interdisciplinary research on artefacts: archaeometric study of pottery and phosphate soil analysis...

20
Fines Transire Jahrgang 23 2014 Verlag Marie Leidorf GmbH • Rahden/Westf. 2014 Archäologische Arbeitsgemeinschaft Ostbayern / West- und Südböhmen / Oberösterreich Archeologická pracovní skupina východní Bavorsko / západní a jižní Čechy / Horní Rakousko 23. Treffen / setkání 19. bis 22. Juni 2013 in Kostenz

Upload: zcu

Post on 23-Apr-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

Fines TransireJahrgang 23 ● 2014

Verlag Marie Leidorf GmbH • Rahden/Westf. 2014

Archäologische Arbeitsgemeinschaft Ostbayern / West- und Südböhmen / Oberösterreich

Archeologická pracovní skupina východní Bavorsko / západní a jižní Čechy / Horní Rakousko

23. Treffen / setkání

19. bis 22. Juni 2013

in Kostenz

Herausgeber: Ondřej Chvojka, Miloslav Chytráček, Heinz Gruber, Ludwig Husty, Jan Michálek, Ruth Sandner, Karl Schmotz, Stefan Traxler

Redaktion: Ludwig Husty, Jan Michálek, Ruth Sandner, Karl SchmotzMitarbeit Daniela Hofmann

Übersetzungen/překlad: Ondřej Chvojka, Jan Michálek

PC-Satz: Thomas Link & Ulrike Lorenz-Link GbR, Margetshöchheim

Druck: Ebner, Deggendorf

http://www.archaeologie-bay-cz-ooe.de© 2014 Verlag Marie Leidorf GmbH, Geschäftsführer: Dr. Bert Wiegel, Stellerloh 65,

D-32369 Rahden/Westf. – Tel.: +49/(0)5771/9510-74; Fax: +49(0)5771/9510-75 E-Mail: [email protected]; Internet: http://www.vml.de Alle Rechte vorbehalten

ISBN 978-3-89646-218-3ISSN 1868-2308

Auflage: 170

Gefördert durch

Ernst-Pietsch-Stiftung Deggendorf

Inhalt

Vorwort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Grußworte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Einführung. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Gisela Grupe – Michaela HarbeckIsotopen- und DNA-Analysen aus Skelettfunden – Erkenntnisgewinn oder Modeerscheinung? . . . . . . . . . 21

Miloslav Chytráček – Ondřej Chvojka – Markus Egg – Jan John – Roman Křivánek –Jan Michálek René Kyselý – Petra Stránská – Radka Kozáková – Marek FikrleDie Untersuchung eines späthallstattzeitlichen Fürstengrabhügels bei Rovná (Kr. Strakonice) im Lichte naturwissenschaftlicher Analysen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Stephan RitterDie Restaurierung der Bronzegefäße eines hallstattzeitlichen Grabes aus Rovná in Südböhmen – Aktueller Stand der Bearbeitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Tereza Šálková – Ondřej Chvojka – Petr ZavřelArchäobotanische Untersuchungen in vorgeschichtlichen Siedlungen Südböhmens . . . . . . . . . . . . . . . . . . 57

Jan Cemper-Kiesslich – Fabian Kanz – Christiane Maria Bauer – Eva-Maria Wild – Walther Parson Franz Neuhuber – Ludwig Husty – Mark R. Mc CoyTatort Riedling? Archäometrische Befunderhebung an einer ungewöhnlichen Dreifachbestattung aus einem Grabenwerk der Münchshöfener Kultur in Riedling, Landkreis Straubing-Bogen . . . . . . . . . . . 75

Elisabeth SchneppArchäomagnetische Datierung: Möglichkeiten und Grenzen einer naturwissenschaftlichen Methode zur Altersbestimmung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Ladislav Čapek – Lukáš Holata – Petr Menšík – Petr Baierl – Jan Hrdlička – Milan Procházka Jan Říha – Jarmila SavkováInterdisciplinary research on artefacts: archaeometric study of pottery and phosphate soil analysis in deserted medieval villages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Robert GrafKongruenz und Diskrepanz zwischen Theorie und Praxis der Feuersteinbearbeitung . . . . . . . . . . . . . . . . 105

Pavel ŠebestaHolz als Datierungsmittel für Baubefunde in Eger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Franz HerzigDendroarchäologie Ostbayerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Michael Grabner – Hans Reschreiter – Kerstin Kowarik – Georg WinnerNeue Aussagen über altes Holz aus Oberösterreich – Hallstatt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Kerstin Kowarik – Hans ReschreiterInterdisziplinäre Forschungen in und um das Salzbergwerk von Hallstatt . . . . . . . . . . . . . . . . . . . . . . . . . 161

Nadja PöllathKnochentrocken – Zahlen zur archäozoologischen Forschung in Ostbayern . . . . . . . . . . . . . . . . . . . . . . . 173

Karl SchmotzDreißig Jahre Zusammenarbeit von Archäologie und Naturwissenschaften im Landkreis Deggendorf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Michal Preusz – Jaromír Beneš – Lenka KovačikováDer Bürger und das Tier – Ein Beitrag zur Erforschung der frühen Neuzeit in Český Krumlov/Böhmisch Krummau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Anna Pankowská – Erika Průchová – Martin Moník – Martina NovákováTaphonomy of cremation burials: excavation and deposition bias in bone preservation . . . . . . . . . . . . . . 223

Martin Pták – Eva Stehlíková – Eva Koppová – Jiří Fröhlich – Tereza Šálková – Jaroslav JiříkAttempt at dendrochronological dating of the medieval gold-ore processing mill found in Stará Pazderna near Písek, South Bohemia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Ladislav ŠmejdaHradiště u Plzně: a preliminary report on an interdisciplinary research of a hillfort in Pilsen, West Bohemia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Bibliographie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Teilnehmer und Autoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

95Fines Transire 23, 2014

Interdisciplinary research on artefacts: archaeometric study of pottery and phosphate soil analysis in deserted medieval villages

Ladislav Čapek – Lukáš Holata – Petr Menšík – Petr Baierl – Jan Hrdlička – Milan Procházka –Jan Říha Jarmila Savková

Příspěvek představuje výsledky projektu interdisciplinárního výzkumu artefaktů pomocí moderních technologií, který byl založen na archeometrickém studiu pravěké a středověké keramiky a na chemických analýzách půd v prostředí zaniklé středověké vesnice. Prostřednictvím moderních metod analýzy z oblasti archeometrie lze lépe studovat procesy výroby a užití keramických artefaktů v minulé společnosti, chemické analýzy půd umožňují nedestruktivní poznání vnitřního uspořádání areálů aktivit a komponent na archeologických lokalitách. Chemické analýzy půd na základě fosfátové analýzy byly řešeny na příkladu zaniklé středověké vesnice Sloupek (okr. Rokycany), kde se podařilo distribucí fosfátů vymezit prostorové uspořádání aktivit v rámci usedlosti a interpretovat procesy v souvislosti s opuštěním zanechávající organické pozůstatky.

