global completeness of the bat fossil record

23
ORIGINAL PAPER Global Completeness of the Bat Fossil Record Thomas P. Eiting & Gregg F. Gunnell Published online: 10 July 2009 # Springer Science + Business Media, LLC 2009 Abstract Bats are unique among mammals in their use of powered flight and their widespread capacity for laryngeal echolocation. Understanding how and when these and other abilities evolved could be improved by examining the bat fossil record. How- ever, the fossil record of bats is commonly believed to be very poor. Quantitative analyses of this record have rarely been attempted, so it has been difficult to gauge just how depauperate the bat fossil record really is. A crucial step in analyzing the quality of the fossil record is to be able to accurately estimate completeness. Measures of completeness of the fossil record have important consequences for our under- standing of evolutionary rates and patterns among bats. In this study, we applied previously developed statistical methods of analyzing completeness to the bat fossil record. The main utility of these methods over others used to study completeness is their independence from phylogeny. This phylogenetic- independence is desirable, given the recent state of flux in the higher-level phylogenetic relationships of bats. All known fossil bat genera were tabulated at the geologic stage or sub-epoch level. This binning strategy allowed an estimate of the extinction rate for each bat genus per bin. Extinction ratetogether with per-genus estimates of preservation probability and original temporal distributionswas used to calculate completeness. At the genus level, the bat fossil record is estimated to be 12% complete. Within the order, Pteropodidae is missing most of its fossil history, while Rhinolophoidea and Vespertilionoidea are missing the least. These results suggest that 88% of bats that existed never left a fossil record, and that the fossil record of bats is indeed poor. Much of the taxonomic and evolutionary history of bats has yet to be uncovered. Keywords Chiroptera . Completeness . Fossil record . Phylogeny-independent Introduction Fossils provide the only direct evidence concerning the diversity of life through time, and as such they are paramount in studies of evolutionary patterns and rates. Macroevolutionary studies that address such issues typically employ the relatively densely sam- pled invertebrate fossil record (e.g., Foote and Raup 1996; Cheetham and Jackson 1998). However, J Mammal Evol (2009) 16:151173 DOI 10.1007/s10914-009-9118-x T. P. Eiting (*) Program in Organismic and Evolutionary Biology, 221 Morrill Science Center South, University of Massachusetts, Amherst, MA 01003, USA e-mail: [email protected] G. F. Gunnell Museum of Paleontology, University of Michigan, Ann Arbor, MI 48109, USA e-mail: [email protected]

Upload: independent

Post on 17-Jan-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

ORIGINAL PAPER

Global Completeness of the Bat Fossil Record

Thomas P. Eiting & Gregg F. Gunnell

Published online: 10 July 2009# Springer Science + Business Media, LLC 2009

Abstract Bats are unique among mammals in theiruse of powered flight and their widespread capacityfor laryngeal echolocation. Understanding how andwhen these and other abilities evolved could beimproved by examining the bat fossil record. How-ever, the fossil record of bats is commonly believed tobe very poor. Quantitative analyses of this recordhave rarely been attempted, so it has been difficult togauge just how depauperate the bat fossil recordreally is. A crucial step in analyzing the quality of thefossil record is to be able to accurately estimatecompleteness. Measures of completeness of the fossilrecord have important consequences for our under-standing of evolutionary rates and patterns amongbats. In this study, we applied previously developedstatistical methods of analyzing completeness to thebat fossil record. The main utility of these methodsover others used to study completeness is theirindependence from phylogeny. This phylogenetic-

independence is desirable, given the recent state offlux in the higher-level phylogenetic relationships ofbats. All known fossil bat genera were tabulated at thegeologic stage or sub-epoch level. This binningstrategy allowed an estimate of the extinction ratefor each bat genus per bin. Extinction rate—togetherwith per-genus estimates of preservation probabilityand original temporal distributions—was used tocalculate completeness. At the genus level, the batfossil record is estimated to be 12% complete. Withinthe order, Pteropodidae is missing most of its fossilhistory, while Rhinolophoidea and Vespertilionoideaare missing the least. These results suggest that 88%of bats that existed never left a fossil record, and thatthe fossil record of bats is indeed poor. Much of thetaxonomic and evolutionary history of bats has yet tobe uncovered.

Keywords Chiroptera . Completeness . Fossil record .

Phylogeny-independent

Introduction

Fossils provide the only direct evidence concerningthe diversity of life through time, and as such theyare paramount in studies of evolutionary patterns andrates. Macroevolutionary studies that address suchissues typically employ the relatively densely sam-pled invertebrate fossil record (e.g., Foote and Raup1996; Cheetham and Jackson 1998). However,

J Mammal Evol (2009) 16:151–173DOI 10.1007/s10914-009-9118-x

T. P. Eiting (*)Program in Organismic and Evolutionary Biology,221 Morrill Science Center South,University of Massachusetts,Amherst, MA 01003, USAe-mail: [email protected]

G. F. GunnellMuseum of Paleontology, University of Michigan,Ann Arbor, MI 48109, USAe-mail: [email protected]

several vertebrate groups have well-sampled fossilrecords whose long-term evolutionary histories havebeen thoroughly studied by paleobiologists. Amongfossil mammals, most work that pertains to macro-evolutionary patterns and processes involves eitherlarge-scale analyses of terrestrial land-mammalsthrough the Cenozoic (e.g., Foote and Raup 1996;Alroy 2000), detailed examinations of relativelyshort, densely sampled fossil occurrences (e.g.,Clyde and Gingerich 1994; Alba et al. 2001; Woodet al. 2007), or, less commonly, investigations atscales intermediate between these two (e.g.,MacFadden 1985). In most cases, these studies havebeen restricted to taxonomic groups that have beenstudied extensively and for which considerablediversity or abundance of fossil forms is thought tobe present. Evolutionary patterns in the fossil recordof relatively poorly sampled groups have been onlyrarely examined.

One conspicuous group for which macroevolu-tionary analyses using the fossil record have beenrare is bats (Mammalia: Chiroptera). With morethan 1100 extant species (Simmons 2005), batscomprise an extraordinary taxonomic diversity thatis second only to rodents among living mammals.Phylogenetic investigations of bats have providedsome important insights into the evolutionary historyof the group, including recent efforts reaffirming batmonophyly and uncovering various hypotheses ofmicrochiropteran paraphyly. In principal, a perfectfossil record would illuminate the correct phyloge-netic history of bats; such a record might serve as anindependent test of the correctness of variousphylogenetic hypotheses. However, few studies ofbats have incorporated extinct taxa into phylogeneticanalyses, especially in genus- or species-level anal-yses. Using fossils in systematics will likely becomeless common as molecular-based systematics con-tinues to proliferate (Hermsen and Hendricks 2008).However, depending on the types of hypothesesbeing tested, ignoring fossil taxa that containphylogeny-relevant information not found in extantorganisms may limit our potential to completelyunderstand the evolutionary histories of these groupsand may even produce misleading results in someinstances.

To determine the potential utility of the bat fossilrecord in illuminating patterns of evolution, anunderstanding of its quality must be assessed. How

accurately does the known fossil record reflect thetrue evolutionary history of bats? Two conceptualapproaches have been used to address this questionin other groups of animals. The first is phylogeny-dependent, in which the quality of the fossil recordis assessed for a particular phylogeny. Teeling et al.(2005) presented one type of phylogeny-dependentmethod of assessing the fossil record of bats. Theygenerated Bayesian estimates of divergence dates foreach of the 58 branches (internal and terminal) fromtheir maximum likelihood tree. Teeling et al. thencompared their molecular divergence estimates withthe oldest known fossils from the 58 branches of thetree. They used the differences in ages between themolecular and fossil estimates to calculate a percent-age of missing fossil data per branch. The results oftheir analyses estimated that, on average, 73% of theknown fossil record of 58 lineages of bats wasmissing. Pteropodid bats, long known to have apoorly sampled record, were missing upwards of98% of their fossil history. The four non-pteropodidsuperfamilies were missing between 56% and 86%of their fossil record. Thus, the results of the Teelinget al. (2005) study seem to show that the fossilrecord of bats is quite poor. However, methods likethat presented in Teeling et al. (2005) are heavilydependent upon the lineages included and thetopology of the phylogeny used. Due to recentvolatility in hypotheses of the higher-level phyloge-netic relationships of bats (Springer et al. 2001;Jones et al. 2002, 2005; Eick et al. 2005; Gunnelland Simmons 2005; Teeling et al. 2005; Hermsenand Hendricks 2008), there may be some uncertaintyin estimating the quality of the fossil record of batsusing phylogeny-dependent methods.

