recent climate regimes in the equatorial andes

11
Recent Climate Regimes in the Equatorial Andes Gregory Knapp University of Texas at Austin Paper presented at the 2010 Meeting, Conference of Latin American Geographers Bogota, Colombia My first academic publication (Knapp 1980) was based on a class on climatology with John Kutzbach at the University of Wisconsin. We were studying climatic “teleconnections” and most of the students were focusing on El Niño connections. I became interested in another global phenomenon, the North Atlantic Oscillation as desribed by Van Loon and Rogers (1978), Sanchez and Kutzbach (1974), and Namias (1963). The North Atlantic Oscillation refers to changing regimes of planetary wind systems between situations of relatively cold north European temperatures and warm temperatures in Greenland (GA, Namias 2, low NAO Index) and the reverse (GB, Namias 1, high NAO Index) (Hurrell 1995). These changes are associated with long standing planetary waves in the atmosphere, and changes in the surface westerlies across the north Atlantic. The NAO does not seem to be closely correlated with ENSO events , and its relationship with Greenhouse gas forcing seems unclear (Hurrell 1995).

Upload: utexas

Post on 25-Apr-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

Recent  Climate  Regimes  in  the  Equatorial  Andes    

Gregory  Knapp  University  of  Texas  at  Austin  

 Paper  presented  at  the  2010  Meeting,  Conference  of  Latin  American  Geographers  

Bogota,  Colombia                               My  first  academic  publication  (Knapp  1980)  was  based  on  a  class  on  climatology  with  John  Kutzbach  at  the  University  of  Wisconsin.  We  were  studying  climatic  “teleconnections”  and  most  of  the  students  were  focusing  on  El  Niño  connections.  I  became  interested  in  another  global  phenomenon,  the  North  Atlantic  Oscillation  as  desribed  by  Van  Loon  and  Rogers  (1978),  Sanchez  and  Kutzbach  (1974),  and  Namias  (1963).     The  North  Atlantic  Oscillation  refers  to  changing  regimes  of  planetary  wind  systems  between  situations  of  relatively  cold  north  European  temperatures  and  warm  temperatures  in  Greenland  (GA,  Namias  2,  low  NAO  Index)  and  the  reverse  (GB,  Namias  1,  high  NAO  Index)  (Hurrell  1995).  These  changes  are  associated  with  long  standing  planetary  waves  in  the  atmosphere,  and  changes  in  the  surface  westerlies  across  the  north  Atlantic.  The  NAO  does  not  seem  to  be  closely  correlated  with  ENSO  events  ,  and  its  relationship  with  Greenhouse  gas  forcing  seems  unclear  (Hurrell  1995).  

 

     

   Figures  1  and  2.  Source  for  these  two  pictures:  http://www.whoi.edu/page.do?pid=12455&tid=282&cid=10146      

   

Figure  3.  DJF  Seasonal  index  of  the  NAO  based  on  the  difference  of  normalized  sea  level  pressures  (SLP)  between  Ponta  Delgada,  Azores  and  Stykkisholmur/Reykjavik,  Iceland  since  1865.  Source:  Jim  Hurrell,  http://www.cgd.ucar.edu/cas/jhurrell/indices.data.html#naostatdjfm,  data  read  5/20/10      

     Figure  4:  As  above,  but  five  year  running  means.    

My  interest  had  already  turned  to  Ecuador,  where  I  was  planning  to  spend  the  summer  of  1979  taking  the  international  program  at  CEPEIGE.  The  North  Atlantic  Oscillation  was  already  believed  to  affect  precipitation  in  the  Andes.  I  was  able  to  get  data  on  rainfall  from  the  Astronomical  Observatory  of  Quito  for  the  1891-­‐

1979  period,  thanks  to  help  from  PRONAREG  in  Quito  (Roberto  Cruz  Astudillo  and  Oscar  Robelio).  This  analysis  showed  that  during  years  with  low  index  winters  (DJF),  Jan-­‐May  precipitation  was  20  per  cent  less  than  years  with  high  index  winters  (610  mm  versus  720  mm).,  and  that  this  difference  was  significant  at  the  95%  confidence  level  (small  sample  t  test).  Furthermore,  precipitation  was  more  variable  during  low  NAO  index  events.  

