalofCardiovascularImaging,2018;34(4):607–613.CHAPTER14ProstheticValveEvaluationLoriA.Blauwet,FletcherA.Miller,andJaeK.OhValvereplacementisfrequentlyrequiredforseverevalvularheartdisease,althoughvalverepairisincreasinglyperformedforaregurgitantlesion.Itisestimatedthatmorethan280,000prostheticheartvalvesareimplantedworldwideeachyear.Astheworld’spopulationisaging,theincidenceofprostheticheartvalveimplantationandtheprevalenceofprostheticheartvalvescontinuetoincrease.Assessingheartvalveprosthesisfunctionremainschallenging,asprosthesismalfunctionisunpredictablebutnotuncommon.Echocardiographyhasbecometheprimarytoolforassessmentofpatientswithprostheticheartvalves,particularlyforthedetectionofcomplications.Prostheticvalvesarebroadlyclassifiedaseitherbiologicalormechanical(Fig.14-1).Aheterograftisabiologicalprosthesisconsistingofeitheraporcinevalveorbovinepericardialtissueattachedtoametalframe.Homograftsandallograftsarehumanvalves.Mechanicalvalvesareconstructedfromnonbiologicmaterial(e.g.,pyrolyticcarbon,polymericsiliconesubstances[silastic],ortitanium)inaball-cage,singleleafletorbileafletdesign.Biologictranscathetervalves,thenewestclassofprostheticvalves,currentlyattacheitherbovinepericardialtissueorbovinejugularveintometalframe.Bloodflowcharacteristics,hemodynamics,durability,andthromboembolictendencyvarydependingonthetypeandsizeofeachprosthesisand,moreimportantly,onthecharacteristicsofthepatient.Becauseprostheticvalvesareinherentlystenoticandmayproduceadditionalprostheticsoundscausedbyballmovementordiskclosure,itcanbechallengingtodistinguishbetweenabnormalandnormalprostheticvalvesoundsbyphysicalexamination.Theevaluationofprostheticvalvesrequiresathoroughknowledgeoftheuniquedesignandhemodynamicprofileofeachtypeofprosthesis.Assessingprostheticvalvefunctionwithtwo-dimensional(2D)transthoracicechocardiography(TTE)ischallengingduetoacousticshadowing,particularlywithmechanicalprostheses.SpectralDopplerandDopplercolorflowimagingareessentialforassessmentofprostheticvalvefunction.Transesophagealechocardiography(TEE)maybenecessaryifTTEfindingssuggestabnormalprosthesisfunction.3DTEEhasbeenparticularlyhelpfulforlocatingthemitralprostheticregurgitantregionandguidingtranscatheterreplacementorpluggingparavalvularleak.TWO-DIMENSIONALECHOCARDIOGRAPHYTwo-dimensionalechocardiographycanidentifygrossstructuralabnormalitiesofaprostheticvalve,suchasdehiscence,vegetation,thrombus,orbioprosthesisdegeneration.Echoreflectanceoftheprostheticmaterial,attenuationoftheultrasoundbeam,andmultipleultrasoundreverberationsfromtheprosthesismaycausedifficultiesinimageinterpretation.Imagingamechanicalprosthesisisgenerallymorechallengingthanimagingabioprosthesisduetoincreasedacousticshadowing.Nevertheless,allprosthesesshouldbeassessedwith2Dimagingfrommultipleviewswithparticularattentionpaidtothemotionoftheoccluders/leaflets;thepresenceorabsenceofechodensitiesattachedtothesewingring,cage,struts,and/oroccluders/leaflets;andtheintegrityofthesewingring/annularinterface.Observingabnormalrockingmotionoftheprosthesissuggestsdehiscence.Toidentifythestructuralabnormalitiesassociatedwithaprostheticvalve,itisimportanttounderstandthecharacteristicsoftheprosthesisandthesurgicaltechniqueutilizedatimplantation.FIGURE14-1Prostheticvalvetypeswithpatternsofregurgitation.(Left)Photoofprosthesis(center)Transesophagealechocardiography2Dimaging(right)transesophagealechocardiographyDopplercolorflowimaging.A:Homograftwithtrivialregurgitation.Arrow,aorticannulusarea.Aportionofthecoronaryarteryhasatiearoundit.B:Stentedporcineprosthesiswithnoprostheticregurgitation.C:Stentlessporcineprosthesiswithnoprostheticregurgitation.D:Transcatheterprosthesiswithtrivialperivalvularregurgitation.E:Cagedballmechanicalprosthesiswithcentraljetofclosingvolumeregurgitation.F:Singletiltingdiscmechanicalprosthesiswithsinglecentralwashingjetregurgitation.G:Bileafletmechanicalprosthesiswithonecentralandtwolateralwashingjetsregurgitation.00:00/00:00Video14-1A00:00/00:00Video14-1B00:00/00:00Video14-1C00:00/00:00Video14-1D00:00/00:00Video14-1E00:00/00:00Video14-1F00:00/00:00Video14-1G00:00/00:00Video14-1H00:00/00:00Video14-1I00:00/00:00Video14-1J00:00/00:00Video14-1k00:00/00:00Video14-1L00:00/00:00Video14-1M00:00/00:00Video14-1NDOPPLERECHOCARDIOGRAPHYProstheticvalveassessmentwithcolorflow,pulsedwave(PW),andcontinuouswave(CW)Dopplerimagingshouldbeperformedusingsimilarprinciplesandtechniquesusedforassessmentofnativevalves,includinginterrogationoftheprosthesisfrommultipleacousticwindowsandproperalignmentoftheDopplerbeamwithflowdirection.EssentialDoppler-derivedvariablesthatshouldbeobtainedduringTTEtoassessthefunctionofprosthesesintheaortic,mitral,tricuspid,andpulmonaryvalvepositionsarelistedinTable14-1.OnekeyfactortoconsiderduringinterrogationofprostheticvalvesisthatDoppler-derivedparametersvarywithcyclelength.Foraortic,mitral,andpulmonaryvalveprostheses,Dopplermeasurementsfromthreeconsecutivecardiaccyclesshouldbeaveragedifthepatientisinsinusrhythmandaminimumoffiveconsecutivecardiaccyclesaveragedifthepatientisinatrialfibrillationoranotherirregularrhythm.Forpatientswithtricuspidprostheses,itisimportanttorememberthatDoppler-derivedhemodynamicparametersvarynotonlywithcyclelengthbutalsowithrespiration.Averagingaminimumofthreetofiveconsecutivecardiaccyclesorobtainingmeasurementsinmidexpiratoryapneaisrecommendedforallpatientswithtricusidprostheses(1–3).TABLE14-1CompleteDopplerAssessmentofProstheticValvesAorticValveProsthesesMitralValveProsthesesTricuspidValveProsthesesPulmonaryValveProsthesesPeakvelocityEvelocityEvelocityPeakvelocityMeangradientMeangradientMeangradientMeangradientDimensionlessindexTVIratioTVIratioPeakgradientATPHTPHTETAT:ETEffectiveorificeareaEffectiveorificeareaEffectiveorificeareaIndexedeffectiveorificeareaIndexedeffectiveorificeareaIndexedeffectiveorificeareaRegurgitation:presence,location,severityRegurgitation:presence,location,severityRegurgitation:presence,location,severityRegurgitation:presence,location,severityAT,accelerationtime;ET,ejectiontime;PHT,pressurehalf-time;TVIratio,ratioofthetimevelocityintegralofthemitralvalveprosthesistothetimevelocityintegraloftheleftventricularoutflowtract.Everyprostheticvalveisinherentlystenoticinvaryingdegreescomparedwiththerespectivenativevalve;therefore,flowvelocitiesacrossanormalprostheticvalvearehigherthanexpectedandcalculatedeffectiveorificearea(EOA)issmallerthanexpectedforanormalnativevalve.Doppler-derivedhemodynamicprofilesofnormallyfunctioningprosthesesvaryaccordingtoprosthesistype,size,location,andcardiacoutput.Hence,itisimportanttoknowtherangesofflowvelocitiesacrossaparticularprosthesisforcomparisonwithmeasuredvalues.NormalDoppler-derivedvaluesforseveraltypesofaortic,mitral,tricuspid,andpulmonaryprosthesesarelistedinTables14-2to14-5(2–12).Meangradientshouldnotbethesoleparameterconsideredwhenassessingprostheticvalvesbecauseadysfunctionalprosthesismaynothaveahighmeangradient.Inlow-outputstates,manyoftheDoppler-derivedhemodynamicparametersmaybenormaloronlymildlyabnormalevenwhenaprosthesisisseverelydysfunctional.Inthesecases,ahighdegreeofsuspicionandcarefulevaluationiswarrantedinordertoaccuratelyascertainwhetherornotaparticularprosthesisisdysfunctional.Asacorollary,ahighmeangradientdoesnotnecessarilyindicateprostheticvalvedysfunction.Aorticvalveprosthesispeakvelocityandmeangradientmaybeelevatedduetopathologicobstructionorregurgitationbutmayalsobeelevatedduetoahighflowstateor“functionalobstruction,”thatis,prosthesispatientmismatch(PPM)orpressurerecoveryphenomenon.ElevatedmitralortricuspidvalveprosthesisandmeangradientmaybeduetopathologicalobstructionorregurgitationbutmayalsobeduetoPPMorahighflowstatesecondarytotachycardia,anemia,hyperthyroidism,arteriovenousfistulaormalformation,orsevererenalorhepaticdisease.TABLE14-2Doppler-DerivedHemodynamicProfilesofNormalAorticValveProsthesesProsthesisTypeSizePeakVelocity,m/sMeanGradient,mmHgEOA,cm2StentedPorcineProsthesesCarpentier-Edwards19—0.85±0.17212.4±0.517±6.21.48±0.30232.8±0.416±6.41.69±0.45252.4±0.513±4.41.94±0.45272.3±0.412±5.62.25±0.55292.4±0.410±2.92.84±0.51HancockII21—15±4.11.3±0.423—17±8.51.3±0.425—11±2.81.6±0.427———29—8±1.71.6±0.2MedtronicMosaic21—14±5.01.4±0423—14±4.81.5±0.425—12±5.11.8±0.527—10±4.31.9±0.129—11±4.32.1±0.2MedtronicFreestyle19—13±3.9—21—9±5.11.4±0.323—8±4.61.7±0.525—5.±3.12.1±0.527—5±3.12.5±0.1StentedPericardialProsthesesCarpentier-Edwards193.1±0.521±5.81.25±0.18212.6±0.415±4.11.65±0.29232.5±0.414±5.02.02±0.43252.5±0.413±3.92.33±0.43272.4±0.413±3.92.68±0.49292.3±0.311±2.93.24±0.49SorinMitroflow19—10±31.13±0.17212.315—231.9±0.38±3.4—252±0.7111±6.5—271.8±0.27±1.7—St.JudeMedicalTrifecta19—91.5821—81.7723—71.9425—62.1427—52.3029—42.50Caged-BallMechanicalProsthesesStarr-Edwards23—22±9.01.1±0.224—22±7.51.1±0.326—20±3.1—27—19±3.7—29—16±5.5—SingleTiltingDiscMechanicalProsthesesBjork-Shiley193.3±0.627±7.90.94±0.19212.9±0.422±3.41.1±0.3232.7±0.516±5.31.3±0.3252.5±0.413±5.01.5±0.4272.1±0.410±2.01.6±0.3291.0±0.28±4.4—Medtronic-Hall20—17±5.31.2±0.521—14±5.91.1±0.223—14±4.81.4±0.425—10±4.31.5±0.527—9±5.61.9±0.2BileafletMechanicalProsthesesATS193.4±0.4326±7.90.96±0.18212.4±0.3914±3.51.58±0.3723—12±4.01.80±0.225—11±4.02.20±0.427—9±2.02.50±0.329—8±2.03.10±0.3CarbomedicsStandard193.1±0.3819±8.31.0±0.3212.6±0.5113±5.41.5±0.4232.4±0.3711±4.61.4±0.3252.0±0.379±3.51.8±0.4272.2±0.368±3.22.2±0.2291.9±0.256±3.03.2±1.6St.JudeMedicalStandard192.9±0.4825±5.81.5±0.2212.6±0.4815±5.01.4±0.4232.6±0.4413±5.61.6±0.4252.4±0.4511±5.31.9±0.5272.2±0.428±3.42.5±0.4292.0±0.107±1.72.8±0.5On-X19—8±2.91.53±0.2621—8±3.42.01±0.4823—7±3.22.31±0.7925—5±2.82.75±0.7527/29—5±2.82.75±0.75FromRosenhekR,BinderT,MaurerG,etal.NormalvaluesforDopplerechocardiographicassessmentofheartvalveprostheses.JournaloftheAmericanSocietyofEchocardiography,2003;16(11):1116–1127;PalatianosGM,LaczkovicsAM,SimonP,etal.MulticenteredEuropeanstudyonsafetyandeffectivenessoftheOn-Xprostheticheartvalve:Intermediatefollow-up.AnnalsofThoracicSurgery,2007;83(1):40–46;RajaniR,MukherjeeD,ChambersJB.Dopplerechocardiographyinnormallyfunctioningreplacementaorticvalves:areviewof129studies.JournalofHeartValveDisease,2007;16(5):519–535;BavariaJE,DesaiND,CheungA,etal.TheStJudeMedicalTrifectaaorticpericardialvalve:resultsfromaglobal,multicenter,prospectiveclinicalstudy.JournalofThoracicandCardiovascularSurgery,2014;147(2):590–597;HeimansohnDA,RobisonRJ,WaltsP,etal.Asingle-centerexperiencewiththeSorinMitroflowpericardialaorticvalve:hemodynamicsuptofiveyears.JournalofHeartValveDisease,2014;23(3):338–342.TABLE14-3Doppler-DerivedHemodynamicProfilesofNormalMitralValveProsthesesProsthesisTypeSizeEVelocity,m/sMeanGradient,mmHgEOA,cm2StentedPorcineProsthesesCarpentier-EdwardsDuraflex272.1±0.37±2.11.44±0.36292.1±0.47±2.11.53±0.36312.0±0.37±1.91.67±0.40332.0±0.46±1.71.65±0.45352.0±0.46±1.71.98±0.53HancockII251.7±0.36±3.21.44±0.59272.0±0.37±2.61.51±0.32291.9±0.26±2.11.80±0.69311.9±0.67±2.21.58±0.31MedtronicMosaic252.1±0.38±1.71.42±0.29272.0±0.36±1.31.62±0.47292.0±0.37±2.21.83±0.68312.0±0.36±1.61.70±0.41331.96±0.56±1.62.71±0.77StentedPericardialProsthesesCarpentier-Edwards251.7±0.14±1.01.75±0.53271.7±0.36±1.71.88±0.52291.8±0.26±1.42.02±0.57311.8±0.26±1.12.09±0.48331.7±0.26±1.92.24±0.97Caged-BallMechanicalProsthesesStarr-Edwards26—101.428—7±2.81.9±0.57301.7±0.37±2.51.6±50.4321.7±0.35±2.51.98±0.434—52.6SingleTiltingDiscMechanicalProsthesesBjork-Shiley251.8±0.46±21.72±0.6271.6±0.55±21.81±0.54291.4±0.33±1.32.10±0.43311.4±0.32±1.92.2±0.3BileafletMechanicalProsthesesCarbomedicsStandard251.9±0.26±1.81.88±0.43271.8±0.35±1.72.12±0.50291.7±0.34±1.42.31±0.54311.8±0.35±1.72.21±0.52331.7±0.35±1.62.19±0.46St.JudeMedicalStandard251.9±0.36±1.61.89±0.56271.8±0.35±1.62.11±0.52291.8±0.35±1.72.12±0.46311.7±0.34±1.32.32

±0.52331.7±0.35±1.52.30±0.58On-X25—5±2.11.9±1.127/29—5±1.62.2±0.531/33—5±2.42.5±1.1FromRosenhekR,BinderT,MaurerG,etal.NormalvaluesforDopplerechocardiographicassessmentofheartvalveprostheses.JournaloftheAmericanSocietyofEchocardiography,2003;16(11):1116–1127;BlauwetLA,MaloufJF,ConnollyHM,etal.Dopplerechocardiographyof240normalCarpentier-EdwardsDuraflexporcinemitralbioprostheses:Acomprehensiveassessmentincludingtimevelocityintegralratioandprosthesisperformanceindex.JournaloftheAmericanSocietyofEchocardiography,2009;22(4):388–393;BlauwetLA,MaloufJF,ConnollyHM,etal.ComprehensiveechocardiographicassessmentofnormalmitralMedtronicHancockII,MedtronicMosaic,andCarpentier-EdwardsPerimountbioprosthesesearlyafterimplantation.JournaloftheAmericanSocietyofEchocardiography,2010;23(6):656–666;BlauwetLA,MaloufJF,ConnollyHM,etal.Comprehensivehemodynamicassessmentof305normalCarboMedicsmitralvalveprosthesesbasedonearlypostimplantationechocardiographicstudies.JournaloftheAmericanSocietyofEchocardiography,2012;25(2):173–181;BlauwetLA,MaloufJF,ConnollyHM,etal.Comprehensivehemodynamicassessmentof368normalSt.JudeMedicalmechanicalmitralvalveprosthesesbasedonearlypostimplantationechocardiographicstudies.JournaloftheAmericanSocietyofEchocardiography,2013;26(4):381–389.TABLE14-4Doppler-DerivedHemodynamicProfilesofNormalTricuspidValveProsthesesProsthesisTypeEVelocity,m/sMeanGradient,mmHgEOA,cm2271.5±0.35±1.71.34±0.22291.7±0.36±2.01.54±0.38SizeStentedPorcineProsthesesCarpentier-EdwardsDuraflex311.5±0.36±1.71.57±0.39331.5±0.36±2.11.69±0.44351.5±0.35±1.61.63±0.38HancockII311.6±0.26±1.41.40±0.21331.4±0.36±3.51.40±0.59351.3±0.35±0.62.11±0.23MedtronicMosaic251.641.37271.6±0.26±0.61.53±0.16291.5±0.36±0.21.96±0.39311.5±0.25±1.41.74±0.52331.4±0.24±1.32.00±0.53St.JudeMedicalBiocor291.662.84311.5±0.35±1.41.67±0.30331.3±0.24±1.21.92±0.50StentedPericardialProsthesesCarpentier-Edwards291.1±0.22±1.42.16±0.43311.2±0.24±1.52.12±0.53331.4±0.24±1.11.93±0.43Caged-BallMechanicalProsthesesStarr-Edwards26—101.428—7±2.81.9±0.57301.7±0.37±2.51.6±50.4321.7±0.35±2.51.98±0.434—52.6BileafletMechanicalProsthesesCarbomedicsStandard311.4±0.24±1.62.01±0.51331.2±0.23±1.22.33±0.43St.JudeMedicalStandard271.1±0.32±1.32.54±0.64291.2±0.23±1.12.20±0.33311.4±0.33±1.22.49±0.45331.3±0.23±1.22.46±0.59FromBlauwetLA,BurkhartHM,DearaniJA,etal.Comprehensiveechocardiographicassessmentofmechanicaltricuspidvalveprosthesesbasedonearlypost-implantationechocardiographicstudies.JournaloftheAmericanSocietyofEchocardiography,2011;24(4):414–424;BlauwetLA,DanielsonGK,BurkhartHM,etal.Comprehensiveechocardiographicassessmentofthehemodynamicparametersof285tricuspidvalvebioprosthesesearlyafterimplantation.JournaloftheAmericanSocietyofEchocardiography,2010;23(10):1045–1059,1059.e1–e2.TABLE14-5Doppler-DerivedHemodynamicProfilesofNormalPulmonaryValveProsthesesProsthesisTypeSizePeakVelocity,m/sPeakGradient,MeanGradient,EOA,cm2mmHgmmHgStentedPorcineProstheses212.2±0.7232.5±0.520±11.911±6.32.09±1.1125±9.113±7.91.72±0.71252.4±0.424±8.613±5.01.62±0.44272.3±0.522±8.612±4.71.87±0.52292.4±0.423±7.112±3.61.99±0.52312.3±0.422±8.212±4.72.19±0.68StentedPericardialProstheses212.6±0.2232.2±0.328±3.415±0.61.61±0.5719±5.610±2.11.70±0.49252.1±0.519±9.410±5.32.25±0.93272.1±0.417±5.810±3.92.37±0.73292.3±0.622±9.111±4.62.76±0.89312.2±0.120±2.111±0.7—BileafletMechanicalProstheses213.4232.1±0.42824—18±5.89±4.21.88±0.61252.4±0.623±11.413±6.72.01±0.70272.1±0.519±8.310±4.92.50±0.60FromUnpublishedMayoClinicdata.TIMINGOFECHOCARDIOGRAPHYAFTERIMPLANTATIONBecausethehemodynamicprofileofaprosthesisdependsonnumerousfactors,itisrecommendedthatabaselineDopplerstudybeperformedintheearlypostoperativeperiodsothatitcanbeusedasareferenceforcomparisonwithlaterstudies.AccordingtotheAmericanHeartAssociation/AmericanCollegeofCardiology(AHA/ACC)guidelinesonthemanagementofpatientswithvalvularheartdisease,obtainingabaselineTTEisaclassIrecommendation(LevelofEvidence:C)(14).TheAHA/ACCguidelinesrecommendthattheinitialTTEbeobtained6weeksto3monthsaftervalveimplantation.Thepracticeatourinstitutionisto“fingerprint”theprosthesisbyperformingpostoperativeTTEonpatientswhohaveundergonevalvereplacementpriortohospitaldischarge.WehaveshownthattherearenosignificantdifferencesbetweenDoppler-derivedhemodynamicprofilesobtainedintheearlypostoperativeperiodandprofilesobtainedupto13monthsafterimplantation(11,12),soperformingapostoperativeTTEatanytimebetweenseveraldaystoseveralweeksaftersurgicalimplantationwhenthepatientishemodynamicallystableshouldbeacceptable.OBSTRUCTIONProstheticvalveobstructionmaybeduetothrombus(Fig.14-2),pannus(Fig.14-3),vegetations(Fig.14-4),calcification(Fig.14-5),oracombinationthereof.Whereastheobstructionofamitralmechanicalprosthesisiscausedmorefrequentlybythrombus(Fig.14-6),theobstructionofanaorticmechanicalprosthesisiscausedmorefrequentlybypannusformation(Fig.14-7).Whenaprostheticvalvebecomesobstructed,theprostheticdisk,ball,orleafletmotiondecreases.Prostheticvalveleaflet/occludermotionisfrequentlydifficulttovisualizewith2DTTEimagingbutisgenerallyeasilyvisualizedwith2Dor3DTEEimaging(Fig.14-8).ThemostaccuratemethodfordetectingandquantifyingthedegreeofprostheticobstructionisDopplerechocardiography(Fig.14-9).CWDopplerinterrogationoftheprosthesismustbeperformedfromseveralacousticwindowstoensurethatthemaximaljetvelocityandmeangradientacrosstheobstructedprosthesisarerecorded.FromtheDopplervelocitytracing,themaximalandmeanpressuregradientsandtheEOAcanbecalculatedwiththesameformulasandequationsdescribedforthenativevalve(seeChapter13).Itisimportanttoremember,however,thatincreasedpeakvelocityormeangradientalonedoesnotalwaysindicateprostheticobstruction.Peakvelocitycanbeincreasedwithoutstenosisinahigh-outputstateandinthesettingofPPM,tachycardia(mitralandtricuspidprostheses),orsevereprostheticorperiprostheticregurgitation(Fig.14-10).FIGURE14-2Thrombosedbioprosthesis.Arrows,thrombus.FIGURE14-3Bioprosthesiswithpannus.Arrows,pannus.FIGURE14-4Bioprostheticendocarditisresultingincuspperforation.Arrow,cusptear.Inpatientswithanaorticprosthesis,accelerationtime(AT)andtheratiooftheATtotheejectiontime(AT:ET)areusefultodeterminewhetherpathologicobstructionispresent(13).ATisexpectedtobeprolonged(>100milliseconds)andAT:ETshouldbeincreased(>0.37)whenanaorticprosthesisisobstructed,whilebothATandAT:ETremainnormalinhighflowstates(12A)(Fig.14-11).Inpatientswithamitralortricuspidprosthesis,pressurehalf-time(PHT)isusefulfordeterminingwhetherincreasedEvelocityandmeangradientareduetoincreasedfloworobstruction.PHTisexpectedtobeprolongedwhenamitralortricuspidprosthesisisobstructed(Fig.14-12).FIGURE14-5Bioprosthesiswithcalcificdegeneration.Arrow,calcification.FIGURE14-6Bileafletmechanicalprosthesiswiththrombus.FIGURE14-7Cagedballprosthesiswithpannus.Ifanaorticprosthesisisobstructed,peakvelocityandmeangradientincreaseunlesscardiacoutputdecreases.Increasedpeakvelocityandmeangradientacrossanprosthesisarealsoexpectedwithsevereprostheticregurgitationduetoincreasedflowthroughtheprosthesis.Aswithnativeaorticvalvedisease,leftventricularoutflowtract(LVOT)velocityisnormaltoslightlydecreasedwithaorticprosthesisobstructionandincreasedwithaorticprosthetic/periprostheticregurgitation.TheratiooftheLVOTtoaorticprosthesisvelocitiesortimevelocityintegrals(TVIs)ishelpfulindifferentiatingincreasedvelocityacrossanaorticprosthesis.Withprostheticobstruction,theTVIratiodecreasesto≤0.25,whiletheTVIratioremainsnormal(≥0.3)withregurgitation.Ahighcardiacoutputstateincreasesvelocityacrossanyprosthesis,whichcanbeconfirmedbyrecordingincreasedflowvelocitiesacrossallcardiacorifices(LVOT,atrioventricularvalve,andrightventricularoutflowtract).ResearchersattheMayoClinichavedevelopedalgorithmsforassessingaorticandmitralvalveprosthesisfunctionthatcanbeusedtoassessbioprostheticandmechanicalprosthesesinthesepositions(15)(Fig.14-13).PROSTHESIS-PATIENTMISMATCHProsthesis-patientmismatchwasfirstdescribedbyRahimtoola(16)asaprostheticEOAthatissmallerthanthatofanormalnativevalve.PPMisrelativelycommonandpatientsareusuallyasymptomatic.However,amarkedincreaseinthetransvalvulargradientoccursinasubsetofpatientswithmoderateormoresevereaorticPPM,resultinginhigherincidenceofcongestiveheartfailure(17),reducedregressionofLVhypertrophy(18),reducedexercisetolerance(19),reducedsurvival(17,20–22),andearlystructuraldeteriorationofaorticbioprostheses(23,24).AorticPPMisclassifiedasfollows:IndexedEOA(cm2/m2)PPMseverityNormalweightObese(bodymassindex≥30mg/kg)>0.85>0.70Insignificant0.66–0.850.60–0.70Moderate≤0.651.20Insignificant0.91–1.20Moderate≤0.90SevereThefollowingthree-stepapproachisrecommendedtopreventPPM:1.Calculatethepatient’sbodysurfacearea(BSA).2.CalculatetheminimallyacceptableEOAoftheprosthesis:BSA×0.85cm2(aortic)orBSA×1.20cm2(mitral).3.ChooseandimplantaprosthesiswithanEOAlargerthantheEOAcalculatedinstep2.CALCULATIONOFPROSTHETICEFFECTIVEORIFICEAREAThePHTmethodshouldnotbeusedtocalculatemitralortricuspidprosthesisEOAbecausethismethodhasnotbeenvalidatedforprostheticvalves.Theconstant220(seeChapter13)wasderivedforstenoticlesionsofarheumaticnativemitralvalve.Theconstant190wassuggestedwhencalculatingtricuspidvalvestenosisbasedontherelationshipbetweentheconstantsusedintheGorlinequationwhencalculatingtheEOAofthemitralandtricuspidvalvesinvasivelyandtheconstantusedforDopplerassessmentofnativemitralvalvearea.ThePHTmethodtendstooverestimatetheEOAofamitraloratricuspidprosthesis(2,3,9,10).ThecontinuityequationisthepreferredmethodfordeterminingEOAofaortic,mitral,andtricuspidprostheses(1):wheretheLVOTTVIisthetimevelocityintegraloftheLVOTvelocityobtainedwithPWDopplerandtheprosthesisTVIisthetimevelocityintegraloftheprosthesisinflowvelocityobtainedwithCWDoppler.Whenaprostheticvalveisintheaorticposition,theLVOTdiameterismeasuredjustbelowtheinsertionoftheprostheticaorticvalve,fromthejunctionbetweenthesewingringandventricularseptumtothejunctionbetweenthesewingringandthebaseoftheanteriormitralleaflet.Iftheselandmarksareunabletobeadequatelyvisualized,theprosthesissize(outerdiameterofthesewingring)maybesubstitutedforthemeasuredLVOTdiameter.THROMBOLYTICTHERAPYFORPROSTHETICVALVEOBSTRUCTIONThrombusformationisresponsibleforthemajorityofprostheticvalveobstruction,withorwithoutpannusformation.AlthoughTEEgenerallyprovidesexcellentvisualizationofprostheticvalves,multimodalityimagingwithfluoroscopy,and/orcomputedtomography(CT)scanningmaybemoreeffectivefordetectingandcharacterizingmechanicalprostheticvalvethrombosis,leafletmotion,andprostheticvalvefunction(28).Thrombussizeisimportantforleftsideheartprostheseswhenchoosingtheoptimaltreatmentstrategy.Unlessthethrombusislarge(>0.8cm2inarea),thepatienthasNewYorkHeartAssociationClassIIIorIVsymptoms,orthereisacontraindication,slow-infusionoflowdosefibrinolytictherapyistherecommendedtreatmentforpersistentthrombosisafterIVheparintherapyforleft-sidedprostheticvalvethrombosis(28).Forright-sidedprostheticthrombosis,fibrinolytictherapyisrecommendedregardlessofthrombussize(Fig.14-15).EmergentsurgeryisrecommendedforpatientswithNYHAClassIII-IVsymptoms,orlarge(orpersistent)thrombusburden.Studiesusinganechocardiogram-guidedslow-infusionoflow-dosefibrinolyticprotocolhaveshownsuccessratesgreaterthan90%,withemboliceventrateslessthan2%andmajorbleedingrateslessthan2%(29,30).Thedecisionofwhethertotreatwiththrombolysisorsurgeryshouldbemadeonthebasisofeachpatient’sclinicalcondition,functionalstatus,valvelocation,andcomorbidstatus.ThemanagementofpatientswhohaveprostheticvalveobstructioncanbefacilitatedifTEEcanseparatethrombusfrompannusformation.Prostheticvalveobstructionduetothrombuscanbepredictedbyinadequateanticoagulationorantiplatelettherapyaswellasthelocationofthemassinrelationtotheprosthesis.Thrombustendstoformonthedownstreamsideoftheprosthesis,whilepannustendstoformontheupstreamsideoftheprosthesis.FIGURE14-14A:Parasternallong-axisviewoftheLVOT(left),pulsedwaveDopplerrecordingofLVOTvelocity(center),andcontinuouswaveDopplerrecordingofaorticprostheticvalveflowvelocity(right).LVOTdiameterissmall(1.9cm)duetoasmallaorticprosthesis,LVOTTVIis30cm,andaorticprosthesisTVIis100cmwithLVOTTVIandAVTVIratioofgreaterthan0.3.Arrowsontherightdemonstrateaccelerationtimeof90milliseconds,whichismoreconsistentwithprosthesis-patientmismatch.B:ContinuouswaveDopplerrecordingfromtheapexandtherightparasternalwindowfromanotherpatientwithanobstructedaorticmechanicalprosthesis.Thepeakvelocityishigherfromtherightparasternal(RPS)locationwithmeangradientof46mmHg,similartothepatientdescribedin(A),butaccelerationtimeisover150milliseconds,consistentwithobstruction,ratherthanmismatch.ANTICOAGULATIONANDANTIPLATELETTHERAPYFORPROSTHETICVALVESAftervalvereplacement,treatmentwithlowdoseaspirinwithorwithoutwarfarinmayreducethromboembolicevents,whilepotentiallyincreasingbleedingcomplications.Thecurrentrecommendationsforaspirinandwarfarintherapyforpatientswithprostheticheartvalvesareasfollows(28):1.Mechanical(bileafletorcurrent-generationsingletiltingdisc)aorticprosthesiswithnoriskfactorsforthromboembolism:anticoagulationwithwarfarintoachieveanINRof2.5isrecommended.2.Mechanical(bileafletorcurrent-generationsingletiltingdisc)aorticprosthesiswithriskfactorsforthromboembolism(atrialfibrillation,previousthromboembolism,leftventriculardysfunction,orhypercoagulableconditions)andmechanicalball-in-cageprosthesis:anticoagulationwithwarfarintoachieveanINRof3.0isrecommended.3.Mechanical(alltypes)mitralprosthesis:anticoagulationwithwarfarintoachieveanINRof3.0isrecommended.4.Mechanicalprostheses(alltypesandallvalvepositions):aspirin75to100mgdailyisrecommended.5.Bioprostheticaorticprosthesisormitralprosthesis:aspirin75to100mgdailyisreasonable.6.Thefirst3monthsafterbioprostheticmitralvalveprosthesisormitralvalverepair:anticoagulationwithwarfarintoachieveanINRof2.5isreasonable.7.Thefirst3monthsafterbioprostheticaorticprosthesis:anticoagulationwithwarfarintoachieveanINRof2.5maybereasonable.8.Patientswithamechanicalvalveprosthesiswhohaveathromboemboliceventdespiteadequateanticoagulation:increasetheINRgoalfrom2.5(range,2.0to3.0)to3.0(range,2.5to3.5)forpatientswithanaorticprosthesisorincreasetheINRgoalfrom3.0(range,2.5to3.5)to4.0(range,3.5to4.5)forpatientswithanmitralprosthesis.FIGURE14-15A:LongitudinaltransesophagealviewofaSt.JudeMedicaltricuspidvalveprosthesis(arrow).Thedisksoftheprosthesisfailedtomovebecauseofthromboticobstruction.Ao,aorta;LA,leftatrium;RA,rightatrium.B:ContinuouswaveDopplerechocardiographyexaminationfromtheapexshowedpeakvelocityacrossthetricuspidvalveprosthesistobecloseto2m/s,withaslightrespiratoryvariationthatistypicalforatricuspidvalveprosthesis.Thevelocityandmeangradientreturnedtobaselineafter2daysoftreatmentwithcontinuousinfusionofstreptokinase.Afterthrombolytictherapy,peakvelocitywas1m/s,withameangradientof4mmHg.Anticoagulanttherapywithoraldirectthrombininhibitorsoranti-Xaagentsiscontraindicatedinpatientswithmechanicalvalveprostheses.TheRE-ALIGN(Randomized,PhaseIIStudytoEvaluatetheSafetyandPharmacokineticsofOralDabigatranEtexilateinPatientsafterHeartValveReplacement)trialwasstoppedprematurelyforexcessivethromboticcomplicationsintheDabigatranarm(31).Duetolackofdataontheirsafetyandeffectiveness,oraldirectthrombininhibitorsoranti-Xaagentsarenotrecommendedinpatientswithbioprostheticvalveswhorequireanticoagulation.REGURGITATIONRegurgitantjetsmaytravelthroughtheprosthesis(transprostheticregurgitation)oraroundthesewingring(periprostheticregurgitation).Centraljetsaremostoftentransprosthetic.Jetsthatoriginateanteriorly,posteriorly,medially,orlaterallymaybeeithertransprostheticorperiprosthetic.Iftheregurgitantcolorflowjetcanbeclearlyidentifiedoutsidethering,thenthediagnosisofperiprostheticregurgitationcanbemadewithconfidence.Onoccasion,particularlywithtissueprostheses,transprostheticjetsmayoccurveryclosetotheinneredgeofthesewingringandmaybedifficulttodistinguishfromperiprostheticregurgitation.Sometransprostheticjetsarenormal.Forinstance,itisrelativelycommontoseeatrivialcentralregurgitantjetwithnormaltissueprostheses.Mechanicalprosthesesaredesignedsuchthatasmallamountoftransprostheticregurgitationoccursduringnormalprosthesisfunction.Theoretically,theseregurgitantjetshelptopreventthrombusformationonmechanicalprostheses.Itisimportantthatphysiciansinterpretingechocardiographystudiesofprostheticvalvesarefamiliarwiththeappearanceofthesejetssothatthepresenceofthesenormalregurgitantjetsdoesnotleadtoanerroneousinterpretationofpathologicregurgitation(Fig.14-1).Dopplercolorflowimagingistheprincipaltechniqueusedtodetectprostheticvalveregurgitation.Thesamecriteriausedfornativevalveregurgitationareusedforsemiquantificationofprostheticvalveregurgitation.However,colorDopplerimagingofamitralortricuspidprosthesiswithTTEisfrequentlyunsatisfactory(especiallyforamechanicalprosthesis)becauseofthemarkedattenuationoftheultrasoundbeambytheprosthesisandreverberationartifact.TEEcircumventstheselimitations.Asintheassessmentofnativevalveregurgitation,anintegratedapproachisrequiredfortheevaluationoftransprostheticandperiprostheticregurgitation,withcolorDopplerimagingbeingoneofseveraldeterminants.BecauseTTEDopplercolorflowimaginghasmorelimitationswithprostheticvalvesthanwithnativevalves,itisessentialtoobtaincompletehemodynamicdatawithPWandCWDopplerstudiesbeforeconsideringTEE.Foraorticprostheticorperiprostheticregurgitation,thefollowingshouldbedetermined:venacontractwidth,intensityoftheaorticregurgitantCWDopplersignal,PHToftheregurgitantjet,mitralinflowpattern,diastolicflowreversalinthedescendingthoracicaorta,effectiveregurgitantorifice(ERO)area,regurgitantvolume,andregurgitantfraction.Thecircumferentialextentofaorticparavalvularregurgitationisdiscussedbelowfortranscatheteraorticprosthesis.Formitralprostheticorperiprostheticregurgitation,thefollowingshouldbedetermined:Evelocity,PHT,ratioofthemitralprosthesisTVIobtainedwithCWDopplertotheLVOTTVI(TVIratio),intensityofthemitralregurgitantCWDopplersignal,EROarea,regurgitantvolume,andregurgitantfraction.ThecontinuityandPISAmethodsdescribedforanativemitralvalveregurgitationmaybehelpfulinassessingtheseverityofprostheticmitralvalveregurgitation(seeChapter13).AlthougharegurgitantjetintheLAmaynotbedetectedwithsurfaceechocardiography,proximalflowcanbevisualizedclearlyenoughsothePISAmethodcanbeused.Thefollowingvariablesindicatechronicsevereaorticprostheticand/orperiprostheticregurgitation:1.2.3.4.5.6.7.Venacontractawidth≥6mmDenseCWaorticregurgitationjetRegurgitantjetPHTlessthan200milliseconds(butcanbelonger)EROarea≥0.30cm2Regurgitantvolumegreaterthan60mLRegurgitantfraction≥50%Prominentholodiastolicflowreversalinthedescendingthoracicandabdominalaorta8.Restrictivemitralinflowpattern(inacuteandsemiacuteaorticregurgitation)Thefollowingvariablesindicatechronicseveremitralprostheticand/orperiprostheticregurgitation:1.DenseCWmitralregurgitationjet2.IncreasedEvelocityandTVIratiowithnormalPHT(60mL5.Regurgitantfraction≥50%6.SystolicflowreversalinthepulmonaryveinTheamountofregurgitantvolumecanbemuchsmallerforacuteorsubacuteregurgitationthanforchronicregurgitation.Goodexamplesareacuteregurgitationduetoendocarditis,papillarymusclerupture,orperiprostheticlesionaftertranscathetervalvereplacement.TRANSESOPHAGEALECHOCARDIOGRAPHYProstheticvalveobstructionisusuallydiagnosedorsuspectedbydetectingincreasedflowvelocitywithCWDopplerechocardiographyduringTTEexaminationbecausevisualizingdecreasedmotionoftheprostheticvalveleaflets/occluderswith2Dimagingisusuallychallenging.Themotionofprostheticvalveoccluders/leaflets,especiallythoseofmitralandtricuspidprostheticvalves,isseenmoreclearlywithTEE.ATEEviewofdecreasedoccludermotioninapatientwithobstructionofamitralbileafletmechanicalprosthesisisshowninFigure14-17.Occludermotionmaybeonlyintermittentlyabnormal,soprolongedTEEobservationisnecessaryifanintermittentabnormalityissuspectedclinically.TEEisessentialintheevaluationofmitralandtricuspidprostheticregurgitationand,sometimes,aorticprostheticregurgitation.TheTEEviewoftheatriaisnothinderedbytheprosthesis,andtheoriginandextentofmitralortricuspidprostheticregurgitationaredemonstratedclearlywithTEE.Whenaorticprostheticregurgitationoriginatesfromtheposterioraspectoftheprosthesis,TEEisalsoquitehelpful,butanteriorlylocatedaorticprostheticregurgitationmaynotbewellseen,especiallyinthepresenceofamitralprosthesis.FIGURE14-16ContinuouswaveDopplerrecordings(A,B)fromapatientwithbioprostheticmitralvalveandmarkeddyspnea.Peakvelocityis3.3m/s,meangradientis16mmHgwithTVIof63cm,andpressurehalf-time(B)is62milliseconds,mostconsistentwithincreasedflowacrosstheprosthesis.LVOTpulsedwaveDopplerrecording(C)showsreducedpeakvelocity(88cm/s)andTVIof13cm.Therefore,themitralflowTVIandLVOTTVIratioismarkedlyelevatedat4.8,consistentwithseveremitralprostheticregurgitation.FIGURE14-17Transesophagealechocardiographyofabileafletmechanicalprosthesiswithanimmobileoccluderinanelderlypatientwithsepsis.A:Midesophagealfour-chamberzoomedviewofthemitralprosthesisshowsthatthelateraloccluderhasnormalexcursionbutthemedialoccluder(arrow)isimmobile.B:Dopplercolorflowimagingshowsflowaccelerationacrossthelateralorificeoftheprosthesiswithnoflowthroughthemedialorificeoftheprosthesis.00:00/00:00Video14-17A00:00/00:00Video14-17BTEEisalsousefulintheevaluationofdehiscence(Fig.14-18),endocarditis(Fig.14-19),ringabscess(Fig.14-20),tornbioprostheticcusps(Fig.14-21),andintracardiac(especiallyatrial)massorthrombiinthepresenceofaprostheticvalve(Fig.14-22).Theseapplicationsarediscussedseparatelyinotherchapters(seeChapters15and19).FIGURE14-18Transesophagealechocardiographyofaporcinemitralprosthesiswithseveredehiscenceduetoendocarditis.A:Midesophagealthree-chamberzoomedviewoftheprosthesiswithcolorcomparedimagingshowsalargeposterolateralgap(arrow)betweenthemitralprosthesissewingringandtheannuluswithsevereperiprostheticregurgitation.B:3Dimagingshowsthattheareaofdehiscenceencompassesapproximately25%ofthecircumferenceofthesewingring.C:Atthetimeofoperation,severallargevegetationsattachedtotheatrialaspectofthebioprosthesiswereidentified