Fortunately, the second class of methods forassessing the quality of the fossil record is phyloge-ny-independent. That is, statistical metrics are applieddirectly to the fossil data that quantify the quality ofthe fossil record (Benton 1998; Paul 1998). Themethod developed by Foote and Raup (1996) allowsfor one such quantitative analysis of the fossil recordfor any group independent of phylogeny. By estimat-ing preservation probability, extinction rate, and thestratigraphic duration of taxa, completeness can becalculated deterministically. Completeness is definedas “the proportion of taxa that have left some fossilrecord,” (Foote and Raup 1996; sensu Valentine1989), and it therefore serves as a metric for assessing

152 J Mammal Evol (2009) 16:151–173

the quality of the fossil record. In this paper weaddress the quality of the bat fossil record bycalculating completeness using the method presentedin Foote and Raup (1996). We calculate completenessfor Chiroptera as a whole, as well as for the majorhigher-level bat clades. These calculations allow for acomparison of the fossil record for each of thesegroups, as well as an assessment of the quality of thefossil record of bats using a method independent ofphylogeny.

Materials and methods

Data collection

A database of all known fossil bat genera wascompiled from the literature Appendix (1). Generawere tabulated according to their temporal and geo-graphic distribution. Taxonomy followed Simmons(2005), with the exceptions of Perimyotis and Para-strellus, which were considered distinct generafollowing the recommendations of Hoofer et al.(2006). Miniopteridae was considered to be a dis-tinct family, following recommendations of recentanalyses (e.g., Miller-Butterworth et al. 2007).Superfamily membership followed Teeling et al.(2005). Specimens identified as “cf.” (e.g., “cf.Eptesicus indet.”) were considered valid records forrecording presence/absence. Pre-Pleistocene fossilbats were assigned to one of fifteen chronostrati-graphic stages: Ypresian, Lutetian, Bartonian, Pria-bonian, Rupelian, Chattian, Aquitanian, Burdigalian,Langhian, Serravalian, Tortonian, Messinian, Zan-clean, Piacenzian, and Gelasian. The Pleistocene wastabulated as a single bin. Stages and boundary dateswere taken from Gradstein et al. (2004). Correlationof the European Mammal Neogene (MN) systemwas performed using Agustí et al. (2001) andreferences therein. Recent genera were tabulatedand used for comparative purposes (but not for sta-tistical calculations).

Data analysis

Calculations of completeness were carried outaccording to the discrete-time and infinite-windowmethod of Foote and Raup (1996). This methodrequires tabulating the ranges of all taxa (bat genera

in this case) according to discrete time intervals(mostly stages or combinations of two to three stagesfor this study). Our binning strategy attempted toproduce bins of roughly equal durations. Thus, wesummed several smaller bins into fewer large bins inan effort to combat high variance in the duration ofstages in the Cenozoic (older stages tend to be longerthan younger). In particular, we grouped all of themiddle Miocene, all of the late Miocene, and all ofthe Plio-Pleistocene together into three bins (insteadof the eight stages that fall within these timeperiods). The range of a taxon preserved in onlyone time interval is one. Stratigraphic data aretabulated using first and last occurrences, so thatthe range of a taxon equals the number of timeintervals between its first and last occurrences,including the endpoints. Preservation probability R(the probability that a taxon is preserved at leastonce in an interval) was estimated by using thefrequency, f, of taxa with observed ranges of one,two, and three intervals to calculate the range-frequency ratio, FreqRat, as:

R � FreqRat ¼ f ð2Þ2.

f ð1Þf ð3Þ½ �

Estimated preservation probability must be con-sidered with respect to true durations, so calculatingR is insufficient to analyze the quality of the fossilrecord (Foote and Raup 1996; Alba et al. 2001).Therefore, the probability P1(T) that a taxon ispreserved at least once given a true original durationT must be calculated:

P1ðTÞ ¼ 1� 1� Rð ÞT

Original durations can be calculated assuming aconstant extinction rate q (and exponential distribu-tion of original durations), where q is calculatedfrom the ln-slope of range-frequencies (omitting taxathat occur in only one bin) as the slope with the signreversed (see Fig. 1). The probability h(T) that theoriginal distribution equals T is calculated as:

hðTÞ ¼ e�q T�1ð Þ � e�qT

Completeness Pp is calculated as the sum, for alloriginal durations (i.e., T=1-∞), of the productbetween h(T) (probability of having original durationT) and P1(T) (probability of being preserved at least

J Mammal Evol (2009) 16:151–173 153

once during an interval given an original duration T)as:

Pp ¼X1T¼1

hðTÞP1ðTÞ

Pp was calculated for the pooled data, such thatthe range of each genus was considered only on aworldwide basis. Thus, Pp was considered anestimate of global completeness. To explore thedifferences among the bat fossil record of variousclades within Chiroptera, Pp was calculated sepa-rately for Pteropodidae, Rhinolophoidea, Emballo-nuroidea, Noctilionoidea, and Vespertilionoidea(sensu Teeling et al. 2005), with varying degrees of

success. A worked example of the statistical calcu-lations, using the vespertilionoid data, is provided inAppendix 2.

Results

Preservation probability, extinction rate (Fig. 1), andcompleteness are presented in Table 1 for allcalculations. No calculations were possible forPteropodidae, Emballonuroidea, or Noctilionoidea.Approximately half of all genera in the database wererepresented at least once in the fossil record (143/277). Of all extant genera, approximately 35% (71/204) are known as fossils. There are 70 known extinctbat genera. Approximately 72% of the genera had arange of one stratigraphic horizon. Those generalasting two stages comprised about 6% of the genera,while those lasting three stages accounted for 13% ofthe data. Every other range-duration contained fewerthan 5% of the genera.

The number of known genera through time forsix clades (Chiroptera, Pteropodidae, and the foursuperfamilies Rhinolophoidea, Emballonuroidea,Noctilionoidea, and Vespertilionoidea) plus a groupof genera from all extinct and uncertain families isshown in Fig. 2. For Chiroptera as a whole, genericdiversity is currently at its peak, with a relativelyhigh diversity extending back through the Pleisto-cene. There has been an apparent gradual increase indiversity through time. Fossil Pteropodidae are rareat the genus level, with only three Tertiary occur-rences. Rhinolophoidea (Hipposideridae, Megader-matidae, Craseonycteridae, Rhinopomatidae, andRhinolophidae), the clade that newer studies suggestmay share a sister relationship with pteropodid bats

1 2 3 4 5 6 7 8 9 100

0.5

1

1.5

2

2.5

3

3.5

f(x) = -0.37x + 3.27

Number of Bins

ln F

requ

ency

Fig. 1 Natural-log plot of range frequencies for fossil batgenera. Regression line was calculated after excludinggenera with frequencies of zero or one bin. The slope ofthe regression line with the sign reversed equals extinctionrate (q=0.37).

Table 1 Calculations of preservation probability, extinction rate, and completeness for all bats (Chiroptera) and the two superfamiliesRhinolophoidea and Vespertilionoidea

Analysis Numberof taxa (n)1

Preservationprobability (R)

Extinctionrate (q)

Correlationcoeff. (r) of q

Completeness(Pp)

Pp analog fromTeeling et al. (2005)

Chiroptera 143 0.04 0.37 0.9 0.12 0.27

Rhinolophoidea 21 0.03 0.1 0.51 0.25 0.44

Vespertilionoidea 56 0.08 0.32 0.76 0.25 0.40

1 fossil genera only

154 J Mammal Evol (2009) 16:151–173

(e.g., Jones et al. 2005; Teeling et al. 2005), showsrelatively high generic diversity (compared to mod-ern) throughout most of its history, after initially lowdiversity during the middle Eocene. Diversity inseveral intervals throughout the Tertiary (e.g.,Rupelian, Burdigalian) approaches or surpasses thatof the Pleistocene; only Recent rhinolophoid diver-sity is higher. Emballonuroidea (Emballonuridae andNycteridae) are present in relatively low genericdiversity throughout the Tertiary, with a slightincrease in the Pleistocene and a peak in diversity

during the Recent. Noctilionoidea (Furipteridae,Miniopteridae, Mormoopidae, Mystacinidae,Myzopodidae, Noctilionidae, Phyllostomidae, andThyropteridae) are unknown at the genus level untilthe Burdigalian (late early Miocene), and theymaintain a very low diversity throughout the re-mainder of the Tertiary. Many more genera are knownfrom the Pleistocene, and the Recent contains thehighest noctilionoid diversity. Vespertilionoidea, similarto the patterns in other groups, shows a peak in diversityduring the Recent. Generic diversity in vespertilionoidsis relatively high throughout much of the Neogene; from10 to 20 genera are known from each stage of theNeogene after the Aquitanian (early Miocene).