 

 Figure  6,  Quito  Observatory  meteorological  station.    Photo  by  Gregory  Knapp,  

2006.    

     

     

       The  1958-­‐1969  period  had  no  fewer  than  7  low  index  winters  and  no  high  

index  winters,  making  this  a  period  of  very  low  NAO.  The  GB  pattern  appeared  

however  to  be  coming  back,  with  the  1975-­‐1979  period  having  2  low  index  winters  and  2  high  index  winters.  

In  writing  up  these  results  for  publication  in  Ecuador,  I  speculated  that  the  little  ice  age  had  been  marked  by  more  frequent  low  index  conditions  in  the  North  Atlantic  Oscillation,  and  that  this  meant  drier  and  more  variable  winters  in  the  Ecuadorian  highlands,  perhaps  helping  explain  the  rise  of  tola-­‐building  chiefdoms  with  elaborate  raised  field  and  irrigation  systems  during  the  Late  Period  (c.  1250-­‐1525  AD).    

This  little  paper  has  had  surprising  longevity.  It  has  been  cited  by  French  geographers  working  on  Ecuadorian  environmental  history,  and  I  have  received  recent  requests  for  it  from  researchers  beginning  new  projects  on  the  impact  of  climate  change  on  Ecuadorian  agriculture.  

For  the  purpose  of  this  meeting,  I  wanted  to  briefly  revisit  the  paper  and  its  arguments,  including  some  more  recent  data  on  the  North  Atlantic  Oscillation  and  precipitation  data  from  Quito  Observatory.  This  is  a  work  in  progress,  so  there  are  still  many  gaps;  I  hope  to  continue  working  on  this  topic.      

New  Interpretations  of  the  Northern  Oscillation    

By  1995  (Hurrell  1995)  it  had  become  clear  that  the  NAO  had  shifted  to  a  strongly  high  index  state,  with  1983,  1989,  and  1990  being  particularly  high.  Much  recent  research  has  also  focused  on  the  Arctic  Oscillation  (AO)  which,  although  defined  with  different  data,  shows  similar  trends  during  the  winter-­‐spring  period  to  the  NAO  (Zhou  et  al.  2001).  The  NAO  and  AO  time  series  shows  that,  since  1995,  the  index  has  shown  a  gradual  weakening,  with  a  great  drop  in  the  winter  of  2010.  

 New  Precipitation  Data  

    The  NAO  plunged  to  its  lowest  values  in  60  years  in  the  winter  of  2010.  During  this  period  Ecuador  experienced  several  months  of  dry  weather  (Figure  3),  but  has  bounced  back  to  wet  conditions.  This  has  also  been  a  period  of  Niño  conditions,  which  sometimes  brings  rain  to  the  Ecuadorian  coast,  but  not  apparently  this  time.       I  reanalyzed  available  Quito  observatory  data  from  1950  to  2005,  comparing  January-­‐May  rainfall  in  low  index  years  to  high  index  years.  For  the  purposes  of  this  analysis  I  used  DJF  NAO  data  from  Hurrell  (2010),  based  on  .  The  Quito  precipitation  data  included  corrected  data  I  obtained  previously  from  PRONAREG,  as  well  as  more  recent  data  obtained  directly  from  the  Quito  Observatory  in  2006.    The  results  showed  the  average  rainfall  in  low  NAO  Jan-­‐May  periods  (DJF  index  -­‐1  or  less)  was  587  mm,  18  per  cent  less  than  the  average  of  718  mm  in  high  NAO  Jan-­‐May  periods  (index  1  or  higher).  The  value  of  t  is  2.7,  suggesting  the  results  are  significant  at  the  99%  level  of  confidence.  These  values  were  close  to  those  (610,  720)  I  had  previously  obtained  for  GA  and  GB  winters  using  a  different  methodology.  

  Almost  all  of  the  difference  is  accounted  for  by  the  JFM  time  frame:  298  vs  418  mm  precipitation.  This  is  especially  vulnerable  period  for  crop  growth,  particularly  as  it  follows  the  often  dry  veranillo  month  of  December.       Using  the  entire  Quito  record  slightly  reduces  the  effect  of  the  NAO,  but  the  effect  is  still  highly  significant.  For  the  entire  record,  mean  Jan-­‐May  rainfall  is  636  and  736  mm  respectively,  while  JFM  rainfall  is  333  and  435  mm  respectively.  