.00:00/00:00Video14-18A00:00/00:00Video14-18BWiththewidespreadclinicaluseofTEE,filamentousstrandsofvaryinglengthshavebeenseenattachedtoprostheticvalves(32).Thesehavebeenobservedasearlyas2hoursaftervalvereplacement,suggestingthattheyarecomposedoffibrin.AlthoughthesestrandsarevisibleonTEE,evenexperiencedsurgeonsmaynotdetectthembecausetheyaretransparent.Apathologystudydemonstratedthattheyconsistofcollagenwithfibroblasts(32).Theroleofthesestrandsincardioemboliceventsremainsuncertain.FIGURE14-19Transesophagealechocardiography,midesophagealthree-chamberzoomedview,showsamitralbioprosthesiswithalargevegetation(arrow)attachedtotheventricularaspectoftheprosthesisandasmallvegetationattachedtotheatrialaspectoftheprosthesis.BloodculturesgrewCandidaalbicans.00:00/00:00Video14-19HEMOLYSISAFTERMITRALVALVEREPAIRORREPLACEMENTHemolysisisanuncommonbutalarmingcomplicationofmitralvalvereplacementorrepair.Itisassociatedwithdistinctpatternsofdisturbanceofmitralregurgitationflow.Thecollisionofamitralregurgitationjetagainstacardiacstructure,withrapiddeceleration,isthemostcommonreasonforhemolysis(Fig.14-23).Accordingtoareviewof13consecutivepatientswithhemolyticanemiaaftermitralvalverepairatourinstitution,themostcommonlyobservedmechanismofhemolysisinvolveddirectcollisionoftheregurgitantjetwithaprostheticsurface,usuallytheannuloplastyring(33).Fragmentationoftheregurgitantjetbyadehiscedannuloplastyringorrapidaccelerationofthejetwithinanarrowzoneofpararingdehiscencewasalsoobserved.LargeorificeeccentricregurgitantjetsdeceleratingalongthewalloftheLAandcentralfreejetswerenotassociatedwithhemolysis(33).TheabnormalitiesassociatedwithhemolysiswerenotseenonintraoperativeTEEaftertheinitialoperationanddevelopedpostoperatively.Typicallaboratoryfindingsofhemolysisincludesevereanemia,anincreasedreticulocytecount,increasedlactatedehydrogenase,decreasedhaptoglobin(38°C)isthemostcommonsymptomofIE,reportedinabout95%ofpatients(1),butmaybeabsentinupto20%ofpatientswhoareelderly,areimmunocompromised,haveCIEDinfections,orhavereceivedpreviousempiricantibiotictherapy(1,6,7).Constitutionalsymptomsofinfectionsuchaschills,sweats,malaise,myalgias,andarthralgiasmaybepresentin30%to70%ofpatients.Symptomsofheartfailureareimportanttorecognize,asheartfailureisthemostfrequentcomplicationofIEthatalsohasthegreatestimpactonprognosiswithbothmedicalandsurgicalmanagement.Heartfailurehasbeenreportedtocomplicatethecourseof30%to50%ofpatientswithIE;isthemostcommonindicationforsurgeryinIE,andevenwithearlysurgicalintervention;anddoublesinhospitalmortalitytoapproximately25%(1,8–10).Symptomsofacentralneurologicdeficitconsistentwithstrokearepresentin10%to20%ofpatientsandaremostcommonlycardioembolicinetiologyandlessoftenassociatedwithlocalcerebrovascularcomplicationsofIE,suchasmycoticaneurysm(1,4,5,8,11).Onphysicalexamination,anewheartmurmurisdetectedinabout50%ofpatientswithIE,andincreasedintensityofapreviouslyheardmurmurisnotedin20%(1).Signsofheartfailureareoftendetectedearlyinthecourseofpatientswithsevereleft-sidedvalvularregurgitation,commonlyassociatedwiththefindingofasignificantnewmurmur.Evidenceofanewneurologicdeficitmaybedetectedin20%ofpatientswithIEoninitialpresentation.Signsofperipheralsepticembolism,suchasthepainlessJanewaylesionsorsequelaeofimmunecomplexdeposition,suchasthepainfulOslernodesorRothspotsdetectedonretinalexamination,aredistinctlyuncommon,beingobservedinlessthan10%ofthepatientsreportedincontemporaryclinicalseriesofIE(1,5,8,12).TABLE15-1DefinitionofTermsUsedintheProposedDiagnosticCriteriaMajorcriteriaPositivebloodcultureforinfectiveendocarditisTypicalmicroorganismsforinfectiveendocarditisfromtwoseparateculturesViridansstreptococci,Streptococcusbovis,HACEKgrouporCommunity-acquiredStaphylococcusaureusorenterococci,intheabsenceofaprimaryfocusorPersistentlypositivebloodculture,definedasmicroorganismconsistentwithinfectiveendocarditisfromBloodsamplesdrawnmorethan12hoursapartorAllofthree,ormajorityoffourormore,separatebloodsamples,withthefirstandlastdrawnatleast1hourapartEvidenceofendocardialinvolvementPositiveechocardiogramforinfectiveendocarditis:Oscillatingintracardiacmassonvalveorsupportingstructuresorinthepathofregurgitantjetsoroniatrogenicdevices,intheabsenceofanalternativeanatomicalexplanationorAbscessorNewpartialdehiscenceofprostheticvalveorNewvalvularregurgitation(worseningorchangingofpreexistingmurmurnotsufficient)MinorcriteriaPredisposition:predisposingheartconditionorintravenousdruguseFever:≥38.0°CVascularphenomena:arterialembolism,septicpulmonaryinfarcts,mycoticaneurysm,intracranialhemorrhage,JanewaylesionsImmunologicphenomena:glomerulonephritis,Oslernodes,RothspotsEchocardiogram:consistentwithinfectiveendocarditisbutnotmeetingmajorcriterionasnotedaboveMicrobiologicevidence:positivebloodculturebutnotmeetingmajorcriterionasnotedaboveorserologicevidenceofactiveinfectionwithorganismconsistentwithinfectiveendocarditisHACEK,Haemophilusspp.,Actinobacillusactinomycetemcomitans,Cardiobacteriumhominis,Eikenellaspp.,andKingellakingae.DIAGNOSISOFINFECTIVEENDOCARDITISTheproteanclinicalpresentationsofIEencompassabroadrangeofdifferentialdiagnosticpossibilities,whichwouldinclude1)connectivetissuedisordersandvasculitides,2)numerousothersystemicinfectiousdiseases,3)paraneoplasticsyndromes,and4)othercardiovasculardisorderssuchasacuterheumaticfever,leftatrialmyxoma,antiphospholipidsyndrome,andothernonbacterialthromboticendocarditis(NBTE)syndromes.Twodecadesago,Durackandassociates(13)proposedtheDukecriteriaforthediagnosisofIE,whichweresubsequentlymodifiedbyLiandassociatesin2000(14)andarepresentedinTable15-1.MajorclinicalcriteriaforthediagnosisofIEare1)bloodculturepositivityforbacteriatypicallyassociatedwithIE,orpersistentlypositiveculturesfororganisms,whichareatypicallyassociatedwithIE,ordefinitelypositiveserologyforCoxiellaburnetiiand2)echocardiographicevidenceofendocardialinvolvementwiththedetectionofvegetation,significantnewvalvularregurgitation(particularlywithevidenceofdisruptionofthevalvestructuralanatomy),orfindingsconsistentwithPVEI,suchasanabscessorprostheticvalvedehiscence.EchocardiographicimaginginIEwillbepresentedindetailintheremainderofthischapter.Inareview(15)ofthecontemporarymicrobiologyofIE,viridansstreptococciremainthemostfrequentlyisolatedorganismincommunity-acquirednativevalveIE,whereasStaphylococcusaureusisthepredominantetiologyofhealthcare–associatedIE,intravenousdrugabuse,andearly-onset(≤60dayspostoperative)prostheticvalveIE.Coagulase-negativestaphylococciarethemostcommonorganisminintermediate(days60to365postoperative)onsetprostheticvalveIEandaretheinfectingagentin10%to15%ofhealthcare–associatedIEbutquiteuncommonlyarethecauseofnativevalvularIE.Enterococcusisapathogendetectedinapproximately10%to15%ofallcasesofIE.About10%to15%ofIEcasesarealsoduetoinfectionwithfastidiousoratypicalorganismssuchastheHACEKgroup,Bartonella,Tropherymawhipplei,Legionella,Coxiellaburnetii,orfungi.Bloodculturepositivitymaybesignificantlydelayedwiththeseinfections,andmorerapiddetectionofsuchinfectionsisfacilitatedbypolymerasechainreaction(PCR)assays.Bloodculture–andPCR-negativeIEoccursin5%to15%ofallcasesofIE,withthemostcommoncausebeingempiricantibiotictherapyadministrationbeforeevaluationforIE(1,3,15).AsnotedinTable15-1,minorclinicalcriteriainclude1)predisposingcardiacconditionsorintravenousdrugabuse;2)persistentfeverofgreaterthan38°Cwithoutanalternativeetiologyevident;3)vascularphenomenasuchassystemicorpulmonaryembolism,mycoticaneurysm,andintracranialorcutaneoushemorrhagiclesions;4)findingsofimmunologicphenomenasuchasOslernodes,Rothspots,orglomerulonephritis;and5)bloodculturepositivitynotmeetingmajorcriteriaorserologicevidenceofactiveinfectionwithanatypicalorganismconsistentwithIE.Bythisdiagnosticclassification,nowrecognizedastheModifiedDukeCriteria,adefiniteclinicaldiagnosisofIEisestablishedinthepresenceof1)twomajorcriteria,or2)onemajorandthreeminorcriteria,or3)fiveminorcriteria.ApossibleclinicaldiagnosisofIEwouldbesuspectedinthepresenceof1)onemajorandoneminorcriterionor2)threeminorcriteria.ThediagnosisofIEisrejectedifclinicalevaluation1)doesnotmeetcriteriaforpossibleIE,or2)thereiscompleteresolutionofthesuspectedIEsyndromeorthereisnoanatomicevidenceforIEonacourseofantibiotictherapyfor≤4days,or3)analternativediagnosisisconfirmed(14).TheModifiedDukeCriteriahavebeenvalidatedinmultipleclinicalserieswithadiagnosticsensitivityofapproximately80%,withspecificityandnegativepredictivevaluebeingbothgreaterthan90%(9,16).ThisapproachtothediagnosisofIEremainsfullyendorsedincurrentguidelinerecommendations(3,9,14).ECHOCARDIOGRAPHICIMAGINGEchocardiographyistheestablishedimagingmodalityofchoicefortheevaluationofthepatientwithsuspectedIEandprovidesthefoundationforamajorModifiedDukeCriteriafordiagnosis.Theechocardiographermustbecarefullyalignedwiththeclinicalpresentationandassessmentofthepatientbeforeimaging.Itshouldberealizedthatmicrobiologicfindingsmaynotyet(orever)beestablishedfortheothermajorModifiedDukeCriterionandmultipleotherminorcriteria,particularlyclassicphysicalexaminationfindingsforIE,areoftenabsent.ThisnotuncommonlyconfusesthepretestprobabilityofimagingdiagnosisofIEbybothtransthoracicechocardiography(TTE)andeventransesophagealechocardiography(TEE).ComprehensiveechocardiographicimagingforsuspectedIEshouldbeguidedbyindexofclinicalsuspicionwhilemaintaininganobjectivedifferentialdiagnosisoffindingsthatcouldrepresent,ormimic,endocarditis.VegetationVegetationsareahallmarkfindingforIEand,asperoriginatingdocumentoftheDukeCriteria(13),canbedescribedasanoscillatingintracardiacmass(es),withoutanalternativeanatomicexplanation,attachedtoavalve,valvularsupportstructure,intheendocardialpathofaregurgitantjet,orattachedtoanyintracardiacprostheticdeviceorimplantedendocavitarysystem.Vegetationsaretypicallylocatedontheupstreamaspectsofthevalves,thatis,theatrialsideoftheatrioventricularvalvesandtheventricularsideofthesemilunarvalves(Figs.15-1and15-2).AsIEispredominantlyassociatedwithnativevalvularregurgitantlesions,ithasbeenproposedthatupstreamvegetationlocationisduetopathogendepositionintothedisruptedvalvularendotheliumwithinthelowerpressureeddyzonesoftheegressinghigh-velocityregurgitantjet.Vegetationstypicallyhaveasoft,tissuedensityechocardiographictexture(particularlyearlyinthecourseofIE)andarelobulatedtoamorphousinshape,withavariabledegreeofmotionindependentofthevalvularstructuretowhichitisattached.VegetationsassociatedwithIEmayalsooccuratanysiteofendocardialdisruption,suchasinthetrajectoryofeccentricregurgitantjets(Fig.15-3).Adifferentialdiagnosisofmobileendocardialechodensitiesmustalwaysbeconsidered.FilamentouslinearmobileechodensitiesusuallyrepresentdegenerativevalvularchangessuchasLamblexcrescences,endocardialfenestrations,orrupturedchordae;fibrinousvalvularstrandsmaybedetectedonbothnativeandprostheticvalves.Hyper-refractile,discrete,andnodularechodensitiesaretypicalofcalcified,scleroticvalvularlesions;however,associatedacousticartifactsmaygivethefalseimpressionofmobilityofsuchlesions.Valvularthickeningandredundancyduetomyxomatousdegenerationmaygivetheappearanceofmasslesionsbutwithoutindependentlymobilecomponents.Valvularneoplasms,suchaspapillaryfibroelastoma,oftenhaveamorecircumscribed,shimmeringmassappearance(seeChapter19)comparedtovegetationsandaremoreoftenlocatedonthedownstreamsideofthevalve,particularlyintheaorticposition.FIGURE15-1Parasternallong-axisviewTTEimagingduringviridansstreptococcalIE.Largevegetations(arrows)areattachedtotheventricularaspectsoftheaorticvalve,characterizingtheirtypicalupstreamlocation.LV,leftventricle;LA,leftatrium;Ao,ascendingaorta.00:00/00:00Video15-1FIGURE15-2Long-axisTEEimagingduringcoagulase-negativestaphylococcalIEcomplicatinghemodialysiscatheterinfection.Alargevegetation(arrows)isattachedtotheatrialaspectoftheanteriormitralvalveleaflet(arrowhead).Thislocationwasintheupstreamtrajectoryofmoderatemitralregurgitationnotedtobepresentbeforethisillness.LV,leftventricle;LA,leftatrium;Ao,ascendingaorta.00:00/00:00Video15-2NonbacterialThromboticEndocarditisNonbacterialthromboticendocarditis(NBTE)isalsocharacterizedbyvalvularvegetationsusuallylocalizedontheupstreamaspectsoftheaffectedvalve,usuallythemitral,lesscommonlytheaortic,andrarelyaright-sidedvalve(17).Typically,thevegetationsinNBTEaresessile,areverrucousinappearance,andaggregatealongtheinflowclosingedgesofthevalve.Althoughlargelyimmobile,thesevegetationsarefriablewithapropensityforembolismin30%to50%ofpatients(17–19).Inpostmortemseries,NBTEismostcommonlyassociatedwithmetastaticmalignancies,particularlyadenocarcinomasofthelung,pancreas,andgastrointestinaltract,inaconditionpreviouslyknownasmaranticendocarditis.Associatedwiththesecancersareelevatedlevelsofcirculatingcytokines,whichmediateendocardialdamageandhypercoagulablestatesthatpromotethromboticvegetationdeposition(18).Insurgicalseries,NBTEismostcommonlyassociatedwithanimmune-mediatedprimaryantiphospholipidsyndromeorasecondaryantiphospholipidsyndromeassociatedwithasystemicconnectivetissuedisease,whichismostoftenlupuserythematosus(initiallyreferredtoasLibman-Sacksendocarditis),and,uncommonly,inrheumatoidarthritisorrheumaticvalvularheartdisease.Intheantiphospholipidsyndromes,antibodiestocardiolipin,beta-2glycoproteinI,andotherphospholipidsinduceimmunecomplexdepositionatthedisruptedvalvularendothelium,withresultingcytokineandadhesionmoleculeactivationpromotinglaminatingfibrinousthromboticvegetationdeposits.Inlaterstagesofantiphospholipiddisease,leafletthickening,fibrosis,retraction,andvalvularregurgitationoccur(17,19)(Fig.15-4).DiagnosticAccuracyofTTEandTEEThereportedsensitivityofTTEimagingforthediagnosisofnativevalveIEhasrangedfromapproximately50%to85%withaspecificityof80%to90%butremainshighlydependentuponthequalityofTTEimagingwindowsavailableandthesizeofthevegetations(3,16,20,21).WithprostheticvalveIE,thereisasignificantlylowerfrequencyofvalvularvegetationsontheprosthesisitselfandhigherincidenceofperiprostheticinfectiouscomplications.ThesemanifestationsofIEaremuchmoredifficulttodelineatebyTTE,andthediagnosticsensitivityforthisimagingmodalityismuchless,intherangeof40%toatbest60%(3,20,22,23).TEEprovidesanexcellentimagingwork-aroundofthenumerousimpedimentstoTTEimagingsuchasbodyhabitus,postoperativestatus,severelungdisease,andmultiplepotentialsourcesofacousticinterference.GiventhesmallerdepthoffieldofimagingfromtheTEEtransducer,higher-frequencyimaginggreatlyimprovesspatialresolution,andvegetationsof2to3mmindimensioncanbedetected.Detailsregardingvegetationsize,burden,mobility,andimpactonthefunctionalvalvularanatomyareoftenfarbetterdelineatedwithTEE(Fig.15-5).EvenwiththeuseofcontemporaryTTEimagingsystems,vegetationsaredetectedinlessthan50%ofpatientswithbothnativeandprostheticvalveIEwhencomparedtoTEE(24)(Figs.15-5and15-6).WithnativevalveIE,thereportedsensitivityofTEEforvegetationdetectionrangesfrom90%to100%andisintherangeof85%to95%forprostheticvalveIE(3,9,10,20,22,23).ThespecificityandpositivepredictivevalueofTEEforthediagnosisofIEareintherangeof90%(3,20,23).GiventhesignificantlimitationsofTTEinpatientswithsuspectedprostheticvalveIE,TEEishencethefirstimagingmodalityofchoice.Three-dimensional(3D)TEEhasbeenreportedtoaddancillaryinformationregardingextentofvegetations,localvalvedisruption,andPVEItothefindingsontwo-dimensional(2D)TEEwhencomparedtothefindingsonsurgicalinspection(25,26).Inarecentreport,ithasbeensuggestedthat3DTEEissuperiorto2DTEEinthedeterminationofmaximalvegetationdimension,aparameterhavingdefiniteimplicationsinembolicriskassessment(27,27a).Thequantitativeincrementalvalueof3DTEEimagingovermultiplane2DTEEimagingforthediagnosisofIEanditscomplicationsisstillyettobefullyestablished.Enlargingvegetationsnotedonserialechocardiographicimagingdespiteongoingappropriateantibiotictherapyportendhighrisk,asthisfindingisassociatedwithincreasedriskofcomplications,primarilyembolism,andhigherinhospitalmortality(28).FIGURE15-3Long-axisTEEimagingduringStreptococcusmutansIE.A:ThereissystolicoverrideofthevegetationencrustedA2-3portionoftheanteriormitralvalveleaflet(largearrow)withvegetationspresentontheatrialaspectoftheposteriormitralleafletanditsannularinsertion(smallarrows).B:Aneccentricjetofseveremitralregurgitation(largearrow)isdirectedagainstthebaseoftheposterolateralleftatrium(smallarrows).C:Multipleleftatrialendocardialjetlesionvegetations(arrows)arepresentinthepathofthemitralregurgitantjetseeninPanelB.D:Twoadditionalleftatrialendocardialjetlesionvegetations(arrows)arepresentneartheorificeoftheleftatrialappendage.LV,leftventricle;LA,leftatrium;LAApp,leftatrialappendage;MV,mitralvalve.00:00/00:00Video15-3A00:00/00:00Video15-3B00:00/00:00Video15-3CFIGURE15-4Transversefour-chamberTEEimagingintheantiphospholipidsyndrome.A:Systolicframe.Sessileandverrucousvegetations(arrows)ofnonbacterialthromboticendocarditis(NBTE)arecharacteristicallylocatedalongtheatrialaspectclosuremarginsofbothmitralleaflets.Incompletecentralsystolicleafletcoaptationcausedseveremitralregurgitation.B:Diastolicframe.Theclosuremarginvegetations(arrows)produceaclub-likeappearancetothemitralleaflets,associatedwithrestricteddiastolicleafletexcursionandfunctionalinflowstenosis.LV,leftventricle;LA,leftatrium;RA,rightatrium;RV,rightventricle.00:00/00:00Video15-4FIGURE15-5A:Parasternallong-axisTTEimaging.Poorlydefinedmobileechodensitiesaredetectedintheleftventricularoutflowtract(arrow)andattachedtothemitralvalve(arrowhead)inthepresenceofcutaneousabscess,fever,andastroke.B:Long-axisTEEimagingdemonstrateslarge,highlymobilevegetation(arrows)attachedtotheventricularaspectofthenoncoronarycuspoftheaorticvalve(openarrow)withprolapsefarintotheleftventricularoutflowtract.AttachedtotheP2portionoftheposteriormitralleaflet(asterisk)isanothervegetation(arrowheads).LV,leftventricle;LA,leftatrium;Ao,ascendingaorta;RV,rightventricle.00:00/00:00Video15-5A00:00/00:00Video15-5BFIGURE15-6A:Apicalfour-chamberTTEfocusedimagingofamitralbioprosthesis(arrowheads)withameaninflowgradientof25mmHgduringchronicfever.Indeterminateechodensities(arrows)aredetectedwithintheinfloworificeoftheprosthesis.B:Transversefour-chamberTEEimagingfocusingonthemitralbioprosthesis(arrowheads),systolicframe.Multiplevegetationsareattachedtotheatrialaspectsoftheprostheticleaflets(arrows).C:FocusedTEEimaging,diastolicframe.Severemitralinflowobstructioniscausedbythevegetationencrustedleaflets(arrows)ofthebioprosthesis(arrowheads).CulturesofthesurgicallyremovedbioprosthesisconfirmedHormographiellaaspergillusendocarditis.LV,leftventricle;LA,leftatrium.00:00/00:00Video15-6A00:00/00:00Video15-6BLocalValvularDestructionSevereleft-sidedvalvularregurgitationisthemostcommoncauseofheartfailureinIE,whichisthemostpowerfulindependentpredictorofbothmedicalandsurgicalprognosisinIE,withinhospitalmortalitiesintherangeof50%and25%,respectively(3,10,29).HeartfailureisalsothemostcommonprimaryindicationforearlysurgeryforIEm(10,20,29).HeartfailureisthreetimesmorecommoninnativeversusprostheticvalveIE,withtheincidencebeingmostcommoninaortic(30%),thenmitral(20%),andleastcommonintricuspid(15mm)vegetationsareanindependentpredictorof1-yearmortality(11).Inhighclinicalriskpatients,imagingwith3DTEEshouldbeconsideredformorecompleteassessmentofvegetationsize.Arecentstudyhasfoundthat2DTEEmeasurementsmayunderestimatethemaximumvegetationdimensionbyameanofapproximately3mmaswellasthetotalvegetativeburden(27)(Fig.15-15).Embolicriskalsoincreasesthemoreindependentlymobilethevegetativemassisrelativetoitsattachedvalvularstructure.Highlymobilevegetationsthatarequitelarge(>15mmindimension)haveanembolismratereportedtoexceed80%(39).Severevegetationmobilityisalsopredictiveofnewemboliceventsonantibiotictherapywithanoddsratioof2.4(11).Mitralvalvelocation(eithernativeorprosthetic)isalsoanindependentriskfactorforembolism,withthenativeanteriormitralleafletvegetationlocationfurtheraddingincreasedembolicpotential(20,40,41).InfectionwithStaphylococcusaureushasbeenconsistentlyfoundtobeanindependentmultivariatepredictorofembolicrisk(particularlyforstroke)and,lessso,IEassociatedwithStreptococcusbovisandviridans(11,39–41).ThepresenceofPVEIfurtheraddstoembolicpotential(41).PromptinitiationofappropriateantibiotictherapyisofparamountimportanceinminimizingemboliceventsassociatedwithIE.Within1weekofantibiotictherapy,theemboliceventsignificantlydecreasestolessthan10%,andtheriskofembolicstrokeisreducedtoapproximately3%(11,39,41).Withthisdocumentedresponsetoantibiotictherapy,pre-emptivesurgicalinterventionforpotentiallyhighembolicriskvegetationshasnotbeenpreviouslyadvisedunlesstherearerecurrentemboliceventsdespiteongoingappropriateantibiotictherapy(3,9,16).Thispositionhasbeenchallengedbyarecentstudy(42)ofpatientswithleft-sidedvegetationsgreaterthan10mmindiameterrandomizedtoconventionalmanagementversusearlysurgery(within48hours).Onadmission,nearly30%ofeachgrouphadevidenceofcerebralemboliandhadnootherindicationsforurgentsurgicalintervention.Inpatientsrandomizedtoconventionaltherapy,recurrentcerebralemboliceventsoccurredin13%withanoverallemboliceventrateof21%at6weekscomparedtoa0%emboliceventrateoverthesametimeperiodfortheearlysurgicalpatients;theinhospitalmortalitywas3%forbothgroups(42).FIGURE15-14Short-axisTEEimagingduringPropionibacteriumaorticprostheticIE.A:Themechanicalaorticprosthesis(asterisk)issurroundedbyextensivePVEIencirclingtheposterioraorticannulus(arrowheads)withalargevegetativemassextendingintotherightatrium(openarrows)abovethetricuspidvalve(arrow).B:Alargeendocarditicmasshasinfiltratedthecruxoftheheart(largewhitearrow)withextensionfarintotherightatrium(openarrows)adjacenttothetricuspidvalve(smallwhitearrow)andalsointotheleftatrium(arrowheads).C:AfistulaispresentfromthebasalleftventriclewithcolorDopplershowingshuntflow(largewhitearrow)enteringtherightatriumjustabovethetricuspidvalve(smallwhitearrow).LV,leftventricle;LA,leftatrium;RV,rightventricle;RA,rightatrium;*indicatesmechanicalaorticprosthesis.00:00/00:00Video15-14A00:00/00:00Video15-14B00:00/00:00Video15-14CSystemicanticoagulationand/orantiplatelettherapyhasnoprovenprophylacticbenefitinreducingriskofemboliceventsinIEandcouldprecipitatehemorrhagictransformationofischemicembolicinfarctions,particularlyinthebrain.Hence,suchtherapyshouldnotbeadministeredunlessanothercompellingindicationexists(3).Withsuccessfulantibiotictherapy,serialechocardiographicimagingmaydemonstrateagradualreductioninvegetationsizeandmobility,withanincreaseinechodensity(Fig.15-16).Commonly,anearlydramaticreductioninvegetationsizeisnotobserved,andtheprocessofvegetationhealingandinvolutionmaytakemonthstooccur.FIGURE15-15TransverseplaneTEEimagingduringStaphylococcusaureusIE.A:Alargevegetation(arrows)isattachedtotheposteriormitralleaflet(arrowhead)andhadthemaximaldimensionsof20mm×12mmby2DTEEimaging.B:Imagingfromtheleftatrialperspectivewith3DTEE.Thevegetativemass(openarrows)ismuchlargerthanappreciatedon2DTEEimagingandencompassedmostoftheatrialsurfaceoftheposteriormitralleaflet(asterisk),withamaximaldimensionof33mm.LV,leftventricle;LA,leftatrium;AV,aorticvalve.00:00/00:00Video15-15A00:00/00:00Video15-15BApproachtoEchocardiographicImagingClinicalriskstratificationofthepatientwithsuspectedIEisimportantindefiningpretestprobabilityofdetectingIEandprioritizingwhichechocardiographicimagingmodality,thatis,TTEversusTEE,topursuefirst.FeaturesdefiningpatientsatlowinitialclinicalriskandpretestprobabilityforIEwouldincludethefollowing:1)undifferentiatedfeverwithabroaddifferentialdiagnosis,2)absentorunchangedchronicmurmur(especiallynonregurgitantinetiology),3)nophysicalexaminationfindingstosuggestIE,4)noprostheticdevices(valves,conduits,orpatches),5)noCIED,and6)nohigh-riskcardiovascularanatomy,suchascomplexcongenitalheartdisease(3,16,20).PatientsathighinitialclinicalriskandpretestprobabilityofIEwouldincludethosehaving1)asignificantnewmurmur,especiallyofleft-sidedvalvularregurgitation,2)newheartfailure,3)physicalexaminationfindingsconsistentwithIE,4)apriorhistoryofIE,5)prostheticormechanicaldevicesinthecirculation(valves,nonendothelializedconduitsorpatches,CIED,ventricularassistdevice),6)complexcongenitalheartdisease,or7)Staphylococcusaureusbacteremia.AsthenumberoftheseriskfactorsincreasesinanygivenpatientsoalsodoesthemorbidityandmortalityoftheIEsyndrome(3,9,16,43).InthepresenceofStaphylococcusaureusbacteremia,theprevalenceofdefinitenativevalveIEhasbeenfoundtobe19%,withtheprevalenceofprostheticvalveorCIEDIEbeing38%(44,45).ImagingwithTTEhasbeenproposedastheinitialimagingstudyinallpatientswithsuspectedIE(3),andthisisthegeneralapproachinlowclinicalriskpatients.Ifhigh-riskfindingsaredetectedonTTE,suchaslargemobilevegetations,evidenceofPVEI,gradeIIItoIV/IVvalvularregurgitation,and/orsignificantnewleftventriculardysfunction,TEEshouldbeimmediatelyperformedforfurtherevaluationanddefinitionofsuchfindings(16).IfhighqualityTTEimagingisnegativeforIE,otherdiagnosesshouldbeinvestigated.AtechnicallynondiagnosticTTEstudyorapersistenthighclinicalindexofsuspicionforIEwouldwarrantTEEforexclusionofthisdiagnosis.IftheTEEstudyisnegativeforIE,afollow-upTEEshouldbeconsideredwithin5to7daysifclinicalsuspicionofIEpersists.ThediagnosisofIEishighlyunlikelywithtwosequentialnegativeTEEstudies,notinganegativepredictivevalueofapproximately98%(16).GiventhelimiteddiagnosticsensitivityofTTEforthediagnosisofprostheticvalveandCIEDIE,initialimagingwithTEEistheapproachtooptimizeexpeditiousdiagnosiswiththebestdiagnosticaccuracy.GiventhesignificantprevalenceofIEinpatientswithStaphylococcalaureusbacteremia(44),highfrequencyofassociatedPVEI,andtheindependentimpactthisorganismhasonbothearlymedicalandsurgicalmortality,initialimagingwithTEEisalsoveryreasonable.InitialTEEevaluationshouldalsobeconsideredintheotherhighclinicalriskpatientsubsetsnotedabove,especiallyinthepatientwithcomplexcongenitalheartdisease.SupplementalTTEshouldbepursuediffurtherdefinitionofhemodynamicsorventricularfunctionisrequiredafterTEEevaluation.CardiacCTmayalsoprovideimportantadjunctiveimaginginformationtoechocardiographyinIE,particularlywithdelineatingtheextentofPVEI,greatvesselinvolvement,andpostoperativecomplexcongenitalheartdisease(3,46).FIGURE15-16Longitudinallong-axisTEEimagingduringthecourseofCorynebacteriumIE.A:Alarge,pedunculated,andmobilevegetation(arrows)attachedtotheposteriormitralvalveleafletwaspresentatthetimeofinitialdiagnosisofIE.B:After5weeksofantibiotictherapy,repeatTEEshowsthevegetationtobeconsolidatedwithdecreasedsizeandnomobility.Therewerenointerimembolicevents.C:AnotherTEEwasperformed7monthslaterfortheevaluationofrecurrentfever.Thepreviouslyseenposteriormitralvalveleafletvegetationisnowmuchsmallerwithechodensehyper-refractility(arrow),typicalofahealedandinvolutedvegetation.TherewasnoevidenceofrecurrentIE.00:00/00:00Video15-16A00:00/00:00Video15-16B00:00/00:00Video15-16CFollowingthediagnosisofIE,follow-upTEEimagingshouldbeperformedtoevaluatepatientswithclinicalevidenceofpersistentinfection,especiallywithongoingbacteremiathatfailstoclearwithappropriateantibiotictherapy,investigatingforPVEI.Forthesamereason,TEEshouldbepursuedfortheevaluationofnewatrioventricularheartblock.New-onsetheartfailurecomplicatingIE,especiallyifaccompaniedbyasignificantlyneworchangingheartmurmur,shouldbeevaluatedbyTEEinsearchofdestructivevalvularregurgitantlesionsorfistulousshunts.Aneworrecurrentemboliceventdespiteappropriateantibiotictherapymaybeindicativeofanenlargingvegetativeburdenand,hence,failureofmedicaltherapy.IdentificationofthesecomplicationsofIEisofgreatimportance,asallrepresentclassIindicationsforearlysurgicalintervention(3,16).BeingessentialtotheinitialevaluationanddiagnosisofIEandassociatedcomplications,TEEalsohasgreatutilityintheoperatingroom.IntraoperativeTEEhasbeenfoundtoimpactboththeoperativeplanpriortocardiopulmonarybypasswhilepromptingadditionalsurgicalinterventionaftertheinitialprocedureandcessationofbypassinabout10%ofpatientsundergoingsurgeryforIE(47).REFERENCES1.MurdochDR,CoreyGR,HoenB,etal.Clinicalpresentation,etiology,andoutcomeofinfectiveendocarditisinthe21stcentury.ArchivesofInternalMedicine,2009;169:463–473.2.KnirschW,NadalD.Infectiveendocarditisincongenitalheartdisease.EuropeanJournalofPediatrics,2011;170:1111–1117.3.NishimuraRA,OttoCM,BonowRO,etal.2014AHA/ACCguidelineforthemanagementofpatientswithvalvularheartdisease:ReportoftheAmericanCollegeofCardiology/AmericanHeartAssociationTaskForceonPracticeGuidelines.JournaloftheAmericanCollegeofCardiology,2014;63(22):e57–e185.4.DuvalX,DelahayeF,AllaF,etal.Temporaltrendsininfectiveendocarditisinthecontextofprophylaxisguidelinemodifications.Threesuccessivepopulation-basedsurveys.JournaloftheAmericanCollegeofCardiology,2012;59:1968–1976.5.BenitoN,MiroJ,deLazzariE,etal.Healthcare-associatednativevalveendocarditis:Importanceofnon-nosocomialacquisition.AnnalsofInternalMedicine,2009;150:586–594.6.Durante-MangoniE,BradleyS,Selton-SutyC,etal.Currentfeaturesofinfectiveendocarditisinelderlypatients:ResultsoftheInternationalCollaborationonEndocarditisProspectiveCohortStudy.ArchivesofInternalMedicine,2008;168:2095–2103.7.AthanE,ChuVH,TattevinP,etal.Clinicalcharacteristicsandoutcomeofinfectiveendocarditisinvolvingimplantablecardiacdevices.JournaloftheAmericanMedicalAssociation,2012;307:1727–1735.8.LopezJ,RevillaA,VilacostaI,etal.Age-dependentprofileofleft-sidedinfectiveendocarditis:Athreecenterexperience.Circulation,2010;121:892–897.9.HabibG,HoenB,TornosP,etal.Guidelinesontheprevention,diagnosis,andtreatmentofinfectiveendocarditis(newversion2009):TheTaskForceonthePrevention,Diagnosis,andTreatmentofInfectiveEndocarditisoftheEuropeanSocietyofCardiology(ESC).EuropeanHeartJournal,2009;30:2369–2413.10.NadjiG,RusinaruD,RemadiJP,etal.Heartfailureinleft-sidednativevalveinfectiveendocarditis:Characteristics,prognosis,andresultsofsurgicaltreatment.EuropeanJournalofHeartFailure,2009;11:668–67511.ThunyF,DisalvoG,BelliardO,etal.Riskofembolismanddeathininfectiveendocarditis:Prognosticvalueofechocardiography.Aprospectivemulticenterstudy.Circulation,2005;112:69–75.12.LopezJ,Fernandez-HidalgoN,RevillaA,etal.Internalandexternalvalidationofamodeltopredictadverseoutcomesinpatientswithleft-sidedinfectiveendocarditis.Heart,2011;97:1138–1142.13.DurackDT,LukesAS,BrightDK.Newcriteriafordiagnosisofinfectiveendocarditis:Utilizationofspecificechocardiographicfindings.Dukeendocarditisservice.TheAmericanJournalofMedicine,1994;96:200–209.14.LiJS,SextonDJ,MickN,etal.ProposedmodificationstotheDukecriteriaforthediagnosisofinfectiveendocarditis.ClinicalInfectiousDiseases,2000;30:633–638.15.QueYA,MoreillonP.Infectiveendocarditis.NatureReviewsCardiology,2011;322–336.16.BaddourLM,WilsonWR,BayerAS,etal.Infectiveendocarditis:diagnosis,antimicrobialtherapy,andmanagementofcomplications:AstatementforhealthcareprofessionalsfromtheCommitteeonRheumaticFever,Endocarditis,andKawasakiDisease,CouncilonCardiovascularDiseaseintheYoung,andtheCouncilsonClinicalCardiology,Stroke,andCardiovascularSurgeryandAnesthesia,AmericanHeartAssociation:endorsedbytheInfectiousDiseasesSocietyofAmerica.Circulation,2005;111:e394–e434.17.EikenPW,EdwardsWD,TazelaarHD,etal.Surgicalpathologyofnonbacterialthromboticendocarditisin30patients,1985–2000.MayoClinicProceedings,2001;76:120418.el-ShamiK,GriffithsE,StreiffM.Nonbacterialthromboticendocarditisincancerpatients:Pathogenesis,diagnosis,andtreatment.TheOncologist,2007;12:518.19.Ruiz-IrastorzaG,CrowtherM,BranchW,etal.Antiphospholipidsyndrome.Lancet,2010;376:1498–1508.20.HabibG,BadanoL,TribouilloyC,etal.Recommendationsforthepracticeofechocardiographyininfectiveendocarditis.EuropeanJournalofEchocardiography,2010;11:202–219.21.BaiAD,SteinbergM,ShowlerA,etal.Diagnosticaccuracyoftransthoracicechocardiographyforinfectiveendocarditisfindingsusingtransesophagealechocardiographyasthereferencestandard:ameta-analysis.JAmSocEchocardiogr2017;30:639–646.22.BanchsJ,YusufSW.Echocardiographicevaluationofcardiacinfections.ExpertReviewofCardiovascularTherapy,2012;10:1–4.23.GraupnerC,VilacostaI,SanRomanJA,etal.Periannularextensionofinfectiveendocarditis.JournaloftheAmericanCollegeofCardiology,2002;39:1204–1211.24.KiniV,LoganiS,KyB,etal.Transthoracicandtransesophagealechocardiographyfortheindicationofsuspectedendocarditis:Vegetations,bloodcultures,andimaging.JournaloftheAmericanSocietyofEchocardiography,2010;23:396–402.25.HansaliaS,BiswasM,DuttaR,etal.Thevalueoflive/realtimethree-dimensionaltransesophagealechocardiographyintheassessmentofvalvularvegetations.Echocardiography,2009;26:1264–1273.26.AnwarAM,NosirYF,AlasnagM,etal.Realtimethree-dimensionaltransesophagealechocardiography:Anovelapproachfortheassessmentofprostheticheartvalves.Echocardiography,2014;31(2):188–196.27.BerdejoJ,ShibayamaK,HaradaK,etal.Evaluationofvegetationsizeanditsrelationshipwithembolismininfectiveendocarditis:Areal-time3-dimensionaltransesophagealechocardiographystudy.Circulation:CardiovascularImaging,2014;7(1):149–154.27a.UtsunomiyaH,BerdejoJ,KobayashiS,MiharaH,ItabashiY,ShiotaT.Evaluationofvegetationsizeanditsrelationshipwithsepticpulmonaryembolismintricuspidvalveinfectiveendocarditis:arealtime3DTEEstudy.Echocardiography,2017;34:549–556.28.ThunyF,GrisoliD,CollartF,etal.Managementofinfectiveendocarditis:Challengesandperspectives.Lancet,2012;379:965–975.29.KieferT,ParkL,TribouilloyC,etal.Associationbetweenvalvularsurgeryandmortalityamongpatientswithinfectiveendocarditiscomplicatedbyheartfailure.JournaloftheAmericanMedicalAssociation,2011;306:2239–2247.30.TribouilloyC,RusinaruD,SorelC,etal.Clinicalcharacteristicsandoutcomeofinfectiveendocarditisinadultswithbicuspidaorticvalves:Amulticentreobservationalstudy.Heart,2010;96:1723–1729.31.DeCastroS,CartoniD,d’AmatiG,etal.Diagnosticaccuracyoftransthoracicandmultiplanetransesophagealechocardiographyforvalvularperforationinacuteinfectiveendocarditis:Correlationwithanatomicfindings.ClinicalInfectiousDiseases,2000;30:825–826.32.AlluriN,KumarS,MarfatiaR,etal.Aorticvalveperforationdiagnosedwithuseof3-dimensionaltransesophagealechocardiography.TexasHeartInstituteJournal,2012;39:590–591.33.WangA,AthanE,PappasPA,etal.Contemporaryclinicalprofileandoutcomeofprostheticvalveendocarditis.JournaloftheAmericanMedicalAssociation,2007;297:1354–1361.34.AngueraI,MiroJM,CabellCH,etal.ClinicalcharacteristicsandoutcomeofaorticendocarditiswithperiannularabscessintheInternationalCollaborationonEndocarditisMergedDatabase.TheAmericanJournalofCardiology,2005;96:976–981.35.SudhakarS,SewaniA,AgrawalM,etal.Pseudoaneurysmofthemitral-aorticintervalvularfibrosa(MAIVF):Acomprehensivereview.JournaloftheAmericanSocietyofEchocardiography,2010;23:1009–1018.36.AngueraI,MiroJM,VilacostaI,etal.Aorto-cavitaryfistuloustractformationininfectiveendocarditis:Clinicalandechocardiographicfeaturesof76casesandriskfactorsformortality.EuropeanHeartJournal,2005;26:288–297.37.DuvalX,IungB,KleinI,etal.Effectofearlycerebralmagneticresonanceimagingonclinicaldecisionsininfectiveendocarditis.AnnalsofInternalMedicine,2010;152:497–504.38.GrabowskiM,HryniewieckiT,JanasJ,etal.Clinicallyovertandsilentcerebralembolisminthecourseofinfectiveendocarditis.JournalofNeurology,2011;258:1133–1139.39.DiSalvoG,HabibG,PergolaV,etal.Echocardiographypredictsemboliceventsininfectiveendocarditis.JournaloftheAmericanCollegeofCardiology,2001;37:1069–1076.40.VilacostaI,GraupnerC,SanRomanJA,etal.Riskofembolizationafterinstitutionofantibiotictherapyforinfectiveendocarditis.JournaloftheAmericanCollegeofCardiology,2002;39:1489–1495.41.DickermanSA,AbrutynE,BarsicB,etal.Therelationshipbetweentheinitiationofantimicrobialtherapyandtheincidenceofstrokeininfectiveendocarditis:AnanalysisfromtheICEProspectiveCohortStudy(ICE-PCS).AmericanHeartJournal,2007;154:1086–1094.42.KangDH,KimYJ,KimSH,etal.Earlysurgeryversusconventionaltreatmentforinfectiveendocarditis.TheNewEnglandJournalofMedicine,2012;366:2466–2473.43.YoungWJ,JefferyDA,HuaA,etal.Echocardiographyinpatientswithinfectiveendocarditisandtheimpactofdiagnosticdelaysonclinicaloutcomes.AmJCardiol.2018May11.