Discussion

The global completeness estimate of 12% indicatesthat the bat fossil record is very poor. In otherwords, approximately 88% of all bats that livednever left a fossil record. This low completenessfigure lends credence to the notion that bats have apoor fossil record, and it suggests that much of theevolutionary history of the group cannot be studiedusing fossil data. Teeling et al. (2005) found similarresults—the origins of 73% of the 58 bat lineages intheir analyses were underestimated by the fossilrecord. Importantly, their results were calculatedusing phylogeny-dependent methods, so generalcongruence between their figure and ours probablyreflects a real phenomenon; namely, bats have a poorfossil record.

Calculations from other taxonomic groups, thoughnot directly comparable, typically provide muchhigher completeness estimates (e.g., Pp=0.58 forextinct, North American Cenozoic non-volant mammalspecies [Foote and Raup 1996], and Pp=0.91 formammals from the Neogene of Spain and Portugal[Alba et al. 2001]). Such a low completeness value forbat genera relative to these other studies may in part bedue to the global nature of this study; local complete-ness for a restricted stratigraphic section typicallyresults in much higher values (e.g., Cheetham andJackson 1998). Such studies are usually performedwhen fossils are sampled densely in regions with fewlapses in the rock record (Foote and Raup 1996).Furthermore, choice of taxa may play a role, and bats

0.010.020.030.040.050.00

50

100

150

200

250

Chiroptera

0.010.020.030.040.050.00

10

20

30

40

50

60

70

80

PteropodidaeRhinolophoideaEmballonuroideaNoctilionoideaVespertilionoideaExtinct Families

Millions of Year Ago

Millions of Year Ago

Num

ber

of G

ener

aN

umbe

r of

Gen

era

Fig. 2 Number of fossil bat genera through time. All Recentbat genera are plotted for comparison with fossil forms. Eachpoint corresponds to the middle of the bin it represents (exceptfor the Recent). For both graphs, the x-axis plots time inmillions of years ago, and the y-axis plots the number ofgenera. Note the different scales of the y-axis between the topand bottom graphs.

J Mammal Evol (2009) 16:151–173 155

are probably less easily preserved than othermammals for both anatomical (delicate skeletons)and taphonomic reasons (see discussion below).This effect may be partly responsible for the highproportion of single hits in the data set (72% of allfossil bats occur in just one bin). Foote and Raup(1996) warn that high proportions of single hits mayproduce very high variances in estimates of originaldurations, which produce large errors when calcu-lating completeness.

Fossil bats presumably inhabited environmentssimilar to their modern counterparts, which typicallyare not well sampled in the fossil record. Of thecommon bat habitats, caves offer some of the bestconditions for preservation, and many fossil bats areknown from cave and karst deposits (Kowalski 1995).For example, Tertiary bats from the Mediterraneanbasin typically come from karst deposits (Sigé andLegendre 1983) and many bats from the MioceneRiversleigh Site of Australia apparently come fromcave-fill deposits as well (Hand and Archer 2005).Other than caves, many of the best preserved fossilbats come from sedimentary deposits of extinct lakes(e.g., Jepsen 1966; Habersetzer and Storch 1987;Gunnell et al. 2003; Simmons et al. 2008); lacustrineenvironments provide some of the best conditions forfossilization in the terrestrial realm. Unfortunately,most bats visit lakes only briefly, so their potential forfossilization in these environments usually is verylow.

A rather striking result is the general matchbetween the superfamily-level results from Teelinget al. (2005) with those from this study (Fig. 2),though Teeling et al. found consistently highercompleteness figures for each clade (Table 1). Therank-order from most to least percent missing fromTeeling et al. (2005) is: Pteropodidae, Noctilionoi-dea, Emballonuroidea, Rhinolophoidea, and Vesper-tilionoidea. In the present study, completeness wascalculated for Rhinolophoidea and Vespertilionoidea(in addition to all Chiroptera). Calculations were notpossible for Pteropodidae, Noctilionoidea, or Embal-lonuroidea because of too little data. As Table 1shows, the calculations of extinction rate (q) yieldedPearson coefficients of correlation (between thenumber of stages and the natural log of thefrequency of genus occurrences) of 0.51 for Rhino-lophoidea and 0.76 for Vespertilionoidea. The highercorrelation for Vespertilionoidea may mean that the

extinction rate is more reliable as compared toRhinolophoidea. Furthermore, because the extinctionrate is used to calculate completeness, the complete-ness of Vespertilionoidea may be more robust than itis for Rhinolophoidea.

It is important to note that having too little datato calculate completeness for Pteropodidae, Nocti-lionoidea, and Emballonuroidea does not, by itself,mean that the fossil records for these three groupsare woefully incomplete. Our binning strategy mayhave been too aggressive in lumping together intothe same bin bats that were found in differentstratigraphic levels. If these three clades weregeologically rather young (middle or late Miocene,for example), then there would not be enoughbinned intervals to generate a sufficient statisticalsample to calculate completeness. However, noneof these three clades are young, as shown by theirfossil ages (Appendix 1, Fig. 2) and by phylogeneticanalyses (Teeling et al. 2005; Gunnell and Simmons2005). Examining the pattern of fossil occurrencesthrough time (Fig. 2) provides some insight into thequality of the record for each of these groups. Whencompared to their modern diversity, Pteropodidaeand Noctilionoidea seem to have the worst records,while Rhinolophoidea and Vespertilionoidea havethe best. If we compare groups of similar moderngeneric diversity, it seems that Vespertilionoidea hasa better record than Noctilionoidea, as does Rhino-lophoidea when compared to Emballonuroidea.Completeness values for Rhinolophoidea and Ves-pertilionoidea were twice that of Chiroptera as awhole (25% versus 12%). So, it is reasonable toexpect that groups other than the rhinolophoids andvespertilionoids would have completeness valuessubstantially lower than 12% (though parsing outcompleteness values for each of these other groupswas not possible in the present study).

Considering the apparent dual sister-group rela-tionships between Noctilionoidea and Vespertilio-noidea on the one hand, and Rhinolophoidea andPteropodidae on the other (e.g., Jones et al. 2005),the apparent disparity in the quality of their fossilrecords cannot be attributed to factors affecting allbats. In part, the time available for diversificationmay have differentially affected clades, consideringthat the generic-rich noctilionoid family Phyllosto-midae may be much younger than either Molossidaeor Vespertilionidae that together comprise most of

156 J Mammal Evol (2009) 16:151–173

the vespertilionoid diversity. But even in the Mio-cene—likely after the origin of the first phyllostomid(Jones et al. 2005)—the vespertilionoid recordcontains much more diversity than the noctilionoidrecord. So, the disparity in the fossil records may inpart be a real phenomenon that can be explained byat least three non-exclusive factors. First, it probablyreflects a collector bias, as vespertilionoids andrhinolophoids constitute a disproportionate share ofthe bat fossils known from Europe and NorthAmerica, both of which have a rather good samplingof fossil forms (Gunnell and Simmons 2005; Hulvaet al. 2007). An increased sampling effort throughoutthe Old and New World tropics may diminish theproblem of a depauperate bat fossil record, at least tosome degree. Second, differences in the quality ofthe fossil record between bat clades could be due todifferent taphonomic effects. Pteropodids and mostnoctilionoids today inhabit tropical regions in whichenvironmental conditions offer little hope of becom-ing fossils. For temperate bats, dominated byvespertilionoids, a large percentage inhabits cavesand faces fewer taphonomic impediments to fossil-ization immediately after death. Finally, the disparityin the fossil record of bat clades could be due to apoor rock record. In this case, it may be that diverseassemblages of poorly represented bat clades werefossilized, but these fossils have been buried ordestroyed as a result of subsequent geologic pro-cesses. Different bat clades could have experiencedhigh diversity at different points in time, and some ofthese time periods may have been preferentially lostin the rock record.