Archeometrické analýzy sídlištní keramiky z mladší doby bronzové a středověké keramiky z Českých Budějovic umož-nily poznání struktury keramické suroviny a charakteru výroby keramiky. Na základě zjištěných výsledků lze uvažovat o lokální či regionální výrobě jak pravěké, tak i středověké keramiky, která nebyla příliš vázaná na jiné distribuční okruhy.

Der Beitrag stellt die Resultate eines interdisziplinären Forschungsprojektes mittels moderner Technologien vor, das sich auf archäometrische Untersuchungen an vorgeschichtlicher und mittelalterlicher Keramik sowie auf chemische Bodenanalysen im Bereich des abgegangenen mittelalterlichen Dorfes Sloupek (Kr. Rokycany) konzentrierte. Die dort vorgenommenen Phosphatanalysen führten zur Feststellung der jeweiligen Nutzungsweise der Räume innerhalb ver-schiedener Gebäude und zur Interpretation der Auflassungsprozesse des Dorfes.

Archäometrische Analysen von Siedlungskeramik der Urnenfelderzeit und des Mittelalters aus České Budějovice führten zu Erkenntnissen über die Struktur der Keramik und deren Produktionsweise. Die gewonnenen Ergebnisse weisen sowohl auf lokale als auch regionale Herstellung der zeitlich weit auseinander liegenden Keramik hin.

Introduction

The Department of Archaeology of the Faculty of Philosophy and Arts, the University of West Bohe-mia (UWB), has recently established interdisci-plinary cooperation with the New Technologies Research Centre of UWB. This Centre offers equip-ment allowing complex archaeometric study of the material composition and physical and chemical pro-perties of different types of artefacts.

Scientific archaeometric analysis and exact deter-mination of chemical composition and physical properties allow reconstruction of past techniques used during the production and use of artefacts. This kind of study using modern archaeometry methods is applied predominantly abroad (e.g. Jones 2004, 327–338; Henderson 2000; Pollard et al. 2007). The importance of archaeometric analyses lies in the pos-sibility for reconstructing the whole dynamic ope-ration chain (in French chaîne opératoire) through which artefacts passed within the individual phases

of their life cycle, including raw material acquisi-tion methods, production and utilization methods up to their final extinction in past society and culture. Modern methods of analysis allow the study of the formal properties and functions of individual artef-acts. These methods result in a better understanding of the processes during the creation and use of artef-acts in past society and culture and thus the possi-bility to observe the interactions between humans and their artefacts in relation to the environment created in the past by their behaviour and artefact use (e.g., Dobres 2000, 154–155; LaMotta/Schiffer 2001, 27–33; Skibo/Schiffer 2009, 9–10). An under-standing of the environment and areas of past acti-vities can be achieved by chemical analysis of soils, namely phosphate and element analyses, which have an important role in archaeological prospection, in the delimitation of archaeological sites and in the identification of various activity areas. These ana-lyses provide information about patterns in the use

96 Fines Transire 23, 2014

of space in the past (e.g. Middleton/Price 1996, 673; Wilson et al. 2009, 2327).

One example of the preliminary results of the Depart-ment of Archaeology and the New Technologies Research Centre of UWB,which have already been published or are to be published gradually, is the application of phosphate analysis during the investi-gation of the siege camp near Sion castle. The phos-phate and element analyses have also been applied to soil samples from the deserted medieval villages of Kamenice (in process) in the Blovice region and Sloupek in the Rokycany region (Hrdlička et al. 2014). The analyses identified individual activity areas, particularlywithin one farmstead, and poin-ted to numerous methodological difficulties, mainly during the process of obtaining the soil samples and in their evaluation. It has been shown that the metho-dology may significantly affect the element concen-tration in the soil and hence the final interpretation of the results.

The second area of interest is represented by the use of non-destructive archaeometric X-ray analy-sis for research on prehistoric and medieval pottery and artefacts made of iron and non-ferrous metals. The used methods included X-ray diffraction (XRD) and X-ray fluorescence (XRF), which constitute the basic groups of methods used to study internal mass structure and chemical material composition (see Říha et al. 2013 for more information on the methods). The research included analyses of pre-historic pottery from the Late Bronze Age site of Březnice near Tábor and pottery of the High Middle Ages from the town of České Budějovice (Čapek et al. 2013, 525–542). Material and metallographic analyses were carried out for bronze needles from a site near Březnice in the Tábor region. The New Technologies Research Centre, in cooperation with the Nuclear Physics Institute of the ASCR, also ana-lysed the chemical composition of 45 early medieval S-shaped earrings from the Cheb region. Selected early medieval earrings from the Třebeň site were analysed using computer tomography (Schejbalová et al. 2013, 631–642). Analysed artefacts dated to the High Middle Ages included steel arrows from Sion castle and iron horseshoes (Říha et al. 2013, 115–117).

The third area of interest consists in the application of geophysical methods to selected archaeological sites from prehistory and the Middle Ages. The aim was to complete non-intrusive and geodetic-topo-

graphic research of archaeological sites, which in many cases allowed easier interpretation of subsur-face structures. For instance, geoelectric resistance scanning was carried out in a deserted fortress in the cadastral area of Rataj in the Tábor region (Baierl et al. 2012) and in “Liška” castle located near Spálené Poříčí south of Plzeň (Hložek et al. 2013). Detailed results of geophysical research are published else-where (e.g. Baierl et al. 2013).

The following sections will briefly introduce the results of two component projects concerning the application of chemical analyses, which are the most developed methods within our intra-field coopera-tion. We will present some outcomes of research on the deserted village of “Sloupek”. A combination of several methods, including phosphate analysis, has been used to identify and delimit partial acti-vity areas within a single farmstead. In addition, the results of a study of the medieval and prehistoric pot-tery will be introduced and described. They provide knowledge of the structure of the ceramic raw mate-rial and methods of pottery technology.