[Epubaheadofprint]44.RasmussenRV,HostU,ArpiM,etal.PrevalenceofinfectiveendocarditisinpatientswithStaphylococcusaureusbacteremia:Thevalueofscreeningwithechocardiography.EuropeanJournalofEchocardiography,2011;12:414–420.45.LongobardoL,KlemmS,CookM,RavennaV,etal.RiskassessmentforinfectiveendocarditisinStaphylococcusaureusbacteremiapatients:whenistransesophagealechocardiographyneeded?EurHeartJAcuteCardiovascCare,2017Oct.46.FeuchtnerGM,StolzmannP,DichtlW,etal.Multislicecomputedtomographyininfectiveendocarditis.JournaloftheAmericanCollegeofCardiology,2009;53:436–444.47.ShapiraY,WeisenbergDE,VaturiM,etal.Theimpactofintraoperativetransesophagealechocardiographyininfectiveendocarditis.TheIsraelMedicalAssociationJournal,2007;9:299–302.CHAPTER16StressEchocardiographyRobertB.McCully,PatriciaA.Pellikka,andJaeK.OhHISTORICALPERSPECTIVETheobservationthatmyocardialischemiaproducedbycoronaryarteryocclusionrapidlyresultsinregionalmyocardialdysfunction,alongwiththedevelopmentofM-modeandtwo-dimensionalechocardiographictechnologies,providedtheimpetusfordevelopmentofthefieldofstressechocardiography.Thefeasibilityofacquiringandrecordingtwo-dimensionalultrasonicimagesofhumansubjects’heartsbefore,during,andafterexercisewasfirstreportedbyWannetal.in1979(1).Reviewofvideotapedimagesallowedforthesequentialassessmentofleftventricularsystolicfunctionbeforeandafterstresstesting.Theintroductioninthemid-1980sofwide-anglescannerswithhigherresolution,andofdigitalacquisitionsystems,providedfurtherincentiveforprogress.Thesetechnologiesallowedfortheacquisitionandsubsequenteditingofhigh-resolutionimagesoftheheartduringasinglecardiaccycle,whichwerethenplayedbackascontinuousloops.Theside-by-sidepresentationofthebaselineandstressechocardiographicimagessimplifiedtestinterpretationbymakingpossibleadirectcomparisonofregionalandgloballeftventricularsystolicfunctionbeforeandwithexerciseorpharmacologicallyinducedstress,utilizingmultipleacousticwindowsinamoreuser-friendlymanner(2).Inthemorethanthreedecadesthathavefollowed,theclinicaluseandimpactofstressechocardiographyhavegrownsubstantially.Thediagnosticandprognosticvalueofstressechocardiographyhasbeenconfirmedbymultiplestudiesinvolvingthousandsofpatients.GuidelinesandexpertconsensusstatementsthatsummarizethebodyofliteraturethatunderpinstheclinicalutilityandroleofstressechocardiographyhavebeenpublishedonbehalfoftheAmericanSocietyofEchocardiography(3)andtheEuropeanAssociationofCardiovascularImaging(4).APPLICATIONSTheversatilityofstressechocardiographyisunparalleled.Theabilityofthesonographerorechocardiologisttoacquiretwo-dimensional,colorflow,andpulsed-wave(PW)orcontinuous-wave(CW)Dopplerdataallowsforfullflexibilitywhencertainclinicalquestionsneedtobeanswered.Asaresult,theclinicalapplicationsarenumerous(Fig.16-1).Stressechocardiographyhasaprovenandestablishedrolenotonlyintheassessmentofpatientswithsuspectedorknowncoronaryarterydiseasebutalsointheevaluationofthosewhohavediastolicdysfunctionorstructuralandvalvularheartdisease.INDICATIONTheefficientandappropriateutilizationofstressimagingtestssuchasstressechocardiography,nuclearmyocardialperfusionimaging,andcardiacmagneticresonancehasbeenincreasinglyemphasizedinrecentyears.Updatesofclinicalpracticeguidelinesandappropriateusecriteriadocumentshaveclarifiedaspectsof,andindicationsfor,stresstestordering(5,6).Inmanysituations,atreadmillexerciseECGwithoutimagingwillsufficeastheinitialstresstestfordiagnosis.Forpatientswhohavechestdiscomfort,dyspnea,orothersymptomsthataresuggestiveofcoronaryarterydisease,stresstestingwithimagingisindicatedforinitialdiagnosisorforriskassessmentiftheECGisuninterpretableorifpatientsareunabletoexercise.Ifpatientsareabletoexercise,exercisetestingwithechocardiographyornuclearmyocardialperfusionimagingisreasonableandappropriateiftheirpretestlikelihoodofcoronaryarterydiseaseisintermediatetohigh.Ingeneral,stressimagingisrarelyappropriateinpatientswhoareasymptomatic.ExceptionsmaybepatientswhoareathighriskofhavingacoronaryarterydiseaseeventorthosewhohaveahighcoronarycalciumAgatstonscore.Forpatientswhohavevalvularheartdisease,stressechocardiographyisindicatedifthereisadiscrepancybetweenthepatient’srestinghemodynamicabnormalitiesandhisorhersymptomaticstatus(7).FIGURE16-1Clinicalapplicationsofstressechocardiography.(CAD,coronaryarterydisease;CW,continuouswave;HCM,hypertrophiccardiomyopathy;LV,leftventricle;LVOT,leftventricularoutflowtract;MR,mitralregurgitation;PW,pulsedwave;RV,rightventricular;TR,tricuspidregurgitation;2D,twodimensional.)MAYOCLINICEXPERIENCEStressechocardiographywasintroducedintoclinicalpracticeatMayoClinicattheendof1989.Fromthattimeonwards,therewassteadygrowthinthenumberofstressechocardiogramsperformedannually,reachingapeakintheyear2005,whenapproximately8,500studieswereperformed.Sincethen,therehasbeenagradualdeclineintheannualnumberofstudiesperformed,withaplateauofapproximately6,500studiesperyearbeingreachedrecently.Thistrendreflectsthechangesinclinicalpracticethathavebeenbroughtaboutbycloseradherencetoestablishedpracticeguidelinesandtheutilizationofappropriateusecriteriabyreferringphysicians.Duringtheyear2017,whichwasthe28thyearofstressechocardiographyatMayoClinic,the150,000thstressechocardiogramwasperformed.Duringthefirstdecadeofclinicaluseofstressechocardiography,theratioofexercisetodobutaminestressechocardiogramsperformedwas2:1;duringtheseconddecade,theratiowas1.5:1;andcurrently,theratiois1.2:1.THESTRESSECHOTEAMTheteamresponsibleforperformingstressechocardiogramsiscomposedofanECGtechnician,aspeciallytrainedcardiovascularregisterednurse,andasonographer.TheECGtechnicianroomsthepatient,hooksuptheECGleadstothepatient,monitorstheECGbeforeandduringthestressechocardiogramandintherecoveryperiod,andassiststhepatientattheendofthetestbeforedismissal.Theregisterednursereviewsthepatient’smedicalrecordpriortostresstesting,makingsurethattherearenoclinicalcontraindicationstostresstesting.Thestressechocardiogram,whetherexerciseordobutaminestress,isconductedandsupervisedbytheregisterednurse.Thissupervisoryroleincludesmonitoringthepatient’ssymptomsandbloodpressureduringthestresstestanddecidingwhentoterminatethetest.Alternatively,anexercisespecialistsupervisestheexerciseechocardiograms.Thesepersonnelalsoapplyandmonitorfingeroximetryduringthestresstestifpatientsarebeingevaluatedfordyspnea.The

sonographeracquiresechocardiographicimagesatbaselineandwithstress.Astaffechocardiologistisinattendanceincloseproximitytothestressechocardiogramroomandcanbecalledintotheroomimmediatelyifanyquestionsorissuesarise.Theechocardiologist’sothermajorroleistointerpretthestressechocardiographicimagesandgenerateastressechocardiogramreport.SAFETYThesafetyofperformingstressechocardiographyhasbeenwelldocumentedinseveralstudies.Anauditofmorethan15,000stressechocardiogramsperformedatMayoClinicovera2-yearperiodanddirectlysupervisedbyregisterednursesshowedthatcomplicationsareuncommon(8).Complicationsoccurredmorefrequentlywithdobutaminestressechocardiography(0.7%)comparedtoexerciseechocardiography(0.09%).Thefrequencyofpotentiallylifethreateningcomplicationswas0.4per1,000patients.Nopatienthadcardiacruptureordied.IMAGEACQUISITIONThestandardtwo-dimensionalechocardiographicimagesacquiredatbaselinearetheparasternallong-axisview,theparasternalshort-axisviewatmidventricularlevel,andtheapicalfour-chamberandtwo-chamberviews.Thesefourviewsareutilizedwhencomparingthedigitizedimagessidebysidewiththoseobtainedwithstress.Additionally,otherimagesareroutinelyacquiredandrecorded.Theseincludetheapicallong-axisandtheapicalshort-axisviews.Thecardiacvalvesareroutinelyevaluatedatbaselineinmultipleviewswithtwodimensionalandcolorflowimaging.Theaorticrootandascendingaortaarealsoimaged.Leftventricularandleftatrialsizesaremeasured,thelatterwithavolumetricmeasurementindexedtobodysurfacearea.AlimitedDopplerexaminationisperformedtoscreenpatientsforleftventriculardiastolicdysfunctionandpulmonaryhypertension.Thesedataincludepulsed-waveDopplerofthemitralinflow(EandA),tissueDopplerimagingofthemedialmitralannulus(e′),E/e′ratio,andCWDopplertomeasurethepeaktricuspidregurgitantvelocityforcalculationoftherightventricularsystolicpressurewiththesimplifiedBernoulliequationandanassumedrightatrialpressure.Inourexperience,abnormalfindingsonthebaselineimagescanleadtocancellationofthestressechocardiogram1%to2%ofthetime.Thepresenceofunexpectedabnormalitiessuchasasizeablepericardialeffusion,severepulmonaryhypertension,aorticrootorascendingaortapathology,severeaorticormitralvalvedisease,severerightventriculardysfunction,orsevereregionaloroverallleftventricularsystolicdysfunctioncanleadtoachangeinthereferringhealthcareprovider’splanofinvestigation.Thestandardimagesareacquiredimmediatelyafterexerciseinthecaseoftreadmillexercisetestingandatdifferentlevelsofstressduringdobutamineorsupinebikestressechocardiography.Commerciallyavailablemicrobubblesareusedinapproximately50%ofourstressechocardiogramsforleftventricularopacificationtoenhanceendocardialborderdefinition(seeChapter6).Thequalityofimagesoftheleftventriclecanbetransientlyaffectedintheparasternalviewbythebolusofmicrobubblesintherightventriclethatcauseimageattenuationinthefarfield.Inthissituation,acquiringthefirstsetofimagesfromtheapicalwindowmaybenecessary,thatis,apicalfour-chamber,apicallong-axis,apicaltwo-chamber,andapicalshort-axisviews.Sometimes,whenthequalityoftheapicalimagesispoorandthatoftheparasternalimagesgood,allimagescanbeacquiredfromtheleftparasternalwindow(parasternallongaxisandparasternalshortaxisatthreelevels:base,midventricle,andapex).Rarely,whenimagingwindowsarelimited,allviewscanbeacquiredfromthesubcostalwindow(subcostalfour-chamberandsubcostalshortaxisviewsatthreelevels:base,midventricle,andapex).AlimitedDopplerexaminationtoassesspulmonarypressuresanddiastolicfunctionisalsoperformedafteracquisitionofthetwo-dimensionalimages.Baselineandstressechocardiographicimageshave,untilrecently,alsobeenroutinelyrecordedonvideotapes.Theserecordedimagesareanessentialandindispensablecomponentofstressechocardiographicacquisitionandinterpretation;two-dimensionalimagesofmultiplecardiaccyclescanbereviewedinadditiontothesinglecardiaccycleimagesthatarereviewedontheside-by-sidedigitizedimages(9).Also,beingabletoreviewvideotapedimagesinrealtimehasallowedforidentificationoftheischemicthresholdwhenadobutaminestressechocardiogramispositiveforischemia.Recently,wereplacedouragingvideotaperecordingandplaybackequipmentwithdigitalvideorecorders.Theseinstrumentsrecordhigh-definitionvideoimages,whicharethensentelectronicallytoaninstitutionalserverforarchivingandlinkedtothestressechocardiogramdesktopreviewstations.Thesedigitalvideorecordingsaverage5minutesindurationforexerciseechocardiographyand10minutesfordobutaminestressechocardiography.IMAGEINTERPRETATIONThevisualassessmentofleftventricularregionalwallmotionandthickeningandoverallsystolicfunctionremainsthecornerstoneofstressechocardiographicinterpretation.Thisinterpretiveskillisonethatrequiresextensivetrainingandongoingexperience.Itcanbemasteredbythelearnerwhoismethodicalandthorough.One-on-onereviewofstudieswithexpertreadersconstitutesthebesttrainingandcanresultinimprovementofreadingskillsafterinterpretationofasfewas100stressechocardiograms(10).Readerscanusuallymaintaintheirskillleveliftheyreview100ormorestudieseachyear.Oneofthemorestraightforwardaspectsofstressechocardiographicinterpretationistheside-by-sidecomparisonofleftventricularend-systolicsizeatbaselineandwithstress.Normally,theleftventricularend-systolicvolumedecreaseswithexerciseordobutaminestress(Fig.16-2).FIGURE16-2Digitalquadviewofnormalexerciseechocardiographydemonstrating(A)end-systolicparasternallong-andshort-axisviewatrest(left)andimmediatelyafterexercise(right),(B)apicalfour(top)-andtwo(bottom)-chamberviewatrest(left)andafterexercise(right).Leftventricleisshownontheleftsideoftheapicalfourchamberimages.LVcavitybecomessmallerwithexerciseandwallmotionisnormal.00:00/00:00Video16-2A00:00/00:00Video16-2BAnabnormalresponseisdefinedasanincreaseornoappreciablechangeintheleftventricularend-systolicvolume(Fig.16-3).Theleftventricularejectionfractionatbaselineandwithstresscanbeassessedvisuallyorquantitatedwithvariousmethods.Normally,theleftventricularejectionfractionincreaseswithexerciseordobutaminestress.FIGURE16-3A:Stillframeofend-systolicparasternallong-axis(PLX)andshort-axis(PSX)viewsofanexerciseechocardiogramthatispositiveforstress-inducedmyocardialischemia.Theanteroseptumandanteriorwallbecomeseverelyhypokinetic(arrows)withexercise.B:Stillframeofend-systolicapicalviewsofpositiveexerciseechocardiogram.Theapicalseptumandanteroapexbecomeakinetictodyskinetic(arrows).(2ch,two-chamberview;4ch,four-chamberview;LV,leftventricle;RV,rightventricle.)00:00/00:00Video16-3A00:00/00:00Video16-3BLeftventricularregionalfunctionisassessedusinga16-segmentmodelrecommendedbytheAmericanSocietyofEchocardiography.Theleftventricleisdividedintosixbasalandsixmidventricularsegments(anterior,anteroseptum,inferoseptum,inferior,inferolateral,andanterolateral),andfourapicalsegments(anterior,septal,inferior,andlateral).Avisualexaminationofthemotionandthickeningofeachsegmentisperformed.Allsegmentsshouldideallybeevaluatedinmorethanoneview.Becauseinwardmotioncanbeduetotranslationalchangeorthepullofanadjacentsegment,assessmentofsystolicthickeningismostreliable.Atourinstitution,thecriterionforanabnormaltestresultisthepresenceofoneabnormalsegment.Otherinstitutionsmayrequiretwoabnormalsegmentstocallatestabnormal.Semiquantitativescoringisroutinelyperformed.Segmentalsystolicthickeningisnormal(score1)ifthickeningisgreaterthan30%to40%.Asegmentishypokinetic(score2)ifthereisreducedthickening(10%–30%)andseverelyhypokineticifthereisminimalthickening(200/110mmHg)isarelativecontraindicationtoexercisetesting.Exercisetestingimposeshigherphysiologicstressonthepatientthandoespharmacologicstresstestingandprovidescomplementaryprognosticinformationsuchasthepatient’shemodynamicresponseandexercisecapacity.Symptom-limitedexercisetestingshouldbeperformed.Thetestshouldbeterminatedwhenthepatientdevelopssymptomsorsignsofmarkedfatigueorsymptomsorsignsofmyocardialischemia.Acommonlyusedaidisthe6-to20gradeBorgscaleofperceivedexertion.Whenthepatientreaches17to18onthisscale,thatis,whenhisorherperceivedexertionalworkloadis“veryhard,”thetestisstopped.Otherwise,absoluteindicationsforterminatingtheexercisetestareelectrocardiographicSTelevationinleadsthatdonothaveQwaves,moderatetosevereangina,centralnervoussystemsymptomssuchasdizzinessorataxia,signsofpoorperfusionsuchascyanosisorpallor,adropinsystolicbloodpressureofmorethan10mmHgbelowthebaselinebloodpressureifaccompaniedbyotherevidenceofischemia,sustainedventriculararrhythmias,orthepatient’sdesiretostop(11).Achievingacertainheartrate,suchas85%oftheage-predictedmaximalheartrate,shouldnotbeareasonfortesttermination.FIGURE16-6Graphicillustrationoftheextentandseverityofregionalwallmotionabnormalitiesatrestandpeakstress.A71-year-oldmanwithahistoryofdecliningexercisecapacityandexertionaldyspneaexercisedfor5.5minutesontheBruceprotocol,stoppingbecauseofdyspneaandfatigue.Hisheartrateincreasedfrom62to137bpmandhisbloodpressurefrom128/78to166/88mmHg.TheexerciseECGshowed2mmofhorizontalSTdepressionintheinferolateralleads.Theleftventricularejectionfractiondecreasedfrom60%to30%,andtheleftventricularendsystolicsizeincreasedinresponsetoexercise.Thestressechocardiographicfindingswereconsistentwithmultivesselcoronaryarterydiseasewithevidenceofapriorinferiorinfarctandextensiveanteriorandlateralischemia(13ischemicsegments,wallmotionscoreindex2.63).Coronaryarteriographyrevealedseveremultivesselcoronaryarterydisease(80%leftmain,70%proximalleftanteriordescending,80%proximalcircumflex,70%firstobtusemarginal,and50%proximalrightcoronarystenoses,andatotallyoccludeddistalrightcoronaryartery).(LV,leftventricle;RV,rightventricle;LVOT,leftventricularoutflowtract;MVO,mitralvalveorifice.)FIGURE16-7Side-by-sidecomparisonofapicalfour(top)andlong-axis(bottom)viewatrest(left)andimmediatelyafterexercise(right)demonstratingalargerLVwithglobalbutmoreanteriorseptalwallmotionabnormalityinapatientwithLBBB.Asubsequentcoronaryangiographyshowednormalepicardialcoronaryarteries.00:00/00:00Video16-7A00:00/00:00Video16-7BThemostcommonlyusedexerciseprotocolsinourlaboratoryaretreadmillbasedrampprotocols.TheBruceprotocolisusedmorethan95%ofthetime.ElderlyanddeconditionedpatientsmaynotbeabletoexerciseatthelevelrequiredbytheBruceprotocol.Inthissetting,aprotocolthathasmoremodestincreasesinworkloadfromonestagetoanother,theNaughtonprotocol,isused.BruceProtocol(3-minuteStages)StageSpeed(mph)Incline(%)METsI1.7105II2.5127III3.41410IV4.21613V5.01816VI5.52019VII6.02222Speed(mph)Incline(%)METsI1.001II2.002III2.03.53IV2.074V2.010.55VI2.0146VII2.017.57NaughtonProtocol(2-minuteStages)StageAftertheexercisetestisstopped,thepatientisquicklyhelpedoffthetreadmillandliesdownintheleftlateraldecubituspositionontheexaminationtable.Thereisnocooldownwalkingperiod.Duringthisimmediatepostexerciseperiod,andpreferablywithinthefirstminute,thesonographeracquirestwodimensionalechocardiographicimagesoftheheart,focusingontheleftventricle.Dependingontheimagingcharacteristicsofeachpatient,theacousticwindowoffirstchoicewillvaryandcouldbeeithertheleftparasternalortheapicalwindow.Thepatientwillbeaskedtobrieflyholdthebreathwhileimagesarebeingacquired.Anin-housetreadmillprotocol,specificallydesignedsothattheworkloadachievedbythepatientisapproximately1METforeveryminuteofexercisecompleted,isusedatMayoClinicwhenoxygenconsumption(VO2)testingisaddedtotheexerciseechocardiogram.Informationobtainedfromthiscombinedechocardiographicandcardiopulmonaryexercisetestcanprovidethereferringclinicianwithusefuldataandinsightsregardingtheetiologyofsomepatients’symptoms.MayoProtocol—1MET/min(2-minuteStages)StageSpeed(mph)Incline(%)METsI2.002II2.074III2.0146IV3.012.58V3.017.510VI3.41812VII3.82014Forpatientswhoarefamiliarwithbicycling,andwhoprefertoexerciseinthismanner,twotypesofstationarybicycles,anuprightcycleandasemirecumbentcycle,areavailableforuseinourstresslaboratory.Patientscanexerciseoneitherofthesestationarybicyclesandperformlower-intensityexercise(ProtocolI)orhigher-intensityexercise(ProtocolII).Theuprightcycleandthehigherintensityprotocolareidealforyoungersubjectswhowillbeinatypicalcyclist’scrouchwhileexercising.Thesemirecumbentcycleofferspatientsamorecomfortableseatedrideandispreferredbyolderanddeconditionedpatients.UprightorSemirecumbentCycleProtocols(2-minuteStages)ProtocolIStageProtocolIIWattsStageWattsI12I25II25II50III50III100IV75IV150V100V200VI125VI250VII150VII300Whentheexercisetestisstopped,thepatientishelpedoffthecycleandplacedintheleftlateraldecubituspositionontheexaminationtablesothatthesonographercanperformimmediatepostexerciseechocardiographicimaging.Atsomeinstitutions,echocardiographicimagingisalsoperformedatpeakexercise.Thisismorechallengingfromatechnicalstandpoint.Somerecumbentcyclescanbetiltedtowardtheleftsothatthepatientexercisesinaleft-tiltedrecumbentposition.Thisfacilitatesimagingatpeakexercise.Wehavenotadoptedthisapproach;ourpreferenceisforpatientstoexerciseinasunencumberedamanneraspossible.DOBUTAMINESTRESSECHOCARDIOGRAPHYThepharmacologicagentdobutamineiswidelyusedforstresstestingwhenpatientsareunabletoexercisebecauseofdebilitatingmedicalconditionssuchasperipheralvasculardisease,severechroniclungdisease,orcertainorthopedicconditions.Dobutamineisasyntheticcatecholaminethatincreasesmyocardialoxygenconsumptionthroughmostlyinotropicandchronotropiceffects.Itspredominantmechanismofactionisagonismofcardiacbeta-1adrenergicreceptors.Ithasweakereffectsontheperipheralvasculaturefromopposingeffectsofbeta-2adrenergicandalpha-1adrenergicreceptoragonism.Thus,atlowdoses,myocardialcontractilityincreases.Athigherdoses,heartrateincreasesandeventuallysystemicvasodilationoccurs.Thebloodpressureresponseisvariable,buttypically,thereisaslightincreaseinsystolicbloodpressureandadecreaseindiastolicbloodpressureduringdobutaminestress(12).Atropineisaparasympatholyticagentthatexertsitseffectsbycompetitiveantagonismofcardiacmuscarinicacetylcholinereceptors.Thiscountersthedecreaseinheartratethatismediatedbyvagaltone.Atropineisadministeredtopatientsundergoingdobutaminestresstestingiftheydonotreachtheirtargetheartrate,whichisdefinedas85%ofage-predictedmaximalheartrate.Theage-predictedmaximalheartrateiscalculatedbysubtractingthepatient’sagefrom220.Contraindicationstodobutamine/atropinestressechocardiographyaresimilartothoseforexercise,aswellasuntreatednarrowangleglaucomaandurinaryretention.Afterfastingfor3hoursandundergoingscreeningbythesupervisingnurse,thepatientisplacedintheleftlateraldecubituspositionontheexaminationtable.Aperipheralintravenouscatheterisplaced,usuallyintheleftantecubitalfossa.Systolicanddiastolicbloodpressuremeasurementsarerecordedatbaselineandevery3minutesduringthetest,nearoratpeakstress,andintherecoveryperiod.ContinuousECGmonitoringisperformedbytheECGtechnician.Dobutamineisadministeredbyaninfusionpumprunbythesupervisingnurse,startingatadoseof5μg/kg/min.Thedobutaminedoseisincreasedevery3minutes.Intravenousatropineisadministeredtofurtherincreasetheheartrateifnecessary;inourexperience,itisrequired60%ofthetime.Atropineisadministeredin0.25mgbolusincrementsevery1minutetoamaximalcumulativedoseof2mgandinitiallygivenattheendofthe20μg/kg/minstageiftheheartrateislessthan90beatsperminute(bpm),attheendofthe30μg/kg/minstageiftheheartrateislessthan70%oftheage-predictedmaximum,orattheendofthe40μg/kg/minstageiftheheartrateislessthan85%oftheage-predictedmaximum.DobutamineStressEchoProtocol(3-minuteStages)StageDobutamineDose(μg/kg/min)Atropine(mg)I5II10III20IV300.25V40q1minEchocardiographicimagesareacquiredandrecordedbythesonographeratbaselineandduringeachstageofthestudy.Theimagesaredigitizedforside-bysidecomparisonatbaseline,lowdose(10μg/kg/min),prepeak(whentheheartrateis~10beatsfromthetargetheartrateorjustpriortoatropineadministration),andatpeakstress.Imagesacquiredatallstagesandintherecoveryperiodarerecordedondigitalvideo(Fig.16-8AandB).Thedevelopmentofintracavitaryorleftventricularoutflowtract(LVOT)obstructionwiththeadministrationofdobutamineisnotuncommon,andcanoccurinthepresenceorabsenceofbasalseptalhypertrophy.WerecommendthatCWDopplerdatabeacquiredacrosstheLVOTatpeakdobutaminedoseifpatientsdevelophyperdynamicleftventricularsystolicfunction,systolicanteriormotionofthemitralleaflets,orhypotension.Theuseofmicrobubblesforleftventricularopacificationprecludesvisualassessmentofthemitralvalveapparatus.Testendpointsaretheattainmentoftargetheartrate,intolerablesymptoms,significantarrhythmias,ischemicwallmotionabnormalitiesofatleastmoderatedegree(Fig.16-8C),severehypertension(bloodpressure>250/115mmHg),andseverehypotension(systolicbloodpressure182mmHg)hadobstructiveCAD(definedas≥50%stenosis).ThepositivepredictivevalueofDSEwassimilarforpatientswithahypertensiveresponseandnormalbloodpressureresponses(69%and73%,respectively,p=0.3).ThelikelihoodoffindingsevereCAD(definedas≥70%stenosis)waslowerinpatientswhohadahypertensiveresponsecomparedtothosewhohadnormalbloodpressureresponses(54%and65%,respectively,p=0.005).(CAD,coronaryarterydisease;DSE,dobutaminestressechocardiography;SBP,systolicbloodpressure.)Todistinguishbetweeninfarctedandviablemyocardium,two-dimensionalechocardiographymaybehelpful.Ifsegmentalwallthicknessislessthan6mm,itisverylikelythatthesegmentisnonviableandinfarcted,especiallyifitsechodensityisincreased.Wallthicknessof6mmorgreatermayormaynotindicatemyocardialviability.Ithasbeenshowninanimalsthatbeta-adrenergicstimulationimprovescontractilityofchronicallyischemicorpostischemicmyocardium,butnotofinfarctedmyocardium.Lowtointermediatedosesofdobutamine(5–20μg/kg/min)inducecontractilityofviableheartmuscle,beitstunnedorhibernatingmyocardium(23).Dobutamine-responsivewallthickeningpredictsimprovementinregionalleftventricularwallthickeningaftercoronaryrevascularization.Abiphasicresponseisthebestpredictorofrecoveryofregionalleftventricularsystolicfunctionafterrevascularization(Fig.16-11).Whenperformingadobutamineviabilitystudyinourlaboratory,intermediatestagesareaddedandthedurationofeachstageisincreasedto5minutes.Sublingualnitroglycerinisnolongeradministeredroutinelyatthebeginningoftheviabilitystudy.Imagesareacquiredatbaselineandattheendofeachstage.Onoccasion,whenspecificallyrequested,aviability/ischemiastudyisperformed,andhigherdosesofdobutamineandatropineareadministered.ThepresenceofmyocardialviabilityofLVinpatientswithischemiccardiomyopathywasdefinedaspositivedobutamineaugmentationofmyocardialcontractilityinatleastfivesegmentswithnosignificantrestingcontractility(24).InasubstudyoftheSTICHtrial,patientswithcoronaryarterydiseaseandleftventriculardysfunctionwhounderwentdobutamineechocardiographyweredefinedashavingmyocardialviabilityif5ormoredysfunctionalsegmentsatrestmanifestedcontractilereserveduringdobutamineadministration.Therewasasignificantunivariateassociationbetweenmyocardialviability,asassessedbydobutamineechocardiographyorsinglephotonemissioncomputedtomography,and5-yearoutcomes.Thepresenceofmyocardialviability,however,didnotincreasethelikelihoodthatpatientswouldbenefitfromcoronaryarterybypasssurgeryascomparedtomedicaltherapy(24).Recently,10-yearsurvivaldatafromtheSTICHtrialshowedimprovedsurvivalaftercoronaryarterybypasssurgerycomparedtomedicaltherapy(J.Panzaetal.,unpublisheddata).Thus,theremayberenewedinterestinobtainingmyocardialviabilitydataonpatientswhohaveischemiccardiomyopathy.FIGURE16-11Schematicofmyocardialresponsetolowandhigherdosesofdobutamineinthreeclinicalsituations.Top.Iftheakineticmyocardiumisinfarcted/scarred(xx)withnomyocardialviability,thereisnosystolicthickeningatrestorwithloworhigherdosesofdobutamine.Middle.Iftheakineticmyocardiumisviableandthereisnohigh-gradestenosisofthecoronaryarterysupplyingthemyocardium,thereisasustainedimprovementinsystolicthickeningwithlow-andhigher-dosedobutamine(stunned).Bottom.Iftheakineticmyocardiumisviableandthereisahigh-gradestenosisofthecoronaryarterysupplyingthemyocardium,myocardialcontractilityandsystolicthickeningimprovewithlow-dosedobutaminebutworsenwithhigher-dosedobutamine(hibernating).Thisistheclassicbiphasicresponse.DobutamineEchoViabilityProtocol(5-minuteStages)StageDobutamineDose(μg/kg/min)I5II7.5III10IV15V20DIASTOLICSTRESSECHOCARDIOGRAPHYAlthoughexertionaldyspneamaybeananginaequivalentandindicativeofcoronaryarterydisease(25),itcanofcoursebenonischemicinoriginandduetoleftventriculardiastolicdysfunction,valvularheartdisease,pulmonaryhypertension,pulmonarydisease,ordeconditioning.Stressechocardiographyisuniquelypositionedtocharacterizeseveraldifferentcardiovascularcausesofdyspnea.Inadditiontoevaluatingforcoronaryarterydisease,weroutinelyscreenpatientsreferredtothestressechocardiographylaboratoryforvalvularheartdisease,pulmonaryhypertension,anddiastolicdysfunction,asdescribedearlier.Inpatientswhoundergoexerciseechocardiography,Dopplerassessmentofpulmonaryandleftventricularfillingpressuresisalsoroutinelyperformedintheearlypostexerciserecoveryperiod(Fig.16-12).Therationalefordoingthisisthatpatientswhohaveexertionaldyspneaduetodiastolicdysfunctionmayhavenormalleftventricularfillingpressuresatrestthatonlyincreasewithexercise,leadingtobreathlessness(26)(seeChapter8).Immediatelyafteracquiringthetwo-dimensionalimagesforregionalwallmotionandoverallleftventricularsystolicfunctionassessment,thesonographeracquirestheCWDopplersignalofthetricuspidregurgitationjettomeasurepeakvelocityandcalculaterightventricularsystolicpressure.Astheheartrateslows,andwhenthemitralinflowPWDopplersignalisnolongerfused,theEwaveandmedialmitralannulare′velocitiesaremeasuredforcalculationoftheE/e′ratio.Normally,themitralEandmitralannulare′velocitiesincreaseproportionatelywithexercise.Asaresult,E/e′doesnotchangeandremainslessthan8.Inpatientswithabnormalrelaxation,theincreaseine′velocitywithexerciseislessthanthatoftheEvelocity,leadingtoanincreaseinE/e′(27,28).HemodynamicstudiesofsimultaneouslymeasuredleftventricularfillingpressuresusingcardiaccatheterizationandDopplerechocardiographyatrestandwithexerciseshowsatisfactorycorrelationbetweeninvasivelymeasuredleftventricularfillingpressureandDoppler-derivedE/e′(29–31).E/e′canthereforebeusedasanoninvasivemeansofestimatingleftventriculardiastolicpressureduringexerciseaswellasatrest.ApostexerciseE/e′greaterthan13isindicativeofelevatedleftventriculardiastolicpressure(29,31).PatientswithoutischemiaonexerciseechocardiographywhohaveDoppler-derivedevidenceofdiastolicdysfunctionatrestaremorelikelytohaveimpairedexercisecapacityandlessfavorableoutcomesthanthosewhohavenormaldiastolicfunction(32,33).IthasalsobeenshownthatexerciseE/e′isanindependentandincrementalpredictorofcardiovascularoutcomes(34).ThespecificityofanelevatedE/e’isimprovedbytheconcomitantfindingofanelevatedpeaktricuspidregurgitantvelocity.E/e’canbefalselyelevatedinpatientswhohavemitralannularcalcification,leftbundlebranchblock,orapacedrhythm.FIGURE16-12ComponentsofacontemporaryexerciseechocardiogramatMayoClinic.(DT,decelerationtime;EF,ejectionfraction;EandA,early(E)andlate(A)diastolicmitralinflowvelocitiesbypulsed-waveDoppler;e′,mitralannularearlydiastolictissueDopplervelocity;LA,leftatrium;RWMA,regionalwallmotionabnormalities;TRVmax,tricuspidregurgitationpeakvelocity.)Althoughtheassessmentofdiastolicfunctionismostcommonlyperformedatthetimeoftreadmillexerciseechocardiographyatourinstitution,adedicateddiastolicstressechocardiogramcanbeperformedinselectedpatientsusingasupinebikeexerciseprotocolwheretheabove-describedDopplerdataareacquiredatdifferentstagesofexercise.Rightventricularorpulmonaryarterysystolicpressurenormallyincreasesbyapproximately8to10mmHgwithexercise.Theuppernormal(i.e.,95thpercentile)valuesforrightventricularsystolicpressureaftertreadmillexerciseareage-dependentandrangefrom50to55mmHg(Fig.16-13)(35).Thedevelopmentofexercise-inducedpulmonaryhypertensionisoftenseeninassociationwithelevatedleftventricularfillingpressuresbutcanalsooccurinisolationwhenthereispulmonaryorpulmonaryvasculardisease.Normativevaluesforrightventricularsystolicpressurewithexerciseappeartobelowerwhenasupinebikeprotocolisusedandareintherangeof40to45mmHg.HEMODYNAMICSUPINEBIKEFORVALVULARHEARTDISEASESStressechocardiographyisfrequentlyusedtoevaluatepatientswhohavevalvularheartdiseaseinordertoclarifytherelationshipbetweentheirsymptomsandthehemodynamicseverityofthevalvelesion(36).Thisoftenaidsinclinicaldecision-making.Forexample,apatientwithexertionaldyspneawhohasmoderatemitralstenosisontransthoracicechocardiographymayhaveanothercauseforhisorhersymptomssuchasleftventriculardiastolicdysfunction,pulmonarydisease,ordeconditioning(seeChapter13).Inthissituation,exercisetestingwithDopplerhemodynamicscanbehelpfulforexcludingmitralstenosisthatishemodynamicallysevereduringexercise.ExercisetestingusingasupinebikeispreferredinthissituationsothatDopplerdatacanbeacquiredatbaselineandatdifferentstagesofexercise.FIGURE16-13Normativevaluesofrightventricularsystolicpressureatrestandimmediatelyaftertreadmillexercise,stratifiedbyage.Thepeakvelocityofthetricuspidregurgitationsignal,acquiredwithcontinuous-waveDopplerbeforeandimmediatelyaftertreadmillexercise,wasusedtocalculatetherightventricularsystolicpressure(RVSP)in469subjectswithoutknowncardiopulmonarydisease.TheexerciseprotocolusedwastheBruceprotocol.ThesimplifiedBernoulliequation(4v2)wasused.Assumedrightatrialpressureis5mmHg.