While numerous questions cannot be directlyaddressed with this study (e.g., paleobiogeographicpatterns), the results confirm the notion that thegenus-level fossil record of bats is poor. As such, itis unclear how incorporating extinct bat genera intophylogenetic analyses would really enhance theresulting phylogenetic hypotheses, though simula-tions indicate that, even in the face of very highdegrees of incompleteness, incorporating fossil datacan improve phylogeny estimation (Fox et al.1999). Some studies have shown a fairly high degreeof consistency between phylogenetic analyses thatdo and do not incorporate extinct forms and theirstratigraphic positions (e.g., Norell and Novacek1992); others have demonstrated that fossils play acritical role in phylogeny estimation (e.g., Gauthier

et al. 1988). Unfortunately, fossil bats often arerepresented by little more than isolated teeth or, atbest, mandibular or maxillary fragments (Czaplewskiet al. 2008). Though numerous parsimony-informa-tive characters are found in the skull and dentition,many diagnostic characters are found in other partsof the skeleton (e.g., Gunnell et al. 2003; Simmonset al. 2008), and an absence of sufficient materialmay preclude definitive taxonomic or characterassignment. Many important early bats cannot beassigned to genera (or even higher level groups) withany certainty (e.g., Archer 1978; Ducrocq et al.1993; Tejedor et al. 2005). Such specimens havebeen omitted from this study, as we await morediagnostic material. However, any estimate of thecompleteness of the fossil record is predicated on theassumption that taxonomic diagnoses have beenmade correctly, so this issue may not preferentiallybias our results.

Conclusions

This study marks the first phylogeny-independentestimate of the global completeness of the fossilrecord of bats. The genus-level bat fossil record isestimated to be 12% complete. This figure agreesbroadly with phylogeny-derived completeness esti-mates by Teeling et al. (2005) in confirming thenotion that the bat fossil record is poor. Such resultsindicate that much of the taxonomic and morphologicdiversity of bats remains to be uncovered. Despite thedepauperate fossil record, important steps in theevolutionary history of bats are recorded in fossils,such as the apparent evolution of flight before high-frequency echolocation in Eocene bats (Simmons etal. 2008). Future work should examine Tertiarydeposits from historically under-sampled regions toincrease our knowledge of fossil bats and thusimprove our understanding of this remarkable groupof mammals.

Acknowledgements We thank N. Czaplewski, I. Horáček, J.Hutcheon, G. Morgan, K. Samonds, and N. Simmons fordiscussions or providing reprints. We appreciate commentsfrom J. Wible and from an anonymous reviewer that greatlyimproved the quality of this manuscript. TE thanks G. Smithand D. Nelson, University of Michigan, for logistical supportand the Society of Vertebrate Paleontology for funds to attendthe 2007 annual meeting.

J Mammal Evol (2009) 16:151–173 157

Appendix 1

Tab

le2

Com

pilatio

nof

batfossilg

eneraused

inthisstud

y.Tem

poralrecords

ofbatg

eneraweretabu

latedas

present(1)

orabsent

(0)in

each

discretetim

einterval.S

ources,sho

wn

belowthetable,record

thefirstandlastoccurrencesof

each

genu

s(excluding

Recent),p

lusadditio

nalinterveningoccurrenceswhenavailable(non-exh

austive).S

econ

dary

sources

wereused

incaseswhere

prim

arysourceswereun

available.

Stratigraph

icbinabbreviatio

nsas

follo

ws:Eo=Eocene,Olig

o=Olig

ocene,

Mio

=Miocene,P-P

=Plio

cene

throug

hPleistocene,R

ec=Recent;Ypr

=Ypresian,

Lut

=Lutetian,

Bart=

Bartonian,P

ria=Priabon

ian,

Rup

=Rup

elian,

Chat=

Chattian,A

qui=

Aqu

itanian,B

urd=Burdigalian,

MMio

=MiddleMiocene,LMio

=LateMiocene.Ma=Millions

ofYears

Ago

.Records

forRecentbatswereno

tused

instatistical

calculations

Sup

erfamily

Fam

ilyGenus

Eo

Olig

oMio

P-P

Rec

Sou

rce

Ypr

Lut

Bart

Pria

Rup

Chat

Aqu

iBurd

MMio

LMio

P-P

Rec

Ma:

55.8

48.6

40.4

37.2

33.9

28.4

23.0

20.4

16.0

11.6

5.3

0.01

2

Emballo

nuroidea

?Emballo

nuridae

†Epp

sinycteris

10

00

00

00

00

00

63

Emballo

nuroidea

Emballo

nuridae

†Dho

farella

00

01

10

00

00

00

44,118

Emballo

nuroidea

Emballo

nuridae

†Tachypteron

01

00

00

00

00

00

127

Emballo

nuroidea

Emballo

nuridae

†Vespertiliavus

01

11

11

00

00

00

6,35

,82

,114,

139

Emballo

nuroidea

Emballo

nuridae

Balan

tiopteryx

00

00

00

00

00

11

34

Emballo

nuroidea

Emballo

nuridae

Centron

ycteris

00

00

00

00

00

01

Emballo

nuroidea

Emballo

nuridae

Coleura

00

00

00

00

00

11

141

Emballo

nuroidea

Emballo

nuridae

Cormura

00

00

00

00

00

01

Emballo

nuroidea

Emballo

nuridae

Cyttarops

00

00

00

00

00

01

Emballo

nuroidea

Emballo

nuridae

Diclid

urus

00

00

00

00

11

11

18

Emballo

nuroidea

Emballo

nuridae

Emba

llonu

ra0

00

00

00

00

00

1

Emballo

nuroidea

Emballo

nuridae

Mosia

00

00

00

00

00

01

Emballo

nuroidea

Emballo

nuridae

Perop

teryx

00

00

00

00

00

11

24

Emballo

nuroidea

Emballo

nuridae

Rhyncho

nycteris

00

00

00

00

00

01

Emballo

nuroidea

Emballo

nuridae

Saccolaimus

00

00

00

00

00

11

13,14

1

Emballo

nuroidea

Emballo

nuridae

Saccop

teryx

00

00

00

00

00

01

Emballo

nuroidea

Emballo

nuridae

Taph

ozou

s0

00

00

00

11

11

111,76

Emballo

nuroidea

Nycteridae

†Chiba

nycteris

00

00

10

00

00

00

118

Emballo

nuroidea

Nycteridae

Nycteris

00

00

00

00

00

11

9,92

Extinct

?Hassianycteridae

†Cam

baya

10

00

00

00

00

00

124

Extinct

†Archaeony

cteridae

†Archa

eonycteris

11

10

00

00

00

00

97,10

3,12

0,12

4

Extinct

†Archaeony

cteridae

†Protonycteris

10

00

00

00

00

00

124

Appendix

1

158 J Mammal Evol (2009) 16:151–173

Sup

erfamily

Fam

ilyGenus

Eo

Olig

oMio

P-P

Rec

Sou

rce

Ypr

Lut

Bart

Pria

Rup

Chat

Aqu

iBurd

MMio

LMio

P-P

Rec

Ma:

55.8

48.6

40.4

37.2

33.9

28.4

23.0

20.4

16.0

11.6

5.3

0.01

2

Extinct

†Hassianycteridae

†Hassian

ycteris

11

00

00

00

00

00

122,

123

Extinct

†Icarony

cteridae

†Icaronycteris

10

00

00

00

00

00

68,97

,10

3

Extinct

†Incertaecedis

†Ageina

10

00

00

00

00

00

103

Extinct

†Incertaecedis

†Alastorius

00

00

01

00

00

00

42,12

9

Extinct

†Incertaecedis

†Archa

eopterop

us0

00

01

00

00

00

042

,83

Extinct

†Incertaecedis

†Australon

ycteris

10

00

00

00

00

00

57

Extinct

†Incertaecedis

†Cha

dron

ycteris

00

01

00

00

00

00

91

Extinct

†Incertaecedis

†Jaegeria

10

00

00

00

00

00

124

Extinct

†Mixop

terygidae

†Carcinipteryx

01

11

00

00

00

00

81

Extinct

†Mixop

terygidae

†Mixop

teryx

00

01

11

00

00

00

81

Extinct

†Ony

chon

ycteridae

†Onychon

ycteris

10

00

00

00

00

00

121

Extinct

†Palaeochiropteryg

idae

†Cecilion

ycteris

01

00

00

00

00

00

59

Extinct

†Palaeochiropteryg

idae

†Lap

ichiropteryx

00

10

00

00

00

00

133

Extinct

†Palaeochiropteryg

idae

†Matthesia

01

00

00

00

00

00

116

Extinct

†Palaeochiropteryg

idae

†Microchirop

teryx

10

00

00

00

00

00

124

Extinct

†Palaeochiropteryg

idae

†Palaeochiropteryx

11

10

00

00

00

00

99,10

6

Extinct

† Tanzany

cteridae

†Tan

zanycteris

01

00

00

00

00

00

43

Noctiliono

idea

Furipteridae

Amorph

ochilus

00

00

00

00

00

11

86

Noctiliono

idea

Furipteridae

Furipterus

00

00

00

00

00

11

24

Noctiliono

idea

Mormoo

pidae

Mormoo

ps0

00

00

00

00

01

187

,119

Noctiliono

idea

Mormoo

pidae

Pterono

tus

00

00

00

00

00

11

24

Noctiliono

idea

Mystacinidae

†Icarops

00

00

00

01

10

00

56

Noctiliono

idea

Mystacinidae

Mystacina

00

00

00

00

00

11

10,14

6

Noctiliono

idea

Myzop

odidae

Myzop

oda

00

00

00

00

00

11

10

Noctiliono

idea

Noctilionidae

Noctilio

00

00

00

00

11

11

18,22

,31

Noctiliono

idea

Phy

llostom

idae

†Noton

ycteris

00

00

00

00

10

00

31,10

5

Noctiliono

idea

Phy

llostom

idae

†Palynephyllu

m0

00

00

00

01

00

031

Noctiliono

idea

Phy

llostom

idae

Ametrida

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Ano

ura

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Ardop

s0

00

00

00

00

00

1

Noctiliono

idea

Phy

llostom

idae

Ariteus

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Artibeus

00

00

00

00

00

11

24,34

Noctiliono

idea

Phy

llostom

idae

Brachyphylla

00

00

00

00

00

11

84,119

Noctiliono

idea

Phy

llostom

idae

Carollia

00

00

00

00

00

11

24

Noctiliono

idea

Phy

llostom

idae

Centurio

00

00

00

00

00

01

J Mammal Evol (2009) 16:151–173 159

Tab

le2

(con

tinued)

Sup

erfamily

Fam

ilyGenus

Eo

Olig

oMio

P-P

Rec

Sou

rce

Ypr

Lut

Bart

Pria

Rup

Chat

Aqu

iBurd

MMio

LMio

P-P

Rec

Ma:

55.8

48.6

40.4

37.2

33.9

28.4

23.0

20.4

16.0

11.6

5.3

0.01

2

Noctiliono

idea

Phy

llostom

idae

Chiroderm

a0

00

00

00

00

01

124

Noctiliono

idea

Phy

llostom

idae

Cho

eron

iscus

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Cho

eron

ycteris

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Chrotop

terus

00

00

00

00

00

11

24

Noctiliono

idea

Phy

llostom

idae

Desmod

us0

00

00

00

00

01

124

,26

,89

Noctiliono

idea

Phy

llostom

idae

Diaem

us0

00

00

00

00

00

1

Noctiliono

idea

Phy

llostom

idae

Diphylla

00

00

00

00

00

11

24

Noctiliono

idea

Phy

llostom

idae

Ectop

hylla

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Enchisthenes

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Eroph

ylla

00

00

00

00

00

11

87,119

Noctiliono

idea

Phy

llostom

idae

Glossop

haga

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Glyph

onycteris

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Hylon

ycteris

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Lam

pron

ycteris

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Leptonycteris

00

00

00

00

00

11

34

Noctiliono

idea

Phy

llostom

idae

Licho

nycteris

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Lionycteris

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Lon

chop

hylla

00

00

00

00

00

11

24

Noctiliono

idea

Phy

llostom

idae

Lon

chorhina

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Lop

hostom

a0

00

00

00

00

01

130

Noctiliono

idea

Phy

llostom

idae

Macroph

yllum

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Macrotus

00

00

00

00

00

11

87,119

Noctiliono

idea

Phy

llostom

idae

Mesop

hylla

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Micronycteris

00

00

00

00

00

11

24,30

Noctiliono

idea

Phy

llostom

idae

Mimon

00

00

00

00

00

11

24

Noctiliono

idea

Phy

llostom

idae

Mon

ophyllu

s0

00

00

00

00

01

187

,119

Noctiliono

idea

Phy

llostom

idae

Muson

ycteris

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Neonycteris

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Phyllo

derm

a0

00

00

00

00

00

1

Noctiliono

idea

Phy

llostom

idae

Phyllo

nycteris

00

00

00

00

00

11

87,119

160 J Mammal Evol (2009) 16:151–173

Sup

erfamily

Fam

ilyGenus

Eo

Olig

oMio

P-P

Rec

Sou

rce

Ypr

Lut

Bart

Pria

Rup

Chat

Aqu

iBurd

MMio

LMio

P-P

Rec

Ma:

55.8

48.6

40.4

37.2

33.9

28.4

23.0

20.4

16.0

11.6

5.3

0.01

2

Noctiliono

idea

Phy

llostom

idae

Phyllo

ps0

00

00

00

00

01

113

0

Noctiliono

idea

Phy

llostom

idae

Phyllo

stom

us0

00

00

00

00

01

124

Noctiliono

idea

Phy

llostom

idae

Platalin

a0

00

00

00

00

00

1

Noctiliono

idea

Phy

llostom

idae

Platyrrhinu

s0

00

00

00

00

01

124

Noctiliono

idea

Phy

llostom

idae

Pygod

erma

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Rhino

phylla

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Scleronycteris

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Spha

eron

ycteris

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Stenod

erma

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Sturnira

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Tona

tia0

00

00

00

01

11

118

,24

Noctiliono

idea

Phy

llostom

idae

Tracho

ps0

00

00

00

00

01

130

Noctiliono

idea

Phy

llostom

idae

Trinycteris

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Uroderm

a0

00

00

00

00

00

1

Noctiliono

idea

Phy

llostom

idae

Vampyressa

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Vampyrodes

00

00

00

00

00

01

Noctiliono

idea

Phy

llostom

idae

Vampyrum

00

00

00

00

00

01

Noctiliono

idea

Thy

ropteridae

Thyroptera

00

00

00

00

11

11

18

Pteropo

didae

Pteropo

didae

†Propo

tto0

00

00

00

10

00

011,14

0

Pteropo

didae

Pteropo

didae

Acerodo

n0

00

00

00

00

00

1

Pteropo

didae

Pteropo

didae

Aetha

lops

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Alio

nycteris

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Aproteles

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Balionycteris

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Casinycteris

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Chirona

x0

00

00

00

00

00

1

Pteropo

didae

Pteropo

didae

Cynop

terus

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Dob

sonia

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Dyacopterus

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Eidolon

00

00

00

00

00

11

141

Pteropo

didae

Pteropo

didae

Eon

ycteris

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Epo

mop

horus

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Epo

mop

s0

00

00

00

00

00

1

Pteropo

didae

Pteropo

didae

Hap

lonycteris

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Harpyionycteris

00

00

00

00

00

01

J Mammal Evol (2009) 16:151–173 161

Tab

le2

(con

tinued)

Sup

erfamily

Fam

ilyGenus

Eo

Olig

oMio

P-P

Rec

Sou

rce

Ypr

Lut

Bart

Pria

Rup

Chat

Aqu

iBurd

MMio

LMio

P-P

Rec

Ma:

55.8

48.6

40.4

37.2

33.9

28.4

23.0

20.4

16.0

11.6

5.3

0.01

2

Pteropo

didae

Pteropo

didae

Hypsign

athu

s0

00

00

00

00

00

1

Pteropo

didae

Pteropo

didae

Latidens

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Lissonycteris

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Macroglossus

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Megaerops

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Megalog

lossus

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Melon

ycteris

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Micropterop

us0

00

00

00

00

00

1

Pteropo

didae

Pteropo

didae

Myonycteris

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Nan

onycteris

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Neopteryx

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Notop

teris

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Nyctim

ene

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Otopterop

us0

00

00

00

00

00

1

Pteropo

didae

Pteropo

didae

Paran

yctim

ene

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Penthetor

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Plerotes

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Pteno

chirus

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Pteralopex

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Pteropu

s0

00

00

00

00

00

1

Pteropo

didae

Pteropo

didae

Rou

settu

s0

00

00

00

00

01

110

4

Pteropo

didae

Pteropo

didae

Scoton

ycteris

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Spha

erias

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Styloctenium

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Syconycteris

00

00

00

00

00

01

Pteropo

didae

Pteropo

didae

Tho

opterus

00

00

00

00

00

01

Rhino

loph

oidea

Craseon

ycteridae

Craseon

ycteris

00

00

00

00

00

01

Rhino

loph

oidea

Hippo

sideridae

†Archerops

00

00

00

01

00

00

55

Rhino

loph

oidea

Hippo

sideridae

†Brevipa

latus

00

00

00

01

00

00

54,55

Rhino

loph

oidea

Hippo

sideridae

†Miophyllorhina

00

00

00

01

00

00

50

162 J Mammal Evol (2009) 16:151–173

Sup

erfamily

Fam

ilyGenus

Eo

Olig

oMio

P-P

Rec

Sou

rce

Ypr

Lut

Bart

Pria

Rup

Chat

Aqu

iBurd

MMio

LMio

P-P

Rec

Ma:

55.8

48.6

40.4

37.2

33.9

28.4

23.0

20.4

16.0

11.6

5.3

0.01

2

Rhino

loph

oidea

Hippo

sideridae

†Palaeop

hyllo

phora

00

11

11

00

00

00

35

Rhino

loph

oidea

Hippo

sideridae

†Parap

hyllo

phora

00

01

00

00

00

00

101

Rhino

loph

oidea

Hippo

sideridae

†Riversleigh

a0

00

00

00

10

00

052

Rhino

loph

oidea

Hippo

sideridae

†Vaylatsia

00

01

11

00

00

00

55,114,

120,

139

Rhino

loph

oidea

Hippo

sideridae

†Xenorhino

s0

00

00

00

10

00

053

Rhino

loph

oidea

Hippo

sideridae

Antho

ps0

00

00

00

00

00

1

Rhino

loph

oidea

Hippo

sideridae

Asellia

00

00

00

01

11

11

37,74

,77

,12

6

Rhino

loph

oidea

Hippo

sideridae

Aselliscus

00

00

00

00

00

01

Rhino

loph

oidea

Hippo

sideridae

Cloeotis

00

00

00

00

00

01

Rhino

loph

oidea

Hippo

sideridae

Coelops

00

00

00

00

00

01

Rhino

loph

oidea

Hippo

sideridae

Hippo

sideros

00

11

11

11

11

11

4,11,35

,47

,49

,51

,55

,69

,77

,10

4,10

8,110,

117,

118,

126,

141,

151,

152

Rhino

loph

oidea

Hippo

sideridae

Paracoelops

00

00

00

00

00

01

Rhino

loph

oidea

Hippo

sideridae

Rhino

nicteris

00

00

00

01

11

11

51

Rhino

loph

oidea

Hippo

sideridae

Triaenop

s0

00

00

00

00

01

110

4

Rhino

loph

oidea

?Megadermatidae

†Necroman

tis0

11

10

00

00

00

082

Rhino

loph

oidea

Megadermatidae

†Sah

arad

erma

00

01

00

00

00

00

44

Rhino

loph

oidea

Megadermatidae

Cardiod

erma

00

00

00

00

00

11

10

Rhino

loph

oidea

Megadermatidae

Lavia

00

00

00

00

00

01

Rhino

loph

oidea

Megadermatidae

Macroderm

a0

00

00

00

01

11

145

,48

,90

Rhino

loph

oidea

Megadermatidae

Megad

erma

00

00

01

11

11

11

37,39

,10

8,10

9,110,

112,

126,

135,

151,

152

Rhino

loph

oidea

Rhino

loph

idae

†Palaeon

ycteris

00

00

00

01

00

00

44

Rhino

loph

oidea

Rhino

loph

idae

Rhino

loph

us0

00

11

11

11

11

11,

3,4,

35,37

,60

,69

,71

,73

,74

,93

,10

7,10

8,10

9,12

6,13

4,13

7,15

1,15

2

Rhino

loph

oidea

Rhino

pomatidae

†Qarun

ycteris

00

01

00

00

00

00

44

Rhino

loph

oidea

Rhino

pomatidae

Rhino

poma

00

00

00

00

01

11

67

Vespertilion

oidea

†Philisidae

†Dizzya

10

00

00

00

00

00

115

Vespertilion

oidea

†Philisidae

†Philisis

00

00

10

00

00

00

118

Vespertilion

oidea

†Philisidae

†Scotoph

ilisis

00

00

00

01

00

00

66,14

2

Vespertilion

oidea

†Philisidae

†Vam

pyravus

00

00

10

00

00

00

113,

120

Vespertilion

oidea

†Philisidae

†Witw

atia

00

01

00

00

00

00

44

J Mammal Evol (2009) 16:151–173 163

Tab

le2

(con

tinued)

Sup

erfamily

Fam

ilyGenus

Eo

Olig

oMio

P-P

Rec

Sou

rce

Ypr

Lut

Bart

Pria

Rup

Chat

Aqu

iBurd

MMio

LMio

P-P

Rec

Ma:

55.8

48.6

40.4

37.2

33.9

28.4

23.0

20.4

16.0

11.6

5.3

0.01

2

Vespertilion

oidea

Miniopteridae

Miniopterus

00

00

00

00

11

11

1,4,

60,71

,93

,10

7,12

6,14

5,15

2

Vespertilion

oidea

Molossidae

†Cuvierimop

s0

00

11

10

00

00

042

,78

Vespertilion

oidea

Molossidae

†Petramop

s0

00

00

00

01

00

046

Vespertilion

oidea

Molossidae

†Potam

ops

00

00

00

00

10

00

18,23

Vespertilion

oidea

Molossidae

†Wallia

00

11

00

00

00

00

28,12

8

Vespertilion

oidea

Molossidae

Cha

erepho

n0

00

00

00

00

00

1

Vespertilion

oidea

Molossidae

Cheirom

eles

00

00

00

00

00

01

Vespertilion

oidea

Molossidae

Cynom

ops

00

00

00

00

00

01

Vespertilion

oidea

Molossidae

Eum

ops

00

00

00

00

11

11

18,21

,23

,24

,10

1

Vespertilion

oidea

Molossidae

Molossops

00

00

00

00

00

01

Vespertilion

oidea

Molossidae

Molossus

00

00

00

00

00

11

24

Vespertilion

oidea

Molossidae

Mop

s0

00

00

00

00

00

1

Vespertilion

oidea

Molossidae

Mormop

terus

00

00

00

11

11

11

18,23

,78

,12

6

Vespertilion

oidea

Molossidae

Myopterus

00

00

00

00

00

01

Vespertilion

oidea

Molossidae

Nyctin

omop

s0

00

00

00

00

01

122

,24

Vespertilion

oidea

Molossidae

Otomop

s0

00

00

00

00

00

1

Vespertilion

oidea

Molossidae

Platymop

s0

00

00

00

00

00

1

Vespertilion

oidea

Molossidae

Promop

s0

00

00

00

00

01

124

Vespertilion

oidea

Molossidae

Saurom

ys0

00

00

00

00

00

1

Vespertilion

oidea

Molossidae

Tada

rida

00

01

11

11

11

11

1,2,

24,29

,35

,78

,87

,88

,10

7,10

9,12

6

Vespertilion

oidea

Molossidae

Tomop

eas

00

00

00

00

00

01

Vespertilion

oidea

Natalidae

†Hon

rovits

10

00

00

00

00

00

7

Vespertilion

oidea

Natalidae

†Primon

atalus

00

00

00

01

00

00

87

Vespertilion

oidea

Natalidae

Chilona

talus

00

00

00

00

00

01

Vespertilion

oidea

Natalidae

Natalus

00

00

00

00

00

11

24,87

Vespertilion

oidea

Natalidae

Nyctiellu

s0

00

00

00

00

00

1

Vespertilion

oidea

Vespertilion

idae

†Ancenycteris

00

00

00

00

10

00

131

Vespertilion

oidea

Vespertilion

idae

†Anzan

ycteris

00

00

00

00

00

10

15,28

,14

3

164 J Mammal Evol (2009) 16:151–173

Sup

erfamily

Fam

ilyGenus

Eo

Olig

oMio

P-P

Rec

Sou

rce

Ypr

Lut

Bart

Pria

Rup

Chat

Aqu

iBurd

MMio

LMio

P-P

Rec

Ma:

55.8

48.6

40.4

37.2

33.9

28.4

23.0

20.4

16.0

11.6

5.3

0.01

2

Vespertilion

oidea

Vespertilion

idae

†Cha

mtwaria

00

00

00

01

00

00

11

Vespertilion

oidea

Vespertilion

idae

†Han

akia

00

00

01

11

00

00

65

Vespertilion

oidea

Vespertilion

idae

†Karstala

00

00

00

01

00

00

25

Vespertilion

oidea

Vespertilion

idae

†Kho

nsun

ycteris

00

01

00

00

00

00

44

Vespertilion

oidea

Vespertilion

idae

†Miomyotis

00

00

00

01

00

00

75

Vespertilion

oidea

Vespertilion

idae

†Miostrellu

s0

00

00

00

01

00

065

,12

6

Vespertilion

oidea

Vespertilion

idae

†Olig

omyotis

00

00

10

00

00

00

5,38

Vespertilion

oidea

Vespertilion

idae

†Paleptesicus

00

00

00

00

11

00

126,

149,

150,

152

Vespertilion

oidea

Vespertilion

idae

†Pleistomyotis

00

00

00

00

00

10

148

Vespertilion

oidea

Vespertilion

idae

†Plio

nycteris

00

00

00

00

00

10

80

Vespertilion

oidea

Vespertilion

idae

†Potam

onycteris

00

00

00

00

10

00

20

Vespertilion

oidea

Vespertilion

idae

†Quinetia

00

00

10

00

00

00

65,96

Vespertilion

oidea

Vespertilion

idae

†Sam

onycteris

00

00

00

00

01

00

101,

126

Vespertilion

oidea

Vespertilion

idae

†Sha

nwan

gia

00

00

00

00

10

00

147

Vespertilion

oidea

Vespertilion

idae

†Simon

ycteris

00

00

00

00

00

10

20,12

5

Vespertilion

oidea

Vespertilion

idae

†Stehlinia

01

11

11

00

00

00

35,82

,10

0,111

Vespertilion

oidea

Vespertilion

idae

†Sua

ptenos

00

00

00

01

00

00

75

Vespertilion

oidea

Vespertilion

idae

†Sub

myotodo

n0

00

00

00

01

00

015

2

Vespertilion

oidea

Vespertilion

idae

Antrozous

00

00

00

00

11

11

28,33

,13

2

Vespertilion

oidea

Vespertilion

idae

Arielulus

00

00

00

00

00

01

Vespertilion

oidea

Vespertilion

idae

Barba

stella

00

00

00

00

00

11

72,10

7

Vespertilion

oidea

Vespertilion

idae

Bau

erus

00

00

00

00

00

01

Vespertilion

oidea

Vespertilion

idae

Cha

linolob

us0

00

00

00

00

00

1

Vespertilion

oidea

Vespertilion

idae

Cistugo

00

00

00

00

00

01

Vespertilion

oidea

Vespertilion

idae

Corynorhinu

s0

00

00

00

00

11

158

,13

8,13

9

Vespertilion

oidea

Vespertilion

idae

Eptesicus

00

00

00

01

11

11

3,14

,21

,24

,30

,32

,33

,61

,70

,72

,79

,87

,92

,95

,10

7,13

0,13

7,15

1,15

2

Vespertilion

oidea

Vespertilion

idae

Eud

erma

00

00

00

00

00

01

Vespertilion

oidea

Vespertilion

idae

Eud

iscopu

s0

00

00

00

00

00

1

Vespertilion

oidea

Vespertilion

idae

Falsistrellu

s0

00

00

00

00

00

1

Vespertilion

oidea

Vespertilion

idae

Glaucon

ycteris

00

00

00

00

00

01

Vespertilion

oidea

Vespertilion

idae

Glischropu

s0

00

00

00

00

00

1

Vespertilion

oidea

Vespertilion

idae

Harpiocepha

lus

00

00

00

00

00

01

Vespertilion

oidea

Vespertilion

idae

Hesperoptenus

00

00

00

00

00

01

J Mammal Evol (2009) 16:151–173 165

Tab

le2

(con

tinued)

Sup

erfamily

Fam

ilyGenus

Eo

Olig

oMio

P-P

Rec

Sou

rce

Ypr

Lut

Bart

Pria

Rup

Chat

Aqu

iBurd

MMio

LMio

P-P

Rec

Ma:

55.8

48.6

40.4

37.2

33.9

28.4

23.0

20.4

16.0

11.6

5.3

0.01

2

Vespertilion

oidea

Vespertilion

idae

Histio

tus

00

00

00

00

00

01

Vespertilion

oidea

Vespertilion

idae

Hypsugo

00

00

00

00

00

01

Vespertilion

oidea

Vespertilion

idae

Ia0

00

00

00

00

00

1

Vespertilion

oidea

Vespertilion

idae

Idionycteris

00

00

00

00

00

01

Vespertilion

oidea

Vespertilion

idae

Kerivou

la0

00

00

00

00

01

116

,64

Vespertilion

oidea

Vespertilion

idae

Laeph

otis

00

00

00

00

00

01

Vespertilion

oidea

Vespertilion

idae

Lasionycteris

00

00

00

00

00

11

32

Vespertilion

oidea

Vespertilion

idae

Lasiurus

00

00

00

00

01

11

21,27

,32

,41

,62

,13

2

Vespertilion

oidea

Vespertilion

idae

Mimetillus

00

00

00

00

00

01

Vespertilion

oidea

Vespertilion

idae

Murina

00

00

00

00

00

11

72,94

Vespertilion

oidea

Vespertilion

idae

Myotis

00

00

01

11

11

11

1,3,

5,17

,19

,24

,27

,35

,40

,58

,60

,69

,71

,72

,73

,93

,94

,95

,10

1,10

7,110,

126,

136,

137,

144,

151,

152

Vespertilion

oidea

Vespertilion

idae

Neoromicia

00

00

00

00

00

01

Vespertilion

oidea

Vespertilion

idae

Nyctalus

00

00

01

11

11

11

65,10

7

Vespertilion

oidea

Vespertilion

idae

Nycticeino

ps0

00

00

00

00

00

1

Vespertilion

oidea

Vespertilion

idae

Nycticeius

00

00

00

00

00

11

12

Vespertilion

oidea

Vespertilion

idae

Nyctoph

ilus

00

00

00

00

00

01

Vespertilion

oidea

Vespertilion

idae

Otonycteris

00

00

00

00

00

01

Vespertilion

oidea

Vespertilion

idae

Parastrellus

00

00

00

00

00

01

Vespertilion

oidea

Vespertilion

idae

Perimyotis

00

00

00

00

00

11

85,98

Vespertilion

oidea

Vespertilion

idae

Pha

rotis

00

00

00

00

00

01

Vespertilion

oidea

Vespertilion

idae

Philetor

00

00

00

00

00

01

Vespertilion

oidea

Vespertilion

idae

Pho

niscus

00

00

00

00

00

01

Vespertilion

oidea

Vespertilion

idae

Pipistrellus

00

00

00

00

01

11

12,95

,10

7,10

9,13

7

Vespertilion

oidea

Vespertilion

idae

Plecotus

00

00

00

00

11

11

60,70

,72

,73

,85

,95

,10

7,13

9,15

2

Vespertilion

oidea

Vespertilion

idae

Rho

geesa

00

00

00

00

00

11

30

166 J Mammal Evol (2009) 16:151–173

Sup

erfamily

Fam

ilyGenus

Eo

Olig

oMio

P-P

Rec

Sou

rce

Ypr

Lut

Bart

Pria

Rup

Chat

Aqu

iBurd

MMio

LMio

P-P

Rec

Ma:

55.8

48.6

40.4

37.2

33.9

28.4

23.0

20.4

16.0

11.6

5.3

0.01

2

Vespertilion

oidea

Vespertilion

idae

Scoteana

x0

00

00

00

00

00

1

Vespertilion

oidea

Vespertilion

idae

Scotoecus

00

00

00

00

00

01

Vespertilion

oidea

Vespertilion

idae

Scotom

anes

00

00

00

00

00

01

Vespertilion

oidea

Vespertilion

idae

Scotop

hilus

00

00

00

00

11

11

9,36

Vespertilion

oidea

Vespertilion

idae

Scotorepens

00

00

00

00

00

01

Vespertilion

oidea

Vespertilion

idae

Scotozou

s0

00

00

00

00

00

1

Vespertilion

oidea

Vespertilion

idae

Tylonicteris

00

00

00

00

00

01

Vespertilion

oidea

Vespertilion

idae

Vespad

elus

00

00

00

00

00

01

Vespertilion

oidea

Vespertilion

idae

Vespertilio

00

00

00

00

11

11

37,10

2

1:Agu

ilaretal.1

984;

2:Arroy

o-Cabralesetal.2

002;

3:Avery

1998

;4:

Avery

2003

;5:

Bailey20

04;6:

Bargh

oorn

1977;7:

Beard

etal.1

992;

8:BiochroM’9719

97;9:

Black

and

Krishtalka19

86;10:Butler19

78;11:ButlerandHop

woo

d19

57;12:ButlerandGreenwoo

d19

65;13:Butler19

84;14:Cahn19

39;15:Cassiliano

1999;16

:Čermák

etal.20

07;

17:Cho

ateandHall19

67;18:Cozzuol

2006

;19:Czaplew

ski19

87;20:Czaplew

ksi19

91;21

:Czaplew

ski19

93;22

:Czaplew

ski19

96;23

:Czaplew

ski19

97;24

:Czaplew

ksiand

Cartelle

1998

;25

:Czaplew

skiandMorgan20

00;26

:Czaplew

skiandPeachey

2003

;27:Czaplew

skiet

al.19

99;28:Czaplew

skiet

al.20

08;29

:Czaplew

skiet

al.20

03a;

30:

Czaplew

skietal.2

005;

31:Czaplew

skietal.2

003b;32:Dalqu

est19

78;33:Dalqu

est19

83;34

:Dalqu

estandRoth19

70;35

:deBon

isetal.1

973;

36:Eng

esser19

72;37

:Eng

esser

andZiegler

1996

;38:

Galbreath

1962

;39:

Ginsburg19

63;4

0:God

awa19

93;4

1:Grady

andOlson

2006

;42:

Gun

nellandSim

mon

s20

05;4

3:Gun

nelletal.2

003;

44:G

unnelletal.