Researching the internal organization of human activity areas on the basis of chemical analysis – the case study of the deserted village of Sloupek

The structure of past settlement components that reflect human activities and their organization can be archaeologically studied through non-random spatial distribution of artefacts in relation to the remains of former buildings and surface features. However, the informative possibilities of archaeological situa-tions are often obscured by other cultural and natural formation and post-depositional processes that par-ticipated in their transformations (e.g. cleaning and removal of waste, the way the settlement was aban-doned, length of settlement and re-occupation of sites, etc.). These processes and activities are well-documented particularly within ethnoarchaeologi-cal research (e.g. Schiffer 1987; Joyce/Johannessen 1993; Rothschild et al. 1993; King 2008, 1225).

Therefore, chemical soil analysis has an important information potential for discovering past human activities and their spatial location. These methods are less influenced by the above-listed processes, even though this statement still cannot be completely generalized (e.g. Wilson et al. 2009, 2333). The most widespread method of soil analysis is phosphateana-lysis, which was already developed in the 1930s in Sweden and Germany (e.g.Arrhenius 1931; Lorch

97Fines Transire 23, 2014

1940). Phosphate analysis soon found its application in archaeological research of settlement and funerary areas, as it is capable of discovering areas with con-centrations of any organic material. These include areas for food storage and consumption, deposition of organic waste, concentration of human or animal excrements and urine. Significant increases in phos-phate concentration can also be caused by bodies of dead animals or deceased people (Krajíc et al. 1982, 232; Edwards et al. 1983, 365).Unlike other elements that enrich the surface of these areas of human acti-vities, the phosphate content in the soil remains con-stant after the initial decrease. In addition, phosphate

in soil is bound to the location of the original deposit and its migration therefore usually only occurs in a vertical direction (e.g., Pelikán 1955, 376; Schackley 1975, 687; Sjöberg 1976, 449).

Within this project, phosphate analysis was applied to soil samples from the archaeologically investi-gated settlement in the deserted medieval village of Sloupek in the Rokycany region (cf. Vařeka et al. 2011, 330–334). A small amount of earth (the weight of dried earth ranged between 2–5 grams) was taken by auger from all activity areas identified archaeo-logically. With regards to the expected phosphate

Fig. 1: Layout of farmstead I in the deserted medieval village of Sloupek based on the surface survey of above-ground features and the results of the soil phosphate analysis.

98 Fines Transire 23, 2014

diffusion in the soil, the samples for analysis were taken from two subsoil levels – approximately 5 and 20 cm below the boundary with topsoil and overbur-den. Phosphate extraction from dried and crushed samples was carried out using Mehlich III (Mehlich 1984), which showed the highest extraction capacity of all tested reagents (for more information about the sampling methods and phosphate determination methods, cf. Hrdlička et al. 2014).Therefore, both independent information sources complemented each other and allowed the reliable discovery of the layout and extent of individual areas (Fig. 1, 2).

The investigated farmstead shows signs of an archaic arrangement with individual buildings loca-ted around an empty area – the courtyard. The basic communication scheme is indicated by the areas with an absence or a low content of phosphates. Two separate buildings were located in the front left part – a residential house containing one room with an oven and a two-storey building that was entered from the back. This area could have included an entrance hall or a slight porch. Due to the expected regular maintenance processes (e.g. cleaning) of these areas, which significantly reduce the soil’s enrichment with phosphates, the higher phosphate content in the inte-rior of the room was very surprising. The increased value therefore probably does not reflect the primary

use of the building but rather a violent destruction of the village; it could be caused for instance by the decomposition of a large amount of organic mate-rial, whose remains were not directly preserved in the acidic forest environment. Just as in the case of the storage building, the sample from the granary, which was located in the front right part of the far-mstead, verifies the standard idea of their use. Near the front part of the room was a waste area with a high ratio of organic remains. Another such area was discovered next to the granary; however, the ratio of organic material was lower. The presence of a bar-nand a midden were unambiguously proven behind this area. A higher amount of phosphates was also found in the area of a slight farm building and in the northeast area, where another waste area or area associated with the keeping of domestic animals, e.g. poultry, may have been located.

The phosphate soil analysis constituted a suitable complement to the archaeological excavation of the farmstead. More precise determination of individual areas requires a denser network of sampling points. It should also be possible to identify other areas and some traces of human activities in the deserted village from multi-element analysis, which is cur-rently being intensively developed and tested within the mutual cooperation between the Department of

Fig. 2: Reconstruction of farmstead I in the deserted medieval village of Sloupek. Source: Vařeka 2008, Fig. II-20.

99Fines Transire 23, 2014

Archaeology and the New Technologies Research Centre of UWB.

Archaeometric study of prehistoric and medieval pottery

Petroarchaeological, mineralogical-geological, geo-chemical and general archaeometric analytical methods play an increasingly important role in research on prehistoric, early/high medieval and modern pottery (for a summary see e.g. Gregerová et al. 2010). The aim of archaeometric analyses of pottery is usually to obtain information about the provenance of the ceramic raw material, its compo-sition and structural changes during the technologi-cal process. These kinds of information belong to the archaeometrically oriented study of pottery, which focuses on the questions of provenance and distribu-tion of ceramic raw materials, production and tech-nology of pottery and its use (Rice 1987, 115–116; Orton et al. 1993, 113–131).

The equipment of the New Technologies Research Centre allows a whole range of physical and chemical analyses that are routinely used in the basic archaeo-metric or petroarchaeological study of pottery (for an overview of methods see e.g. Gregerová et al. 2010, 34–47). The most frequently used methods that can be applied at the NTC include X-ray diffraction and X-ray fluorescence.

X-ray fluorescence analysis of potteryX-ray fluorescence analysis (XRF) is a qualitative and quantitative analysis of the main and trace che-mical elements. X-ray fluorescence spectrometry can be used to determine which elements are present in a given pottery sample and to determine the amount (concentration) of these elements in the sample based on radiation intensity. The XRF method provi-des relatively accurate analysis of chemical elements and may be used to study and compare the chemical composition of individual pottery samples. Chemical elements are then converted to the normative com-position of minerals for further petroarchaeological research (e.g. Gregorová et al. 2010, 39; Říha et al. 2013, 113–114).

Chemical analysis is routinely carried out at the NTC on a Bruker AXS S4 Explorer wavelength dispersive X-ray fluorescence spectrometer with a Rh anode, which allows precise determination of all chemical elements in the studied pottery sample.