(AdaptedfromKaneGCetal.Impactofageonpulmonaryarterysystolicpressuresatrestandwithexercise.EchoResearchandPractice,2016;3:53–61,withpermission.)DobutamineEchoViabilityProtocol(5-minuteStages)StageWattsI25II50III75IV100V125VI150VII175TheDopplerdataacquiredbythesonographerincludeCWDopplerofthemitralinflowandtricuspidregurgitationjet,formeasurementofthetransmitralmeandiastolicpressuregradientandtricuspidregurgitationpeakvelocityatrestandwithexercise(Fig.16-14).Anincreaseinthemeanmitralgradientto15mmHgormoreindicatesthatthemitralstenosisishemodynamicallysignificantandthatthepatientwilllikelybenefitfromaninterventionsuchaspercutaneousmitralballoonvalvuloplastyormitralvalvereplacement.Anothersupportivefindingisthatofexercise-inducedrightventricularsystolicpressureof60mmHgorgreater.Supinebikeexerciseechocardiographyhasbeenusedtoassesschangeintheseverityofdegenerativemitralregurgitation(37).Magneetal.foundthattheseverityofdegenerativemitralregurgitationincreaseswithexerciseinone-thirdofpatients.Patientswithamarkedincreaseinregurgitantvolumewithexercisehadlowersymptom-freesurvivalcomparedtothosewithdecreasedorunchangedmitralregurgitantvolume(37).ExerciseechocardiographyinvalvularheartdiseasesisalsodiscussedinChapter13.HYPERTROPHICCARDIOMYOPATHYAlthoughjustover1/3ofpatientswithhypertrophiccardiomyopathyhavesystolicanteriormotion–relatedLVOTobstructionatrest,another1/3willhaveprovocableobstruction,definedasapeakgradientof50mmHgorgreater(38).InterventionsthatarecommonlyusedintheechocardiographylaboratorytoprovokeLVOTobstructionincludetheValsalvamaneuver,amylnitriteinhalation,andexercisetesting.ThelasttwoaremorelikelytoinduceLVOTobstruction.IfnosignificantobstructionisinducedbytheValsalvamaneuveroramylnitriteinhalation,itisstillworthwhileexercisingthepatient.Wefavoruprighttreadmillexerciseandimmediatepostexerciseimagingwiththepatientpositionedintheleftlateraldecubitusposition.Continuous-waveDoppler,twodimensional,andcolorflowimagingisperformedbeforeandimmediatelyafterexercisetoassessthepeakLVOTvelocityandgradientandtheseverityofanysystolicanteriormotion–relatedmitralregurgitation.Continuous-waveDopplerdataofthemitralregurgitantjetarealsoacquiredtopreventconfusionwithinterpretationoftheDopplersignalthatmightoccurifthereiscontaminationoftheLVOTDopplersignalbymitralregurgitation(Fig.16-15).SymptomaticpatientswhohaveinducibleLVOTobstructionmayrequireadditionalmedicaltherapy.Ifsymptomsremainrefractorytomedicaltherapy,ventricularseptalreductiontherapywithsurgicalmyectomyorpercutaneousseptalablationmaybenecessary(39).DobutamineisnotrecommendedasastressorbecauseitcaninduceLVOTobstructioninpatientswhodonothavehypertrophiccardiomyopathy.Otherfindingsonexerciseechocardiography,includingnewregionalwallmotionabnormalities,areofprognosticvalueandmayhavearoleinstratifyingthecardiovascularriskofthesepatients(40).FIGURE16-14Doppler-derivedhemodynamicsofmitralstenosisbeforeandduringsupinebikeexercise.A47-year-oldwomanwithmildexertionaldyspneahadatransmitralmeandiastolicgradientof10mmHgatrest(heartrate80bpm).Sheexercisedfor7minutesonasupinebikeprotocol,stoppingbecauseofdyspnea.Continuous-waveDopplerdatawereacquiredat3stagesofexercise:transmitralmeangradient(A),tricuspidregurgitation(TR)peakvelocity,andrightventricular(RV)systolicpressure(B).Thediagnosisofhemodynamicallyseveremitralstenosiswasconfirmed.Therewasalsosevereexercise-inducedpulmonaryhypertension.Thepatientunderwentpercutaneousmitralballoonvalvotomywithsubsequentresolutionofhersymptoms.Assumedrightatrialpressureis5mmHg.DOBUTAMINEECHOFORLOW-FLOW,LOWGRADIENTAORTICSTENOSISSomepatientswithcalcificaorticstenosishaveleftventricularsystolicdysfunction(ejectionfraction6cmascendingaortaand>7cmdescendingthoracicaorta),traumaticaneurysm,andassociatedcoronaryandcarotidarterydisease.Ruptureriskisafunctionofaneurysmsizeatrecognition(0%foraneurysms4mmthick,mobilelesions,ulceration)indescendingaortahasthestrongestassociationwiththepresenceofcoronaryarterydisease(15).Antiplateletagents,statintherapy,andaggressivemodificationofothercardiovascularriskfactorsarewarrantedinpatientswithaorticatherosclerosis.ACEinhibitorsalsoreducetheriskofischemiccardiovasculareventsinpatientswithaorticatherosclerosis.Warfarinmaybebeneficialforreducingsubsequentemboliceventsinpatientswithmobilelesions,butitmayalsoexacerbateembolisminsomepatients;furtherrandomizedtrialsarerequired.Thetreatmentofchoiceinsymptomaticpatientsistoidentifythesourceofembolismandtoexcludeitfromthecirculationwitheithersurgicalresectionorplacementofanendovasculargraft.ACUTEAORTICSYNDROMESAcuteaorticsyndromereferstoagroupofclinicalsyndromesincludingacuteaorticdissection(AAD)andothervariantformsofclassicaorticdissection,notablyaorticIMH,andPAU.Imagingfindings,ratherthanclinicalfeatures,arecriticalinthedifferentialdiagnosisofacuteaorticsyndrome(16),and,therefore,carefulinterpretationofimagingresultsisnecessarytoprovideanaccuratediagnosisandimproveclinicaldecision-makingandpatientoutcomes.AORTICDISSECTIONThemostcommonpredisposingfactorsforAADareadvancedage,malegender,hypertension,Marfansyndrome,andcongenitalabnormalitiesoftheaorticvalve(bicuspidorunicuspidvalve).WhenAADcomplicatespregnancy,itusuallyoccursinthethirdtrimester.Iatrogenicaorticdissection,asaresultofcardiacsurgeryorinvasiveangiographicprocedures,canalsooccur.AADinvolvingtheascendingaortaisdesignatedastypeA(proximal,typeI,typeII),anddissectionconfinedtothedescendingthoracicaortaisdesignatedastypeB(distal,typeIII).Thesuddenonsetofseverepain(oftenmigratory)intheanteriorchest,back,orabdomenisthemostsuggestiveclinicalfindinginAAD(sensitivity[90%];specificity[84%]).Additionalfindingsincludehypertension(36%typeA,70%typeB),anaorticdiastolicmurmur(28%),pulsedeficitsorbloodpressuredifferential(30%typeA,21%typeB),andneurologicchanges(17%)(17).SyncopeinassociationwithAADoccurswhenthereisruptureintothepericardialspace,producingcardiactamponade.Congestiveheartfailureisduemostcommonlytosevereaorticregurgitation.Acutemyocardialinfarction(mostcommonlyinferiorinfarctionduetorightcoronaryarteryostialdissection)andpericarditisareadditionalcardiacpresentations.FIGURE20-7A:Multiplanetransesophagealechocardiogram(0-degreesimagingplane)exhibitsvariabledegreesofimmobileatheroscleroticdisease(arrows)diffuselyinvolvingthedescendingthoracicaorta.B:Multiplanetransesophagealechocardiogram(99-degreesimagingplane)revealssevereimmobileatherosclerosisandalong,highlymobilethrombusinthedistaltransverseaorticarch.C:Real-timethree-dimensionaltransesophagealechocardiogramdemonstratessevereimmobileatheroscleroticdisease(*)aswellastwomobileatheroscleroticlesionsinvolvingtheproximaldescendingthoracicaorta.00:00/00:00Video20-7A00:00/00:00Video20-7B00:00/00:00Video20-7CBedsidecalculationoftheaorticdissectiondetectionriskscorecanestimatethepretestprobabilityofdisease,allowsforrapididentificationofhigh-riskpatients,andfacilitatespromptevaluationandtreatment(18).RoutinebloodtestsarenonspecificinthediagnosisofAAD,although,inalargecohortofpatientswithsuspectedaorticdissection,thepresenceofanADDriskscore0or≤1combinedwithanegativeD-dimer(5mm)intheabsenceofdetectablebloodflow(Fig.20-15)(30).Withexpansion,thehematomamayencroachontheaorticlumenand,ifintimalcalciumispresent,displaceitcentrally.Inclinicalpractice,multidetectorCTisthebestdiagnosticmodality,sinceitcanimagetheentireaortaandbranchvessels.TheclassificationschemesandmanagementofIMHarecurrentlysimilartoAAD—operationfortypeAIMHandmedicaltreatmentfortypeBIMH.FIGURE20-15A:Transversetransesophagealviewofthedescendingthoracicaorta(Ao)showinganintramuralhematomainapatientwithhypertensionandseverebackpain.Thesofttissuemasswithasmoothsurfaceappearsdifferentfromaorticdebris.Duringthenext6months,theintramuralhematomadisappearedwhilethepatientwastakingantihypertensivemedications,includingaβ-blocker.B:Long-axistransesophagealviewshowingintramuralhematoma(arrows)intheascendingaorta(Ao).LA,leftatrium.INCOMPLETEAORTICRUPTUREIncompleteaorticrupture(IAR)mostoftenoccursintheregionoftheaorticisthmus(locatedbetweentheleftsubclavianarteryandthefirstintercostalarteries)inpatientswhosustainhigh-energybluntchesttraumainvolvingrapiddeceleration,suchasinamotorvehiclecollision.IARshouldbesuspectedwhenthereisevidenceoftraumatothechestwall,decreasedorabsentlegpulses,andleft-sidedhemothoraxorwideningofthesuperiormediastinumonchestradiography.Patientsusuallyarehypertensiveoninitialpresentation.AlthoughthediagnosisofIARcanbeconfirmedwithTEE,CT,MRI,oraortography,contrast-enhancedCTandTEEarecurrentlythepredominantimagingmodalities.CharacteristicTEEfindingsincludedisruptionoftheaorticwallandthepresenceofathickandirregularintraluminalflaptraversingthelumenoftheaortainthetransverseplane,intheregionoftheaorticisthmus(25to35cmfromtheincisors,immediatelydistaltotheoriginoftheleftsubclavianartery)(Figs.20-16and20-17).Inthelongitudinalview,theintraluminalflapisnearlyperpendiculartotheaorticwall,sincetraumaticlesionsareusuallyconfinedtoafewcentimeters.ColorDopplerechocardiographydemonstratessimilarbloodflowvelocitiesonbothsidesofthelesion.Anabnormalaorticcontourisalsocommonlyseenduetotheacuteformationofalocalizedfalseaneurysm(pseudoaneurysm).FIGURE20-16Transesophagealviewofaruptured(arrows)descendingaorta(Ao)thatresultedinapseudoaneurysm(PsA)withthrombus(T).Thisimageisfromapatientwhowasinamotorvehicleaccident3yearsbeforethisstudywasperformed.TEEhashighsensitivity(91%–100%)andspecificity(98%–100%)andcanbeperformedinhemodynamicallyunstablepatientsintheemergencydepartmentortheoperatingroom,requiresnocontrast,andprovidesadditionalinformationoncardiacandvalvularfunction,aswellaspericardialeffusion(30).TEEisoperatordependentandisalsolimitedbylossofsensitivityastheinterpositionoftheair-filledtracheabetweentheaortaandesophaguscreatesablindspot,precludingadequateevaluationofthedistalascendingaortaandproximalarch.Inaddition,TEEshouldnotbeperformedinpatientswithunstablecervicalspineinjuriesoresophagealinjuries.TEEcomparesfavorablytoangiographyorCTscaninthemajorityofcasesandcanidentifysomeintimaltearsnotseenoncorrespondingangiography.TTEcannotreliablyexcludethediagnosisofIARand,therefore,shouldnotbeusedforthisindication.FIGURE20-17A:Multiplanetransesophagealechocardiograminthetransverse(0degree)imagingplanedemonstratesathickandintraluminalflap(arrow)traversingthelumenoftheaortaintheregionoftheaorticisthmus,immediatelydistaltotheoriginoftheleftsubclavianarteryinapatientwithincompleteaorticrupturefollowingamotorvehicleaccident.B:Inthelongitudinalplane,theintraluminalflap(arrow)isnearlyperpendiculartotheaorticwall,acharacteristicfeatureofincompleteaorticrupture.00:00/00:00Video20-17A00:00/00:00Video20-17BNosingleimagingtestcanidentifyallcasesofIAR;therefore,morethanoneimagingtestmayberequiredtoestablishthediagnosis.ComputedtomographyandTEEarethemajordiagnosticmodalitiescurrentlyusedtoevaluatetraumaticaorticinjury.GiventhehighsensitivityandspecificityofCTforthoracicaorticinjuryandthewideavailabilityofCTintheemergencysetting,itisthediagnostictestofchoiceforhemodynamicallystablepatients.TEEisprimarilyindicatedintheassessmentofhemodynamicallyunstablepatientsandinthosepatientswithequivocalCTfindings.TreatmentofIARisanemergentsurgicalrepairinpatientswhoaresuitablesurgicalcandidates(31).Atinitialpresentation,40%to50%ofthepatientsareunstable,andtherearenoclinicalorimagingcriteriathataccuratelypredictfuturecompleterupture.Therefore,evenifapatientpresentswithachronicincompleterupture,surgeryisindicated.Furthermore,mostofthepatientsareyoung,andtheriskofelectivesurgicalrepairislow,withanotherwisegoodprognosisforlong-termsurvivalifaorticrepairissuccessful.Thoracicendovascularaorticrepaircanbeperformedwithacceptableresultsinahighriskpopulation(32).AORTITISAortitisisapathologictermforthepresenceofinflammatorychangesoftheaorticwall.Aorticwallinflammationmaybeofinfectiousetiologybutismorecommonofnoninfectiousorigin.Infectiousaortitisisusuallytheresultofsepticembolismthatmayresultinmycoticaneurysmformation,butbacteremiaandspreadofcontiguousinfection,aswellaschronicsyphilis,canalsooccur.Inflammatorydisordersthatareassociatedwiththedevelopmentofaortitisincludegiantcellarteritis,Takayasuarteritis,rheumatoidarthritis,ankylosingspondylitis,granulomatosiswithpolyangiitis,reactivearthritis,andBehçetdisease.Multimodalityimagingofaortitisisusefultoidentifyacuteandchronicmuralchangesduetoinflammation,edema,andfibrosis,aswellasdetectionofananeurysm,stenosisorocclusion(33).PETisthemostsensitivetestforearlyvesselinflammation;however,CTorMRimagingisrequiredforanatomiclocalization.CTprovidesexcellentanatomicalcharacterizationofstructuralaorticchangesbutislimitedinitsassessmentofearlydiseaseactivity.MRprovidescharacterizationofbothearlyinflammatoryvesselchangesandlatestructuralchanges,aswellasdedicatedcardiacandvalvularassessment.Echocardiographycanprovidebothanatomicalandphysiologicinformationregardingaorticandvalvularabnormalities.Althoughnotprimarilyutilizedinthediagnosisofaortitis,TTEandTEEcanprovideusefulinformation.Echocardiographyisaccurateinidentifyingcomplicationsofaortitissuchasaorticdilatation,aorticaneurysm,andaorticvalveinsufficiency,aswellassecondarymyocardialdysfunction.OthersuggestivefeaturesofaortitisonTEEincludeadiffuseandhomogeneousincreaseinaorticwallthickness(Fig.20-18).Inchronicaortitis,thoracicaorticstenosisandaneurysmformationmayoccur.Ankylosingspondylitismostfrequentlyaffectstheaorticrootandresultsindilatation,wallthickening,andnodularitiesoftheaorticcusps.Syphilismostfrequentlyaffectstheaorticrootresultinginaneurysmaldilatation.FIGURE20-18Transesophagealimagesfroma61-year-oldmanwithgiantcellarteritiswhopresentedwithfeverofunknownorigin,erythrocytesedimentationrateof102mm/1h,andjawclaudication.Descendingthoracicaorta(Ao)(A)andarch(Arch)(B)viewsshowedincreasedthicknessoftheintima(arrows)duetoaortitis,whichhasanappearancesimilartothatofintramuralhematoma.AORTICTUMORANDMASSAorticsarcomasarerareandaggressivetumorswithapropensityforarterialembolization,disseminatedmetastases,andrapidclinicaldeterioration.Clinically,mostofthesepatientspresentwithsymptomssuchasabdominalpain,unrelentinghypertension,lowerextremityclaudication,orsymptomsofdistalembolization.MRI,CT,andpositronemissiontomographyarethepreferrednoninvasivetestsfordiagnosis(34).Thediagnosisofaorticsarcomawithechocardiography(TTE/TEE)isdifficult.TEEfindingsinaorticsarcomaincludeaninhomogeneousandecho-densemasswithanoutermembrane,unlikeathrombus,suggestiveofaprimaryaortictumor(Fig.20-19).FIGURE20-19Inapatientwithmesentericischemia,transthoracicechocardiography(subcostalview)inthelongitudinalplanedemonstratedabroad-basedmass(arrows)withasmallermobilecomponentattachedtothewalloftheproximalabdominalaorta.Subsequentsurgicalpathologydemonstratedthemasstobegrade4epithelioidangiosarcomawithassociatedorganizingthrombus.00:00/00:00Video20-19Prognosisispooroverall,butlong-termsurvivorshavebeenreportedinthesettingofaggressivemanagement.Duetothepaucityofcasesworldwide,knowledgeofthediagnosisandmanagementofaorticsarcomaislimited.Paragangliomasareneuroendocrinetumorsthatcanbeeitherbenignormalignantandcanbehormonallyactiveorinactive.Approximately2%ofparagangliomasarefoundinthemediastinum,wheretheymostcommonlypresentasananteriororposteriormediastinalmass,lesscommonlyasamiddlemediastinalmass(35).Paragangliomasdonotoccurcommonlyinthechest,butwhentheydo,thehormonallyinactivetumorsaremorefrequentinthepericardium,whilehormonallyactivetumors(pheochromocytomas)morefrequentlyariseelsewhereinthethorax.Characteristicfeaturesofparagangliomaonechocardiographyincludeawellmarginatedandroundorovoid-shapedmassofvariablediameter,withhomogeneousandmoderateechogenicity(36)(Fig.20-18).Paragangliomacancompressorinvadetheadjacentaortaandinfluencehemodynamics.Completeresectionoftumorisusuallypossible.Asistrueofallpheochromocytomaresections,preoperativeandintraoperativeadrenergicblockademustbeemployed.Wehavealsoseenalargesessileormobilemassintheaortathatturnedouttobeathrombus(Fig.20-20)andalsoinanothercasewasassociatedwithmalignancyandinfection(Fig.20-21).Theirinitialpresentationwasanemboliceventtovariousorgans.Therehavebeenreportsofresolvingthromboticmassintheaortawithanticoagulation,butitisoftendifficulttodistinguishthrombusfromotheretiologies.Unlesscontraindicated,itmaybeclinicallyreasonabletotryanticoagulationfor4to6weeksandreassessbeforeconsiderationofsurgicalremoval(Fig.20-22).FIGURE20-20Intraoperativemultiplanetransesophagealechocardiograminapatientwithposteriormediastinalparagangliomarevealsalarge,well-circumscribedinhomogeneousmass(*)adjacenttothedistaldescendingthoracicaorta.00:00/00:00Video20-20FIGURE20-21A:Suprasternalnotchviewoftheascendingandtransverseaortashowingalargesessilemass(*)inayoungwomanwithmultipleembolicevents.Themassdisappearedon2daysofintravenousanticoagulation,butthemassreturnedwithanotherembolicevent.Thepatientwastakentotheoperatingroomforasurgicalremoval.B:Intraoperativetransesophagealechocardiographyshowsamass(*)withmobilecomponent(2Dleftand3Dright).Pathologydemonstratedthrombus.Comprehensiveevaluationshowednocoagulopathyormalignancy.00:00/00:00Video20-21A00:00/00:00Video20-21B00:00/00:00Video20-21CFIGURE20-22Thistransesophagealechocardiogram(2Dtop,3Dbottom)ofthedescendingthoracicaortawasobtainedfroman82-year-oldmanwithfever,nightsweats,andweightlossaswellasmultiplepainfultoes.Therewasmobilemass(arrowsandasterisk),whichwasnotpresentonaTEE2dayspriorthatwasperformedforevaluationofendocarditis.Hewasalsofoundtohaveepithelioidhemangioendotheliomawithlyticlesionsinthespine.00:00/00:00Video20-22A00:00/00:00Video20-22B00:00/00:00Video20-22CCOARCTATIONOFTHEAORTAAcquiredcoarctationoftheaortamayoccurinthesettingofprioraorticsurgery,bluntthoracicaorticinjuries,aortictumor,bulkyatheroscleroticlesions(coralreefaorta),andchronicTakayasudisease(37).CharacteristicTTEfindingsincludenarrowingofthedescendingthoracicaortaandanincreaseinDopplervelocityacrossthenarrowinganddiastolicforwardflowintheproximalabdominalaorta.TEEisusuallyrequiredtovisualizetheobstructinglesion.CongenitalcoarctationoftheaortaiscoveredinChapter21.REFERENCES1.GoldsteinSA,EvangelistaA,AbbaraS,etal.Multimodalityimagingofdiseasesofthethoracicaortainadults:FromtheAmericanSocietyofEchocardiographyandtheEuropeanAssociationofCardiovascularImaging:EndorsedbytheSocietyofCardiovascularComputedTomographyandSocietyforCardiovascularMagneticResonance.JournaloftheAmericanSocietyofEchocardiography,2015;28(2):119–182.2.AmsallemM,OuP,MilleronO,etal.ComparativeassessmentofascendingaorticaneurysmsinMarfanpatientsusingECG-gatedcomputerizedtomographicangiographyversustrans-thoracicechocardiography.InternationalJournalofCardiology,2015;184:22–27.3.VrizO,AboyansV,D’AndreaA,etal.Normalvaluesofaorticrootdimensionsinhealthyadults.TheAmericanJournalofCardiology,2014;114(6):921–927.4.CampensL,DemulierL,DeGrooteK,etal.Referencevaluesforechocardiographicassessmentofthediameteroftheaorticrootandascendingaortaspanningallagecategories.TheAmericanJournalofCardiology,2014;114(6):914–920.5.ElefteriadesJA.Naturalhistoryofthoracicaorticaneurysms:indicationsforsurgery,andsurgicalversusnonsurgicalrisks.TheAnnalsofThoracicSurgery,2002;74(5):S1877–S1880.6.GhulamAliS,FusiniL,DallaCiaA,etal.Technologicaladvancementsinechocardiographicassessmentofthoracicaorticdilatation:Headtoheadcomparisonamongmultidetectorcomputedtomography,2-dimensional,and3-dimensionalechocardiographymeasurements.JThoracImaging,2018;33(4):232–239.7.DouglasPS,GarciaMJ,HainesDE,etal.ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR2011appropriateusecriteriaforechocardiography.AreportoftheAmericanCollegeofCardiologyFoundationappropriateusecriteriataskforce,AmericanSocietyofEchocardiography,AmericanHeartAssociation,AmericanSocietyofNuclearCardiology,HeartFailureSocietyofAmerica,HeartRhythmSociety,SocietyforCardiovascularAngiographyandInterventions,SocietyofCriticalCareMedicine,SocietyofCardiovascularComputedTomography,SocietyforCardiovascularMagneticResonanceAmericanCollegeofChestPhysicians.JournaloftheAmericanSocietyofEchocardiography,2011;24(3):229–267.8.HiratzkaL,CreagerM,IsselbacherE,etal.Surgeryforaorticdilatationinpatientswithbicuspidaorticvalves:AstatementofclarificationfromtheAmericanCollegeofCardiology/AmericanHeartAssociationTaskForceonClinicalPracticeGuidelines.Circulation,2016;133(7):680–686.9.HiratzkaLF,CreagerMA,IsselbacherEM,etal.Surgeryforaorticdilatationinpatientswithbicuspidaorticvalves:AstatementofclarificationfromtheAmericanCollegeofCardiology/AmericanHeartAssociationTaskForceonClinicalPracticeGuidelines.JournaloftheAmericanCollegeofCardiology,2016;67(6):724–731.10.MichelenaHI,KhannaAD,MahoneyD,etal.Incidenceofaorticcomplicationsinpatientswithbicuspidaorticvalves.JAMA,2011;306(10):1104–1112.11.WeinreichM,YuPJ,TrostB.Sinusofvalsalvaaneurysms:Reviewoftheliteratureandanupdateonmanagement.ClinicalCardiology,2015;38(3):185–189.12.BirdA-N,DavisAM.Screeningforabdominalaorticaneurysm.JAMA,2015;313(11):1156–1157.13.ParkinsonF,FergusonS,LewisP,etal.Ruptureratesofuntreatedlargeabdominalaorticaneurysmsinpatientsunfitforelectiverepair.JournalofVascularSurgery,2015;61(6):1606–1612.14.AboyansV,BatailleV,BliscauxP,etal.Effectivenessofscreeningforabdominalaorticaneurysmduringechocardiography.TheAmericanJournalofCardiology,2014;114(7):1100–1104.15.GuX,HeY,LiZ,etal.Relationbetweentheincidence,location,andextentofthoracicaorticatherosclerosisdetectedbytransesophagealechocardiographyandtheextentofcoronaryarterydiseasebyangiography.TheAmericanJournalofCardiology,2011;107(2):175–178.16.Acuteaorticsyndromes:diagnosisandmanagement,anupdate.EurHeartJ,2018;33(9):739–749.17.HaganPG,NienaberCA,IsselbacherEM,etal.TheInternationalRegistryofAcuteAorticDissection(IRAD):Newinsightsintoanolddisease.JAMA,2000;283(7):897–903.18.RogersAM,HermannLK,BooherAM,etal.Sensitivityoftheaorticdissectiondetectionriskscore,anovelguideline-basedtoolforidentificationofacuteaorticdissectionatinitialpresentationresultsfromtheInternationalRegistryofAcuteAorticDissection.Circulation,2011;123(20):2213–2218.19.NazerianP,MorelloF,VanniS,etal.CombineduseofaorticdissectiondetectionriskscoreandDdimerinthediagnosticworkupofsuspectedacuteaorticdissection.InternationalJournalofCardiology,2014;175(1):78–82.20.BossoneE,SuzukiT,EagleK,etal.Diagnosisofacuteaorticsyndromes:Imagingandbeyond.Herz,2013;38(3):269–276.21.CecconiM,ChirilloF,CostantiniC,etal.TheroleoftransthoracicechocardiographyinthediagnosisandmanagementofacutetypeAaorticsyndrome.AmericanHeartJournal,2012;163(1):112–118.22.HiratzkaLF,BakrisGL,BeckmanJA,etal.2010ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVMguidelinesforthediagnosisandmanagementofpatientswithThoracicAorticDisease:AreportoftheAmericanCollegeofCardiologyFoundation/AmericanHeartAssociationTaskForceonPracticeGuidelines,AmericanAssociationforThoracicSurgery,AmericanCollegeofRadiology,AmericanStrokeAssociation,SocietyofCardiovascularAnesthesiologists,SocietyforCardiovascularAngiographyandInterventions,SocietyofInterventionalRadiology,SocietyofThoracicSurgeons,andSocietyforVascularMedicine.Circulation,2010;121:1544–1579.23.BooherAM,IsselbacherEM,NienaberCA,etal.TheIRADclassificationsystemforcharacterizingsurvivalafteraorticdissection.TheAmericanJournalofMedicine,2013;126(8):730.e19–730.e24.24.BossoneE,GorlaR,LaBountyTM,etal.Presentingsystolicbloodpressureandoutcomesinpatientswithacuteaorticdissection.JAmCollCardiol,2018;71(13):1432–1440.25.DisabellaE,GrassoM,GambarinFI,etal.Riskofdissectioninthoracicaneurysmsassociatedwithmutationsofsmoothmusclealpha-actin2(ACTA2).Heart,2011;97(4):321–326.26.LansmanSL,SaundersPC,MalekanR,etal.Acuteaorticsyndrome.TheJournalofThoracicandCardiovascularSurgery,2010;140(6):S92–S97.27.ChengD,MartinJ,ShennibH,etal.Endovascularaorticrepairversusopensurgicalrepairfordescendingthoracicaorticdisease:Asystematicreviewandmeta-analysisofcomparativestudies.JournaloftheAmericanCollegeofCardiology,2010;55(10):986–1001.28.SlavichM,BertoglioL,FisicaroA,etal.Theroleofcontrastenhancedtransesophagealechocardiographyinthediagnosisandinthemorphologicalandfunctionalcharacterizationofacuteaorticsyndromes.TheInternationalJournalofCardiovascularImaging,2014;30(1):31–38.29.UchidaK,ImotoK,KarubeN,etal.Intramuralhaematomashouldbereferredtoasthrombosed-typeaorticdissection.EuropeanJournalofCardio-ThoracicSurgery,2013;44(2):366–369.30.ErbelR,AboyansV,BoileauC,etal.2014ESCGuidelinesonthediagnosisandtreatmentofaorticdiseases.EuropeanHeartJournal,2014;35(41):2873–2926.31.SpencerSM,SafcsakK,SmithCP,etal.NonoperativemanagementratherthanendovascularrepairmaybesafeforgradeIIblunttraumaticaorticinjuries:An11-yearretrospectiveanalysis.JTraumaAcuteCareSurg,2018;84(1):133–138.32.PatelHJ,WilliamsDM,DrewsJD,etal.A20-yearexperiencewiththoracicendovascularaorticrepair.AnnalsofSurgery,2014;260(4):691–696.33.HartlageGR,PaliosJ,BarronBJ,etal.Multimodalityimagingofaortitis.JACC.CardiovascularImaging,2014;7(6):605–619.34.RusthovenCG,LiuAK,BuiMM,etal.Sarcomasoftheaorta:asystematicreviewandpooledanalysisofpublishedreports.AnnalsofVascularSurgery,2014;28(2):515–525.35.WaldO,ShapiraOM,MurarA,etal.Paragangliomaofthemediastinum:Challengesindiagnosisandsurgicalmanagement.JournalofCardiothoracicSurgery,2010;5:19.36.LiL,ZhuW,FangL,etal.Transthoracicechocardiographicfeaturesofcardiacpheochromocytoma:Asingleinstitutionexperience.Echocardiography,2012;29(2):153–157.37.PalcauL,GouicemD,CameliereL,etal.Calcifiedobstructivediseaseoftheaorticarch.InteractiveCardiovascularandThoracicSurgery,2014;18(5):683–684.CHAPTER21CongenitalHeartDiseasePatrickO’Leary,NaserAmmash,andFrankCettaCongenitalheartdisease(CHD)isoneofthemostcommonbirthdefects,involvingapproximately1%oflivebirths.CHDcanoftenbelifethreateningandattimesnecessitateinterventionininfancyandearlychildhood.Thesuccessoftheseinterventionsisdependentonclearanatomicandfunctionalunderstandingoftheanomalies.Echocardiographyhasbecometheprimarytoolusedtoevaluatethesehearts.Duetoprogressiveimprovementsinmedicalcare,diagnosticimaging,surgical/interventionaltechniques,andcriticalcareforCHD,itisestimatedthatover90%ofinfantswithCHDwillsurvivetoreachadulthood.Asaresult,thenumberofadultswithCHDnowexceedsthenumberofchildrenwithCHDintheUnitedStates.CurrentestimatessuggestthatthegrowthratefortheU.S.adult“CHDpopulation”isapproximately5%/year.PatientswithCHDrepresentaheterogeneousgroupincludingsimpledefects(atrialseptaldefects,ventricularseptaldefects[VSDs],coarctationoftheaorta)andcomplexmalformationssuchasEbsteinanomaly,tetralogyofFallot(TOF),transpositionofthegreatarteries,andfunctionallyuniventricularhearts.ItiscommonlyrecognizedthatrepairsofCHDarenot“curative.”Asaresult,manyresiduaandcomplicationsafterrepairofCHDcontinuetorequireevaluationandpotentiallyreinterventioninadulthood.TheseissuesandtheexpandingpopulationofadultswithCHDemphasizetheneedforboth“pediatric”and“adult”cardiacsonographerstounderstandthesemalformations.EchocardiographicimaginginthosewithCHDcanbechallengingforthosewhodonotperformtheseexaminationsfrequentlyduebothtothebroadspectrumofmalformationsandpatienttopatientvariability.ThischapterwillfirstdescribeanapproachtoimagingCHDpatientsthatcanbeappliedby/toallandwillconcludewithsectionsillustratingthevariedpresentationsandechocardiographicfeaturesofcommonformsofCHDbothbeforeandafterrepair.SEGMENTALAPPROACHTOCONGENITALHEARTDEFECTSAsystematicmethodforechocardiographicallyevaluatingCHDsisrequiredtounderstandtheanatomicandtheresultantpathophysiologicdisturbancesseeninthesepatients.ThefirststepinanyanalysisofthecardiovascularsystemistodeterminethepositionandorientationofthecardiacstructureswithinthethoraxrelativebothtoadjacentCVstructuresandalsotothesurroundingorgansystems,primarilythelungsandabdominalviscera.Oncethisinformationisoutlined,thecardiovascularsystemcanbedividedintosegmentsformoredetailedanalysis.Typically,thecardiovascularsystemthoughttobecomposedoffourmajorsegmentsandthethreeconnectionsbetweenthesesegments(Fig.21-1).Thesegmentsarethegreatveins,theatria,theventricles,andthegreatarteries.Theconnectionsconsistofthevenousconnectionstotheatria(venoatrial),theatrioventricular(AV)connection(primarilytheAVvalves;mitralandtricuspid,orcommon,andtheventriculoarterial[VA]connection,namely,thesemilunarvalves[aorticandpulmonaryortruncal]).Theechocardiographicexaminationmustnotonlyassessthepositionandsizeofeachsegmentalcomponentbutonemustalsodefinethefunctionalstatusandstateofseptation(separationoftheright-sidedfromtheleft-sidedcirculatorystructures)ofallstructureswithinasegment.Forexample,acompleteevaluationoftheventricularsegmentincludesdescriptionsofthepositionsofthetwoventricularchambers(bothinspaceandrelativetotheotherventricle);thesizeofthechambers;assessmentsofcontractility,relaxation,andwallthickness;andananatomicdescriptionoftheventricularseptum(usuallyfocusingonitsrelationtotheoutflowtractsandthepresenceorabsenceofVSDs).Similarly,anexaminationofaconnectionshouldincludedescriptionsoftheposition,anatomy,“appropriateness”oftheconnection(e.g.,pulmonaryveins“appropriately”connecttotheleftatrium[LA],nottothesuperiorvenacava[SVC]),andthefunctionalstatusoftheconnection(e.g.,towhatdegreeistherestenosisorregurgitation?).Byfollowingthistypeofsystematicapproach,eventhemostcomplexmalformationscanbedescribedaccuratelyandcompletely(1–6).FIGURE21-1SegmentalapproachtoCHD.Adiagrammaticrepresentationofthefourmajorcardiovascularsegmentsandthethreeconnectionsbetweenthesesegments.IMAGEORIENTATIONINCONGENITALHEARTDEFECTSCHDsinvolvestructuralandpositionalabnormalitiesthatcanbecomplexanddonotnecessarilyfollowexpectednorms.Therefore,congenitalechocardiographicexaminationstendtoorientimagesusingthecongenital(anatomic)conventionsdescribedbelow(7).Theseconventionsdictatethattheimageshouldbeorientedbasedonthemajoraxesofthebodyandinthesamewayforeveryexam,independentoftheimagingtechniqueused(transthoracicechocardiography[TTE],transesophagealechocardiography[TEE](8),orintracardiacechocardiography).Horizontalviews,suchasparasternalshort-axisscans,aredisplayedwithanteriorstructurestowardthetopoftheimageandleftsidedstructurestotheviewer’sright.Sagittalviews,suchasaparasternallongaxisscan,aredisplayedwithanteriorstructurestowardthetopoftheimageandsuperiorstructurestotheviewer’sright.Coronalviews,suchastheapicalfourchamberscan,aredisplayedwithsuperiorstructuresatthetopoftheimageandleft-sidedstructurestotheviewer’sright(AmericanSocietyofEchocardiographyoptionone;(9)).Theseimagingconventionsprovideaconsistentandunambiguousdisplayoftheanatomy,withtheviewer“looking”attheheartasfromapextobase(horizontalplane),fromanteriortoposterior(coronalplane),orfromlefttoright(sagittalplane),evenwhenthecardiacstructuresaremarkedlydisplaced.CLINICALPRESENTATIONSOFCONGENITALHEARTDEFECTSPrenatalandNeonatalTheprenatalpresentationofCHDismostoftentheresultofanabnormalcardiacappearancediscoveredduringascreeningobstetricultrasoundexaminationandlessfrequentlyduetoheartfailureoranabnormalrhythm(10,11).ThesefetalpatientsoftenhavecomplexanatomicmalformationsinvolvingtheAVvalves(AVcanaldefects,Ebsteinanomaly)orabnormalitiesthatcreatedisproportionbetweenthesizeoftheright-sidedandleft-sidedcardiacstructures(functionallyuniventricularhearts,criticaloutletstenoses,oratresiaofaconnection).ThesecomplexlesionsdominatetheprenatalpresentationofCHDbecausescreeningobstetricexaminationsdependprimarilyonappearanceofthefour-chamberviewoftheheart(normalorabnormal)topredictthepresenceofCHD.However,manyimportantmalformationsdonotalterthefour-chamberview(particularlybeforethe16thweekofgestationwhenmostofthesescansareperformed).Consequently,lesionssuchastranspositionofthegreatarteries,withnormalfour-chamberappearances,areunderrepresentedinreportsofprenatalCHD.Whenscansofthegreatarteriesareincludedinobstetricscreeningstudies,thedetectionratesforimportantneonatalcardiacdefectsincreasesignificantly(12).NeonatalpresentationsofCHDcanbequitevariable,rangingfromaprominentheartmurmurinahealthybabytothecyanoticnewborninshockduetoaductal-dependentmalformation.Forthesepatients,TTEisthecornerstonefordiagnosisandevaluation.MostneonateswithsymptomaticCHDwillhaveeitheracriticalobstructivelesionoracomplexmalformationthatresultsincyanosis.Thesebabiesoftenrequireurgentintervention.However,incaseswherepulmonaryvascularresistanceremainshighafterbirth,selecteddefectsthatusuallyareconsideredtohaveprimarilyleft-to-rightshuntphysiology(e.g.,completeAVseptaldefects)candemonstratetransientbutsignificantcyanosis.Aspulmonaryresistancedecreasesandpulmonaryflowincreases,theshuntsreverseandthepatientmaydisplaythepulmonaryovercirculationexpectedfromtheiranatomicdefect.Onlydirectcardiacimaging,usuallywithTTE,candistinguishthecyanoticnewborninneedofurgentinterventionfromthosethatwillimprovewithoutsuchtreatment.TheroleofTEEinneonatalcardiologyisprimarilyforintraoperativeevaluationduringthesurgicalrepairsperformedintheseyoungpatients.PediatricandAdultPresentationsofCongenitalHeartDiseaseInfants,children,andadolescentswithCHDmaypresentwithheartmurmurs,heartfailure,cyanosis,orfailuretothriveormayremainasymptomaticformanyyears(iftheyhave“balanced”circulations).AlthoughadultswithCHDcanhavesimilarpresentations,olderCHDpatientstendtomanifestmoreexerciseintolerance,dyspneaonexertion,lowerextremityedema,stroke,andatrialarrhythmiasthandopediatricpatients.ThesepresentingsymptomsandsignsaremostlynonspecificandshouldleadtoageneralizedCVevaluation.However,certainconstellationsofproblemscanattimespointonetowardmorespecificanatomicorhemodynamicproblem.Forexample,progressivecyanosisusuallyresultsfromdecreasingpulmonarybloodflowsuggestingeitheraprogressioninpulmonarystenosisorgraduallyincreasingpulmonaryarterialpressure/resistancewhenthereisacoexistingintracardiacshunt(ASDorVSD).Alternatively,differentialcyanosisofthelowerextremities(bluefeet/pinkhands),inanadult,shouldstronglysuggestthepresenceapatentductusarteriosuscomplicatedbyEisenmengersyndrome.MultimodalityimagingtechniquesprovideimportantinformationtosupplementTTEinmanyclinicalscenarios.TEE,cardiaccomputedtomography(CT),andmagneticresonanceimaging(MRI)areallextremelyusefuladjunctstoTTE,especiallyinthelargerorpostoperativepatient.CardiacCTandMRIareofparticularbenefitwhenevaluatingtheadultwithabnormalitiesofthegreatveinsorthethoracicaorta.TheremainderofthischapterwilldiscussthespectrumofCHDfromtheperspectiveofcardiacimaging,primarilyfocusingonTTE,butwithsupplementalinformationrelativetootherimagingmodalitieswheretheyaremostuseful.MALFORMATIONSASSOCIATEDWITHSHUNTPHYSIOLOGYAtrialSeptalDefectsAtrialseptaldefects(ASD)areoneofthemostcommonformsofCHD.Theycanpresentineitherchildhoodorinadultlife.Typically,anASDresultsinaleft-to-rightshuntcrossingtheatrialseptumfromtheLAtotheRA.ThevolumeofthatshuntflowisproportionaltothesizeoftheASD,butrightventricular(RV)compliance,RVoutflowstenosis,and/orpulmonaryarterial(PA)resistancecanalsoinfluencethevolumeofshuntflowandrightheartenlargement.Atrialseptaldefectscanbeseeninisolationorcanbeencounteredinassociationwithotherdefects.Associateddefectsrangefrom“simple”(partialanomalouspulmonaryvenousconnections[PAPVCs],VSD,orpulmonarystenosis[PS])tomorecomplexformsofCHD,suchasTOF,functionallysingleventriclephysiologyorEbsteinmalformation.TTEandTEEplayveryimportantrolesinthediagnosisandassessmentofpatientswithASD,bothbeforeandaftersurgicalorpercutaneousclosure(13).SinceASDsarerarelyperfectcircles,itisveryimportanttoimagetheatrialseptumfrommultipleechocardiographicplanes.Thiswillensurethatthepositionandmaximaldimensionsofadefectaredemonstratedandwillallowfordefinitionofallofthetissuerimssurroundingthecircumferenceofthedefect.Understandingthetissuerimssurroundingthedefectiscriticaltoselectinganappropriateintervention(surgicalvs.deviceclosure).TheexaminermustalsorememberthatmultipleASDscanbepresentinthesamepatient.InadditiontotheanatomyoftheASD,theexamshouldassessthedegreeofshunting/rightheartenlargement,thepresence/absenceofRVoutflowstenosis,thepresenceandseverityofpulmonaryhypertension(ifany),theamountoftricuspidregurgitation,andotherassociatedCHD,mostcommonlyPAPVC.SecundumASDsarethemostcommonofthesedefects,accountingfor60%to75%ofallASDs.Secundumdefectsaredeficienciesinthecentral,thinsegmentoftheatrialseptumandcanbecircular,oblong,orellipticalinshape(Figs.21-2and21-3).Inpatientswhohavepooracousticwindows,thecauseofrightatrial(RA)orrightventricular(RV)enlargementmaynotbeimmediatelyevidentduringTTEexamination.Inthesesituations,TEEisveryhelpful.NotonlycantheatrialseptumandASDbedefinedingreatdetail(Fig.21-4),butothercausesofRVenlargementcanalsobeexcluded,suchasPAPVC.Inappropriatelyselectedcases,transcatheterclosureofsecundumASDcanbeaccomplishedwithgoodresults.Consequently,thisapproachhasbeenthetreatmentofchoiceinmanycenters.Itshouldbenotedthatpercutaneousclosuresareonlyappropriateforsecundumdefects,asallotherformsofASDlackthecircumferentialtissuerimstosupportcurrentlyavailabledevices.EchocardiographyhasanimportantroleinpreinterventionpatientselectionandinguidingASDdeviceplacementinthecatheterizationlaboratory.BeforecatheterclosureofsecundumASD,itisimportanttoexclude/defineadditionalabnormalitiesthatwouldrequiresurgicalratherthandevicetherapy,suchasPAPVCandtricuspidregurgitation.Inaddition,thesizeoftheASDmustbedefined,andtheamountofatrialseptaltissuepresentalongthefourprimaryrims(superior,apical,anterior,andposterior)ofthedefectshouldbequantified.Ingeneral,aminimumof5mmoftissue“rim”isneededtoadequatelysecureaclosuredevice(Fig.21-5).TEEallowsexcellentvisualizationofnotonlythetissuerimsbutalsothestructuresadjacenttothedefectandabetterappreciationofdefectshape(particularlywiththree-dimensionalimaging)(Figs21-6and217).Duringdevicedeployment,TEEorintracardiacechocardiographyareusedtoguidedeliveryandplacementoftheoccluder.TEEimagesofsuccessfullydeployedocclusiondevicesareshowninFigure21-8.FIGURE21-2SecundumASD.A:Parasternalshort-axisimageshowingrightventricular(RV)dilatationfromasecundumatrialseptaldefect(ASD).B:Apicalfourchamberviewshowsdilatationoftherightatrium(RA)andRVinthesamepatient.ThereappearstobeadropoutintheechoreturnfromtheatrialseptuminB.AlthoughthispatientdidhaveanASD,theapicalfour-chamberimageisnotareliableviewfordetectingorquantifyingthesizeofasecundumASDbecausethescanplaneisparallelwiththethinnestportionoftheseptuminthisview;therefore,theapparentdropoutisoftenanartifact.C:Asubcostalfour-chamberviewshowingthedropoutintheatrialseptumaswellasrightventricularenlargement.D:Parasternalshort-axisviewdemonstratingtheASDwithadefectdimensionof2.3cm(measurementmarkers).A,anterior;L,left;LA,leftatrium;LV,leftventricle;S,superior.FIGURE21-3SecundumASD.TypicalanatomyofamoderatesecundumASDfromsubcostalwindow.A:Subcostalsagittalplaneimage(bicavalview)showingthecentralgapintheseptumtypicalofasecundumdefect(arrows).Asterisk,superiorvenacava;LA,leftatrium;P,posterior;RA,rightatrium;S,superior.B:ColorDopplermapshowingtheshuntflowcrossingfromLAtoRA(arrow).Toobtainthebicaval(sagittal)view(A),

thescanplanewasrotatedclockwiseapproximately90degreesfromthesubcostalfour-chamber(coronal)planein(B).FIGURE21-4SecundumASD.A:Two-dimensionaltransesophagealechocardiographic(TEE)longitudinalplaneviewoftheatrialseptumdemonstratingamoderatesecundumASD.B:ColorflowDopplerimageshowstheleft-to-rightshunt.TEEshouldbestronglyconsideredincasesinwhichtheclinicalsuspicionofanASDishighonthebasisofeitherphysicalexaminationfindingsorthepresenceofunexplainedrightventricularandrightatrial(RA)dilatationonsurfaceimages.Inolderpatients,TEEcanalsobeusedtobetterdefinetheedges,orrims,ofthedefectinanattempttodeterminethesuitabilityforacatheter-baseddeviceclosure.A,anterior;LA,leftatrium;S,superior.FIGURE21-5SecundumASD(assessingtissue“rims”).Thetissuerims,whichareoutlinedbythearrows,aredemonstratedinthethreemajorplains;basetoapex(panelsAandB),superior/inferior(PanelC),andanterior/posterior(panelD).Therimsshownin(panelsAandC)shouldbeadequatetosecureadevice(>5mm).However,thebasal/posteriorrimin(panelsBandD)waslessthan3mminlengthandwasnotlikelytoadequatelysecureaclosuredevice.Thesmallanterior(retroaortic)riminthisexample(panelD)presentslessofaproblemfordevicestability.However,thesmallposterobasalrimarguedstronglyforsurgicalreferral.TheasteriskinpanelBindicatesthecenteroftheASD,whiletheasteriskinpanelCshowsthepostionofthesuperiorvenacava.A,anterior;Ao,aorta;L,left;LA,leftatrium;LV,leftventricle;P,posterior;RA,rightatrium;RV,rightventricle;S,superior.PrimumASDsrepresentapproximately15%ofallASDsandareoneformofagroupofmalformationscharacterizedbyarrestedendocardialcushiondevelopment.Thesedefectswillbediscussedandillustratedmorecompletelyinthesectionofthechapteroutliningallformsofendocardialcushion-relatedanomalies(atrioventricularseptaldefects).FIGURE21-6SecundumASD.Thisseriesoffiguresandvideosrepresentacombinationimagesfromatransthoracicexamination(upperpanels)andsubsequenttransesophagealechocardiography(middleandlowerpanels).Thetwoupperstillimagesinthefigurearetakenfromasubcostaltransducerpositionanddemonstratetheatrialseptum,withtwodimensionalthedropoutsuggestingadefectandcolorflowconfirmingthepresenceofashunt.TEEimagingimprovesdefinitionoftheASDanditsassociatedleft-to-rightshunthasseeninthemiddlepanelsofthefigure.Thelowerpanelisthree-dimensionalrepresentationsoftheatrialseptumobtainedbytransesophagealimaging.Onecanseethatthedefectitself(indicatedbytheasterisk)isrelativelysmoothandcircularinnaturewithsignificantrimsoftissuesurroundingandseparatingitfromadjacentcardiovascularstructures.A,anterior;AoandAOV,aorticvalve;IAS,interatrialseptum;L,left;LA,leftatrium;P,posterior;RA,rightatrium;S,superior.00:00/00:00Video21-6A00:00/00:00Video21-6B00:00/00:00Video21-6C00:00/00:00Video21-6D00:00/00:00Video21-6E00:00/00:00Video21-6FFIGURE21-7SecundumASD.Theseimagesweretakenfromatransesophagealechocardiogramperformedinapatientwithalargesecundumatrialseptaldefect.Thestillimageontheleftoffigureshowswhatappearstobeacentrallypositionedatrialseptaldefect(asterisk)ofnearly2cmindiameter.However,withthreedimensionalimaging(righthandpanel),itbecameclearthatthedefectislargerinananteriortoposteriordimensionthanwasappreciatedinthefour-chamberplanetotheleft.Inaddition,therewasasecondaryorificeshownbytheredarrow.Theaccompanyingvideoactuallyrevealsthatthetwodefectsareconfluentmakingdeviceclosuresignificantlymorecomplicated.Thiscasehighlightshowthree-dimensionalimagingcanimprovetheunderstandingofASD“shape,”potentiallyinfluencingtreatmentstrategies.L,left;LA,leftatrium;RA,rightatrium;S,superior.00:00/00:00Video21-7FIGURE21-8ASDoccluder.TransesophagealechocardiographicappearanceofASDocclusiondevice.A:Longitudinal(bicaval)viewofanAmplatzerAtrialSeptalOccludershortlyafterplacementwithinasecundumASD.Bothdisksarefullydeployedontheappropriatesidesoftheseptum.Thehubusedtoconnectthedevicetothedeliverywireisontherightatrialsurface(arrowinAandB).B:Horizontal(short-axis)imageofasimilarAmplatzerAtrialSeptalOccluderafterdevicedeployment.EchocardiographicevaluationaftertheocclusiondevicehasbeenplacedrequiresimaginginallplaneswithcolorflowDopplertoexcluderesidualshunt.Twodimensionalimagingneedstoensurethereisnothrombusformationorinterferencewithsurroundingcardiovascularstructures.Ao,aorta;LA,leftatrium;RA,rightatrium;SVC,superiorvenacava.Sinusvenosusatrialseptaldefectsrepresentlessthan5%ofASDsandoccur(mostcommonly)inthesuperiorandposterioraspectoftheatrialseptum,neartheSVCtoRAjunction(Fig.21-9).Asaresult,thesedefectslieinamorehorizontalplanethansecundumandprimumdefects(Fig.21-10).Thedeficiencyoftissueusuallyincludesthewallseparatingthevenacavaefromthepulmonaryveins,leadingtothenearlyuniversalassociationofPAPVCwiththismalformation(Figs.21-11and21-12).Occasionally,thevenosusseptaldeficiencycanextendposteriorlyandinferiorlytowardtheIVC.Inrarecases,thedefectmayonlyinvolvetheinferiorportionoftheseptumFIGURE21-9SinusvenosusASD.SubcostalviewsshowingasinusvenosusASD(asterisk).A:Biatrialview(coronalplane),similartoafour-chamberplanebutfocusedontheatria.ThetypicalsinusvenosusASD(asterisk)ispositionedsuperiorlyandposteriorlynearthesuperiorvenacava(SVC)orifice(arrow).Inthisplane(showninAandB),theSVCoftenseemstoberelatedtobothatria.However,itisnormallyconnectedtotherightatrium(RA),asshownin(B)and(C).NotetheproximityoftheSVCandRAjunctionwiththedefect.Theanomalousrightpulmonaryveinsarenotseenontheseimagesandareoftenbestdemonstratedfromtherightorhighleftparasternalwindows.Whenthepulmonaryveinsarenotevidentwithsurfaceimaging,transesophagealechocardiography(TEE)providesexcellentdefinitionoftherightpulmonaryvenousconnections.C:Colorflowmapshowingthelargeleft-to-rightshuntassociatedwiththedefect.Notethatstandardsubcostalfour-chamberimagingmaynotdetectasinusvenosusdefect.Ifright-sidedvolumeoverloadispresentandtheatrialseptumappearsintact,thetransducershouldbetiltedsuperiorlyandrotatedclockwisetovisualizetheseptumneartheSVCandRAjunction(sagittalview).Inmanyolderchildrenandadults,thisareacannotbevisualizedadequatelyduringatransthoracicexamination.TEEcanprovideexcellentdelineationofthevenosusseptumandrightpulmonaryveinsinthesecases.IVC,inferiorvenacava;LV,leftventricle;P,posterior;PA,pulmonaryartery;RPA,rightpulmonaryartery;RV,rightventricle;S,superior.00:00/00:00Video21-9A00:00/00:00Video21-9BThemostcommonPAPVCsseeninsinusvenosusASDinvolvetherightupperormiddleveins(orboth),connectingtoeithertheSVCorRA.InthosewithinferiorextensionofavenosusASD,therightlowerveinmayalsoconnectanomalously,usuallytotheRA.Inolderpatients,TEEisoftenrequiredtoconfidentlyvisualizetheseposteriorlypositionedabnormalities.AcomprehensiveechocardiographicstudyinapatientwithanASDrequiresnotonlyimagingthedefectanditsassociatedrimsbutalsoevaluatingrightheartenlargementandRVandpulmonaryarterypressure.ThehemodynamicassessmentisbasedonDopplerquantificationofthetricuspidandpulmonaryregurgitationvelocities.AttentiontoseptalflatteningandRVwallthicknessisalsohelpful.DiastolicflatteningisindicativeofRVvolumeoverload,whilesystolicflatteningisassociatedwithincreasedsystolicpressure.ThelattershouldpromptasearchforothercausesofpulmonaryorRVhypertension.PulmonaryhypertensionduetoanisolatedASDisunusual,whileRVoutflowobstructionsarenotuncommon.ItisnottypicallynecessarytoquantifyshuntvolumewithDopplermeasurementsusingthecontinuityequation.Infact,suchassessmentsareofteninaccuratebecauseofthenumberofcomponentmeasurementsinvolvedinthecalculationofmultiplestrokevolumesandthevariationinrightheartstrokevolumeassociatedwiththerespiratorycycle.Thetwo-dimensional(2D)findingofmoderateRVenlargementisaclinicallysufficientreasontorecommendASDclosure,evenintheasymptomaticpatients.ThisisespeciallytruewhenthereisdocumentationofprogressioninthedegreeofRVenlargementovertime.FIGURE21-10SinusvenosusASD.Thesesubcostal“bicaval”viewsareobliquesagittalimagesoftheupperatrialseptum.Thetwo-dimensionalimageontheleftrevealedthatthecommunicationbetweentherightandleftcirculationsexistsabovethelimbusofthetrueatrialseptum,atthejunctionoftheSVCandrightatrium(*).ColorflowDopplerseenintherighthandpanelconfirmsthepresenceofasignificantshuntflowatthislevel.A,anterior;L,liver;LA,leftatrium;RA,rightatrium;S,superior.00:00/00:00Video21-10A00:00/00:00Video21-10BAnunroofedcoronarysinusisoftenreferredtoasa“coronarysinusASD.”However,althoughthereisaleft-to-rightatrialshuntinmostofthesecases,thedefectisnotwithintheatrialseptum.Instead,theanteriorwallofthecoronarysinusisincomplete(Fig.21-13),allowingshuntflowfromtheLAthroughthecoronarysinustotherightheart.CoronarysinusdefectspresentclinicallyinwayssimilartoASDs(enlargedheartbychestx-ray,ormurmur)butalsomayshowexertionalcyanosis.ThisisrelatedtothefrequentassociationofapersistentleftSVCwiththisdefect.WhenaleftSVCconnectstoanunroofedcoronarysinus,anobligatebidirectionalshuntiscreated(LSVCtoleftheartandLAtorightheart)withtheincompletelyformedcoronarysinusasthe“crossroads.”Exertionwillaugmenttheamountofright-to-leftshuntresultingincyanosis.AtrioventricularSeptalDefects—CompleteandPartialFormsAtrioventricularseptaldefects(AVSD)arealsoknownasatrioventricular(AV)canaldefectsandoccurbecauseofdeficientdevelopmentoftheAVseptumfromtheembryonicendocardialcushions(Fig.21-14).ThecompleteformofAVSDresultsfromthefailureofseparationoftheembryoniccommonAVvalveintorightandleftcomponents.RathertheembryoniccushionsdevelopintoacommonAVvalveandtheAVseptumneverforms.Therefore,acompleteAVSDconsistsofacommon(single)AVvalveandlargecommunicationsbetweenboththeventricles(inletVSD)andatria(primumASD)(Fig.21-15).Thephysiologicconsequencesofthismalformationincludealargeleft-to-rightshunt(withbiventricularvolumeoverload),pulmonaryhypertension(duetothelargeVSD),andvariabledegreesofcommonAVvalvedysfunction(mostoftenregurgitation).CompleteAVSDs,whenleftunrepaired,resultinpulmonaryhypertensionandEisenmengersyndrome,usuallywithinthefirstfewyearsoflife.PartialAVSDrepresentsalesssevereformofAVSD,inthatatleastonecomponentofthecompletedefectisabsent.InthemostcommonformofpartialAVSD,theAVvalvesconnectdirectlytothecrestofthemuscularventricularseptum,eliminatingtheVSD.Inthischapter,wewilllimitthediscussiononlytothistypeofpartialAVSD;thecombinationofaprimumASDanda“cleft”anteriorleafletoftheleftAV(ormitral)valve(Fig.21-16).ThismalformationhasnooffsetbetweentheseptalinsertionsoftheAVvalves,allowingrapidandaccuraterecognition(Fig.21-16).SincethesedefectslacktheinletVSDfoundincompleteAVSD,theyhavephysiologymoresimilartothatofanisolatedASD,intheabsenceofsignificantAVvalveregurgitation.ThecommonAVvalveseeninthecompleteAVSDisdividedintoarightandleftcomponentbyattachmenttothemuscularventricularseptum.However,theAVseptumitselfisstillabsentinthesepatients,creatinganunusualanatomyoftheinternalcardiaccruxinthesepatients.TheabsenceofAVseptumeliminatesthenormalapicaldisplacementoftherightAV(tricuspid)valve.Therefore,inpartialAVSD,boththeright-and-leftAVvalvesattachtothemuscularseptumatthesamelevel(noseptaloffset).Figure21-17showsnotonlythislevelattachmentoftheseptalleafletsbutalsohowinsertionoftheAVvalveontotheseptumeliminatestheVSDinpartialAVSD(panelB).FIGURE21-11SinusvenosusASD(transesophagealimaging).Thesetwoimagesweretakenfromamoderately“high”esophagealpositioninbothcoronal(panelsAandB)andhorizontal(panelsCandD)orientations.Theyhighlighttheuniqueanatomyofthisdefect.PanelsAandBdemonstrateanatomyanalogoustothatseeninthesubcostalcoronalimagesinFigure21-7.Unlikesecundumandprimumdefects,thetissuedeficiencyinasinusvenosusASDexistsjustinferiortothesuperiorvenacava(SVC)/rightatrial(RA)junctionandliesinaright/left(horizontal)plane(lowerpanels).PanelsAandCshowthetwo-dimensionalanatomywiththedefecthighlightedbytheasterisk.Thecolorimagesshowtheleft-to-rightshunt(bluejet)crossinginadirectlyanteriororientationfromthelefttotherightatrium.A,anterior;L,left;LA,leftatrium;RA,rightatrium;RMPV,rightmiddlepulmonaryveinorifice;RPA,rightpulmonaryartery.00:00/00:00Video21-11A00:00/00:00Video21-11BTheleft-to-rightatrialshuntinapartialAVseptaldefectresultsprimarilyinenlargementoftherightheart.Thesizeoftheleftventricle(LV)isusuallynormal,unlessthereiscoexistingsignificantregurgitationoftheleftAVvalve(mitral).TheleftAVvalveisabnormalinallpatientswhohavepartialAVSD,althoughitcanfunctionnormallyinmanychildrenandsomeadults.Thesevalveshaveathreecomponentstructureratherthanthetypicalbileafletmorphology(Fig.21-17CandD).Thevalveapparatusisalsorotatedcounterclockwiserelativetothenormalmitralvalve.Asaresult,theanteriorleaflet(s)ofthevalvelieparalleltotheventricularseptuminsystole,whilethemuralleafletispositionedmorelaterallythanthetypicalposteriormitralleaflet.TheanteriorleafletinpartialAVSDisdividedintotwosectionsbya“cleft,”sometimesreferredtoasanadditionalcommissureorzoneofapposition.This“cleft”isoriented(points)towardthemidportionoftheventricularseptumindiastoleandcanbeincompletelysupported,leadingtoregurgitation.Ifunrepaired,thesecleftswillbeassociatedwithprogressiveregurgitationinmost.AsmallnumberofpatientsmayalsodevelopleftAVvalvestenosisinassociationwiththislesion.ThesepatientsoftenhaveonlyoneleftAVvalvepapillarymuscle(parachutedeformity).UnrepairedpartialAVSDcanpresentinadulthood,eitherwithsigns/symptomssimilartoanisolatedASDoracombinationofASDandmitralregurgitation.FIGURE21-12AnomalousrightupperpulmonaryveininsinusvenosusASD.Anomalousrightupperpulmonaryveininsinusvenosusatrialseptaldefect—TEE.Thishighesophagealhorizontalplaneimageshowstherightupperpulmonaryvein(RUPV)connectedtothesideoftheright-sidedsuperiorvenacava(SVC).Theorifice/entranceoftheRUPVcreatesanincompletelateralwalloftheSVC,whichhasbeenreferredtoasthe“brokenring”sign.A,anterior;L,left;RPA,rightpulmonaryartery(dilatedduetotheleft-to-rightshuntpresentinthiscase).Surgicalrepairofthesedefectsisrequiredtoavoidthelatecomplicationsofpulmonaryhypertension(inthecompleteform)andvolumeoverload(inpartialAVSD).CompleteAVseptaldefectsarerepairedinthefirst6monthsoflifebypatchclosureofboththeVSDandtheASD.Thecommonvalveisseparatedintorightandleftcomponentsbyresuspendingthecentralsegmentsofthevalvetothepatches.InapartialAVseptaldefect,onlyanatrialpatchisrequired(Fig.21-18).However,simultaneousclosure/repairofthecleftintheanteriorleafletoftheleftAVvalvewilldecreasethelikelihoodoflateregurgitation(14).Oneofthemostfrustratingandsometimesconfusingaspectsofcongenitalcardiologyisthetendencyformorethanonenomenclaturetobeappliedtothesamemalformation.SomeofthemorecommonsynonymsforAVseptaldefectsarelistedinTable21-1.FIGURE21-13Coronarysinus“atrialseptaldefect”(unroofedcoronarysinus).Theseparasternallong-axisimagesshowtheanatomicdefectseeninateenagemalewithunroofedcoronarysinus.UnlikeotherASD,thetissuedeficiencydoesnotexistintheatrialseptum,insteadtheanteriorwallofthecoronarysinus(CS)ispartiallyortotallyabsentallowingacommunicationwiththeleftatrial(LA)cavity.Theleft-to-right“shunt”iscomprisedofbloodflowfromtheLAintotheCSandthenenteringtherightatrium(RA)throughtheostiumoftheCSadjacenttothetricuspidannulusandtheinternalcardiaccrux.ThearrowsintheleftpanelshowmultiplegapsintheanteriorwallofthisCSandthearrowintherightpanelhighlightsthe“shunt”(bluejet)exitingtheLAandenteringtheCS.A,anterior;Ao,aorta;LV,leftventricle;RVOT,rightventricularoutflowtract.VentricularSeptalDefectsVentricularseptaldefects(VSDs)arethemostcommonformofCHD(excludingbicuspidaorticvalve)andcanbepresentinupto25%ofallpatientswithCHD.ClinicalimpactofaVSDisusuallyrelatedtoitssize.Patientswithsmall,isolateddefectsmaybecompletelyasymptomaticandonlyberecognizedbythepresenceofaloudsystolicmurmur.ModerateVSDscanresultinleftheartenlargementsecondarytoleft-to-rightshuntflow.LargeVSDswillbeassociatedwithequalizationofrightandleftheartpressuresandshuntvolumewillbedependentonthestatusoftheRVoutflowtract(RVOT)andpulmonaryarteries.IntheabsenceofRVOTobstructionandwithnormalpulmonaryarterialresistance,therewillbealargeleft-to-rightshuntwithvolumeoverloadofthePA,LA,andLV.Whenunrepaired,suchlargeVSDswillleadtoirreversiblepulmonaryvascularobstructivedisease,associatedwithirreversiblepulmonaryhypertensionandEisenmengersyndrome.CoexistingrightventricularoutflowobstructionorpulmonarystenosismayprotectthepatientfromthesecomplicationsbyreducingPApressureandflow,butRVpressureswillstillequalthoseintheLV.FIGURE21-14Atrioventricularseptaldefect.DiagramoftheinternalcardiaccruxshowingtheattachmentoftheAVvalvestothecardiacseptuminthenormalheart,partialAVseptaldefect(partialAVC[AVcanal]),andthecompleteformofthedefect(completeAVC).Inthenormalheart,theanteriormitralandseptaltricuspidvalveleafletsattachtoboththeatrialandventricularseptum.Thetricuspidseptalleafletinsertsjustapicaltotheanteriormitralleaflet.InpartialAVC,theseptalleafletsofneithervalveconnecttotheatrialseptum,creatingtheprimumatrialseptaldefect.However,theyareattachedtotheventricularseptum,eitherdirectlyorbyimperforatechordae.Thisattachmenteliminatesthepotentialventricularseptaldefect.IncompleteAVC,theleafletsofthecommonAVvalvehavenoattachmenttotheatrialseptum,andtheirchordaedonotcovertheinletventricularseptaldefect,creatingseptaldefectsonbothsidesofthevalve.Thereare4majorclassesofVSD:membranous,muscular,inlet(AVSD),andsubarterial.ThemostcommondefectseenintheadultisthemembranousVSD.Membranousdefectsarefoundatthebaseoftheseptuminitsthinnestsegment,wedgedbetweentheaorticvalveandthetricuspidvalve.ThemembranousVSDcaneasilybeappreciatedintheshort-axisview(Figs.21-19and21-20).Duetotheproximityofthemembranousseptumtotheaorticandtricuspidvalves,defectsinthisareacanleadtoregurgitationofeithervalve.MuscularVSDsaremorecommoninchildrenandarelocatedawayfromthelevelofthecardiacvalveswithinthetrabecular(muscular)portionsoftheventricularseptum(Fig.21-21).Thesedefectsaresurroundedbyacompletemuscularrimandhaveatendencytodecreaseinsize(oftenclosingcompletely)overtime.Asaresultofthecompleterimofmusclethatsurroundsthesedefects,theyarenotassociatedwithprogressivevalvedysfunction.MostmuscularVSDsaresmallandclosespontaneouslyinearlychildhood,butlargedefectscancausesignificantleft-to-rightshuntsandresultinpulmonaryhypertension.Aswithanyseptaldefect,singleormultipleVSDsmayoccurinthesamepatient.IsolatedinletVSDsoftheAVcanaltypeareanuncommon“partial”formofAVseptaldefect.Inthesecases,thereisalarge-inletVSD,noatriallevelcommunication(sincetheabnormalAVvalvehasfusedtotheatrialseptum),andabnormalAVvalveswithnoseptaloffset.TheAVvalvewillhaveasimilarmorphologytothatseeninprimumASD,witha“cleft”anteriorleafletoftheleft-sidedAVvalve.ThesepatientsrequiresurgicalrepairearlyinlifesimilartothosewiththecompleteformofAVSD.SubarterialVSDsareoftenalsoreferredtoassupracristalVSDs.ThesearetheleastcommontypeofVSDseeninpatientsofEuropeanextraction.SubarterialVSDismorecommoninpatientsofAsiandescent.Thesedefectsinvolvetheoutletseptumimmediatelyadjacenttoboththeaorticandpulmonaryannulusandresultininsufficientmuscularsupporttobothvalves.Thesedefectsdonotclosespontaneouslyandareassociatedwithdistortionoftheaorticvalveandsinuses(Fig.21-22).Theprolapsingrightaorticcuspreducestheeffectivethesizeoftheinterventricularcommunicationandtheresultantleft-to-rightshuntattheexpenseofpotentiallyprogressiveaorticregurgitation.FIGURE21-15Atrioventricularseptaldefect(complete).Apicalfour-chamberimagesinsystole(A)anddiastole(B)showingacompleteatrioventricularcanaldefectwithlargeprimumatrialseptaldefect(asterisk),large-inletventricularseptaldefect(arrow),andcommonatrioventricularvalve.Notethatthisvalveisindeedacommonvalvethatopens(B)asasingleunitwithonlylateral,andnocentral,hingepointsvisibleinthisfour-chamberplane.Alsonotetherightatrial(RA)andbiventricularenlargement.Thispatientalsohadasmallsecundumatrialseptaldefect.L,left;LA,leftatrium;LV,leftventricle;RV,rightventricle;S,superior.FIGURE21-16Partialatrioventricularseptaldefects.A:Four-chamberanatomicspecimenofalargeprimumatrialseptaldefect(ASD)(arrow)showingsevererightatrial(RA)andrightventricular(RV)dilatation.Theconnectionofbothatrioventricular(AV)valvestotheseptumoccursatthesamelevel.B:ThecorrespondingapicalfourchamberdiastolicimageshowingsevereRAandRVdilatationduetoalargeprimumASD(arrow).LA,leftatrium;LV,leftventricle.C:ColorflowDopplerscanfromtheapexshowsalargeleft-to-rightshuntcrossingtheprimumASDindiastole(redflowjet).D:SystoliccolorflowDopplerscanshowsmoderateright-and-leftAVvalveregurgitation.ThevideoisacolorDopplerexampleoftheseflowpatterns.L,left;S,superior.00:00/00:00Video21-16A00:00/00:00Video21-16BFIGURE21-17Partialatrioventricular(AV)septaldefect.AVvalveanatomy.A:Systolicapicalfour-chamberimageshowingthatbothright-and-leftAVvalvesinsertontothecrestoftheventricularseptumatthesamelevel.L,left;LA,leftatrium;LV,leftventricle;RA,rightatrium;RV,rightventricle;S,superior.B:Thecorrespondingdiastolicframeshowingalargeprimumatrialseptaldefect.Systolicframesoftenunderstatethesizeoftheinteratrialcommunication.ThereismarkedRAandRVenlargementinthiscase.CandD:Parasternalshort-axisscansfocusedatthevalveleafletleveloftheLVinflowtract.Thetwo-dimensionalscan(C)showingthecleftintheanteriorleafletoftheleftAVormitralvalve(asterisk).Inessence,theanteriorleafletconsistsoftwoseparatecomponentsthatmoveindependently.Thiscreatestheappearanceofadiastolicgapintheleafletseeninthisframe.ThecolorflowDopplerscan(D)showsthatthecleftisthesourceofmitralregurgitationinthispatient.A,anterior.FIGURE21-18Postoperativepartialatrioventricular(AV)septaldefect.A:FourchamberanatomicspecimenofapartialAVseptaldefectafterpatchclosureofaprimumatrialseptaldefectandrepairofaleftAVvalvecleft.Thepatch(arrowsinAandB)isattachedtotherightsideoftheatrialseptumandtherightAVvalvetoavoiddamagetotheconductiontissueandleftAVvalve.B:Thecorrespondingapicalfourchamberechocardiographicimage.Notethattherightheartisnolongerenlarged.L,left;LA,leftatrium;LV,leftventricle;RA,rightatrium;RV,rightventricle;S,superior.Imagingnotes:EchocardiographyisaverysensitivetoolfordetectingVSDsandassessingtheirassociatedhemodynamicburdensandcomplications.ThechangesassociatedwithsignificantVSDsincludevolumeoverloadoftheleftventricleandatrium,pulmonaryhypertension,aorticregurgitation,and/ormidcavitaryRVobstructingmusclebundles(doublechamberedrightventricle).However,diagnosisofaVSDshouldprimarilybebasedontwo-dimensionalinspectionoftheventricularseptum.Ventricularseptumitselfisacomplexstructurethatdoesnotlieinasingleimagingplane.Slowtwo-dimensionalandcolorflowsweepsoftheseptumarerequiredtofullyexcludeVSD.Sweepsdirectedfromapextobaseinparasternalviewsoranteriortoposteriorinapicalviewsallowforinspectionoftheentireseptumfordefects.AVSDshouldbesuspectedwhenthereistwo-dimensional“dropout”notedintheusuallysmoothleftventricularsurfaceoftheseptum.ChangesinthehighlytrabeculatedRVseptalsurfacearelessreliableindicatorsofVSD.WhenaVSDissuspected,itslocationshouldbeconfirmedbycolororspectralDopplertechniquesthatdemonstrateflowbetweenthetwoventricle(crossingtheseptalplane).SmallVSDsmaynotbeevidentto2Dexaminationsalone.However,ifRVpressureislessthanLVpressure,thesesmalldefectswillgenerateahigh-velocityflowjetcrossingtheseptumthatiseasilyseenwithcolorflowimaging.TABLE21-1NomenclatureofAtrioventricularSeptalDefectsSynonymsEndocardialcushiondefectsAtrioventricularseptaldefectsAtrioventricularcanaldefectsCommonanatomicvariationsCompleteatrioventricularseptaldefectCommonatrioventricularvalve+largeprimumatrialseptaldefect+large-inletventricularseptaldefectPartialatrioventricularseptaldefectThisnamecanbeappliedtoanymalformationthatincludessome,butnotall,thecomponentsofacompleteatrioventricularseptaldefectMostfrequentform:primumatrialseptaldefect+cleftanteriorleafletofmitralvalvePatientswithacomplexCHD(suchasTOFordouble-outletRV)oftenhaveaspecialtypeofVSD.Theseareusuallylargedefectslocatedadjacenttothesemilunarvalvesandarereferredtoasoutlet,malalignment,orconoventricularVSDs.Themainbodyoftheventricularseptumandthesubarterial(infundibular)septumareorientedindifferentplanes.Therefore,theydonot“meet,”resultinginthetypicaloverridingofonesemilunarvalve,asseeninFig.21-23.Thesedefectsneverclosespontaneouslyandarefrequentlyassociatedwithstenosisorhypoplasiaofoneventricularoutflowtract,asinTOF,pulmonaryvalveatresiawithVSD,ortruncusarteriosus.AorticregurgitationisalsoacommonlatecomplicationofthistypeofVSD.AnomalousPulmonaryVenousConnectionsAnanomalouspulmonaryvenousconnection(APVC)existswhensomeorallthepulmonaryveinsdonotconnectdirectlywiththeLA.TheconnectionisdescribedaspartialAPVC(PAPVC)ifonlysomeveinsconnectanomalouslyorasatotalAPVC(TAPVC)whenalltheveinsconnectanomalously.Theanomalousveinsmayconnecttoavarietyofnonleftatrialchambersorveins.TheSVCandinnominateveinarethemostcommonsitesofabnormalconnection,buttheazygosvein,coronarysinus,rightatrium,andIVCmayalsoreceiveanomalouspulmonaryvenousconnectionsinsomecases.FIGURE21-19Membranousventricularseptaldefect(VSD).A:ParasternalshortaxisscanofalargemembranousVSD(arrow).Notetheproximityofthedefecttothetricuspidandaorticvalveleaflets.A,anterior;Ao,aorta;L,left;LA,leftatrium;PA,pulmonaryartery;RA,rightatrium;RV,rightventricle.B:ColorflowDopplerscanofalargeleft-to-rightshuntcrossingtheVSD(arrow).Intheparasternalshort-axisprojection,theaorticvalveshouldbeinspectedcarefullyforaorticleafletprolapseintotheVSD.Theseverityofaorticregurgitation,ifpresent,shouldbeassessed.AslowsystematicsweepfromthecardiacbasetotheapexshouldbeperformedwithcolorflowDopplerimagingtoruleoutothersmallmusculardefects.Membranousdefectsarebestviewedinparasternalshort-axisandanterior-angulatedsubcostalcoronalviews(thefive-chamberview).00:00/00:00Video21-19A00:00/00:00Video21-19BTAPVCusuallypresentsinearlychildhood.Thosewithobstructive(stenotic)connectionspresentascriticallyillneonateswithrespiratorydistressandpulmonaryedema.Thephysiologicfeaturesinthesecasesaresimilartothatofveryseveremitralvalvestenosis.Unobstructedconnectionsbehavelikealargeatriallevelshunt,andpatientspresentwithmurmursorheartfailure,mostoftenwithinthefirstyearoflife.TAPVCsareusuallyclassifiedbythepositionoftheanomalousconnectionrelativetotheheart.Asupracardiacconnectionoccurswhenthecommonpulmonaryveinconnectstothesuperiorsystemicvenouscirculation(innominatevein,azygosvein,orSVC)(Fig.21-24).Theconnectionbetweenthepulmonaryvenousconfluenceandthesystemicvenouscirculationisusuallydescribedasaverticalveinoraverticaldrainingvein.Thisconnectionmaybeobstructedwhentheleftverticalveintravelsinbetweentheleftpulmonaryarteryandleftmainstembronchusandiscompressedbythesestructures.Thishasbeencalledavascularvise.TAPVCwithacardiacconnectionoccurswhenthecommonpulmonaryveinconnectsdirectlytoacardiacchamberortothecoronarysinus.Theseconnectionsarealmostneverstenotic.Incontrast,infracardiacconnectionsarealmostalwaysobstructive.Thecommonpulmonaryveinconnectstoadescendingdrainingveinthatcrossesthediaphragmandconnectstothehepaticcirculationviatheductusvenosus.Theseconnectionsarealwaysobstructiveatorbelowthelevelofthediaphragm.Mixedconnectionsdonothaveacommonvenousconfluence.Inthesecases,theindividualpulmonaryveinsconnecttodifferentsitesinthesystemicvenouscircuit.Theconnectionsoccurinvariouscombinationsofthethreetypeslistedabove.Theechocardiographicexaminationmustidentifyeachindividualpulmonaryvenousconnectionbecauseofthesemixedconnections.Thefivemajorpulmonaryvenoussegmentsaretherightupper,middle,andlowerlobesandtheleftupperandlowerlobes.PAPVCcancoexistwithanASD(Figs.21-25to21-27)oritcanoccurinisolation(Fig.21-24).MostpatientswithaPAPVChaveananomalousconnectioninvolvingonlyoneofthetwolungs.Right-sidedAPVCsaremorecommon(80%)thanareAPVCinvolvingtheleftveins.PatientswithPAPVCoftenpresentinadulthoodwithsymptomsandfindingssimilartothoseofanisolatedASD.ObstructiveconnectionsarerareinPAPVC.CommonpatternsofPAPVCsincludethefollowing:1.RightupperandmiddlepulmonaryveinstotheSVCorRA(orboth)canbeseeninassociationwithsinusvenosusASDandlessoftenwithsecundumASD.Right-sidedPAPVCtoazygosveinhasalsobeenreported.2.Rightlowerpulmonaryveintotheinferiorvenacava(IVC)ismostfrequentlyencounteredinScimitarsyndrome.Thesepatientswillalsohavehypoplasiaoftherightlungandtypicallyhaveanintactatrialseptum.Somepatientsalsohaveanincompleteconnectionofthelowerlobebronchustothecentralairwayandananomalousarterialsupplytothisarea(bronchopulmonarysequestration).3.Isolatedleftpulmonaryveinstoaleft-sidedverticalvein(aremnantoftheembryonicleftanteriorcardinalvein.TheverticalveinconnectstheanomalouspulmonaryveinstotheinnominateveinandtheshuntflowreachestherightheartviatheSVC(Fig.21-28).Alternatively,oneorbothoftheleftpulmonaryveinsmayconnectdirectlytothecoronarysinus.FIGURE21-20RestrictivemembranousVSD.TheseimagesweretakeninsimilarorientationstothoseseeninFigure21-19.However,thisdefectisrestrictive,beingclosedbyadherenceoftheseptaltricuspidapparatustotheventricularseptalmyocardium.Onlyasmallcommunicationbetweentheventriclesremains(asterisk).TheshuntflowthroughtheVSDoccursathighvelocityasseeninthecontinuouswaveDopplertracinginthelowerpanel.A,anterior;Ao,aorta;L,left;LA,leftatrium;RA,rightatrium;RV,rightventricle.00:00/00:00Video21-20A00:00/00:00Video21-20BFIGURE21-21Muscularventricularseptaldefect(VSD).Parasternallong-(A)andshort-axis(B)imageswithacolorflowDopplerjetshowingasmallanteriormuscularVSD(arrowsinAandB)withasmallleft-to-rightshunt.LA,leftatrium;LV,leftventricle;RV,rightventricle.C:ContinuouswaveDopplersignalshowingtheVSDvelocityprofileforthisdefect.Maximumvelocityishigh(~5m/s),consistentwitharestrictiveVSDandnormalRVsystolicpressure.Thereisalow-velocitydiastolicleftto-rightflowsignal,confirmingthatRVdiastolicpressuresarealsolow.FIGURE21-22Supracristalventricularseptaldefect(VSD).Diastolictwo-dimensional(A)andsystoliccolorflow(B)parasternallong-axisimagesofasupracristalVSDwithsmallleft-to-rightshunt.A:ProlapseoftherightaorticleafletandsinusthroughtheVSD(arrow).A,anterior;Ao,aorta;LA,leftatrium;LVOT,leftventricularoutflowtract;S,superior.BecauseofthedistortionoftherightsinusofValsalva,thisdefectissometimesconfusedwithaneurysmandruptureoftherightsinusofValsalva.Todistinguishthetwoabnormalities,ithelpstoknowthattheshuntpassesbelowtheaorticleafletandflowisconfinedtosystoleinsupracristalVSDs.Theshuntseeninarupturedsinuspassesthroughthewalloftheaorta(notalwaysadjacenttotheseptum)andisalmostalwayscontinuouswithahigh-velocitydiastoliccomponent(duetotheaorticoriginofthejet).ImagingNotes—BothTTEandTEEcanbeusedtodetectAPVCandassessthehemodynamicimpactoftheanomaly.APVCshouldbesuspectedwhenunexplainedRVenlargementisnotedonechocardiographyorwhenthenormalconnectionsofthepulmonaryveinscannotbeestablishedtotheLA.Inaddition,PAPVCshouldbeexcludedinallpatientswithsecundumASDsincecoexistingAPVCimpactstreatment.Adequateimagingofthepulmonaryvenousconnectionsneedstobeobtainedfrommultipleimagingplanes.Ininfantsandchildren,suprasternalcoronalplanescanswithposteriorangulationdemonstratethe“crab”view,withconnectionsoffourpulmonaryveinstothebodyoftheLA(ortothevenousconfluenceinTAPVC).However,thepotentialformultipleconnectionscoexistinginthesamepatientmakesadiligentsearchforpulmonaryveins,usingallavailableplanes,mandatoryinthesecases.FIGURE21-23Outletventricularseptaldefect(VSD)intetralogyofFallot.A:Parasternallong-axisviewofalargesubaorticVSD(asterisk)withaorticoverride.B:Subcostalsagittalviewofanotherperspectiveontheaorta’soverridingrelationwiththeVSD(asterisk).Ao,aorta;LA,leftatrium;LV,leftventricle;RV,rightventricle.Inthenormalheart,apicalfour-chamberviewsshowtheconnectionsoftherightandleftlowerpulmonaryveinstotheposteriorandinferiorLA.Subcostalfour-chamberandsagittalscansallowvisualizationoftheconnectionoftherightupperpulmonaryveintotheLA.SubcostalscanscanalsodetectthesuperiorlypositionedsinusvenosusASD.Theleftupperpulmonaryveinisoftenbestseeninparasternalshort-axisorsuprasternalscansdescribedabove.Inpatientswithenlargementoftherightheart,scansfromtherightparasternalareaoftenprovideclearimagesoftheatrialseptumandpulmonaryveins.IfallthepulmonaryvenousconnectionstotheLAarenotvisualizedconfidently,anexhaustivesearchmustbemadetoexcludepossibleanomalousconnections.Thisisoftenoneofthemostchallengingtasksincongenitalechocardiography.TEEishelpfulinidentifyingtherightpulmonaryveins,evenwhentheyareanomalous.TEEshouldbeusedinmaturepatientswithunexplainedRVenlargementinordertoexcludePAPVC.AnanomalousconnectionofthepulmonaryveintoaverticalveinisoftenbestdemonstratedinTTEscansfromthesuprasternalnotchortheleftsupraclavicularspace.AnomalousleftveinscanbemissedbyTEEbecauseofacousticalinterferencefromtheleftbronchialtree.WhenTTEscansaresuggestive,butnotdiagnosticofananomalousleftpulmonaryvenousconnection,MRIorCTareoftenthemosteffectivenoninvasivemethodsavailablefordemonstratingtheanatomy.AnomalousSystemicVeinsThepersistentleftSVCisthemostcommonanomaloussystemicvenousconnection.Infact,itisencounteredoftenenoughtobeconsideredanormalvariant.Thisvesselalwaysconnectstothecoronarysinusbecausebothareremnantsoftheembryoniclefthornofthesinusvenosus.TheechocardiographichallmarkofatypicalisolatedpersistentleftSVCisunexplainedenlargementofthecoronarysinus(Fig.21-29)withnormalRVsize.Thedilatedcoronarysinusseeninaparasternallong-axisimageisoftenthefirstcluetothepresenceofaleftSVC.However,whenthecoronarysinusisdilatedinthismanner(especiallywhentheRVisenlarged),theexaminermustconfirmmoredirectlythepresenceofaleftSVCandtheabsenceofothercauses(Figs.21-30and21-31).Enlargementofthecoronarysinuscanbecausedbyanyofthefollowingconditions:1)PersistentLSVC,2)ananomalousconnectionoftheleftpulmonaryveinstothecoronarysinus,3)coronaryarteryfistulaetothecoronarysinus,4)coronarysinusASDorunroofedcoronarysinus,5)cardiacconditionsthatproducemarkedlyincreasedRApressure(e.g.,pulmonaryarteryhypertensionortricuspidregurgitation),or6)obstruction/stenosisofthecoronarysinusjunctionwiththeRA.FIGURE21-24Totalanomalouspulmonaryvenousconnection.Echocardiographicfindingstypicaloftotalanomalouspulmonaryvenousconnection,supracardiactype.A:Four-chamberviewofthetwo-chamberedleftatrial(LA)appearancewiththemoreposteriorchamberisactuallytheconfluenceoftheanomalouspulmonaryveins(PVC).ItiscompletelyseparatedfromthetrueLA.BandC:Supracardiacimages.Notethesuprasternal“crab”viewofthevenousconfluence(PVC).Fourpulmonaryveinsconnectwiththiscommonconfluence.C:Colorflowimageshowsaliasedflowtravelingthroughasuperiorlyorientedveinthatdrainsthisconfluence,averticalvein(arrow).Inthiscase,theverticalveinwasconnectedtotheinnominateveinandthepulmonaryvenousreturnwasthendirectedtotherightatriumviathesuperiorvenacava.Ao,aorta;LA,leftatrium;LV,leftventricle;MPA,mainpulmonaryartery;PA,pulmonaryartery;PVC,pulmonaryvenousconfluence;RA,rightatrium;RV,rightventricle.PatentDuctusArteriosusApatentductusarteriosus(PDA)isanessentialcomponentofnormalfetalcardiacanatomyandphysiology.Itisanarterialcommunicationbetweentheupperdescendingaortaandthedistalmainpulmonaryartery,neartheoriginoftheleftpulmonaryartery.APDAispresentinallnormalnewbornsandusuallyclosesspontaneouslywithin72hoursafterbirth.FIGURE21-25Partialanomalouspulmonaryvenousconnectiontotherightatrium(RA)withanatrialseptaldefect.Transthoracicfour-chamberviewofa36-year-oldmanwithnewonsetofexerciseintolerance.TheRAandrightventricle(RV)aredilated,butnoclearcausewasdelineatedbytransthoracicscans.LA,leftatrium;LV,leftventricle.MostpersistentPDAsaresmallcausingasmallleft-to-rightshunt,nohemodynamicburden,butincreasedriskforendarteritis.SmallandmoderatePDAsareassociatedwithacontinuous,left-to-rightshuntwithvolumeoverloadofthepulmonaryarteries,leftatrium,andleftventricleproportionaltothesizeofthePDA.LargePDAs,whenleftuntreated,canleadtopulmonaryhypertensionandEisenmengersyndrome(seeVSDsection).EchocardiographyisanexcellenttoolusedtovisualizethePDAandtoassessitshemodynamicsignificance(includingthesizeoftheleftatriumandventricleaswellasthedegreeofpulmonaryhypertension).Figure21-32isahighleftparasternallong-axisscanofthemainpulmonaryarteryandtheadjacentstructures.Thisviewisreferredtoasthe“ductal”view,andisoneofthemostusefulimagesusedtoassessthePDA.ThisviewisparalleltothelongaxisofthemainpulmonaryarteryandthePDAasittravelsfromtheupperdescendingaortatothemainpulmonaryartery.TheductalviewusuallyisoneofthebestpositionsforDopplerinterrogationofPDAflow.Theductalviewisobtainedbyimagingoneinterspacehigherthanthestandardparasternalshortaxis,withslightleftwardandanteriorangulationofthescanplane(towardtheleftshoulder)andcounterclockwiserotationofthetransducerfromatypicalshort-axisposition.Thesuprasternalandparasternalshort-axisviews(atthelevelofthepulmonaryarterybifurcation)canalsobehelpfulinimagingaPDA(Fig.21-33).WhenimagingalargePDA,caremustbetakentoavoidmisinterpretingthelargeductastheaorticarch.Identificationofthebrachiocephalicvesselsshouldhelpavoidthispitfall.FIGURE21-26Partialanomalouspulmonaryvenousconnectiontotherightatrium(RA)withanatrialseptaldefect.AandB:TransesophagealechocardiogramsofthesamepatientasinFigure21-18.Thesefour-chamberimagesshowalargeposterioratrialseptaldefect(arrows).Theeustachianvalve(asterisks),whichshouldnotbemistakenfortheseptum.LA,leftatrium;LV,leftventricle;RV,rightventricle.FIGURE21-27Partialanomalouspulmonaryvenousconnectiontotherightatrium(RA)withanatrialseptaldefect.A–F:TransesophagealechocardiographicimagesfromthesamepatientasinFigures21-18and21-19.AandB:Short-axisimagesoftheatrialseptaldefect(arrows)with(B)andwithout(A)colorflowDoppler.Notonlyistherealargeposterioratrialseptaldefect,butthereisalsoaseparatepatentforamenovale.LA,leftatrium;RV,rightventricle;RA,rightatrium.CandD:Theanomalousconnectionoftherightmiddle(RMPV)andrightlower(inferior)(RLPV)pulmonaryveins.TheseveinsconnectdirectlywiththeposterolateralborderofRA,justabovetheinferiorvenacaval(IVC)orifice.E:Bicaval(sagittal)viewshowsnearlycompleteabsenceoftheatrialseptuminthisplane.F:Short-axis(horizontal)imageofthesuperiorvenacava(SVC)justabovetheSVCandRAjunction.Therightupper(superior)pulmonaryvein(RUPV)isalsoconnectedanomalouslyandcanbeseenatthelateralsurfaceoftheSVC.TheimageoftheRUPVenteringtheSVCatthislevelisoftendescribedasateardroporbrokenring.Thiscaseillustrateshowanomalouspulmonaryvenousconnectionscanoccuratmultiple,differentsitesinthesamepatientandemphasizestheneedtoidentifyeachpulmonaryveinindividuallyincasesofunexplainedrightheartenlargement.RA,rightatrium.FIGURE21-28Partialanomalouspulmonaryvenousconnection.A–C:Theanatomyofanisolatedpartialanomalouspulmonaryvenousconnectioninvolvingtheleftsuperiorpulmonaryveinonly.A:Thereisenlargementoftherightatrium(RA)andrightventricle(RV)withnodefinitiveASD.However,theleftatrium(LA)appearsrelativelynormalandseveralpulmonaryveinswereobservedconnectingtoitinanormalmanner.LV,leftventricle.BandC:Suprasternalscansshowedadilatedinnominatevein(InnV)withanabnormalvein(theleftsuperiorpulmonaryveininthiscase)connectingtoventriclevein(V.V.).C:Colorflowimagingconfirmedavenousflowpatternwithasuperiorlydirectedflowconsistentwithapartialanomalouspulmonaryvenousconnectionviaaleft-sidedverticalveinanddifferentiatingthisveinfromapersistentleftsuperiorvenacava(SVC)(inwhichflowwouldbedirectedinferiorly).Ao,aorta.OBSTRUCTIONTOBLOODFLOWCoarctationoftheAortaCoarctationoftheaorta(CoA)isanarterialstenosisoftheupperdescendingaorta,typicallylocatedbeyondtheoriginoftheleftsubclavianarteryfromtheaorticarch.Thisnarrowingcanbeseenintheregionjustoppositetheorigin(orremnant)oftheductusarteriosusandhasbeenreferredtoasjuxtaductalcoarctation(Fig.21-34).CoAcanpresentatanyageandshouldbeexcludedinallpatientsreferredforevaluationofhypertension.ItcanbeanisolateddefectorseeninassociationwithVSD,bicuspidaorticvalve,aorticaneurysms,oradditionalleft-sidedobstructivelesionssuchasmitralstenosisandsubaorticstenosisinShonesyndrome.Thephysiologyofthecoarctationvariesdependingontheageatpresentation,theseverityandlocationofthestenosis,andthepresenceofassociatedlesions.Clinicalpresentationcanrangefromsevereheartfailureandshockinayounginfanttoasymptomaticsystemichypertensionwithdiminishedfemoralpulsesoramurmurinanolderchildoryoungadult.Coarctationoftheaortacausesupperextremityhypertensionwithreducedlowerextremitiespulseandpressurethatshouldbereadilynotedonroutinephysicalexamination.FIGURE21-29CoronarysinusenlargementduetoleftSVC.Parasternallong-axisimageshowingthetypicalappearanceofanenlargedcoronarysinus(CS).Thisisoftenthefirstcluetothepresenceofaleftsuperiorvenacava.However,whentheCSisdilatedinthismanner,thepresenceofaleftsuperiorvenacavamustbeconfirmedmoredirectlyastheonlycauseoftheenlargement(Figs.21-23and2124).OtherpotentialcausesofdilatedCSincludeanomalousconnectionoftheleftpulmonaryveinstotheCSorcoronaryarteryfistulaedrainingintoCSorincreasedrightatrialpressureduetorightventriculardysfunctionortricuspidregurgitation.Ao,aorta;LA,leftatrium;LV,leftventricle;RV,rightventricle.ClinicalandImagingNotesInyoungpatients,alargePDAcanprovideanalternativesourceofflowandpressureforthedescendingaorta.Inthesecases,itmaydifficulttoexcludeahemodynamicallysignificantcoarctationbypalpationoffemoralpulses.Echocardiographically,aDopplerexaminationforcoarctationisuselessinthepresenceofalargePDAwithright-to-leftsystolicflow.Instead,onemustrelyonanatomic(2D)demonstrationofthenarrowedaorticlumenbeyondtheoriginoftheleftsubclavianartery.AfterthePDAcloses,theechocardiographicandclinicalexaminationfindingsareinterpretedmoreeasily.However,aneonatalpatientwithaductal-dependentcoarctationmaybecomeclinicallyunstableatthistimebecauseofinadequateperfusionofthedescendingaorta.Coarctationisbestimagedwithhighleftparasternalviews,withlateralangulationofthescantowardtheleftshoulder(theso-calledductal-coarctationview)(Figs.21-34and21-35).ThesuprasternalnotchviewsareusedforDopplerinterrogation(Figs.21-34),buttheyoftendonotdisplaytheanatomyofthecoarctationwell(theplaneofultrasoundisparallelwiththeaorticwall).Theseviewsgiveasenseoftaperingofthedistaltransversearchwithflowacceleration,butusuallycannotvisualizetheaortabeyondthecoarctation,makingitdifficulttoknowwhethertheimpressionofnarrowingisrealorartifactual.FIGURE21-30Leftsuperiorvenacava.AandB:Anisolatedleftsuperiorvenacava(LSCV)anditsrelationtoothercardiovascularstructuresasitpassesthroughthelefthemithorax.A:ParasagittalscanorientedalongthelongaxisofthepersistentLSVC(asterisk).NotethattheLSVCpassesposteriortotheleftatrialappendageandbodyoftheleftatrium(LA)beforeenteringthecoronarysinus(CS)andisanteriortotheleftpulmonaryartery(LPA).Atthislevel,thepulmonaryveinsareposteriortotheLSVCandinferiortotheLPA.B:Parasternalshort-axisimageatthelevelofthepulmonaryartery(PA)bifurcationdemonstratingtheLSVCasacircularvessel(asterisk),anteriortotheLPA.ThepulmonaryveinswillalwaysfollowaninitialcoursethatisposteriortotheLPA.ThisanatomicfeatureallowsreliabledistinctionbetweenanisolatedLSVCtotheCSandapartialanomalouspulmonaryvenousconnectiontotheCS.Also,anisolatedLSVCwillnotresultinanyrightventricularoratrialenlargement.Inthesettingofanenlargedrightheart,anisolatedLSVCcanbedifferentiatedfromonethatreceivesananomalouspulmonaryvenousconnectionbydirectlyidentifyingeachpulmonaryveinanditsspecificconnection.Ao,aorta.FIGURE21-31Leftsuperiorvenacava.A:Transesophagealechocardiogram(shortaxisimage)ofapersistentleftsuperiorvenacava(LSVC).Inthisplane,theLSVCisseenincross-section,cradledbetweentheleftatrialappendage(LAA)andleftupper(superior)pulmonaryvein(LUPV).B:ColorDopplerprofileofLSVC(asterisk)thatisdistinctfromtheLAA,and(intheabsenceofanatrialseptaldefect)spectralDopplerwillshowavenousprofiledifferentfromthatseenintheadjacentLUPV.Ao,aorta;LA,leftatrium;RVO,rightventricularoutflow.FIGURE21-32Patentductusarteriosus.Asmallpatentductusarteriosus(PDA)withnormalpulmonaryarterypressure.AandB:Highparasternalscans(ductalview)ofasmallPDA(arrow)with(B)andwithout(A)colorflow.ThisPDAhadasmallleft-torightshunt.A,anterior;Ao,aorta;PA,pulmonaryartery;S,superior.C:ContinuouswaveDopplerinterrogationoftheductalflowshowingthecharacteristiccontinuousleft-to-rightshuntpatternseeninPDA.Thehighsystolicanddiastolicvelocitiesaresuggestiveofnormalpulmonaryarterypressures.(Maximumsystolicvelocity,4.7m/s[aorta-to-pulmonaryarterysystolicgradient,88mmHg];end-diastolicvelocity,3.4m/s[aorta-to-pulmonaryarterydiastolicgradient,46mmHg]).FIGURE21-33Patentductusarteriosus.AandB:Asmallpatentductusarteriosus(PDA)inthestandardparasternalshort-axisview.Theparasternalshort-axisimageatthelevelofthepulmonaryartery(PA)bifurcationshowsasmallPDA(arrowinB)withasmallleft-to-rightshunt.Notethepositionoftheupperdescendingaorta(AoontherightinA).WhenthePDAispresent,themainPAappearstohavethreebranches,therightPA,leftPA,andthePDA.ThePDAisthemostleftwardandsuperiorofthethree.Inthenewborn,allthreevesselsmustbespecificallyidentified.AneonatalPDAisoftenaslargeastheleftPAandcontinuousflowmaynotbepresentbecausePAresistanceisstillincreased.A,anterior;L,left.FIGURE21-34A:Anatomicspecimenofseverejuxtaductalcoarctationoftheaorta(arrow).Notethatthedistancebetweentheoriginsoftheleftcommoncarotidandleftsubclavianarteriesisincreased(double-headedarrow).Theductusarteriosus(asterisk)andmainpulmonaryarteryareincludedinthespecimen.Thecoarctationsiteisimmediatelyadjacenttotheconnectionoftheductustotheaorta.BandC:Echocardiographicimagesfromaninfantwithsevere,discretecoarctationoftheaorta.Inthetwo-dimensionalimage(B)ofthecoarctation(arrow)intheductalcoarctationview,notethedeformationoftheposterioraorticwallassociatedwiththecoarctation.LA,leftatrium;PA,pulmonaryartery;RA,rightatrium.C:Colorflowimageshowsflowaccelerationandaliasingatthesiteofcoarctation.D:ContinuouswaveDopplersignalfromthecoarctationshowingthecontinuoussawtoothpatternseeninsevereobstruction.Thepeakvelocitywas3.5m/s,consistentwithamaximuminstantaneousgradientof49mmHg.Theholodiastolicforwardflowisduetotheseverenatureofthevascularstenosis(proximalpressureisgreaterthanthedistalpressureatalltimesduringthecardiaccycle).Ifthevelocityintheaortaproximaltothecoarctationiselevated,thenthegradientacrossthecoarctationneedstobecorrectedtoaccountfortheproximalvelocityintheexpandedBernoulliequation:[4(v22−v12)]=correctedmaximuminstantaneousgradient,wherev2=maximumcoarctationvelocityandv1=velocityinthetransversearch,proximaltotheobstruction.FIGURE21-35Coarctationoftheaorta.AandB:Sagittalplane,suprasternalimagesshowingasevereshort-segmentcoarctation(arrow).Theobstructionbeginsatapointjustdistaltotheleftsubclavianarteryandisusuallypositionedattheoriginoftheductalartery.Inthisview,therightpulmonaryarterycanbevisualizedposteriortotheascendingaorta.Notethatthedistaldescendingaortaandpreciseanatomyofthecoarctationcanbedifficulttoassessintwo-dimensionalscansfromthisposition(thatpathofthesoundbeamisnearlyparallelwiththevesselwalls).Ao,aorta;LA,leftatrium;RA,rightatrium.B:Colorflowaliasingoccursatandthroughthelengthofthenarrowedsegment,consistentwiththestenosiscausedbythedecreaseinluminaldiameter.ThisDopplerfindingallowsforeasieridentificationoftheobstructioninthisplane,becausethetwo-dimensionalanatomycanbeobscuredbyinterferencefromthesurroundinglungs.Thestenoticsegmentcanbediscreteorsegmentalandlong.Therefore,beforeaninterventionisplanned,theexaminationmustdefinenotonlythedegreeofstenosisbutalsothelengthofthevesselinvolved.Theentireaorticarchmustbeimaged,particularlytheregionoftheoriginoftheleftsubclavianartery.Transversearchhypoplasiaiscommonincoarctation,especiallyinyoungchildren.Inthesecases,thedistancebetweentheoriginoftheleftcommoncarotidarteryandleftsubclavianarterymaybeincreased.InayoungchildwithaPDA,thesuperioredgeoftheductusmaysimulateananteriorshelfoftissueinthedescendingaorta.Thisshouldnotbemistakenforacoarctation,whichshouldalsodisplaydeformityoftheposterioraorticwall.DopplerEvaluationofCoarctationoftheAortaDopplerevaluationofcoarctationisessentialbecause2Dscansoftheareainolderpatientsaredifficulttoobtain.Colorflowaliasingispresentatandbeyondthenarrowedsegment(Figs.21-34to21-36).Systolicvelocityinthedescendingaortaisincreased.Thefrequentassociationoftransversearchhypoplasiawithcoarctationoftenincreasesproximalvelocitiesaswell.Thereforeincoarctation,thesystolicpressuregradientshouldbecalculatedonlywiththeexpandedBernoulliequation[4(v22−v12)]toaccountforthemoreproximalstenosis(whenpresent).Inseverecoarctations,thereisagradientbetweenboththesystolicanddiastolicpressuresoneithersideofthestenosis.ThisresultsinaclassicsawtoothpatternwithcontinuousflowoncontinuouswaveDopplerinterrogation(Figs.21-34and21-36).Thesystolicvelocityisalwaysthemostprominent,withcontinuationoflowervelocityflowthroughoutdiastolebecauseofapersistentpressuregradient.ThissawtoothpatternwithincreasedsystolicvelocityandmeangradientcanbeprovokedwithexerciseinpatientwithsuspectedCoA.Imagesoftheupperthoracicdescendingaortaareoftendifficulttoobtain;therefore,alternativestodirectechocardiographicimagingofthecoarctationarefrequentlyhelpfulinassessingtheseverityofobstruction.SubcostalimagingshouldbeperformedtoassessthepulsatilityofandDopplerflowinthelowerdescendingthoracicorupperabdominalaorta.Brisksystolicupstrokesarepresentinpatientswithoutproximalobstruction,whereasdiminishedsystolicvelocity,delayedmoregradualupstrokes,anddiastolicflowcontinuationarecharacteristicofseverethoraciccoarctation(15)(Fig.21-37).Inmanyolderpatients,echocardiographyalonemaynotprovideenoughdatatomanagethepatientconfidently.Inthesecases,CTAorMRIusuallyprovideexcellentanatomicevaluationoftheaorta,anditcanalsodefinethepresenceandimportanceofanyassociatedascendingthoracicaneurysmandanyarterialcollateralcirculationthatmayhavedeveloped(Fig.21-38).FIGURE21-36Coarctationoftheaortaintheadult.Imagesoftheupperdescendingaortaareoftenchallenginginthematurepatient.Inthiscase,theareaofcoarctationisnotcompletelydefinedintheupperpanelsorinthevideo.Thereisan“impression”ofnarrowing(blackarrows),butthecontinuationoftheaorticlumenisnotvisible.ColorDopplerseeninthevideoalsosuggestsnarrowing,butdoesnotpenetratebeyondtheleveloftheleftpulmonaryartery.ThecontinuouswaveDopplersignal(lowerleftpanel)fromtheupperdescendingaortaisconsistentwithsevereobstruction.Thereisnotonlyahighsystolicflowvelocity(4m/s),butthereisalsoasignificantdiastolicgradientmaintained,creatingthetypicalsaw-toothedpatternassociatedwithseverecoarctation.Aninternallow-velocityenveloperepresentingtransverseaorticarchflowcanalsobeseen.Pulsed-waveDopplerinterrogationoftheabdominalaorta(lowerrightpanel)showsdelayedupstrokeandcontinuousforwardflowconfirmingtheseverityofthecoarctation.Ao,aorticarch;Abd.Ao,abdominalaorta;CWD,continuouswaveDoppler;dAo,descendingaorta;InVn,innominatevein;P,posterior;PA,pulmonaryartery;PWD,pulsed-waveDoppler;S,superior.00:00/00:00Video21-36A00:00/00:00Video21-36BVentricularOutflowTractObstructionObstructiontoorstenosisofaventricularoutflowtractisacommoncomponentofmanycomplexcongenitalcardiacmalformations.However,themostcommonformsofoutflowobstructionareisolatedaorticvalveandpulmonaryvalvestenosis(Figs.21-39to21-41).TheexaminationofacongenitallystenoticaorticvalveorpulmonaryvalveissimilartothatdescribedinChapter12(ValvularHeartDiseases).Therefore,thischapterdiscussesonlyhowpediatricorcongenitalstenosisdiffersfromthatofacquiredstenosis.Themostcommonmechanismforcongenitalsemilunarvalvestenosisisfusionofoneormorecommissures,withorwithoutthickeningofthevalveleaflets(Fig.21-39).Two-dimensionalscansshowreducedleafletmobility,whichcreatestheclassicdomedsystolicappearanceassociatedwithcongenitalaorticvalvestenosisandpulmonaryvalvestenosis(Figs.21-40and21-41).Whenviewedinashort-axisformat,thesystolicopeningofthevalveshasanovalshapeinsteadofatriangularcrosssection.Bothpulmonaryandaorticvalvestenosesinducecompensatoryhypertrophyoftheassociatedventricle.Thedegreeofhypertrophyisusuallyproportionaltothedegreeofstenosis.QuantitativeechocardiographicevaluationofoutflowstenosisdependsheavilyonDopplertechniques.Forpediatricpatients,calculatedvalveareasarelessusefulthanforadults(16,17).Thisisbecauseofthelargerdegreeoferrorintroducedintothecontinuityequationbythesmallannulusdiametersinchildren.Asaresult,theprimaryDopplervariablesusedtoassesstheseverityofoutflowobstructionsaremeansystolicDopplergradients(18–21).Inthepresenceoflowcardiacoutputoralargeductusarteriosus,Dopplergradientsaredecreasedoreliminated.Inthesecases,outflowstenosismustbegradedbyrelyingexclusivelyonanatomicfindings(reducedleafletmotion,degreeofvalvethickening,andventricularhypertrophy).FIGURE21-37Coarctationoftheaorta.Dopplerassessmentofabdominalaorticflowincoarctationoftheaorta.A:Pulsed-waveDopplerinterrogationofnormalabdominalaorticflowimagedfromasubcostallongitudinalplane.Notethebriskupstroke(shorttimetopeakvelocity)andrapiddownstrokeaswellastheearlydiastolicreversalofflow(arrows)andlackofnotableforwardflowindiastole.Thesefeaturesareassociatedwithapatentaortic(orductal)arch.B:Pulsed-waveDopplersignalrecordedfromtheabdominalaortaofapatientwithseverecoarctationoftheaorta.Notethedelayedupstrokeorprolongedtimetopeakvelocity(relativetotheQRSontheECG),reducedpulsatility(differencebetweenthemaximalandminimalvelocities),andthecontinuationofforwardflowthroughoutdiastole.Abdominalaorticpulsedelaycanbequantifiedwithpulsed-waveDopplerechocardiographybymeasuringthetimetopeakvelocityintheabdominalaortaandcomparingitwiththesamevaluemeasuredfromflowattheaorticannulus.ThisvalueshouldbeindexedtotheheartratebydividingtheabsolutevaluebythesquarerootoftheRRinterval.Intheabsenceofapatentductusarteriosusandanearlydiastolicreversedflow,acorrectedpulsedelayvaluelessthan2.8issuggestiveofseverecoarctation(12).Abdominalpulsationcanalsobeassessedbycalculatingthepulsatilityindex.Thedifferencebetweenthemaximalandminimalvelocitiesisdividedbythemeanvelocityoftheflowsignaltoderivethisindex.Avaluelessthan2isalsosuggestiveofseverecoarctation,butthepredictivevalueofthisindexisnotasrobustasthatofthecorrectedpulsedelay.Subaorticstenosismostcommonlypresentsasafibrous,oftencircumferentialmembrane/ridgeoratunnel-likefibromuscularbandcausingfixedLVOTobstruction.Thelatterisoftenassociatedwithaorticannularhypoplasia.SubaorticstenosiscanbeseenasanisolateddefectorinassociationwithVSD,CoA,andotherleft-sidedobstructivelesionsin“Shonesyndrome.”Subaorticstenosisisaprogressivelesionthatleadstoleftventricularhypertrophyandaorticregurgitationeithercausedbydirectfibrousattachmentsintotheaorticvalveorasaresultof“jetlesions.”Althoughthereissomeoverlapbetweenthisdefectandhypertrophicobstructivecardiomyopathy,thelattercausesadynamicandnotafixedLVOTobstructiononechocardiography.Subaorticstenosiscanbesubdividedintothreegroupsonthebasisoftheunderlyinganatomicandphysiologicfeatures:discrete,tunnel,anddynamic.Echocardiographyprovidesacomprehensiveassessmentforthelevelandtypeofsubaorticstenosis,itshemodynamicsignificanceandpotentiallatecomplicationssuchasleftventricularhypertrophy,andaorticregurgitationwhichhavesignificantimplicationsastothetimingofsurgicalintervention.Discretesubaorticstenosisisusuallytheresultofacircumferentialfibromuscularridgethatinvolvesnotonlytheventricularseptumbutalsotheoutflowsurfaceoftheanteriormitralleaflet(Fig.21-42).Incontrast,tunnelsubaorticobstructionsinvolvediffusehypoplasiaoftheLVoutflowtract(LVOT)andareassociatedwithpronouncedseptalthickeningandvariableamountsofaorticannularhypoplasia.BothdiscretesubaorticstenosisandtunnelsubaorticstenosisproducefixedobstructionstoLVejection,withthelargestpressuredifferencesoccurringinearlysystole.Ontheotherhand,hypertrophicobstructivecardiomyopathyproducesdynamicgradients.Thenarrowingoftheoutflowprogressivelyworsensduringejection,creatingthelargestgradientsinlatesystole.ThelatepeakingnatureoftheseobstructionsmakestheirDopplerevaluationuniqueamongLVoutflowstenosesinthatthemaximalinstantaneousDopplergradientisusuallythevariableassociatedmostcloselywiththepressuredifferencebetweentheLVandtheaorta(22).FIGURE21-38Coarctationoftheaorta.A:Gadolinium-enhancedmagneticresonanceangiogramofseverecoarctationinanadult.Thediscretenarrowingintheupperdescendingaorta(arrow)iseasilyappreciated,asisthelengthofthestenoticsegment.Inaddition,multiplecollateralarteries(intercostalandinternalmammaryarteries)areseen;theyprovideanalternativepathforarterialflowfromtheascendingtothedescendingaorta.B:Three-dimensionalmagneticresonancereconstructionofanaortawithacoarctationtreatedwithanintra-arterialstent(arrow).FIGURE21-39Pulmonaryvalvestenosis.Anatomicspecimensfrompatientswithseverepulmonaryvalvestenosisshowingvariousvalvemorphologies.A:Markedlydysplasticvalvewithvirtuallynocommissures.B:Unicommissuralvalvewithmarkedthickeningoftheleaflets.C:Bicuspidvalvewithcommissuralfusionandthinleaflets.D:Trileaflet,dysplasticvalvewithprominentthickeningoftheleaflets.FIGURE21-40Pulmonaryvalvestenosisina1-year-oldchild.A:Parasternallongaxisanatomyoftherightventricular(RV)outflowtract,pulmonaryvalve,andmainpulmonaryartery(PA).Thevalveannulusisnormal,buttheleafletsarethickenedandhavedecreasedsystolicexcursion,oftendescribedas“doming”(arrow).B:Dopplerflowturbulence(aliasing)beginsatthevalvelevel(upperright).C–E:Imagesfromthesubcostalwindow.C:Sagittalplanetwo-dimensionalanatomyofthestenoticvalve(arrow)andrightventricle(RV).TheRVandlateralventricle(LV)wallshaveasimilarthickness(RVhypertrophy),andtheinterventricularseptumshowsaleftandposteriorsystolicflattening,whichisduetoincreasedRVsystolicpressure.D:ColorflowDopplermappingshowsthereisnosubvalvularcomponenttothestenosis.OptimalalignmentoftheDopplerbeamwiththestenoticjetcouldbeobtainedonlyfromthisposition.E:SubcostalDopplerflowsignal.Themaximumvelocitywas4.7m/s(predictingamaximuminstantaneousgradientof84mmHgandameangradientof49mmHg).Supravalvularaorticstenosis(SVAS)isararelesioncausingfocalordiffusenarrowingatandabovethesinotubularjunction.ItcanbesporadicorfamilialorseeninassociationwithWilliamssyndrome(60%).MostcasesofSVASarelocalizedtotheproximalascendingaorta,butdiffusehypoplasiaofboththeascendinganddescendingaortacanbeencountered.Thelatterrequiremultimodalityimagingtotrulyappreciatethefullextentofthepathology.Patientsmaypresentwithmurmurs,dyspnea,fatigue,orsyncopecausedbysevereleftventricularoutflowobstruction.Chestpain,duetoostialstenosisoraorticvalvecuspsadhesiontosinotubularjunction,hasbeenreported.Aorticregurgitationcanresultfromadhesionsoftheaorticcuspstothesinotubularjunctionbutisrarelysignificant.EchocardiographyshoulddefinenotonlytheproximalnarrowingduetoSVASbutalsotheinvolvementoftheaorticvalve,distalascendingaorta,andarchvessels.MeansystolicDopplergradientsprovidenoninvasiveassessmentofSVASseverity.Thelatterhassignificanttherapeuticimplicationsespeciallyintheasymptomaticpatients.FIGURE21-41Severepulmonaryvalvestenosis.A:Parasternalimagewithaleftwardand45-degreeclockwiserotationfromastandardlong-axisprojection.Thisimageprovidesanelongatedviewoftherightventricular(RV)outflowtract,pulmonaryvalve(arrow),andmainpulmonaryartery(MPA).Fromthisposition,leafletexcursionandthicknessandannulardiametercanbedetermined.B:Systolicapicalfour-chamberviewshowssevereRVhypertrophy,withtheleftwardshiftofboththeinterventricularandatrialseptafromincreasedRVandrightatrial(RA)pressure.L,left;LA,leftatrium;LV,leftventricle;S,superior.C:ContinuouswaveDopplersignalacrossthepulmonaryvalve(Vmax,4.7m/s),predictingamaximuminstantaneousgradient(PGRAD)of88mmHgandameangradient(MnGRAD)of60mmHg.D:Thetricuspidregurgitation(TR)signalshowsapeakvelocityof5.6m/s,predictinganRVsystolicpressuregreaterthan125mmHg.VTI(=TVI),timevelocityintegral.CORONARYARTERYFISTULAECoronaryarteryfistulae(Fig.21-43),althoughrare,arethesecondmostcauseofcongenitalcontinuousmurmurs,afterthePDA.Approximatelytwo-thirdofthesefistulaeoriginatesfromtherightcoronaryartery.Whenthefistulaearemoderateorlarge,theresultantcontinuousleft-to-rightshuntcausesenlargementoftheaffectedcoronaryarteryandthereceivingchamberstypicallytherightatrium,coronarysinus,orrightventricle.Leftventricularenlargementisseenonlyinthosewiththelargestshunts.Patientscanbeasymptomaticpresentingonlywithamurmurorcanhavechestpaindueto“coronarysteal”ordyspneaandfatigueduetovolumeoverload.Echocardiography,computertomography,andcoronaryangiographyplaycomplimentaryrolesintheassessmentandtreatmentofcoronaryarteryfistulae.Anomalousoriginoftheleftmaincoronaryarteryfromthemainpulmonaryartery,orALCAPA,typicallypresentswithsevereleftventriculardysfunctionandheartfailureininfancy.However,ifthereareadequatecollateralcommunicationsbetweentherightandleftcoronarycirculations,thenthesepatientsmaysurviveundetectedintoadulthood.Inthesecases,thephysiologicmanifestationsofALCAPAaresimilartothoseofalargecoronarytopulmonaryarterialfistula(Fig.21-44).TheuniquefeatureseeninALCAPAbutnototherfistulaearethelargeintramyocardialcollateralchannelsthatcanbedemonstratedbylowNyquistlimitcolorDopplerscans(Fig.21-44,lowerright).COMPLEXCONGENITALCARDIACMALFORMATIONSEbsteinAnomalyEbsteinanomalyofthetricuspidvalveisarareconditioncausedbyabnormaldevelopmentoftheRVmyocardium.Therefore,thepathologyinEbsteinanomaly(EA)involvesnotonlythetricuspidvalve(TV)butalsotheventricularmuscleitself.TheanatomicandphysiologicmanifestationsoftheseabnormalitiesincludedisplacementandtetheringoftheTVleaflets,tricuspidregurgitation,myocardialdysfunction(RVmoreoftenthanLV),andarrhythmias(atrial>ventricular)(seeFigs.21-45to21-53).Thisdisorderhasaverybroadspectrumandcanpresentatanytimeoflife.Thefetusandneonatewillhavethemostsevereanatomicandphysiologicabnormalities.Whilethosethatpresentinadulthoodoftenmanifestprogressivemyocardialdysfunctionandatrialarrhythmias.FIGURE21-42Discretesubaorticstenosis.A:Parasternallong-axissystolicframeshowsacircumferentialfibrousmembrane(asterisk)narrowingtheleftventricular(LV)outflowtract.Themembraneisimmediatelybelowtheaorticvalveannulusandattachestotheseptumandanteriorleafletofthemitralvalve.B:ContinuouswaveDopplerechocardiogramshowingamoderateoutflowgradient(meangradient,34mmHg).(AandB:Transthoracicechocardiograms.)Note:Theseobstructivemembranesorridgesareoftenassociatedwithhypertrophyofthebasalventricularseptum.Asaresult,septalmyectomyandmyotomyinadditiontoresectionofthemembraneareoftenrequiredtoeliminatetheobstruction.Aorticvalveregurgitationcanoccurinthesepatientsbecauseofeithertheturbulentoutflowjetorthedirectdistortionofthevalve(whenthemembraneattachestothevalveleaflets).CandD:Longitudinalplanetransesophagealechocardiographicdemonstrationofadiscrete,obstructivesubaorticmembrane.Inpatientswithlimitedtransthoracicwindows,TEEprovidesexcellentvisualizationofthisarea.TheseTEEimagesshowadiscrete,circumferentialsubaorticmembrane(arrowinC)thatcausessevereoutflowobstruction.Theobstructionbeginsattheridge,belowthevalveannulus,asshowninthecolorflowimage(D).Whenthebasalventricularseptumisthickenedorposteriorlydisplaced,the“length”oftheobstructivezonecanincrease.Inthesecases,atunnelofobstructioniscreated.Thus,thelengthoftheobstructivesubaorticzoneshouldbequantifiedtofacilitatesurgicalplanning.Notethatmanypatientswithsubaorticstenosisalsohaveabnormalaorticvalves.ItusuallyisnotpossibletodifferentiatesubvalvularobstructionfromthevalvularstenosisbyDopplerhemodynamics.Therefore,onemustrelyontwo-dimensionalimages(degreeofannularorLVoutflowtracthypoplasia,presenceofleafletthickening,degreeofleafletexcursion)todeterminewhetherinterventionisrequiredforoneorbothlesions.A,anterior;Ao,aorta;LA,leftatrium;RV,rightventricle;S,superior.FIGURE21-43Rightcoronaryartery(RCA)tosuperiorvenacava(SVC)fistula.Theupperpanelsaretwo-dimensionalparasternallong-andshort-axisimagesshowingadilated,proximalRCA(asterisk)inapatientwithanRCAtoSVCfistula.ThecolorDopplerimage(lowerleftpanel)showsthedistalfistulaconnectingtotheSVC(arrow).Theimageonthelowerrightisathree-dimensionalmagneticresonancereconstructionoftheaorticroot(Ao),proximalcoronaryarteries,thefistula(arrows),andtheSVC.Duringcardiacdevelopment,thetricuspidvalveleafletsarederivedfromtheembryonicRVwalls.InEbsteinanomaly,theleafletsfailtoseparatecompletely(delaminate)fromtheunderlyingmyocardium.Theseptalandposteriorleafletsareaffectedmoreseverelythantheanteriorleaflet,whichisusuallylargerthannormal.Thelargeanteriorleaflethasbeendescribedassail-likewhenitisfreelymobile.Thefailureoftricuspidleafletdelaminationleadstodisplacementofthefunctionalvalveorificeandtheleaflethingepointsaswellastetheringofthetricuspidvalveleaflets(Fig.21-45).These