In  the  United  States,  it  has  proven  valuable  to  combine  ENSO  and  AO  information  to  provide  higher  quality  explanations  for  change.    In  the  USA,  high  index  conditions  resemble  El  Nino,  while  low  index  conditions  most  resemble  La  Nina  in  the  effects  on  temperature  (Zhou  et  al.  2001).      

     Figure  4,  monthly  departures  from  normal  precipitation,  December  2009  through  April  2010.    Source:  Boletin  Agroclimatologico,  INAMHI,  downloaded  from  website  May  17,  2010:  http://www.inamhi.gov.ec      

New  Interpretations  of  the  Late  Period    Although  it  is  conceivable  that  increased  frequency  of  low  index  conditions  could  have  conditioned  the  adoption  of  irrigation  and  raised  fields  in  Cara  civilizations,  it  is  also  likely  that  the  volcanic  eruption  of  Quilotoa  around  1280  AD  had  a  more  proximate  role  in  the  regional  abandonment  of  agricultural  lands.    Acknowledgments:  the  author  expresses  his  appreciation  to  the  Quito  Observatory  as  well  as  the  Comision  Fulbright  of  Ecuador  for  scientifica  and  financial  support.    References    Hurrell,  James  W.  1995.  “Decadal  Trends  in  the  North  Atlantic  Ocillation:  Regional  Temperatures  and  Precipitation,”  Science  269:  676-­‐679.    Hurrell,  James  W.  2010.  “Seasonal  index  of  the  NAO  based  on  the  difference  of  normalized  sea  level  pressures  (SLP)  between  Ponta  Delgada,  Azores  and  Stykkisholmur/Reykjavik,  Iceland  since  1865.”  Table  downloaded  May  20,  2010  online  at  http://www.cgd.ucar.edu/cas/jhurrell/indices.data.html#naostatdjfm    

Knapp,  Gregory.  1980  “Cambios  en  el  Clima  de  los  Andes  Ecuatorianos:  Una  Tentativa  Explicación  Genética,”  Revista  del  Centro  Panamericano  de  Estudios  e  Investigaciones  Geográficas  39-­‐48.  Revised  and  reprinted  in  1982,  “Cambios  en  el  Clima  de  los  Andes  Ecuatorianos:  Una  Tentativa  Explicación  Genética,”  in  Geografía  y  Desarollo:  Metodologías  y  Casos  de  Estudio,  R.  Ryder  and  N.  Robelly,  ed.,  pp.  19-­‐26.  Quito:  Instituto  Geográfico  Militar.    Namias,  J.  1963.  “The  Interaction  of  Circulation  and  Weather  Between  Hemispheres,”  Monthly  Weather  Review  91:  482-­‐486.    NOAA.  2010.  “Standardized  Northern  Hemisphere  Teleconnection  Indexes,”  table  downloaded  May  19,  2010  at  ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/tele_index.nh.    Sanchez,  W.A.,  and  John  E.  Kutzbach.    1974.    “Climate  of  the  American  Tropics  and  Subtropics  in  the  1960’s  and  Possible  Comparisons  with  climatic  Variations  of  the  Last  Millenium,”  Quaternary  Research  4:  128-­‐135.    Van  Loon,  Harry,  and  Jeffrey  R.  Rogers.  1978.  “The  Seesaw  in  Winter  Temperatures  Between  Greenland  and  Northern  Europe,  Part  I;  General  Description,”  Monthly  Weather  Review  106:  296-­‐310.    Zhou,  Shuntai,  Alvin  J.  Miller,  Julian  Wang,  and  James  K.  Angell.  2001.  “Trends  of  NAO  and  AO  and  their  associations  with  stratospheric  processes,”  Geophysical  Research  Letters  28:  4107-­‐4110.    Zhou,  Y.P.,  R.W.  Higgins,  and  H.  –K.  Kim,.    2001.  Relations  Between  El  Nino  –  Southern  Oscillation  and  the  Arctic  Oscillation:  A  Climate  Weather  Link.  Online  publication  of  Climate  Prediction  Center  at  http://www.cpc.noaa.gov/research_papers/ncep_cpc_atlas/8/index.html