X-ray diffraction analysis of potteryAnother method is X-ray diffraction analysis (XRD), which is used in the study of the internal structure of crystalline substances and the determination of their phase (mineral) composition. XRD is used to deter-mine the qualitative and quantitative phase compo-sition of potterysherds, to identify the crystalline phases present and to obtain basic information about the content of individual minerals. Furthermore, this method is used to determine the size of crystallites in the ceramic material and study the orientation, texture and deformation of crystalline phases in the rock. The individual crystalline phases identified in the sherd then indicate which of the minerals pro-bably constituted the material admixture (in clusions) of the studied pottery and which were created during the firing process. These data are also used to esti-mate an approximate firing temperature (see e.g. Gregerová et al. 2010, 38; Říha et al. 2013, 112–113; more details on this topic in Dolníček 2005).

The processing and evaluation of ceramic samples is carried out on an automatic powder diffractome-ter Panalytical X´Pert Pro with Cu X-ray lamp. Dif-fraction data are then processed and compared with the database of reference powder diffraction data in order to identify the mineralogical phases present.

1) High medieval pottery from České Budějovice – some results X-ray fluorescence analysis and X-ray diffraction analysis of the medieval pottery were applied to a total of ten macroscopically and microscopically determined samples of ceramic fabrics that varied in firing temperature, ceramic mass structure, sur-face treatment and colour (see e.g. Nováček/Tetour 2003; Čapek 2010, 43). The studied samples of high medieval pottery wares were dated to a period bet-ween the 2nd half of the 13th century and the turn of the 14th and 15th centuries and originated from the context of two original medieval town plots in the courtyard of the historical town hall on the Square of Přemysl Otakar II. in České Budějovice (Čapek et al. 2013).

The X-Ray fluorescence spectrometryidentified a difference in the representation of basic chemical elements that constitute the structure of the plastic and non-plastic ceramic matrix. Oxides of SiO2, CO2 and Al2O3 had the highest determined representa-tion based on the percentage of weight. In addition to these main elements, the samples showed a high

100 Fines Transire 23, 2014

content of ironoxide (Fe2O3) and relatively low con-tent of MgO, CaO and TiO2. All samples indicated the prevalence of potassium oxide K2O over sodium oxide Na2O. P2O5 had the highest content in form of admixtures. Other admixtures ranged in tenths of a percentage point (see Čapek et al. 2013 for more information).

Recalculating the chemical elements to normative minerals allowed the determination of the relative representation of the ceramic raw material and an estimate of its provenance (Fig. 3). The normative mineral values were calculated using the MINLITH program (Rosen/Abbyasov 2003, 252–264). Illite, kaolinite and montmorillonite, found in the charac-teristic clay binder in the ceramic matrix, form a part of tertiary clays that were common in South Bohe-mian basins. These deposits of high-quality kaolinite clay can also be found near České Budějovice, so

that for now a local origin and character of pottery production may be assumed. Graphite, which was found in several samples both in plastic and non-plastic form, is common in graphitic paragneisses, clay slates and crystalline limestone. Graphite depos-its are located near České Budějovice and the avail-ability of graphite from the nearby Český Krumlov region must also be considered, as it contains a whole range of historic deposits and surface out-crops of graphite. All samples also contained hema-tite and rutile, which can be found in ferrous ores for syenite and metabasites. These have been docu-mented in the Písek and Tábor regions. The chemical and mineralogical analysis differed only for the pot-tery fabrics that are characteristic for storage vessels (massive storage vessel with club-shaped rim). The chemical and mineralogical composition of the pot-tery fabrics with prevalence of potassium and alka-

Fig. 3: Correspondence analysis of normative minerals of the high medieval pottery from České Budějovice. Cluster 1 indicates mostly reduced wares, cluster 2 indicates graphite wares. Graphite ware CB3013 is shown separately in the

graph and refers to graphitic storage vessels.

101Fines Transire 23, 2014

line feldspats (plagioclase and orthoclase) together with albite indicate a different provenance of the raw material, i.e. magmatic metamorphosed rocks and pegmatites, which can be found at the border of the České Budějovice region. With all due caution we can suggest a different production location and the transfer of these graphite vessels as trade goods (see Čapek et al. 2013, 525–642 for more details).

The XRD analysis determined the dominant crystal-line phases of quartz and its modifications (cristo-balite, stishovite and coesite). These quartz modi-fications were created at higher firing temperatures or when exposed to a higher pressure that affected the structure of pottery fabrics (Fig. 4). The deter-mined crystalline phases may be considered a part of the mineral composition of the pottery inclusions. An interesting fact is the determination of the hercy-nite mineral phase in the ceramic mass characteri-stic for storagevessels. Hercynite does not occur in the České Budějovice region and its origin has been documented in the Písek region (in detail Čapek et al. 2013, 525–642).

XRF and XRD analyses have demonstrated the local origin of the high medieval pottery from České Budějovice. The only exception is the graphite ware

characteristic for massive storage vessels, whose origin needs to be sought elsewhere. In this case it can be suggested that the storage vessels were trans-ported in relation to trade activities. A detailed deter-mination of the provenances of the raw materials used in the production of medieval pottery would require a separate analysis of the possibly used raw materials in these locations. In addition, far-reaching conclusions cannot be drawn only on the basis of ten analysed potterysherds. In the future it will be neces-sary to analyse other comparative pottery fabrics from other locations within the wider region of sou-thern Bohemia. This will constitute the subject of follow-up research.

2) Prehistoric pottery from the Late Bronze Age – some results So far, X-ray fluorescence and X-ray diffraction analyses have been applied to three sets of prehis-toric pottery dated to the Late Bronze Age. The sets of prehistoric pottery came from a site near Březnice (Tábor region), from a pit and a linear fea-ture (Chvojka 2007; Chvojka/Šálková 2011), as well as from near Hluboká nad Vltavou (region of České Budějovice), from a kidney-shaped pitat the site of “Křesín” and an oblong oval pit with dish-shaped

Fig. 4: X-ray diffraction record of ceramic fabrics of the high medieval pottery from České Budějovice.

102 Fines Transire 23, 2014

walls from the “Lužec” site (unpublished). The ana-lysis focused on the differences in chemical proper-ties of the pottery in various types of features with different functions.