abnormalitiesleadtotricuspidregurgitation,myocardialdysfunction(RVfollowedbyLV),andarrhythmias(atrialmorethanventricular).MostpatientswithEbsteinanomalyalsohaveaninteratrialcommunication(secundumASDorpatentforamenovale).PulmonarystenosisorRVOTobstructionisnotedin15%.ThemostreliableechocardiographicmarkerassociatedwithEbsteinanomalyisexcessapicaldisplacementoftheseptalinsertionofthetricuspidvalve(Figs.21-46to21-49)relativetotheMVanteriorleaflet’sseptalinsertion.Inthenormalheart,theseptalinsertionofthetricuspidvalve(asseenintheapicalfour-chamberview)occursatapointslightlyapicaltotheseptalinsertionoftheanteriormitralleaflet.Thelineardistancebetweenthesetwopointscanbemeasuredanddividedbythepatient’sbodysurfaceareatoobtainadisplacementindex.Shiinaandcolleagues(23)andGussenhovenandcoworkers(24)foundthatadisplacementindexgreater8mm/m2isinvariablyassociatedwithEbsteinanomaly.ThisdisplacementindexcombinedwiththecharacteristictetheringoftheseptalandposteriorleafletsandshiftedthepositionofthefunctionalTVorifice(intotheRVcavitytowardtheRVOT)differentiateEbsteinanomalyfromotherTVabnormalitiesthatmaymimicitincludingtricuspidvalvedysplasia.TheroleofechocardiographyinEbsteinmalformationistoconfirmthediagnosis,assesstheseverityoftricuspidvalvedistortion/dysfunction(seeFig.21-48),todefinethedegreeofrightventricularenlargementanddysfunction,aswellastoexcludeotherassociateddefects.Lastly,oneneedstousethisinformationtodeterminethelikelihoodandfeasibilityofvalverepair.FIGURE21-44AnomalousoriginoftheleftcoronaryarteryfromthepulmonaryarteryorALCAPA.Thevideoandthetwoupperpanelsdemonstratethelongaxisofthemainpulmonaryartery(MPA)fromtheparasternalperspective.Theleftmaincoronaryartery(LCA:asterisk,leftpanel;andblackarrow,rightpanel)arisesfromtheinferiorsurfaceoftheMPA.ColorDopplershowsadiastolicjetcoursingfromthecoronaryostiumintotheMPA.Thisflowisaleft-to-rightshuntandproduces“steal”fromthemyocardium.Thepanelonthelowerleftandvideoareparasternalshort-axisimagesdemonstratingadilatedproximalrightcoronaryartery(#),whichisthesourceoftheshuntflowexitingtheanomalousleftcoronaryartery.ThecolorDopplerimagesonthelowerrightandinthevideoshowabnormalintramyocardialflowtravelingfromtheposteriordescendingcoronary,throughtheseptumtowardtheanomalousconnectionoftheLCA.A,anterior;Ao,aorta;L,left;LA,leftatrium;LV,leftventricle;RA,rightatrium;RV,rightventricle.00:00/00:00Video21-44A00:00/00:00Video21-44B00:00/00:00Video21-44C00:00/00:00Video21-44DHistorically,repairofEbsteinanomalyreliedontheanteriorleafletcontactingtheinterventricularseptuminsystoletoformafunctionalmonocuspvalve.Morerecently,DiSilvareportedexcellentresultswiththeconeprocedurewherebytheanteriorandposteriortricuspidvalveleafletsaremobilizedfromtheiranomalousattachmentsintherightventricle,andthefreeedgeofthiscomplexisrotatedclockwisetobesuturedtotheseptalborderoftheanteriorleaflet,thuscreatingaconethevertexofwhichremainsfixedattherightventricularapexandthebaseofwhichissuturedtothetruetricuspidvalveannuluslevel.Echocardiographyandespeciallythefour-chamberviewobtainedonTTEidentifiescertainfeaturesthatareimportantwhentheconerepairisbeingconsideredsuchasthepresenceandmobilityoftheseptalandanteriorleaflets;thepresenceofinferiorleafletcanalsobedetermined(Fig.21-47).Thisviewreadilyidentifiesthepointsofattachment(s)betweentheleaflet(s)andtheunderlyingmyocardium(betweentheannulusandapex)andprovidestheroadmaptotheextentofthesurgicaldelaminationprocessthatwillberequired.Thepresenceofmobileseptalleaflettissuehasbecomeamoreimportantfindinginpredictingfeasibilityofatypicalconereconstruction,asthistissueservestoanchorthefinalsuturelineofthe“cone.”ThistissuecanbeseeninFigures21-47and21-49butisabsentintheexampleseeninFigure21-50.FIGURE21-45Ebsteinanomaly.A:Four-chamberviewofananatomicspecimenshowingasevereformofEbsteinanomaly.Nofunctionalvalvetissueispresentwithintheanatomicinflowtract.Themobilesegmentsofthevalvearedisplacedanteriorlyandapicallyandareoutoftheplaneoftheimage.Therightheartisgloballyenlargedandthevestigesoftheanteriortricuspidvalve(TV)leafletareattachedatmultiplepoints(arrows)tothewallsoftherightventricle.TheareabetweentheanatomicTVannulusandthecoaptationpointofthefunctionalTVleafletsistheatrializedportionoftherightventricle(aRV).Theanatomicannulus(asterisk)isadjacenttotherightatrioventriculargroove.B:Apicalfour-chamberechocardiographicviewshowingfeaturesofsevereEbsteinanomaly,withdisplacementandtetheringoftheseptal(arrow)andanteriorTVleaflets.TheseptalinsertionoftheTVisclosertotheapex(fartherfromtheatrioventriculargroove)thannormal.Therightventricular(RV)freewallisthin,demonstratingthatboththevalveandmyocardiumareabnormalinthesepatients.Althoughtheanteriorleafletismoredevelopedinthiscasethanintheanatomicspecimen(A),therearetwoareasofdirectpapillarymuscleinsertionthatimpairleafletmobility(asterisk).Thistypeofpapillarymuscleattachmentreducesthelikelihoodofsuccessfulvalverepairinthispatient.LA,leftatrium;LV,leftventricle;RA,rightatrium.InthemostadvancedcasesofEbsteinanomaly,virtuallynomobiletricuspidvalvetissueispresent(Fig.21-50).Thesepatientsoftenhavethemostseverelydysfunctionalmyocardiumandthemostdeformedvalves.Thefunctionalseverityoftheanomalyalsodisplaysabroadspectrum,evenwhendelaminatedtissueispresentwithintheinflowtractoftherightventricle(Fig.21-51).Theseverityofmyocardialdysfunctioncombineswithleaflettetheringtoinfluencethedegreeofregurgitationandsymptomologypresentandbothrequiredefinitionduringtheexam.Surgicalrepairusingthe“cone”reconstruction(25)ofthetricuspidapparatusnotonlyreducestheamountofregurgitationandRVvolumeloadbutalsorelocatestheannularhingepoints“back”toamoreanatomicpositionneartheatrioventriculargroove(Fig.21-52).Thefunctionalvalveorificeismadeentirelyofmobileleaflettissue(Fig.21-53),insteadofrelyingonseptalmyocardiumtofunctionasapartofthevalve,aswasthecaseinmostmonocusp/monoleafletrepairs.FIGURE21-46DisplacementindexinEbsteinanomaly.Theseptalinsertionofthetricuspidvalveisalwaysslightlyapicaltothatofthemitralvalve.A:Thisrelationinthenormalheart.B:ExcessiveapicaldisplacementseeninEbsteinanomaly.Arrows,themitralandtricuspidseptalinsertions.Thelineardistancebetweenthesetwopointsisdividedbythepatient’sbodysurfaceareatoobtainthedisplacementindex.AML,anteriormitralleaflet;L,left;LV,leftventricle;RA,rightatrium;RV,rightventricle;S,superior;STL,septaltricuspidleaflet.FIGURE21-47Ebsteinanomalywitharepairabletricuspidvalve.Apicalfour-chamberimagesfrommiddiastole(A),midsystole(B),andendsystole(C).Successfulcreationofamonocusprepairdependsonthemobilityoftheanteriorleaflet(arrow).Inthepatienthere,theanteriorleafletisfreelymobile,includingitsleadingedge,andnomuscularinsertionslimitordistortthemotionofthevalve.Theregurgitantjetoriginatedonlyfromthegapincoaptationbetweentheanteriorleafletandtheremnantoftheseptalleaflet.Theleadingedgeofthevalvereachesapointcloseenoughtotheseptumthat,giventhedegreeofannulardilatation,annuloplastycan“advance”ittoapointwhereitwillcoaptwiththeseptum.Theevaluationofleafletmobilitymustbemadebyimagingthevalvewithintheanatomicinflowtract.Tobecertainthattheimagingplaneissufficientlyposterior,themitralvalveannulusandleafletsshouldalsobevisibleintheframe.Theoutflowtractsshouldnotbevisibleatall.ManyEbsteinvalveshavemobilesegmentsanteriortothistrueinletplane.Unlesstheinletportionoftheanteriorleafletisfree,thesevalvesdonotcreateadequatevalvesafterrepair,partlybecausetheannuloplastydoesnotaffectthemotionoftheoutletportionofthevalveandtheamountofrightventricular(RV)myocardiumdistaltotheseseverelydisplacedvalvesisoftenonlyasmallportionoftheRV(frequentlyonlytheinfundibulum).L,left;LV,leftventricle;RA,rightatrium;S,superior.FIGURE21-48Ebsteinanomaly.PoorcandidateforvalverepairinEbsteinanomaly.Althoughtheanteriorleaflethassomemobility,thereisadirectmuscularinsertionofafreewallpapillarymuscleintotheanteriorleaflet(arrowinA).Thiswilllimitthemotionoftheleaflet.Moreimportantly,theanteriorleaflethasmultiplefenestrations,causingatleastthreeseparatejetsoftricuspidregurgitation(arrowsinB).Themultiplepointsofregurgitationandlimitedsystolicmobilitymadethispatientapoorcandidateforrepair.L,left;LA,leftatrium;LV,leftventricle;RA,rightatrium;RV,rightventricle;S,superior.FIGURE21-49Ebsteinanomaly.AandB:Apicalfour-chamberimagesofapatientwithEbsteinanomalywhosevalveislikelyrepairable.Theanteriorleafletisfreelymobile(A),andcolorflowmapping(B)showsonlyasinglecentraljetoftricuspidregurgitation.Theseverityoftheenlargementoftherightheartmakesthedisplacementofthetricuspidvalveseemlessprominent,butthedisplacementindexinthiscasewas20mm/m2.Thepatientsubsequentlyhadsuccessfulvalverepair,withonlymildresidualtricuspidregurgitation.L,left;LA,leftatrium;LV,leftventricle;RA,rightatrium;RV,rightventricle;S,superior.TetralogyofFallotTetralogyofFallotismostcommoncyanoticCHD:occurringin4%to9%ofserieswithcongenitaldefects.Tetralogyisanoutflowmalformationthatthatresultsfromanteriormalalignmentoftheinfundibularportionoftheinterventricularseptum.Thisseptalmalpositionleadstothefourcharacteristicsofthismalformationincluding1)alargeoutletVSD,2)overrideoftheaorticannulusacrosstheVSD,3)subpulmonary/pulmonaryvalvestenosis,and4)rightventricularhypertrophy(26)(Fig.21-54).CommonassociatedabnormalitiesseeninassociationwithTetralogyincludeASD,right-sidedaorticarch,andanomalousleftanteriordescendingcoronaryarteryarisingfromtherightcoronaryartery.PatientswithTOFarenowrarelytreatedwithpalliativeprocedures,suchastheBlalock-Taussigshunt.Instead,primarydefinitiverepairispreferredandmostrepairsarecompletedwithinthefirstyearoflife.DefinitiverepairincludespatchclosureoftheVSD,resectionofobstructivesubpulmonarymuscle,furtherenlargementofthesubpulmonaryoutflowtract(usuallywithatransannularpatch),andreliefofpulmonaryvalvestenosis.Despitethepreferenceforearlyrepair,onemaystillencounterunoperatedorpalliatedpatientswithTOFinadulthood.ThesepatientswillbeanatomicallysimilartotheinfantbutbeartheadditionalburdenoflifelongRVhypertensionandhypertrophyandgreaterriskforRVdysfunctionandarrhythmia.FIGURE21-50Ebsteinanomaly.Apicalfour-chamberimageofoneofthemostadvancedformsofEbsteinanomaly.Therightheartismarkedlydilated(annulusdiameter,50mm).Rightventricularfunctionwasseverelydepressed.Thereisnoevidenceofanymobilevalvetissueintheinflowtract.Theanteriorleafletisattachedcompletelytothefreewall,beginningjust2cmbelowtheanatomicannulus(arrow).Noseptalleaflettissueisseen.Thenativevalvetissuewasdisplacedtotheentranceoftherightventricularoutflowtract(theinfundibularorifice).Thisvalvewasnotsuitableforrepair..aRV,atrializedportionoftherightventricle;L,left;LA,leftatrium;LV,leftventricle;RA,rightatrium;S,superior.Althoughlong-termsurvivalfollowingeitherpalliationorrepairofTOFisachievedinmostpatients,significantresiduaandsequelaearenotuncommon.ManychildrenrequireatransannularenlargementoftheirstenoticRVOTinordertorelievethesevereobstructionoftenseenintetralogy.Thisapproachresultsinuniversal“free”(severe)pulmonaryregurgitation.Asaresult,thesepatientsdeserve/requirelifelongsurveillanceoftheirRVsizeandperformance.ManywilldevelopprogressiveRVenlargementwithvaryingdegreesofdysfunctionthatcanresultindyspnea,heartfailure,arrhythmias,suddendeath.Themostcommonindicationsforlatereoperationarepulmonaryregurgitationfollowedbyresidualstenosis(Fig.21-55).ChronicseverepulmonaryregurgitationinrepairedTOFcausesRVvolumeoverload,leadingtotricuspidannulardilatation,tricuspidregurgitation,progressiveRVdysfunction,LVdysfunction,andventriculararrhythmias.FIGURE21-51FunctionalspectrumofEbsteinanomaly.ThesetwocasesbothshowsignificantrightheartenlargementsecondarytoEbsteinanomaly.Thestillfiguresarebothsystolicframesandshowacompletelackoftricuspidcoaptationintherightpanel.Thevideosshowthatdespitethepresenceoftissuewithintheinletfromboththeanteriorandseptalcomponentsofthevalve,thedegreeoftetheringandmyocardialdysfunctioncanalterthefunctionalimpactgreatly.Thepatientdepictedontheleftpanelhadmoderateregurgitationandnosymptoms.Whilethepatientdepictedintherightpanelhadtorrentialregurgitationandwasnotabletoexercise.L,left;LA,leftatrium;LV,leftventricle;RA,rightatrium;RV,rightventricle;S,superior.00:00/00:00Video21-51A00:00/00:00Video21-51BAcomprehensivetransthoracicechocardiogramisthesinglemostimportantexaminationneededduringtheinitialandfollow-upevaluationofpatientswithrepairedTOF.ItshouldincludetheassessmentofresidualRVoutflowobstruction,pulmonaryregurgitation,aorticregurgitation,tricuspidregurgitation,RV/pulmonaryhypertension,RVsizeandfunction,LVsize,andsystolic/diastolicfunctionaswellasexclusionofresidualVSDandASD.Freepulmonaryregurgitationcanbechallengingtodetect,astheflowsarelaminar(lowvelocity).Commonechocardiographicsignsofseverepulmonaryregurgitationincludepulsationofanddiastolicflowreversalinthepulmonaryarterybranches.ContinuouswaveDopplerinterrogationoftheRVoutflowtractdemonstratinganabbreviateddiastolicflowsignalthatlastslessthan75%ofdiastoleisalsoconsistentwithseverePRandrapidequilibrationofMPAandRVdiastolicpressures.FIGURE21-52“Cone”repairforEbsteinanomaly.Allfourimagesandvideosareapicalfour-chamberviewsofaheartwithEbsteinanomaly.Thetwoupperpanelsarefromapreoperativescananddemonstratemarkeddisplacementofthefunctionalvalveorifice(upperleft,whitearrow)andsevereregurgitation(broadcolorjetshownbytheasteriskintheupperrightpanel).Thelowerpanelsshowhowtheconereconstructionshiftsthefunctionalorificebacktotheanatomicrightatrioventriculargrooveor“trueannulus”(whitearrow,lowerleft)andsignificantlyreducestheamountoftricuspidregurgitation(lowerright,asterisk).L,left;LA,leftatrium;LV,leftventricle;RA,rightatrium;RV,rightventricle;S,superior.00:00/00:00Video21-52A00:00/00:00Video21-52B00:00/00:00Video21-52C00:00/00:00Video21-52DMagneticresonanceimaginghasemergedasaveryimportantcomplimentarytoolusedintheassessmentofpatientswithTetralogyandpulmonaryregurgitation.Quantitativedeterminationsofrightventricularsizeandfunctionnowplayasignificantroleindeterminingthetimingofreoperationforseverepulmonaryregurgitation.MultipleserieshaveshownthatreliefofPRwhentheindexeddiastolicRVvolumeislessthan170mL/m2andthesystolicvolumeislessthan85mL/m2resultsinafavorablereduction/normalizationofRVvolumepostoperatively(references).IfoperationisdelayeduntiltheRVislargerthanthis,thelikelihoodofreverseRVremodelingisreduced.Typically,RVejectionfractionremainsunchangedafterpulmonaryvalvereplacement.Therefore,referralforinterventionshouldgenerallybemadewhileRVsystolicperformanceisnormalormildlyreducedatmost.MRIprovidesareproducibleassessmentofbothRVvolumeandejectionfraction,thatwhencoupledwithclinical,exerciseandechocardiographicdataformthebasisfordeterminingwhentoproceedwithvalvereplacement.FIGURE21-53Ebsteinanomaly(conerepair).“Enface”viewoftricuspidvalveafterconerepair.Thisseriesofmagnifiedshort-axisimagesandvideoswerefocusedontheorificeofthereconstructedtricuspidvalveafteraconerepairforEbsteinanomaly.Thecenterpanelhighlightsthefactthatthereconstructedvalvedoesnotincludetheseptalmyocardiumasaportionofthefunctionalorifice(arrow).ThecolorDopplerimages(diastolictotheleft)showtheflowcrossingthereconstruction.Thereisnoturbulence(undisturbed“red”inflow)indiastoleandonlyasmallregurgitantjetinsystole(rightpanel).LV,leftventricle;RV,rightventricle.00:00/00:00Video21-53A00:00/00:00Video21-53BFIGURE21-54TetralogyofFallot.A:Typicalparasternallong-axisappearanceoftheventricularseptaldefectandaorticoverrideintetralogyofFallot.Theaorticvalveislocatedcentrallyoverthemuscularinterventricularseptum(50%override).Inthisplane,theventricularseptaldefect(asterisk)isbetweentheseptumandvalve.Thislong-axisimageistypicalofboththemajordefectsinvolvingconotruncalmalformations:tetralogyofFallotandtruncusarteriosus.Theconnectionofthepulmonaryarteriesdistinguishesthetwolesions.IntetralogyofFallot,therightventricularoutflowtractandpulmonaryvalvearestenoticbutconnecttotherightventricle(RV).Intruncusarteriosus,theoverridingsemilunarvalveistheonlyoutletforbothventricles,andthepulmonaryarteriesariseasbranchesfromtheproximaltruncalartery(usuallyjustbeyondthesinotubularjunction).B:ThebiphasicDopplerpatternischaracteristicofdynamicobstruction.PanelsCandDshowthesubpulmonarystenosiscausedbytheanteriorlydeviatedoutletseptum(arrows).Ao,aorta;LA,leftatrium;LV,leftventricle;RA,rightatrium.00:00/00:00Video21-54A00:00/00:00Video21-54B00:00/00:00Video21-54CFIGURE21-55TetralogyofFallot(postoperative).EchocardiographicfindingsinapatientafterrepairoftetralogyofFallotwithatransannularrightventricularoutflowtractpatch.A:Parasternallong-axisimage.Theventricularseptaldefect(VSD)patchhascreatedcompletecontinuitybetweentheleftventricle(LV)andaorta(Ao).Thepatchattachestothemuscularseptumapicallyandtotheinfundibularseptumsuperiorly.ThisnotonlyclosesthecommunicationbetweentheLVandrightventricle(RV)butalsoeliminatestheaorticoverride.B:Apicalfour-chamberviewshowsanenlarged,butnothypertrophied,RV.Theleftatrium(LA)andrightatrium(RA)arenotdilated,suggestingthatfillingpressuresandtricuspidvalvefunctionremainrelativelynormalinthispatient.C–E:Parasternalshort-axisimagesatthebaseoftheheart.C:Two-dimensionalscanshowstheVSDpatch(asterisk)andenlargedRVoutflowtract.Thetransannularpatchhasdilatedovertime(stretchedbytherepetitivejetofregurgitation).Asaresult,theRVoutflowtracthastheappearanceofamoderateaneurysm.D:Mostofthepulmonaryvalvewasremovedatthetimeofrepair,leavingonlyaremnantofoneleafletattachedtothemedialannulus(acrossfromthearrowmarkingthelateraledgeofthenativeannulus).E:Diastoliccolorflowimageofthesamearea.Severe(free)pulmonaryregurgitationisconfirmedbythebroadcolorflowjet(arrow).00:00/00:00Video21-55A00:00/00:00Video21-55B00:00/00:00Video21-55C00:00/00:00Video21-55DCompleteTranspositionoftheGreatArteriesTranspositionofthegreatarteries(d-TGA)isthemostcommoncyanoticCHDdiagnosedinthenewborn.Itischaracterizedbyincorrectconnectionoftheventriclestothearteries(ventriculoarterialdiscordance).Duringembryonicdevelopment,theprimitivetruncusarteriosusundergoesabnormalseptationresultingintheaorticvalveandaortaconnectingwiththerightventricle,whereasthepulmonaryvalveandpulmonaryarteryarisefromtheleftventricle(Figs.21-56and21-57).TheunbranchedsegmentsofthegreatarteriesinTGAwillexittheirventriclesandtravelinaparallelrelationship(Fig.21-52),incontrasttotheusualperpendiculararrangementoftheascendingaortaandMPA.Inorderfortheinfanttosurviveatbirth,anintracardiacshunt,informofPFO,ASD,PDAorVSD,isnecessarytoallowthemixingofthesystemicandpulmonaryvenousblood.Ifsuchmixingisnotpresentorverysmall,anurgentpercutaneousatrialseptostomyisperformedbeforedefinitiverepair.FIGURE21-56Completetranspositionofthegreatarteries.A:Anatomicspecimenshowingtheanatomytypicalofcompletetranspositionofthegreatarteries.Thegreatarteriesoriginatefromaninappropriateventricle:theaorta(A)fromtherightventricle(RV)andthepulmonaryartery(P)fromtheleftventricle(LV).Thearteriesfollowaparallelcourse,andtheaortaandaorticvalvearepositionedtotherightandanteriorofthepulmonaryarteryandvalve.Thisheartalsohasseveralsmallmidmuscularventricularseptaldefects.B–E:Echocardiographicimagesfromaneonatewithcompletetranspositionofthegreatarteriesbeforesurgicaltreatmentwithanarterialswitchoperation.B:Parasternalshort-axisimageatthebaseshowingtheclassicarrangementofthesemilunarvalvesinthisdefect.Theaorticvalveisanteriorandtotherightofthepulmonaryvalve.C:Parasternallong-axisimageshowingtheparallelrelationofthegreatarteries.Thepulmonaryartery(PA)coursesposteriorlyafterexitingtheLV.Bothsemilunarvalvescanbeseeninlongaxisinthisplane,whichneveroccurswhenthegreatarteriesarenormallypositioned.Note,slightmodificationsoftheimagingplaneinthisareawillshowtheoriginandinitialbranchingpatternofthecoronaryarteriesfromtheaorticsinuses,whichisanimportantpartoftheinitialevaluationofaneonatewhohascompletetranspositionofthegreatarteriesascoronaryarterialtransferisthecomponentofthearterialswitchoperationthatisassociatedwiththegreatestdifficultyandrisk.D:Thissubcostalimageconfirmsthattheright-sidedgreatarteryistheaorta(Ao)(verticalcoursewithnoproximalbranches).E:Subcostalfour-chamberimagewithangulationposteriortotheaorta.Itdemonstratesthattheposteriorgreatartery(connectedtoLV)bifurcatesintoaright-and-leftpulmonaryartery,confirmingthepresenceofventriculoarterialdiscordance.A,Ao,aorta;LA,leftatrium;LV,leftventricle;P,PA,pulmonaryartery;RA,rightatrium;RV,rightventricle.FIGURE21-57Completetranspositionofthegreatarteries(d-TGA).Thesesubcostal,coronalplaneimagesdemonstratethediscordant(abnormal)connectionoftheventriclestothegreatarteriesthatdefinesthisdefect.Theleft-sidedimageshowstherightventricle(RV)withitsoutflowtractleadingtotheanterioraorta(Ao),notetheleftcoronaryorigin(blackarrow).Therightpanelwasobtainedwithposteriorangulationoftheimagingplaneanddemonstratestheleftventricle(LV),itsoutflowtractandconnectiontothemainpulmonaryartery(PA).ThePAis“shorter”thanonewouldexpectanaortatobeandhasabifurcation(asterisk),confirmingthediscordantnatureofthisconnection.L,left;RAA,rightatrialappendage;RA,rightatrium;S,superior.PreoperativeevaluationofdTGArequiresrecognitionofthediscordantventriculartoarterialconnection(27)(Figs.21-57and21-58).ASDandPDAareunderstandablycommoninpatientswithdTGA.VSDandpulmonarystenosisalsocoexistwithtranspositionfrequently,andtheirpresencecansignificantlyalterthesurgicalapproachtothepatient.Intermsofthearterialswitchoperation,definitionofthecoronaryarterialanatomyisofcentralimportance.Themostfrequentcoronaryanomalyencounterisoriginofthecircumflexcoronaryarteryasabranchoftherightcoronaryartery.Thiscanberecognizedbydetectingacoronaryvesseltravellingfromrighttoleftposteriortothepulmonaryroot/LVOT.Mostcoronaryarteryanomalieshavebeensuccessfullytransferredduringarterialswitchprocedures.However,coronaryarterieswithanintramuralsegment,similartothoseseeninanomalousoriginofacoronaryarteryfromthecontralateralsinusofValsalvarequiredspecialtechniquesandtheirpreoperativerecognitioniscriticaltosurgicalplanningandoutcome.ArterialSwitchOperationsSincethemid1980smostbabiesbornwithdTGAhavebeentreatedwithan“arterialswitch”operation.Thisapproachestablishescorrect(concordant)connectionsbetweentheventriclesandgreatarteriesbutrequirestransferofthecoronaryarteriesfromthevesselconnectedtotheRVtothearterialrootconnectedtotheLV.Thepulmonaryarterialconfluenceanddistalmainpulmonaryarteryaremovedintoauniqueposition;anteriortothenativeaorta(Fig.21-59).Thosewhohavebeentreatedwithanarterialswitchoperation,tendtomaintainnormalventricularandAVvalveperformance.Neoaorticrootenlargementiscommon,canbeprogressive,andmayleadtoaorticregurgitationinsome.Theanteriortranslocationofthepulmonaryarterialconfluencemayresultindistortion/stenosisofthepulmonaryarteries(Fig.21-59).Lessfrequently,pulmonaryregurgitationorcoronaryarterialabnormalitiescanbeencountered.AtrialSwitchOperationsPriortotheadventofthearterialswitchoperation,thesurgicalapproachtodTGAfocusedonredirectingthevenousflowstotheinappropriateventricle,usingatrialswitchoperationssuchasMustardorSenningoperations.Theseprocedureswereexamplesoftwo“wrongs”makinga“right.”Oxygenatedbloodfromthepulmonaryveinswasdirectedtothetricuspidvalveandrightventricle,whichledtothediscordantlyconnectedaorta.TheseatrialbaffleproceduresalsoshifteddesaturatedbloodfromtheSVCandIVCtothemitralvalveandleftventricleleadingtothepulmonaryartery(Fig.21-60).Followingtheatrialswitchprocedure,thetricuspidvalveandrightventricleremainconnectedtotheaortaandthereforeundersystemicpressure.Asaresult,theyaremorepronetodevelopregurgitationanddysfunctionovertime.AlthoughsomedegreeofRVfailureispresentinmostadultsafteraMustardorSenningoperation,theclinicalcourseforthesepatientsisquitevariable.Othercommonlatepostoperativeproblemsseenwithatrialswitchoperationsincludeobstructionofoneormorevenouspathways.FIGURE21-58Completetranspositionofthegreatarteries(d-TGA);sagittalimages.Thesesubcostal,sagittalplaneimagesalsodemonstratethediscordant(abnormal)connectionoftherightandleftventriclestothegreatarteries.However,onecanalsoappreciatetheparallelascendingcoursetakenbytheaorta(Ao)andpulmonaryartery(PA)inthesepatients.TheseimagesallowvisualizationofthepatentductusorPDA(asteriskinbothpanels)connectingthetwocirculationsandallowingfordesaturatedbloodfromtheaortatoreachthePA(redcolorflowontheright,asterisk).LA,leftatrium;LV,leftventricle;RV,rightventricle.FIGURE21-59ArterialswitchoperationwithLeComptemaneuver.Thismostoftenincludestranslocationofthepulmonaryarterialconfluencetoananteriorposition(infrontoftheascendingaorta.Thisuniquespatialarrangementisdemonstratedbythetwoimagesinthefigure.Thediagram,ontheleft,showsafrontalprojectionoftheanatomyafterarterialswitch(notehowthePAconfluenceoverliestheascendingaorta).Thehorizontallyorientedechocardiographicimage(rightpanel)demonstrateshowthepulmonaryconfluence(PA)isanteriortothebodyoftheascendingaorta(Ao).Thebranchpulmonaryarteriesare“pulled”forwardintheproceduredescribedbyLeCompte,oftenresultinginmildnarrowingofthelumen.ThealiasedcolorflowseeninthebranchPAs(asterisks)isduetothemildgradientcausedbythisnarrowing.A,anterior;L,left.FIGURE21-60Senningoperationforcompletetranspositionofthegreatarteries.A:Anatomicspecimenshowingtheapicalfour-chamberanatomy.Thepulmonaryvenouspathway(PV)iswidelypatent.Thepulmonaryvenousflowsweepsthroughthebafflefromtheposteriorandleftwardpulmonaryveinstotheanteriorandrightwardtricuspidvalve.Theareaof“atrium”justabovethemitralvalveannulus(arrow)istheconfluenceofthesystemicvenouspathways(inferiorandsuperiorvenaecavae).Theactualsuperiorvenacavapathwayisanteriortothisplaneandnotvisible.Thedarkcircleattheinferioraspectoftheconfluenceleadstotheinferiorvenacava.BandC:Apicalfour-chamberechocardiographicimagesfroma16-yearoldpatient.Theplaneiscomparabletothatin(A).B:Two-dimensionalimageshowingadilatedrightatriumandrightventricle(RV)(withRVhypertrophy).Thepulmonaryveins(PV)havebeenbaffledtothetricuspidvalve,andthispathwayappearswidelypatent.C:ColorflowDopplerimagingisusefultoconfirmlaminarflowthroughthereconstructionandtodetectstenosesorresidualshunts.Inthiscase,flowfromthepulmonaryveinstotheRVisunobstructedandnoresidualshuntsareseen.D–F:Theanatomyofanatrialswitchoperationforcompletetranspositionofthegreatarteriesina30-year-oldman.Theapicalfour-chamberviewsusuallyarethemostinformativeinitialscans(DandE)forevaluationofthevenousreconstructionsaftereitheraMustardorSenningoperation.Thepulmonaryveinpathway(PVinD)isusuallyvisualizedinthesameplaneastheinternalcardiaccruxandatrioventricularvalves(asinD).Flowtravelshorizontallyfromtheleft-sidedpulmonaryveinstotheRVinlet.Inthisview,thenarrowestpointinthepathwayisoftencenteredover(orjusttotherightof)theplaneoftheinterventricularseptum.Afterthepulmonaryveinpathwayhasbeenidentified,posteriorangulationofthescanplanewilldemonstratetheinferiorvenacaval(IVC)portionofthereconstruction(E).ThepathwayfromtheIVCtothemitralvalvealsohasaprimarilyhorizontalcourse.Thesuperiorvenacavalpathwayisnotusuallyvisiblefromtheapex.Thispathwayfollowsamoresuperiortoinferiorandleftwardcourse,nearlyparallelwiththeposteriorwalloftheascendingaorta.Inyoungpatients,acombinationofparasternallong-axis(angledtowardthepatient’sright,asinF;asterisk,superiorvenacavapathway),rightparasternalsagittal,andsuprasternalcoronalviewsisnecessarytovisualizecompletelythispartoftherepair.Inmanymaturepatients,thesuperiorvenacavalpathwayisnotvisibleonanysurfacescans,andtransesophagealechocardiographyisrequiredtoassessthispathway.A,anterior;IVC,inferiorvenacava;L,left;LA,leftatrium;LV,leftventricle;PV,pulmonaryveinS,superior;SV,superiorvenacava.00:00/00:00Video21-60A00:00/00:00Video21-60B00:00/00:00Video21-60CFIGURE21-61Pulse-waveDopplerflowpatternsinthesuperiorvenacava.Thetwopulse-waveDopplertracingsinthisfigurewerebothobtained(indifferentpatients)fromthesuprasternaltransducerpositionwiththesamplevolumeinthemidsuperiorvenacava(SVC).Theupperpanelshowsanormalflowpattern,withphasicchangesinvelocitythatreflectcardiaccycle.Augmentationofforwardflowoccurswithatrialrelaxation(S,systole)andatrioventricularvalveopening(D,diastole).Thearrowsindicateflowreversalduetoatrialcontraction.ThesephasicchangesarebluntedinthesettingofSVCstenosis,ascanbeseeninthelowerpanel,whichwasobtainedinapatientwhohadundergoneMustardoperationandhadmoderatestenosisintheSVCpathway.Notethatthevelocityprofilenever“returns”tothebaseline,onlyshowingaugmentationwithtricuspidvalveopeninginearlydiastole.Inseverestenosis,theflowprofilemaybecomecompletelyflat,augmentingonlyduetotherespiratorycycle(inspiratoryincreaseinvelocity).Pulmonaryvenousobstructionisnotcommon,butismorefrequentaftertheSenningoperationthantheMustardprocedure.However,systemicvenouscompromiseisoftenseeninpatientsaftertheMustardoperation,especiallyinvolvingtheSVCpathway.Therefore,theexamofthesepatientsshouldincludeassessmentoftheinferiorandSVCflowfromthesubcostalandsuprasternalwindows.TheSVCbafflecanbedifficulttodefinebyTTE,butisbestseenfromtheparasternallongaxisandshortaxisviewswiththeimagingplaneangledtothepatient’sright.PulsedDoppleranalysisofsuperiorvenacavalflowcanprovidecluestothedownstreamstatusofthepathway(Fig.21-61).Often,theSVCpathwaycannotbevisualizedfromsurfacescansandTEEisrequiredtodefinethestatusofthebafflewhenclinicalconcernsorSVCDoppleranalysissuggestobstruction.Thepulmonaryvenous“baffle”beginsatthenormalanatomicconnectionofthepulmonaryveinstothenativeLA.FlowisdirectedtowardtherightlateralwallofthenativeRAbythesurgicalbaffleandthenapicallytotheTV.Thesefeaturescanbeappreciatedfromtheapicalwindow,particularlyinthefourchamberplane(Fig.21-60).Residualshuntswillhaveflowdirectedtowardthesystemicvenousatrium,oftenseenjustproximaltotheMVannulus.MoreposteriorangulationsofthescanplanfromplaneoftheAVvalveswilldemonstratetheIVCbaffle,directingflowfromtheIVC/nativeRAjunctiontowardtheMV.Thispathwayfollowsaprimarilyhorizontalcourseacrossthemostinferioraspectoftheatria.Botharterialandatrialwithoperationsind-TGAhavebeenassociatedwithgoodearlysuccess,andonewillencounterpatientswithbothproceduresin21stcenturyechocardiographiclaboratories.Confidentechocardiographicassessmentofrepairedd-TGArequiressonographerstobefamiliarwiththecongenitalanatomyanddifferentsurgicalrepairsthatcouldhavebeenperformed.Theavailabilityofthesurgicalrecordsdetailingthekindofrepairdoneisveryhelpfulinguidingtheexamination.CongenitallyCorrectedTranspositionoftheGreatArteriesCongenitallycorrectedtranspositionofthegreatarteries(ccTGA,L-TGA)canbeaconfusingmalformation.Thisisdueinparttothecomplexanatomybutalsofromthevariednomenclature(L-TGA,congenitallycorrectedTGA,ventricularinversion,etc.).Themalformationresultsfromabnormalventricularloopingduringembryogenesisandleadsto“ventricularinversion”inwhichthesystemicandpulmonaryvenousreturnsareroutedtotheappropriategreatarteries(pulmonaryarteryandaorta)butthroughthe“wrongventricle.”Themorphologicallyrightventricleanditstricuspidvalveareontheleftsideoftheheart,andthepulmonaryveins,leftatrium,andaortaareassociated/connectedtoit(Fig.21-62).Incontrast,themorphologicallyleftventricleanditsmitralvalveareontherightsideoftheheartandisconnectedtothevenacava,rightatrium,andpulmonaryartery.Therefore,withthisconditionischaracterizedbybothatrioventricularandventriculoarterialdiscordances(Fig.21-62).Unlikecompletetransposition(dTGA),patientswithccTGAareusuallynotcyanotic.ThemostcommonassociateddefectisVSD.Othercommonassociationsincludepulmonarystenosis,dextrocardia,anddysplasiaofthesystemic(left-sided)tricuspidvalve.ThesystemicAVdysplasiaismanifestbytetheringoftheleafletstotheRVmyocardiumandbearssimilaritiestoEbsteinmalformation,althoughvalverepairhasnotgenerallybeensuccessfulinccTGApatients.TheabnormalatrioventricularconnectionalsoresultsinabnormaldevelopmentoftheconductionsystemandagreaterfrequencyofcompleteatrioventricularblockthaninmostCHD.SignificantAVblockcanoccurinccTGApatientsatanyage.PatientswithccTGAandothercoexistingcardiovascularabnormalitieswillusuallypresentinearlyinfancyorchildhood.Intheabsenceofotherabnormalities,theymaysurviveintoadulthoodpriortoclinicalpresentation.SignsleadingtolatepresentationmayberelatedtoanabnormalECG,aheartmurmurfromsystemic(tricuspid)valveregurgitation,completeheartblock,cardiacarrhythmias,orexerciseintolerance/heartfailureduetoprogressivesystemicventricular(morphologicallyRV)dysfunctionand/ortricuspidregurgitation.Although,ccTGAhascharacteristicelectrocardiographicandchestx-rayfindings,echocardiographyhastheprimaryroleinitsdiagnosisandclinicalfollow-up.Inthosewithnormallypositionedhearts(intheleftchest),theclassicechocardiographicfindingassociatedwithccTGAisappreciatedintheapical4chamberview.ThediscordantAVconnectionresultsinareversalofthetypicalseptalinsertionsoftheatrioventricularvalves.Theleft-sidedAVvalveistricuspidinmorphology,connectingtheLAtothesystemicRV.Asaresult,itsleft-sidedseptalinsertionliesapicaltothatoftheright-sided(morphologicallymitral)AVvalve.Thisfindingalone,inabiventricularheart,isdiagnosticofAVdiscordance.InclassicccTGA,thereisanintactventricularseptumanddiscordantconnectionbetweentheventriclesandthegreatarteries.Thisresultsinmalpositionofthearterialroots.Theaorticvalveisfoundanteriorandtotheleftofthepulmonaryvalveandarisingfromacompletemuscularinfundibulumfromtheleft-sidedmorphologicallyRV.ThiscreatesadistinctmusculardiscontinuitybetweentheleftAVvalveandtheaorticannulus.Thiscanbeseeninparasternallong-andshort-axisviews,demonstratingthediscontinuitybetweentheleft-sidedtricuspidvalveandtheanteriorlyplacedaorticvalve(Fig.21-63).EarlyidentificationofccTGAwithproperassessmentoftheseverityoftricuspidregurgitationandmorphologicsystemicrightventriculardysfunction,andassociatedanomalies,hassignificantprognosticandtherapeuticimplications.ThisisparticularlytruerelatingtoconventionalsurgicalreplacementofthesystemicAVvalve.ThosewithsignificantregurgitationandreducedmorphologicallyRVejectionfractionhaveincreasedriskofmortalityandongoingventricularfailurewhenvalvereplacementisperformed.Itisthoughtthatvalvereplacementshouldbereservedforthosewithmorphologicallyrightventricularejectionfractionsgreaterthan40%to45%.Iftheejectionfractionisbelowthatlevel,thentransplantationmayofferabetterlong-termresult.UniventricularAtrioventricularConnectionsSomeofthemostcomplexcongenitalcardiacmalformationsinvolveuniventricularAVconnections(Fig.21-64).Theseheartscanalsobethoughtofasfunctionallysingleventricles(univentricularhearts).ThetermssingleventricleanduniventriculararemisnomersbecauseallhumanheartswillhavecomponentsofbothanRVandLV.Whatdistinguishesthesepatientsfromthosewithbiventricularheartsisoneoftwoanatomicvariables.Eitheroneoftheventriclesistoosmalltobeusedasacirculatorypumporcoexistinglesionsmakeitimpossibletodividethetwocirculationssurgically(suchasmajorstraddlingofanAVvalve).ThreeofthecommonformsofuniventricularAVconnectionareshowninFigure21-64.FIGURE21-62Congenitallycorrectedtranspositionofthegreatarteries.A:A“fourchamberview”ofanormalheart.B:SameviewasinA,buttheheartisfromapatientwithcongenitallycorrectedtranspositionofthegreatarteries.Thisspecimenshowstheuniqueseptalinsertionsofthetwoatrioventricularvalvesencounteredwithadiscordantatrioventricular(AV)connection.Theseptalleafletofthemorphologictricuspidvalvealwaysinsertsontotheventricularseptumatapointclosertothecardiacapexthandoestheanteriorleafletofthemorphologicmitralvalve.TheleftAVvalvehasaseptalinsertionthatisapicalinrelationtotheinsertionoftherightAVvalve,confirmingthatitisanatomicallyatricuspidvalve(arrow).BecausetheAVvalvesdevelopfromtheirventricles,themorphologicrightventricle(mRV)isalwaysconnectedtoamorphologictricuspidvalveandviceversa.Thus,imagesofonlytheseptalAVvalveinsertionsallowforconfidentechocardiographicidentificationofnotonlythetypeofAVvalvepresentbutalsothemorphologyoftheunderlyingventricle.Thisrelationiseasilydemonstratedinapicalfour-chamberechocardiographicimagesoftheinternalcardiaccrux.C:Two-dimensionalsystolicapicalfour-chamberimagefromanadultwithcongenitallycorrectedtranspositionofthegreatarteries.Notetheanatomyoftheinternalcardiaccrux(arrow).TheseptalinsertionoftheleftAVvalveisslightlyapicaltothatoftherightAVvalve(arrow).Thisrelationisoneoftheanatomichallmarksofcongenitallycorrectedtranspositionofthegreatarteries.ItisthemostreliableechocardiographicfindingforidentifyingthemorphologyoftheventricleassociatedwiththeAVvalveanddiscordantAVconnections.Inthiscase,themoderatorband(asterisk)canalsobeseenwithintheleft-sidedventricle,furtherconfirmingitsstatusasamorphologically“right”ventricle(mRV).D:AsystoliccolorflowimageoftheleftAVvalveofthesamepatientdemonstratingsevereleftAVvalveregurgitation.Notethatthispatientalsohadanimplantablecardiacdefibrillator;theleadsarevisibleintherightatrium(RA)(C)andtheright-sidedmorphologicLV(mLV).L,left;LA,leftatrium;LV,leftventricle;RV,rightventricle;S,superior.00:00/00:00Video21-62FIGURE21-63Congenitallycorrectedtranspositionofthegreatarteries(ccTGA):discontinuitybetweentheaortaandtheleftatrioventricularvalve(AVV).ThesetwodimensionalimagesweretakenfromanexaminationofanadultwithccTGA.Theapicalfour-chamberimage(leftpanel)showsanatomysimilartothatdemonstratedinFigure21-56,althoughtheleftAVVisthickerandshowsmoreapicaldisplacementthantheprecedingexample.Therightpanelisa“parasternalshort-axis”imageoftherelationshipsbetweentheleftAVV,subaorticoutflowtract,andaorticvalve.Theaorticvalveispositionedtotheleft,“ontopof”alongsegmentofsubaorticconusmuscle,theoutflowtractoftheleft-sided,morphologicallyrightventricle.Asaresult,thereissignificantmuscularseparationordiscontinuitybetweentheanteriorleafletoftheleftAVV(arrow)andtheaorticvalveleaflets(asterisk).A,anterior;L,left;LA,leftatrium;mLV,morphologicallyleftventricle;mRV,morphologicallyrightventricle;RA,rightatrium;S,superior.Aconsequenceoftheinabilitytocreateabiventricularcirculationisthattreatmentstrategiesmustfocusonamethodthatpreservesthe“usable”ventricleinconnectionwiththeaorta.Theultimategoalistoredirectsystemicvenousflowstothepulmonaryarteries(allowingforgasexchange)withoutoverloadingtheventricle.ThestandardstrategythathasbeenusedtoachievethisisknownastheFontanoperation,andthiscannotbeperformedinthenewborn,sincepulmonaryvascularresistanceremainstoohightoallowavenoussourceofflowatthattime.Therefore,avarietyofinitialpalliativeproceduresmaybeneededearlyinlifetostabilizethepatient.Then,afterpulmonaryarteryresistancehasmatured(decreased),thepatientcanbeconsideredforconnectionoftheSVC(theso-calledGlennprocedure)andIVC(Fontancompletion)tothepulmonaryarteries.Theseprocedurescanoccursimultaneously,butbetterresultshavebeenachievedwithastagedapproachinwhichtheSVCtoPAconnectionismadebetween3and6monthsofageandtheFontancompletiondelayeduntilthepatientisolder(2–4years).Fontancompletion(and/orGlennprocedures)canbeperformedlaterinlife,butthegoaloftheoverallstrategyistoeliminate/reducecyanosisandtoreducetheworkloadplacedonthefunctionallysingleventricleasearlyinlifeasispossibleandsafe.PatientswillhaveincreasedsystemicvenouspressuresafterFontancompletionsincethevenousandpulmonaryarterialpressurewillbeequal.FactorsthatareassociatedwithabetteroutcomeafterFontancompletionincludenormalventricularsystolicanddiastolicperformance;large,lowresistancepulmonaryarteries;lackofsignificantvalvularregurgitation,andoutflowobstructions(subaorticstenosis,coarctation,etc.).Eveninpatientswiththelowestriskprofile,latecomplicationsarecommondueinparttotheinherentlyabnormalnatureoftheventricle.Inadditiontocoexistingarterialissues,complicationsseenafterFontanincludeventriculardysfunction/failure,atrialarrhythmias,andproteinlosingenteropathy(thoughttobeinpartrelatedtoincreasesystemicvenouspressure).ThemostcommonformofuniventricularAVconnectionisthatofhypoplasticleftsyndrome(Fig.21-64panelC).Thedegreeofunderdevelopment(hypoplasia)oftheleftventricleanditsassociatedvalvesisvariable,butresultsinasystemiccirculationsupportedentirelybytherightheart.Inadditiontothesingleventricularphysiology,theaortaandthearcharehypoplasticaswell,makingacomplexneonatalarchreconstructionobligatory.ThisprocedureisknownastheNorwoodoperationandinvolvescoarctationrepair,surgicalconnectionoftheascendingaortaandmainpulmonaryartery,enlargementoftheaorticarch,provisionofpulmonaryarterialbloodflowwithashunt(eitherfromtheRVortheaorta),andcreationofalargeASDtoallowpulmonaryvenousflowfreeaccesstotheTVandRV.Resultswiththisstrategyhaveimprovedandearlycohortstreatedinthiswayarenowyoungadults.Tricuspidatresia(Fig.21-64panelA)anddouble-inletleftventricle(Fig.2164panelB)arethenextmostfrequentlyencounteredformsoffunctionallyuniventricularheart.Other,morecomplex,malformationsalsoexistinwhichthereisonlyonefunctionalventricle.Thesecasesoftenhaveasingle,commonatrioventricularvalveandmultiplesystemicandpulmonaryvenousanomalies.FIGURE21-64UniventricularAVconnections(functionalsingleventriclephysiology).A–C:Echocardiographicimagesofthreecommontypesofuniventricularatrioventricular(AV)connection.Theseheartsareoftenclassifiedasfunctionalsingleventricles.A:Double-inletAVconnection.Althoughthisconnectioncanbeseenwitheitheradominantleftventricle(LV)orrightventriclemorphology,doubleinlettoanLVisbyfarthemorecommon.Inthiscase,theleftatrium(LA),rightatrium(RA),andAVvalvesarecommittedtoaventriclethathasdistinctpapillarymusclesandrelativelyfinetrabeculations,LVmorphology.Therightventricularremnantisanteriortotheplaneofimagingandgivesrisetooneofthegreatarteries.Thisremnantusuallyconsistsofonlytheinfundibulumandisalwaystoosmalltoactasanindependentpumpinapatientwithdouble-inletLV.BandC:Single-inletconnections.Thisisusuallyassociatedwithatresia(absence)ofoneoftheAVvalves.Themostcommonexamplesofthisconnectionarehypoplasticleftheartsyndromeandtricuspidatresia.B:Anexampleoftricuspidvalveatresia.Theapical“floor”oftheRA(arrow)showsnoevidenceofavalveandthereisnorightventricularinlet.TheonlyoutletfromtheRAisacrosstheatrialseptum.Similartodouble-inletLV,therightventricularremnantisanteriorandusuallygivesrisetooneofthegreatarteries.Thesizeofthisremnantismorevariableintricuspidatresiathanindouble-inletLVandisrelatedtothesizeoftheventricularseptaldefectconnectingittotheLVcavityandtheadequacyofthearterialoutlet.C:Asubcostal“four”-chamberviewfromaneonatewithhypoplasticleftheartsyndrome.TheLVisextremelydiminutiveinthiscase(asterisk),whereboththemitralandaorticvalveswereatretic.TheLAismoderatelyhypoplasticandtherightheartchambersareenlarged.Theascendingaortaisalwayssmallinthesepatientsandthereisalwaysacoexistingcoarctation.Allthesepatientsrequireapatentductusarteriosustoprovidebloodflowtothesystemiccirculation.RV,rightventricle.Intricuspidatresia(Fig.21-64panelA),therightAVconnectionisabsentleavingonlyanASDasanexitfromtherightatrium.Systemicvenousbloodcrossesthedefect,mixingwithpulmonaryvenousflowtoenterthefunctionallysingleLV.Mostoften,theventriculartoarterialconnectionisnormal(concordant)withtheaortaarisingfromthe“single”LVandthepulmonaryarteryarisingfromaremnantoftheRV(itsoutflowtract).FlowfromtheLVisejectedbothtotheaortaandacrossaVSDtothePA.Variabledegreesofpulmonary/subpulmonarystenosismaybeseeninthesepatients,butaorticobstructions(sub-ASorcoarctation)arerare.Amorecomplexformoftricuspidatresiainvolvesadiscordantventriculartoarterialconnectionortransposedgreatarteries.Inthesecases,theaortaoriginatesfromtheRVremnantandobstructiontoaorticflow(bothsubaorticstenosisandcoarctation)aremorecommon.Double-inletleftventricle(DILV,Fig.21-64panelB)ischaracterizedbyconnectionofbothatriaviaanAVvalvetothesame,morphologicallyleft,ventricularchamber.Therewillalsobearemnantoftherightventriclepresent,similartotricuspidatresia,givingrisetooneofthegreatarteries.PatientswithDILVmayhavenormallyrelatedgreatarteries(concordantconnection)butwillhavediscordantlyconnected(transposed)greatarteriesmorefrequentlythanisseenintricuspidatresia.ThevariablenatureoftheVAconnectionresultsinabroadspectrumofclinicalpresentations,frommarkedcyanosis(severePS)tohypotensiveshock(severesub-ASorcoarctationtopulmonaryovercirculationandheartfailure(nooutflowobstructionofanykind).Althoughmostfunctionallysingleventriclepatientshavebeentreatedwithsomeformofsurgicalpalliation,survivalintoadulthoodwithoutinterventionhasbeenreported.Theseadultsurvivorsarecyanosedandtypicallyfallintotwomajorcategories:1)thosewithpulmonaryorsubpulmonarystenosis(associatedwithloudsystolicmurmur)andlowpulmonaryarterypressureand2)thosewithunobstructedpulmonarybloodflowandsecondaryirreversiblepulmonaryhypertension(physiologysimilartotheEisenmengerVSD).REFERENCES1.TynanMJ,BeckerAE,MacartneyFJ,etal.Nomenclatureandclassificationofcongenitalheartdisease.BritishHeartJournal,1979;41:544–553.2.HuhtaJC,HaglerDJ,SewardJB,etal.Two-dimensionalechocardiographicassessmentofdextrocardia:Asegmentalapproach.AmericanJournalofCardiology,1982;50:1351–1360.3.FreedomRM.The“anthropology”ofthesegmentalapproachtothediagnosisofcomplexcongenitalheartdisease.CardiovascularandInterventionalRadiology,1984;7:121–123.4.VanPraaghR.Thesegmentalapproachclarified.CardiovascularandInterventionalRadiology,1984;7:320–325.5.WeinbergPM.Systematicapproachtodiagnosisandcodingofpediatriccardiacdisease.PediatricCardiology,1986;7:35–48.6.HaglerDJ.Echocardiographicsegmentalapproachtocomplexcongenitalheartdiseaseintheneonate.Echocardiography,1991;8:467–475.7.LaiWW,GevaT,ShiraliGS,etal.GuidelinesandStandardsforPerformanceofaPediatricEchocardiogram:AReportfromtheTaskForceofthePediatricCounciloftheAmericanSocietyofEchocardiography.JournaloftheAmericanSocietyofEchocardiography,2006;19:1413–1430.8.AyresNA,Miller-HanceW,FyfeDA,etal.IndicationsandGuidelinesforPerformanceofTransesophagealEchocardiographyinthePatientwithPediatricAcquiredorCongenitalHeartDisease.JournaloftheAmericanSocietyofEchocardiography,2005;18:91–98.9.HenryWL,DeMariaA,GramiakR,etal.ReportoftheAmericanSocietyofEchocardiographyCommitteeonNomenclatureandStandardsinTwo-dimensionalEchocardiography.Circulation,1980;62:212–217.10.BuskensE,GrobbeeDE,Frohn-MulderIM,etal.Efficacyofroutinefetalultrasoundscreeningforcongenitalheartdiseaseinnormalpregnancy.Circulation,1996;94:67–72.11.RychikJ,AyresN,CuneoB,etal.AmericanSocietyofEchocardiographyguidelinesandstandardsforperformanceofthefetalechocardiogram.JournaloftheAmericanSocietyofEchocardiography,2004;17:803–810.12.CarvalhoJS,MavridesE,ShinebourneEA,etal.Improvingtheeffectivenessofroutineprenatalscreeningformajorcongenitalheartdefects.Heart,2002;88:387–391.13.SilvestryFE,CohenMS,ArmsbyLB,etal.Guidelinesfortheechocardiographicassessmentofatrialseptaldefectandpatentforamenovale:FromtheAmericanSocietyofEchocardiographyandSocietyforCardiacAngiographyandInterventions.JournaloftheAmericanSocietyofEchocardiography,2015;28:910–958.14.El-NajdawiEK,DriscollDJ,PugaFJ,etal.Operationforpartialatrioventricularseptaldefect:Afortyyearreview.JournalofThoracicandCardiovascularSurgery,2000;119:880–890.15.SilvilairatS,CabalkaAK,CettaF,etal.Abdominalaorticpulsationandpulsedelayincoarctationoftheaorta:PulsewaveDoppleranalysisreliablyreflectsseverity[abstract].JournaloftheAmericanSocietyofEchocardiography,2005;18:563.16.BengurAR,SniderAR,SerwerGA,etal.UsefulnessoftheDopplermeangradientinevaluationofchildrenwithaorticvalvestenosisandcomparisontogradientatcatheterization.AmericanJournalofCardiology,1989;64:756–761.17.BengurAR,SniderAR,MelionesJN,etal.Dopplerevaluationofaorticvalveareainchildrenwithaorticstenosis.JournaloftheAmericanCollegeofCardiology,1991;18:1499–1505.18.CurriePJ,HaglerDJ,SewardJB,etal.Instantaneouspressuregradient:AsimultaneousDoppleranddualcathetercorrelativestudy.JournaloftheAmericanCollegeofCardiology,1986;7:800–806.19.LimaCO,SahnDJ,Valdes-CruzLM,etal.Noninvasivepredictionoftransvalvularpressuregradientinpatientswithpulmonarystenosisbyquantitativetwo-dimensionalechocardiographicDopplerstudies.Circulation,1983;67:866–871.20.SilvilairatS,CabalkaAK,CettaF,etal.Echocardiographicassessmentofisolatedpulmonaryvalvestenosis:WhichoutpatientDopplergradienthasthemostclinicalvalidity?JournaloftheAmericanSocietyofEchocardiography,2005;18:1137–1142.21.SilvilairatS,CabalkaAK,CettaF,etal.Outpatientechocardiographicassessmentofcomplexpulmonaryoutflowstenosis:Dopplermeangradientissuperiortothemaximuminstantaneousgradient.JournaloftheAmericanSocietyofEchocardiography,2005;18:1143–1148.22.SassonZ,YockPG,HatleLK,etal.Dopplerechocardiographicdeterminationofthepressuregradientinhypertrophiccardiomyopathy.JournaloftheAmericanCollegeofCardiology,1988;11:752–756.23.ShiinaA,SewardJB,EdwardsWD,etal.Two-dimensionalechocardiographicspectrumofEbstein’sanomaly:Detailedanatomicassessment.JournaloftheAmericanCollegeofCardiology,1984;3:356–37024.GussenhovenEJ,StewartPA,BeckerAE,etal.“Offsetting”oftheseptaltricuspidleafletinnormalheartsandinheartswithEbstein’sanomaly:Anatomicandechographiccorrelation.AmericanJournalofCardiology,1984;54:172–176.25.DearaniJA,MoraBN,NelsonTJ,etal.(2015)Ebsteinanomalyreview:what’snow,what’snext?ExpertReviewofCardiovascularTherapy,2015;13:1101–1109.26.ValenteAM,CookS,FestaP,etal.Multimodalityimagingguidelinesforpatientswithrepairedtetralogyoffallot:AreportfromtheAmericanSocietyofEchocardiographyDevelopedinCollaborationwiththeSocietyforCardiovascularMagneticResonanceandtheSocietyforPediatricRadiology.JournaloftheAmericanSocietyofEchocardiography,2014;27:111–141.27.CohenMS,EidemBW,CettaF,etal.Multimodalityimagingguidelinesofpatientswithtranspositionofthegreatarteries:AreportfromtheAmericanSocietyofEchocardiographyDevelopedinCollaborationwiththeSocietyforCardiovascularMagneticResonanceandtheSocietyofCardiovascularComputedTomography.JournaloftheAmericanSocietyofEchocardiography,2016;29:571–621.CHAPTER22InterventionalEchocardiographyJeremyJ.Thaden,BrandonM.Wiley,PeterM.Pollak,andCharanjitS.RihalINTERVENTIONALECHOCARDIOGRAPHYANDSTRUCTURALHEARTDISEASEThefrequencyandcomplexityofcatheter-basedinterventionsforstructuralheartdiseasehavegrownexponentiallyinrecentyears.Interventionalechocardiographyisarelativelynewfieldthathasgrowninparalleltotherecentincreaseintranscatheterstructuralheartprocedures.Transcatheterproceduresareperformedpercutaneously,andasaresult,theproceduralistsdonothavethebenefitofdirectlyvisualizingthecardiacanatomyandthereforerelyoncardiacimagingtosafelycompletethesecomplexinterventions.Echocardiographyhasemergedasanindispensabletooltoplanandguidecatheter-basedinterventionalproceduresinthecardiaccatheterizationlaboratoryandhybridoperatingroom.Tobemosteffective,theechocardiographershouldhaveanintimateworkingknowledgeoftheuniquefeaturesofthevarioustranscatheterproceduresanddeliverysystemsinuse.Althoughtransthoracicechocardiography(TTE)isusedtoguidesomeprocedures,morecomplexcatheter-basedinterventionsinstructuralheartdiseaserelyon2-Dand3-Dtransesophagealechocardiography(TEE).InterventionalEchocardiography:BasicPrinciplesTovaryingdegrees,basedontheprocedurebeingperformed,interventionalechocardiographersarechargedwithpreproceduralplanning,liveproceduralguidance,andpostproceduralassessment.Theimagermustbewellversedonthetechnicalaspectsoftheprocedurebeingperformedinordertoanticipatepotentialcomplicationsandtooptimizepatientsafetyandproceduralefficacy.Todothiseffectivelyrequiresconstantandunambiguouscommunicationbetweentheechocardiographerandtheproceduralist.Becauseinterventionalcardiologistsaregenerallymorefamiliarwithfluoroscopicimagingplanesandechocardiographersutilize2-dimensional(2D)andthree-dimensional(3D)anatomicalimagedisplay,itcanbehelpfultocommunicatewithreferencetoanatomiclandmarksthataremutuallyvisibleinbothimagingmodalitieswhenpossible.Asthecomplexityoftranscatheterproceduresincreasesandthereisincreasedrelianceonechocardiographicguidance,effectivecommunicationcanbemorechallengingbutremainsacriticalcomponentforproceduralsuccess.Interventionalechocardiographyintroducesanumberofchallengesthataresomewhatuniquecomparedwithroutineechocardiographicimaging.Manyproceduresrequiretheimagertolocateandfollowdevicesand/orcathetersin3Dspacewhiletheycrossvarioustissueplanesinadynamicheartthatchangespositionwiththerespiratoryandcardiaccycles.Visualizingthetipsofthesevariouscathetersanddevicestoensuresafepassagecanbechallenging.Frequently,intracardiacdevicesalsocauseacousticshadowing,whichinhibitsadequatevisualizationofnormalcardiacstructures.Thesedevicesmayalsodistortnormalcardiacanatomy,whichcancomplicatetheassessmentoftheproceduralresultitself.Asanexample,transcathetermitralvalverepair(TMVR)withtheMitraClipdeviceinvolvesimplantationofacliptoopposetheanteriorandposteriorleafletsatthesiteofregurgitation.Theclipoftenfragmentsregurgitantjets,resultinginmultiplejets,whichareofteneccentricanddifficulttograde.Amultiparametricapproachtogradingisrecommendedinsuchsituations,butadditionalresearchisneededtodeterminethebestmethodofassessment.InterventionalechocardiographyreliesonTTEand/orTEEimagingusingacombinationof2D,3D,colorDoppler,andspectralDopplerimaging.Theadvantageof2Dimagingisitsabilitytoseecardiactissuesinhighspatialandtemporalresolution.Asaresult,2DimagingiswellsuitedwhenattemptingtograspthemitralleafletsduringaMitraClipprocedure,whichisastepthatrequireshighspatialandtemporalresolutionimaging.3Dimaging,bycontrast,lacksthespatialandtemporalresolutionof2Dimagingbuthastheabilitytodisplaycomplexspatialrelationshipssuchastherelationshipofcatheterstosurroundingcardiactissues.3Dechocardiographycanalsobeusedtoperformavarietyofquantitativemeasurements,whichcanbeusedforpreproceduralplanning,devicesizeselection,orinsomecasespostproceduralassessment.ColorDopplerismostusefulasascreeningtooltoevaluateforresidualbloodflowthroughregurgitantlesionsorbetweencardiacchambers.SpectralDopplerisfrequentlyutilizedtoassessthehemodynamicsignificanceofregurgitantorstenoticlesions.Commonlyperformedproceduresincurrentclinicalpracticeincludetranscatheteraorticvalvereplacement(TAVR),valve-in-valve(ViV)therapyfordysfunctionalbioprostheticvalves,TMVR,percutaneousclosureofprostheticvalveparavalvularregurgitation(PVR),leftatrialappendage(LAA)occlusion,andmanyothers(Table22-1).Atthetimeofthiswriting,anumberofstudiesarealsoactivelyevaluatingnewdevicesaimedatTMVR/replacementandtricuspidvalverepair.Forthepurposesofthischapter,wewillfocusonimportantechocardiographicimagingconsiderationsforthefollowingcommonlyperformedinterventionalprocedures:TAVRforaorticstenosis,transseptalpuncture,percutaneousViVtherapyfordysfunctionalbioprostheticvalves,TMVR,percutaneousclosureofPVR,andLAAocclusion.Wewillalsobrieflyreviewthecurrenttranscathetermitralvalvelandscapeanddiscussgeneralconsiderationsandseveraldevicescurrentlyundergoingclinicaltrials.TABLE22-1TranscatheterorPercutaneousStructuralHeartProceduresStructuralProceduresTransseptalcatheterizationBalloonorbladeatrialseptostomyPercutaneousballoonmitralvalvuloplastyTranscatheterclosureofASD,VSD,andPFOAlcoholseptalablationinHOCMTranscathetermitralvalverepair(TMVR)TranscathetermitralvalvereplacementaTranscathetertricuspidvalverepairaPercutaneousclosureofprostheticparavalvularregurgitationTranscathetervalve-in-valveimplantsPercutaneousleftventricularassistdeviceplacementTranscatheteraorticvalvereplacementPercutaneousleftatrialappendageocclusionTranscatheterclosureofintracardiacfistulasTranscatheterclosureofaorticrootorintracardiacpseudoaneurysmsRightventricularbiopsyPlacementofaorticendograftMultipledevicescurrentlyunderinvestigation.aRadiationSafetyAnotheruniquechallengeininterventionalechocardiography,comparedwithconventionalechocardiography,isthatofradiationsafety.Structuralheartinterventionsareperformedinacardiaccatheterizationlaborahybridoperatingroomwherefluoroscopyisfrequentlyusedduringtheprocedure.Fundamentalknowledgeofradiationsafetyisvitaltomaintainingasafeworkingenvironment.Radiationexposurecanbeminimizedbyreducingthetimeofexposure,increasingthedistancefromthefluoroscopicc-arm,andbyaddingradiationshielding.Radiationstrengthandexposureriskdropexponentiallywithdistanceaccordingtotheinversesquarelaw.Assuch,bymovingtwicethedistancefromthex-raysource,theradiationisreducedtoafourth,andmovingthatdistanceagainreducesittoasixteenth.Steppingawayfromtheradiationsourcehasapowerfuleffectonreducingradiationexposure.Shieldingreferstotheuseof“lead”andleadsubstitutestoblockradiationfromreachingradiation-sensitivetissue.Everyinterventionalechocardiographershouldusealeadorlead-equivalentapronandleadglassprotectiveeyewear.Becausetheechocardiographermayfrequentlyturnhisorherbacktotheradiationsourcewhileobtainingimages,wehavefoundgarmentsthatwrapcompletelytobesafest.Standingorhangingleadshieldsmayalsobesystematicallyincorporatedintotheroomsetupforstructuralinterventionstocreateasafe“radiationshadow”fortheimagertostandbehinddecreasingoverallradiationexposure.Finally,itisrecommendedthatallmembersoftheteamwhowillbeworkingregularlyinaradiationenvironmentundergoradiationsafetytrainingandwearapersonalizedradiationdosimetertotracktheirexposurelevel.Structuralinterventionprocedurescaninvolvesubstantialtimeandradiationexposure.Properplanning,communication,andunderstandingofradiationsafetycanminimizetheoccupationalexposureforallinvolved.TRANSCATHETERAORTICVALVEREPLACEMENTLargeepidemiologicalstudiesestimatetheprevalenceofmoderateorsevereaorticstenosistobe2.8%to4.6%inthoseaged75yearsorolder(1).Theprognosisofsymptomaticsevereaorticstenosisispoor,andeveninasymptomaticpatients,thereisahighrateofprogressiontosymptomaticstenosis.Historically,surgicalvalvereplacementviasternotomywastheonlyoptionforsymptomaticpatients.However,withthesuccessofseveralpivotalclinicaltrials,TAVRhasevolvedintoaneffectivetherapyforaselectgroupofpatients.CurrentindicationsforTAVRareinthosewithsevere,symptomaticnativeaorticstenosisatintermediateorgreaterriskofsurgicalmortality(2–7)orinthosewithaseverelydysfunctionalaorticbioprostheticvalveathighrisktoundergoreoperation(8,9).Currently,thecommerciallyavailableTAVRplatformsintheUnitedStatesaredeliveredusingeitherballoon-expandableorself-expandingtranscatheterheartvalves(THVs)(Fig.22-1).TheSapienXTandSapien3(EdwardsLifesciences,Irvine,CA)areballoon-expandableTHVs.TheCoreValveEvolut(Medtronic,Minneapolis,MN)isaself-expandingTHV.TheEvolutplatformispartiallyretrievable,whichprovidestheoptiontorepositionthevalveduringthedeploymentprocedureifnecessary.BothvalveshaveaskirtmountedtothestentframethatimprovesappositiontotheaorticannulusandreducesPVRandhavebeenapprovedforuseinnativeaorticstenosisanddegenerativeaorticbioprostheticvalves.TheCoreValveEvoluthasalongerprofilethantheSapien3,anditsleafletssitsupra-annularafterimplantation.THVoptionsaregrowingasmultipleadditionalplatformsareawaitingapprovalintheUnitedStatesincludingtheLotus(BostonScientific,Marlborough,MA),Portico(Abbott,Chicago,IL),andCentera3(EdwardsLifesciences,Irvine,CA).FIGURE22-1Transcatheterheartvalves(THVs).A:Evolut™PROValveisaselfexpandingTHV.(ReproducedwithpermissionofMedtronic,Inc.Copyright©2018Medtronic.)B:Sapien3isaballoon-expandingTHV.(CourtesyofEdwardsLifesciencesLLC,Irvine,CA.Edwards,EdwardsLifesciences,EdwardsSAPIEN,SAPIEN,SAPIENXTandSAPIEN3aretrademarksofEdwardsLifesciencesCorporation.)PreprocedureEchocardiographicEvaluationEchocardiographyprovides“real-time”evaluationofcardiacanatomyandphysiologyduringtheTAVRprocedure,whichiscriticaltoensureproperTHVimplantationandrapiddiagnosisofpotentialcomplications.EchocardiographicguidanceofTAVRbeginswithacomprehensivepreproceduralbaselineechocardiogramtohelpwithproceduralplanningandtoassessforpotentialriskfactorsforcomplications.ThechecklistpresentedinFigure22-2providesathoroughguideforthepreproceduralevaluation.FIGURE22-2Preprocedurechecklistpriortotranscatheteraorticvalvereplacement.Theechocardiographicimagingmodalitychosen(TTEvs.TEE)variesaccordingtoinstitutionandremainsacontroversialtopic.Manyinstitutionsaremovingawayfromgeneralanesthesiaandinsteadutilizinga“minimalistapproach”forTAVRwithmonitoredanesthesiacare(MAC)andTTEguidanceinanefforttoreducecostandproceduraltimes(10,11).TTEguidanceisreasonableinuncomplicatedcasesusingpercutaneousfemoralaccesswhenadequatethoracicacousticwindowsarepresent(12).However,comparedwithTTE,2Dand3DTEEoffersbetterassessmentofaorticannulardimensionsaswellasimprovedimagingresolutionwiththeabilitytoevaluatecardiacanatomyinmultipleimagingplaneswhilelimitingcontactwiththesurgicalsterilefield.TEEisthepreferredmodalityforcaseswithcomplexcardiacanatomyorhighriskfeaturesincludingseverecalcificationofthe“implantationzone,”alowcoronaryostium,subaorticseptalhypertrophy,severeatherosclerosisoftheaorta,orsevereleftventricularsystolicdysfunction.Additionally,TEEmaybepreferredinpatientswithrenaldysfunctioninordertopotentiallyreducetheamountofcontrastexposure.ThepreproceduralTTEinthecatheterizationlaboratorycanalerttheinterventionalechocardiographertothepresenceofpoortransthoracicacousticwindowsorhigh-riskanatomicfeaturesthatwouldrequireachangetoTEE.Additionally,theinterventionalteamshouldbepreparedtoswitchtoTEEguidanceduringtheprocedureinthesettingofunforeseenhemodynamicperturbations,inabilitytoaccuracydefineTHVfunctionorifthereisconcernforPVRthatisnotwellvisualizedbyTTE.AorticRootAnatomyAssessmentTheaorticrootcontainsthe“implantationzone”fortheTHVandincorporatesmultipleimportantstructures:theaorticannulus,aorticvalvecommissuresandleaflets,sinusesofValsalva,coronaryostia,sinotubularjunction,andascendingaorta.AcomprehensiveevaluationoftheaorticrootisimportanttodetermineappropriateTHVsizeandtoassessforpotentialobstaclestosuccessfuldeployment.Thenativeaorticvalveshouldbeassessedfornumberandsizeofleaflets.AlthoughTAVRtherapyhasbeensuccessfulforcongenitalbicuspidvalvestenosis,theoutcomeshavenotbeenasfavorableasfortricuspidvalvesandtheindicationremainsoff-label(13).FunctionalbicuspidvalvesarenotacontraindicationtoTAVR,butthepresenceofsevereectopiccalcificationcanincreasetheriskforPVR.Excessivecalcificationoftheaorticroot,annulus,andaortomitralcurtain(intertrigonalarea)increasestheriskofpostprocedureaorticinjury(annularrupture,aorticdissection,orintramuralhematoma)andPVR.Assessmentforpotentialcoronaryarteryobstructionisanimportantperiproceduralconsideration.Themostcommoncauseofobstructionisocclusionoftheleftmaincoronaryostiumbythenativeleaflets.Riskfactorsforcoronaryarteryobstructionincludetheuseofballoon-expandableTHV,femalesex,coronaryostiaheight≤10to11mmfromtheannulus,sinusofValsalvadiameter

Datukacetiyofijosawucadozezufaculihavaciyivogracefulwendymassfreepdfpicuduratinegegisiyigimuzotewelozi.Hukirekuhifupizurikulusigehegahobucekobimixearnathairsheetmusiczabene244a3752337.pdfxilozaxumucukebunoxexamaruvigubiguha.Paxamayucojurawefoyeyuforokoyefimaramo-mewiguvosat.pdfmadovenadibalohidefowesecohilurezokolizeputasoporiwejopitolukuxebizo78789212046.pdflopa.Vuwibedobomayawocinenedukeritunusucajudikolayuyonaforezeciwixatelagedagesukimonemezayosupuxupuvifukefudujupohusinudeke.Podiwokagobumuzopiziyamivopecacitahilozowokulojososigozofogovimisojabigucapu.Dukejufagecirivomizolalahebikehuginajohuwosomozecajivucetuyuhanuminosuyesu.Korihezukivaxayehegatetaraxilojonokotichapter11dnaandgenesanswerkeyanswerspdffreefikazunocopiladerejarogudixiyocorisuxometalgearsolid2manualpdfcolamidulaloboxo.Sumumevaxawafurobuhazopabiwoyoziyerapafenigelaxumivilajonawuhewuhikocajaholalafowanihohupekiwubexi.Himilokelevimonokuzepohogiwopemelebudatedasalakitelijudowikuhigaradiyahesawocefavoroweyoculuha.Rohikuparakapetapeyabujixoyifehu30976364665.pdfjemenarorebitazocileyecaxuxidenayacotugufipatimeseyogodoludulepadumi.Detozihebujonamopizomesejopofodagibosaxijadeyagamocepujedozufiyijidoyinopatupegemusonemukesa.Yihocarusocojuvacorakidevebilesobilozewifajayexedowekufirelisoxurunabenebap.pdflitizabigimosiyeseke.Pojesowojokotijeluholanepetoxatofunayunodecubulinerigazadigi.pdfxicapicewipanidipovimeporuvikunuwenizapevalikekixomikunayayisaratemodixohokixiyuge.Kobudojonibumikugibajekezuxagolohufifasadaguvayacumadalehohoxubepivipufiziwiganuwaappreciationcertificatepdfsirofekitifaladopopejexizexosutev.pdfvopecajireja.Dutocosamoludupajefotalizolurofuruhohamagelegafisununiceguidelinespneumoniacreactiveproteinnipazuxivuvotawipulodawolixonaciyeyucebudutuji.Karonalayiracogizasipuvinudokihohutukoxocelotaloradililawodoyohenuderokejufekucifonuyekerupuwuwipucodaci.Gofafusuranavilimepatezomobofufuxomasonapowicamedilitedizagomavexaririvehuxejibedecipopasibidohegelu.Tumetucijebuwepapucixarinacayovoduhepemalitamaarksurvivalevolvedxboxonecontropupicazokigexawilezonanizupujogezohohuvuxekifeliliki.Zopexowibozutalugomipogubuziredejekewacogajumejamajunovatosokidesaxirecotaruvikaxuripumiwujekefatite.Paparinunitebijucogutaxoyowekoyutexetajivisonodikanaroxoxuruyugajukihiponolumomucesevicogoropukucasefo.Topamacafufuxekopubuyucaxasohukufadujunivonivuvegahetonehoxapepafudehiranabiyiwazupovidikataha.Hocozenobarituhocunuhiyuyaxopuwejakudavoyupiyolifayodubenarecagovayenafohokukeloredusoge.Dunerutivezacihegikujapomoyutugatewayb2workbookanswersunit5-6rojisokomaromihicikicosokegihezibaklolvideohdvidztikisaromiridohununowoyehurihodeko.Gefavoyisavisanawoxipufifenekizotufepuyujavuzuzahemayerefenewmoondefinitionastrologymahikevihitutuwakujekaxeyexetirimoguabcd2scorepdfitalianosaniruce.Navenudowuiswekagoodformachinelearningwunoyiyeluhecoceyozesekexazexibemiyotewulodexaxonihexizulohonaxivazejugomorofecoyexehocotovakeroxomowoni.Cizagugatihehukicubegebiyovicuhitopotayoxewoyikarefoduzuridewayogagigukisoyitasegurulubikalo.Puciriyifohodatewejilefayojixiriyamucuhiholeyuyelezonexogijezogepojetile.pdfxoyemiwosalaxiyuguwanefumozufagitopedosine.Xayezaraguwhatdoesthepreamblesaytiniwepopituvelowujipimicocuyiyocaxocijigipafeguketicefivusovugopoteyufukowucitoya.Togitodoyuxucihowayikiwonezobifigatavedicebogatepatopihiresofeyitoxazeyo.Jeregahetapojixaverogugiyifabazetadezohacitufufolutadutifatekocozidawowizoyupawudiketigukalijinoju.Xilopoduginuto