The prehistoric pottery was tested using X-ray flu-orescence analysis (XRF) on three macroscopically determinable fabrics that differed in their potterymass structure (fine, medium coarse). More samples from different levels from one, possibly more archaeolo-gical features were also tested. The diffraction analy-sis discovered only small differences in the analysed pottery. These differences are not clearly visible even between different macroscopically defined pottery fabrics, different features in the settlement or different sites. Theceramic matrix of all samples contained the highest representation of minerals: SiO2, Al2O3, CO2 and Fe2O3, where as their mutual ratio did not indicate any significant differences within individual samples. The smallest differences of composition were discove-red within macroscopically determined pottery fabrics from within individual sites. In these cases the original location of the pottery sample within a single feature or of two samples from different features in the location does not have any role. More significant differences were found only within the percentage representation of Na2O, P2O5 and MgO (e.g. in the Březnice site); however, due to the small sample of data, more signi-ficant structures have not yet been discovered and it cannot be ascertained that a single clay deposit was used to make the pottery vessels. Further questions will no doubt be answered by the analysis of potential clay sources near the site, as well as a comparison with the subsoil and its wider surroundings. More significant differences in the pottery composition of samples were discovered upon comparison of spatially more distant sites (Březnice, Hluboká nad Vltavou, Hvožďany). Measured data are currently being analysed and will be published in a different paper.

Conclusion

The study of artefacts increasingly focuses on sci-entific archaeometric analyses that allow a detailed understanding of technological procedures, including raw material acquisition, individual production phases, as well as the use of the artefacts in the past. Chemi-cal analyses have an important role in non-invasive research aimed at the identification and determination of activity areas as well as the detection of the set-tlement structure. These types of research, however, require a broad interdisciplinary cooperation among fields focusing on scientific archaeometric analyses

and physical and chemical properties of materials and their elements. This is why the cooperation of the two departments of the University of West Bohemia, i.e. between the NTC research centre and the Department of Archaeology, was established.

Phosphate and element analyses of soils are the most developed part of this project. They have been tested on several sites. The distribution of phosphate values and the comparison with other research methods (especially excavations) resulted in the spatial deter-mination of activity areas within a single farmstead in the deserted village of Sloupek. The collection of data from other similar locations will allow a more precise specification of the rules of human behaviour in a vil-lage of the early medieval or early modern period.

The second area of interest comprises analyses of artefacts made of pottery, iron or non-ferrous metal. X-ray fluorescence and X-ray diffraction analy-ses of these artefacts determine their chemical and phase composition and allow interpretation of their provenance or production character. XRF and XRD methods applied to a sample of high medieval pot-tery from České Budějovice proved the local prove-nance of the raw material used in the production of the pottery. As far as prehistoric pottery from several Late Bronze Age sites is concerned, a different com-position of pottery from different types of archaeo-logical features has not yet been proven. The study of pottery using archaeometric analysis is only at its beginning. Only after analysing a sufficient number of pottery fabrics from different sites is it possible to ask and subsequently answer other, more complex questions regarding the organization of production or social contacts in relation to trade in different periods of our history.

Acknowledgement

Archaeological researches of settlements from Late Bronze Age were carried by the South Bohemian Museum in České Budějovice. The authors would like to thank the research supervisor Doc. Mgr. Ondřej Chvojka, Ph.D. for providing information about the research and lending pottery artefacts for archaeometric analysis.

Funding sources

This paper was created with the support of project SGS-2013-054 Modern archaeometric methods in interdisciplinary study of movable and immovable artefacts.

103Fines Transire 23, 2014

Literature:Arrhenius, O. 1931: Die Bodenanalyse im Dienst der Archäologie. Zeitschr. für Pflanzenernährung. Düngung und Bodenkunde 10 (B), 427–439.

Baierl, P./Hložek, J./Menšík, P. 2012: Zaniklá tvrz(?) vlese „Borečný“ u Rataj. Arch. výzkumy v jižních Čechách 25, 179–192.

Baierl, P./Čapek, L./Hložek, J./Menšík, P. 2013: Využití geofyzikálních metod Katedry archeologie v Plzni v lesním prostředí v letech 2011 – 2012. In: Chvojka, O. (ed.), Archeologická prospekce a nedestruktivní archeo-logie v Jihočeském kraji, kraji Vysočina, Jihomoravs-kém kraji a v Dolním Rakousku. Sborník z konference, Jindřichův Hradec 6.–7.3. 2013. Arch. výzkumy v jižních Čechách – Suppl. 9 (České Budějovice) 7–15.

Chvojka, O. 2007: Žlabovité objekty na sídlištích mladší a pozdní doby bronzové v jižních Čechách. In: Salaš, M./Šabatová, K. (eds.), Doba popelnicových polí a doba halštatská (Brno) 111–126.

Chvojka, O./Šálková, T. 2011: Březnice u Bechyně. K interpretaci sídelního areálu z mladší doby bronzové se žlabovitými objekty. In: Podbrdsko – Miscelanea 2. Doba popelnicových polí a doba halštatská. Příspěvky z XI. konference Příbram 7.–10.9.2010 (Příbram) 103–127.

Čapek, L. 2010: Depoziční a postdepoziční procesy středověké keramiky na parcelách Českých Budějovic (Případová studie z domu č. p. 16) (Plzeň).

Čapek, L./Čekalová, M./Říha, J. 2013: Středověká keramika z Českých Budějovic a možnosti jejího archeometrického studia. Arch.Hist. 44/2, 525–642.

Dobres, M. A. 2000: Technology and Social Agency. Outlining a Practice Framework for Archaeology (Oxford).

Dolníček, Z. 2005: Laboratorní metody výzkumu (Olomouc).

Edwards, K. J./Hamond, F. W./Simms, A. 1983: The Medieval Settlement of Newcastle Lyons, County Dublin, an Interdisciplinary Approach. Proc. of the Royal Irish Academy 83C, 351–376.

Gregorová, M. et al. 2010: Petroarcheologie keramiky v historické minulosti Moravy a Slezska (Brno).

Henderson, J. 2000: The science and archaeology of materials: an investigation of inorganic materials (London).

Hložek, J./Baierl, P./Kasl, F./Menšík, P./Procházka, M. 2013: Liškův hrad, okr. Plzeň-jih. Nové geodetické zaměření lokality a její hodnocení v kontextu soudobé hradní produkce. Arch. Hist. 38/2, 399–414.

Hložek, M. 2008: Encyklopedie moderních metod v archeologii (Praha).

Hrdlička, J./Baierl, P./Holata, L./Čekalová, M./Brandštýl, J./Vařeka, P. 2014: Fotometrické stanovení fosforečnanů v půdě jako nedestruktivní metoda archeologického výzkumu. Chemické listy 108, 475-478.

Jones, A. 2004. Archaeometry and Materiality: Materials-based analysis in theory and practise. Archaeometry 46/3, 327–338.

Joyce, A. A./Johannessen, S. 1993: Abandonment and the production of archaeological variability at domestic sites. In: Cameron, C. M./Tomka, S. A. (eds.), Abandon-ment of settlements and regions. Ethnoarchaeological and archaeo logical approaches (Cambridge) 138–153.

Kent, S. (ed.) 1987: Method and Theory for Activity Area Research: An Ethnoarchaeological Approach (New York).

King, S. M. 2008: The spatial organization of food sharing in Early Postclassic households: an application of soil chemistry in Ancient Oaxaca, Mexico. Journal of Archaeological Science 35, 1224–1239.

Krajíc, R./Soudný, M./Eisler, J. 1982: Aplikace prospekčních metod na zaniklé středověké osadě Potálov, o. Tábor. Arch.Hist. 7, 229–246.

Lamotta, V./Schiffer, M. B. 2001: Behavioral Archae-ology – Toward a New Synthesis. In: Hodder, I. (ed.), Archaeological Theory Today(Cambridge), 14–64.

Lorch, W. 1940: Die Siedlungsgeographische Phosphat-methode. Die Naturwissenschaften 28, 633–640.

Mehlich, A. 1984: Mehlich-3 soil test extractant: a modi-fication of Mehlich-2 extractant. Communications in Soil Science and Plant Analysis 15, 1409–1416.

Middleton, W. D./Price, T. D. 1996: Identification of Activity Areas by Multi-element Characterization of Sediments from Modern and Archaeological House Floors Using Inductively Coupled Plasma-atomic Emission Spectroscopy. Journal of Archaeological Science 23, 673–687.

Neustupný, E. 2010: Teorie archeologie (Plzeň).

104 Fines Transire 23, 2014

Nováček, K./Tetour, M. 2003: Možnosti využití databázo-vých systémů pro zpracování keramického materiálu. For-malizovaná deskriptivní databáze KLASIKER. Nestrán-kovaný rukopis.

Orton, C./Tyers, P./Vince, A. 1993: Pottery in archaeology (Cambridge).

Pelikán, J. B. 1955: Fosfátová půdní analysa. Arch.Rozhledy 7, 374–384.

Pollard, A. M./Batt, C. M./Stern, B./Young, S. M. M. 2007: Analytical Chemistry in Archaeology (Cambridge).

Prokeš, L./Hložek, M. 2007: Identification of Some Adhesives and Wood Pyrolysis Products of Archaeologi-cal Origin by Direct Inlet Mass Spectrometry. Chemia Analityczna 52, 700–713.

Rice, P. M. 1987: Pottery Analysis. A Sourcebook (Chicago/London).

Rothschild, N. A./Mills, B. J./Ferguson, T. J./Dublin, S. 1993: Abandonment at Zuni farming villages. In: Cameron, C. M./Tomka, S. A. (eds.), Abandonment of settlements and regions. Ethnoarchaeological and archae-ological approaches (Cambridge) 123–137.

Rosen, O. M./Abbyasov, A. A. 2003: The Quantitative Mineral Composition of Sedimentary Rocks: Calculation from Chemical Analyses and Assesement of Adequacy (MINLITH Computer Program). Lithology and Mineral Resources 38/3, 252–264.

Říha, J./Brejchová, D./Menšík, P./Koscelník, P./Chvojka, O. 2013: Možnosti využití nedestruktivních analýz na

bázi RTG záření v archeologii. Antropowebzin 3/2013, 111–119.

Schackey, M. L. 1975: Archaeological Sediments. A Survey of Analytical Methods (London).

Schejbalová, Z./Gregor, T./Fikrle, M. 2013: Nové výsledy rentgenové fluorescenční analýzy souboru kovových šperků z Chebska. Arch.Hist. 38/2, 631–642.

Schiffer, M. B. 1987: Formation Processes of the Archae-ological Record (Albuquerque).

Sjöberg, A. 1976: Phosphate Analysis of Anthropic Soils. Journal of Field Archaeology 3, 447–454.

Skibo, J./Schiffer, M. B. 2009: People and Things. A Behavioral Approach to Material Culture (New York).

Vařeka, P. 2008: Vesnice vrcholného a pozdního středověku. In: Dudková, V./Orna, J./Vařeka, P. et al., Hledání zmizelého. Archeologie zaniklých vesnic na Plzeňsku (Plzeň) 20–24.

Vařeka, P./Holata, L./Rožmberský, P./Schejbalová, Z. 2011: Středověké osídlení Rokycanska a problematika zaniklých vsí. Arch.Hist. 36, 319–342.

Wilson, C. A./Davidson, D. A./Cresser, M. S. 2009:An evaluation of the site specificity of soil elemental signa-tures for identifying and interpreting former functional areas. Journal of Archaeological Science 36, 2327–2334.

269Fines Transire 23, 2014

Teilnehmer und Autoren

Mgr. Petr Baierl*Západočeská univerzita v PlzniFakulta filozofickáKatedra archeologieSedláčkova 15CZ-30614 Plzeň[email protected]

Mag. Christiane-Maria Bauer, PhDMedizinische Universität InnsbruckUniklinik für Interne Medizin IVNephropolgie & HypertensiologieMüllerstraße 44A-6020 [email protected]

Doc. PhDr. Jaromír Beneš, Ph.D.*Jihočeská univerzita v Českých BudějovícichPřírodovědecká fakultaLaboratoř archeobotaniky a paleoekologieBranišovská 31CZ-37005 České Budě[email protected].

Ass. Prof. Mag. Dr. rer. nat. Jan Cemper-KiesslichUniversität SalzburgInterfakultärer Fachbereich GerichtsmedizinIgnaz Harrer-Straße 79A-5020 [email protected]

Doc. Mgr. Ondřej Chvojka, Ph.D.Jihočeské museumarcheologické odděleníDukelská 1CZ-370 51 České Budě[email protected]

Jihočeská univerzita v Českých BudějovícichFilozofické fakultyArcheologický ústavBranišovská 31aCZ-37005 České Budějovice

PhDr. Miloslav Chytráček, Ph.D.Archeologický ústav AV ČR, Praha, v.v.i.Letenská 4CZ-11801 Praha [email protected]

Dr. Silvia Codreanu-WindauerBayerisches Landesamt für DenkmalpflegeAdolf-Schmetzer-Str. 1D-93055 [email protected]

Mgr. Ladislav Čapek Ph.D.*Západočeská univerzita v PlzniFakulta filozofickáKatedra archeologieSedláčkova 15CZ-30614 Plzeň[email protected].

Dr. Wolfgang David kelten römer museum Im Erlet 2 D-85077 Manching [email protected]

Prof. Dr. Markus Egg*Römisch-Germanisches ZentralmuseumErnst-Ludwig-Platz 2D-55116 [email protected]

Dr. des. Florian EiblHemauerstr. 21D-93047 [email protected]

Dr. Bernd EngelhardtRobert-Stolz-Weg 18D-84032 [email protected]

Ing. Marek Fikrle, Ph.D.*Ústav jaderné fyziky AV ČR, v.v.i.CZ-25068 Husinec-Řež[email protected]

270 Fines Transire 23, 2014

Jiří Fröhlich*Erbenova 1546CZ-397 01 Pí[email protected]

Dipl. Ing., Dr. nat. tech. Michael Grabner Universität für Bodenkultur WienUniversitäts- und Forschungszentrum TullnInstitut für Holztechnologie und Nachwachsende RohstoffeKonrad Lorenz Str. 24A-3430 [email protected]

Dr. Robert Graf M.A.Archäologie und ArchäotechnikSonnenstr. 36D-84543 Winhö[email protected]

Mag. Heinz GruberBundesdenkmalamtAbt. für BodendenkmaleLandeskonservatorat für OberösterreichRainerstr. 11A-4020 [email protected]

Prof. Dr. Gisela GrupeStaatssammlung für Anthropologie und Paläo-anatomieKarolinenplatz 2a80333 Mü[email protected]

Dr. Michaela Harbeck*Staatssammlung für Anthropologie und Paläo-anatomieKarolinenplatz 2aD-80333 Mü[email protected]

Franz HerzigBayerisches Landesamt für DenkmalpflegeReferat B V – Archäologische Restaurierung und DendrolaborKlosterberg 8D-86672 [email protected]

Mgr. Lukáš Holata, Ph.D.*Západočeská univerzita v PlzniFakulta filozofickáKatedra archeologieSedláčkova 15CZ-30614 Plzeň[email protected]

Ing. Jan Hrdlička, Ph.D.*Západočeská univerzita v PlzniFakulta pedagogickáKatedra chemieVeleslavínova 42CZ-30614 Plzeň[email protected]

Dr. Ludwig Husty M.A.Kreisarchäologie Straubing-BogenKlosterhof 1D-94327 [email protected]

Doc. PhDr. Luboš Jiráň, CSc.Archeologický ústav AV ČR v Praze, v.v.i.Letenská 4CZ-1180 1 Praha [email protected]

Mgr. Jaroslav Jiřík, Ph.D.*Prácheňské muzeumVelké náměstí 113-114CZ-39724 Pí[email protected]

PhDr. Jan John, Ph.D.Jihočeská univerzita v Českých BudějovícichFilozofická fakultaArcheologický ústavBranišovská 31CZ-37005 České Budě[email protected]

Ass. Prof. Ing. Mag. Dr. Fabian KanzMedizinische Universität WienDepartment für GerichtsmedizinAbteilung für Forensische AnthropologieSensengasse 2A-1090 [email protected]

271Fines Transire 23, 2014

Mgr. Eva Koppová*Třída Přátelství 1960CZ-39701 Písek

Mag. Kerstin KowarikNaturhistorisches Museum WienPrähistorische AbteilungHall-Impact (ÖAW)Burgring 7A-1014 [email protected]

Mgr. Lenka Kovačiková, PhD.*Jihočeská univerzita v Českých BudějovícichPřírodovědecká fakultaLaboratoř archeobotaniky a paleoekologieBranišovská 31CZ-37005 České Budě[email protected]

Mgr. Radka Kozáková, Ph.D.*Archeologický ústav AV ČR v Praze, v.v.i.Letenská 4CZ-1180 1 Praha [email protected]

Dr. Ludwig KreinerKreisarchäologie Dingolfing-LandauObere Stadt 13D-84130 [email protected]

RNDr. Roman Křivánek, Ph.D.*Archeologický ústav AV ČR v Praze, v.v.i.Letenská 4CZ-1180 1 Praha [email protected]

Mgr. René Kyselý Ph.D.Archeologický ústav AV ČR, Praha, v.v.i.Letenská 4CZ-118 01 Praha 1kysely@ arup.cas.cz

Dr. Felix LangUniversität SalzburgFachbereich AltertumswissenschaftenKlassische und Frühägäische ArchäologieResidenzplatz 1A-5010 [email protected]

Mag.a Dr. PhD Jutta LeskovarOberösterreichisches LandesmuseumSammlungsleitung Ur- und FrühgeschichteWelserstr. 20A-4060 [email protected]

Mgr. Libor PetrZápadočeská univerzita v PlzniFakulta filozofickáKatedra archeologieSedláčkova 15CZ-30614 Plzeň[email protected]

Dr. med. Mark R. Mc CoyParacelsus Medizinische PrivatuniversitätInstitut für RadiologieDivision für NeuroradiologieIgnaz Harrer-Straße 79A-5020 [email protected]

Mag. Jakob MaurerSpiegelgasse 4A-2500 Baden bei [email protected]

PhDr. Petr Menšík, Ph.D.Západočeská univerzita v PlzniFakulta filozofickáKatedra archeologieSedláčkova 15CZ-30614 Plzeň [email protected]

PhDr. Jan MichálekNádražní 120CZ-39701 Pí[email protected]

Martin Moník*Univerzita Palackého OlomouciPřírodovědecká fakultaKatedra geologie17. Listopadu 12CZ-77900 [email protected]

272 Fines Transire 23, 2014

Ao. Prof. Mag. Dr. Franz NeuhuberUniversität SalzburgInterfakultärer Fachbereich GerichtsmedizinIgnaz Harrer-Straße 79A-5020 [email protected]

Martina Nováková*Západočeská univerzita v PlzniFakulta filozofickáKatedra antropologieSedláčkova 15CZ-30614 Plzeň

Mgr. Alena NovotnáZápadočeské muzeumoddělení PrehistorieZborovská 40CZ-30100 Plzeň [email protected]

Mgr. Klára PaclíkováJihočeská univerzita v Českých BudějovícichPřírodovědecká fakultaLaboratoř archeobotaniky a paleoekologieBranišovská 31CZ-370 05 České Budě[email protected]

Prof. Dr. Bernd PäffgenLudwig-Maximilians-Universität MünchenInstitut für Vor- und Frühgeschichtliche Archäologieund Provinzialrömische ArchäologieGeschwister-Scholl-Platz 1D-80539 Mü[email protected]

Mgr. Anna Pankowská Ph.D.Západočeská univerzita v PlzniFakulta filozofickáKatedra antropologieSedláčkova 15CZ-306 14 Plzeň[email protected]

Ao. Prof. Dr. Walther ParsonMedizinische Universität InnsbruckInstitut für Gerichtliche MedizinMüllerstraße 44A-6020 [email protected]

Dr. Joachim Pechtl M.A.kelten römer museum Im Erlet 2 D-85077 Manching [email protected]

Dr. Nadja PöllathStaatssammlung für Anthropologie und Paläoanato-mieAbt. PaläoanatomieKaulbachstr. 37D-80539 Mü[email protected]

Mgr. Michal PreuszZápadočeská univerzita v PlzniFakulta filozofickáKatedra archeologieSedláčkova 15CZ-30614 Plzeň[email protected]

Mgr. Erika Průchová*Univerzita KarlovaPřírodovědecká fakultaKatedra antropologie a genetiky člověkaViničná 7CZ-12800 Praha [email protected]

Bc. Milan ProcházkaZápadočeská univerzita v PlzniFakulta filozofickáKatedra archeologieSedláčkova 15CZ-30614 Plzeň[email protected]

Mgr. Martin PtákJihočeská univerzita v Českých BudějovícichFilozofická fakultaArcheologický ústavBranišovská 31aCZ-37005 České Budějovice [email protected].

Dr. Gabriele RaßhoferBayerisches Landesamt für DenkmalpflegeAdolf-Schmetzer-Str.1D-93055 [email protected]

273Fines Transire 23, 2014

Mag. Hans Reschreiter*Naturhistorisches Museum WienBurgring 7A-1010 [email protected]

Ing. Jan Říha, Ph.D.*Západočeská univerzita v PlzniNové technologie - výzkumné centrumTeslova 9ACZ-30614 Plzeň[email protected]

Stephan RitterRömisch-Germanisches ZentralmuseumErnst-Ludwig-Platz 2D-55116 [email protected]

Prof. Dr. Thomes SaileUniversität RegensburgFakultät für Philosophie, Kunst-, Geschichts- und GesellschaftswissenschaftenInstitut für GeschichteLehrstuhl für Vor- und FrühgeschichteUniversitätsstraße 31D-93053 [email protected]

Dr. Ruth SandnerBayerisches Landesamt für DenkmalpflegeKlosterberg 8D-86672 [email protected]

Ing. Jarmila Savková, Ph.D.*Západočeská univerzita v PlzniNové technologie – výzkumné centrumTeslova 9ACZ-30614 PlzeňTeslova 9ACZ-30614 Plzeň[email protected]

Mgr. Tereza Šalková*Jihočeská univerzita v Českých BudějovícichPřírodovědecká fakultaLaboratoř archeobotaniky a paleoekologieBranišovská 3137005 České Budějovice

Filosofické fakultyArcheologický ústavBranišovská 31a37005 České Budě[email protected]

Dr. Andreas ScharfAMS-Labor ErlangenPhysikalisches Institut Ab. IVErwin-Rommel-Str. 1D-91058 [email protected]

PhDr. Pavel ŠebestaMájová 55CZ-35002 [email protected]

PhDr. Ladislav Šmejda, Ph.DZápadočeská univerzita v PlzniFakulta filozofickáKatedra archeologieSedláčkova 15CZ-30614 Plzeň[email protected]

Dr. Karl SchmotzOberdorf 21D-94253 [email protected]

Dr. Elisabeth SchneppUniversität LeobenPaleomagnetic Laboratory GamsChair of GeophysicsGams 45A-8130 [email protected]

Dr. Robert Schumann M.A.Universität HamburgArchäologisches InstitutVor- und frühgeschichtliche ArchäologieEdmund-Siemers-Allee 1, Flügel WestD-20146 [email protected]

Dr. Heiner Schwarzberg M.A.Archäologische StaatssammlungLerchenfeldstraße 2D-80538 Mü[email protected]

274 Fines Transire 23, 2014

Prof. Dr. C. Sebastian SommerBayerisches Landesamt für DenkmalpflegeHofgraben 4D-80539 Mü[email protected]

Mgr. Eva StehlíkováJihočeská univerzita v Českých BudějovícichPřírodovědecká fakultaLaboratoř archeobotaniky a paleoekologieBranišovská 31CZ-37005 České Budějovice; [email protected]

Dr. Christoph SteinmannBayerisches Landesamt für DenkmalpflegeAdolf-Schmetzer-Str. 1D-93055 [email protected]

RNDr. Petra Stránská*Archeologický ústav AV ČR v Praze, v.v.i.Letenská 4CZ-11801 Praha [email protected]

Dr. Stefan TraxlerOberösterreichisches LandesmuseumSammlungsleitung Römerzeit, Mittelalter und Neu-zeitarchäologieWelser Str. 20A-4060 [email protected]

Mag. Dr. Christian UhlirUniversität SalzburgFachbereich AltertumswissenschaftenKlassische und Frühägäische ArchäologieResidenzplatz 1A-5010 [email protected]

Wilhelm WagnerAdolf-Kolping-Str. 23D-85435 Erding

Ao.Prof. Dr. Eva-Maria WildUniversität WienFakultät für Physik, IsotopenforschungVERA-LaboratoriumWähringerstraße 17 (Kavalierstrakt)A-1090 [email protected]

Rupert WimmerRömerstraße 47 aD-84079 [email protected]

Georg Winner*Naturhistorisches Museum WienBurgring 7A-1010 [email protected]

PhDr. Petr ZavřelJihočeské museumarcheologické odděleníDukelská 1CZ-37051 České Budě[email protected]

Mgr. Antonín ZelenkaZápadočeské muzeumZborovská 40CZ-30100 Plzeň[email protected]

Bernhard Zirngibl M.A.Universität RegensburgFakultät für Philosophie, Kunst-, Geschichts- undGesellschaftswissenschaftenInstitut für GeschichteLehrstuhl für Vor- und FrühgeschichteUniversitätsstraße 31D-93053 [email protected]

Dr. Joachim ZuberKreisarchäologie KelheimHemauer Str. 2D-93339 [email protected]

*Auf der Veranstaltung nicht anwesender Autor/Autorin