2008

;45

:Hand19

85;46:Hand19

90;47:Hand19

93;48

:Hand19

96;49:Hand19

97a;50

:Hand19

97b;

51:Hand19

97c;52

:Hand19

98a;53:Hand19

98b;

54:HandandArcher

2005

;55:

HandandKirsch20

03;5

6:Handetal.1

998;

57:Handetal.1

994;

58:Handley

1959;59:Heller19

35;6

0:Heller19

36;61:Hendey19

81;6

2:Hibbard

1950

;63:

Hoo

ker

1996

;64:

Horáček

1986

;65:

Horáček

2001

;66:

Horáček

etal.200

6;67:H

ulva

etal.2

007;

68:Jepsen19

66;6

9:Jinetal.2

000;

70:K

ormos

1930

;71:

Kow

alski1

956;

72:K

owalski

1962

a;73:Kow

alski19

62b;

74:Lavocat

1961;75:Law

rence19

43;76:Legendre19

80;77:Legendre19

82;78

:Legendre19

85;79:Lem

onandChu

rcher19

61;80

:Lindsay

and

Jacobs

1985

;81

:Maitreet

al.20

08;82:Marandatet

al.19

93;83

:Meschinelli19

03;84:Morgan19

89;85:Morgan19

91;86:MorganandCzaplew

ski19

99;87

:Morganand

Czaplew

ski2

003;

88:M

organandRidgeway

1987

;89:

Morganetal.1

988;

90:M

yersetal.2

001;

91:O

strand

er19

83;9

2:Pocock19

87;9

3:Pop

ov20

04;9

4:Qiu

andStorch20

00;

95:Q

iuetal.1

985;

96:Q

uinet1

965;

97:R

anaetal.2

005;

98:R

ay19

67;9

9:Revilliod19

17;1

00:R

evilliod19

19;1

01:R

evilliod19

22;1

02:R

ossina

etal.2

006;

103:

Russelletal.

1973

;10

4:Sam

onds

2007

;10

5:Savage19

51;10

6:SavageandRussell19

83;10

7:Sevilla19

89;10

8:Sevilla19

90;10

9:Sevilla19

91;110:

Sigé19

68;111:

Sigé19

74;112:

Sigé

1976

;113:S

igé19

85;114:S

igé19

90;115:S

igé19

91;116:S

igéandRussell19

80;117:S

igéetal.1

982;

118:

Sigéetal.1

994;

119:

Silv

a-Taboada

1974

;120:S

immon

sandGeisler

1998

;12

1:Sim

mon

set

al.20

08;12

2:Smith

andStorch19

81;12

3:Smith

andRussell19

92;12

4:Smith

etal.20

07;12

5:Stirton19

31;12

6:Storch19

99;12

7:Storchet

al.20

02;

128:

Storer19

84;12

9:Strand19

28;13

0:SuárezandDíaz-Franco20

03;1

31:S

uttonandGenow

ays19

74;13

2:ThewissenandSmith

1987;13

3:Ton

g19

97;1

34:Top

ál19

63;13

5:Top

ál19

74;13

6:Top

ál19

83;13

7:Top

ál19

85;13

8:Top

ál19

89a;

139:

Top

ál19

89b;

140:

Walker19

69;14

1:Wesselm

ann19

84;14

2:Wesselset

al.20

03;14

3:White

1969

;14

4:Wilson

1968;14

5:Wołoszyn19

86;14

6:WorthyandHoldaway

1994;14

7:Yang19

77;14

8:Yoo

net

al.19

84;14

9:Zapfe

1950

;15

0:Zapfe

1970

;15

1:Ziegler

2003

;15

2:Ziegler

1994

J Mammal Evol (2009) 16:151–173 167

Appendix 2

Statistical calculations for Vespertilionoidea, follow-ing the method of Foote and Raup (1996).

Using the data for all vespertilionoid bats(Appendix 1), we first computed the total numberof temporal bins in which each genus occurs. Thereare 11 stratigraphic bins (excluding the Recent),beginning with the Ypresian (early Eocene) andending with the Plio-Pleistocene. Of the 56 vesperti-lionoid genera that occur as fossils, 38 occur in onlyone bin, five range through two bins, eight occur inthree bins, one occurs in four bins, two occur in fivebins, and one each occurs in six (Myotis) and eight(Tadarida) bins. No vespertilionoid bats lastedexactly seven bins, or in any more than eight bins.

To estimate preservation probability, R, we calcu-late the FreqRat (which estimates R) following theformula:

R � FreqRat ¼ f ð2Þ2.

f ð1Þf ð3Þ½ �

where f(x) is the frequency of genera with observedrange-durations of x bins. For Vespertilionoidea,R � FreqRat ¼ 52

�38ð Þð8Þ½ � ¼ 0:082.

To account for differential original temporal dis-tributions of bat genera, R must be scaled according tooriginal durations. Estimated preservation probabilityis used to calculate an estimate of the probabilityP1(T) that a taxon is preserved at least once given atrue original duration T. The probability that a genuswith original duration T is not at all preserved equals(1-R)T. Thus, the probability that it is preserved atleast once equals:

P1ðTÞ ¼ 1� 1� Rð ÞT

For example, to calculate the probability that a genusis preserved given a true original duration of three bins,the equation became P1ð3Þ ¼ 1� 1� 0:082ð Þ3¼0:0227. This same procedure was used for all possiblevalues of T (i.e., T=1-∞, though in this and subsequentcalculations it is usually sufficient to take out to justseveral hundred).

We next estimated extinction rate, q, which was tobe used to compute original genus durations. We usedlinear regression on the ln-transformed frequencies ofgenera with a range of two or more bins. The slope ofthe linear regression line equals q (the extinction rate)with the sign reversed. Next, original durations were

calculated, assuming a constant extinction rate, q, andan exponential distribution of original durations. qwas calculated from the ln-slope of range-frequencies(omitting taxa that occur in only one bin) as the slopewith the sign reversed. For Vespertilionoidea, the ln-slope of range-frequency distributions is −0.3226, sothe extinction rate q equals 0.3226.

Using our estimate for q, we calculated the prob-ability, h(T), that the original distribution equaled T as:

hðTÞ ¼ e�q T�1ð Þ � e�qT

Using T of 3 again, we see that hð3Þ ¼e� 0:3226ð Þ 3�1ð Þ� e� :3226ð Þð3Þ ¼ 0:145. Again, this proce-dure was calculated for all values of T.

Finally, to calculate completeness, we computed thesum, for all original durations, T, of the product betweenh(T) (probability of having original duration T) andP1(T) (probability of being preserved at least onceduring an interval given an original duration T) as:

Pp ¼X1T¼1

hðTÞP1ðTÞ

As T increased, the completeness for that number ofbins decreases rapidly, so this summation was to onlybe taken to several hundred rows in a spreadsheet.Doing this for Vespertilionoidea to 900 rows gave acompleteness of 24.5% (rounded and included inTable 1). Summing the completeness calculations upto only 50 rows produced the same overall complete-ness value (to eight digits), indicating that it issufficient to compute the summation using a finite setof values for T that is substantially less than 1000.

References

Aguilar J-P, Brandy LD, Thaler L (1984) Les rongeurs deSalobreña (sud de l’Espagne) et le probleme de lamigration Messinienne. Paléobiol Cont 14:3–17

Agustí J, Cabrera L, Garcés M, Krijgsman W, Oms O, Parés JM(2001) A calibrated mammal scale for the Neogene ofWestern Europe. State of the Art. Earth-Sci Rev 52:247–260

Alba DM, Agustí J, Moyà-Solà S (2001) Completeness of themammalian fossil record in the Iberian Neogene. Paleobi-ology 27:79–83

Alroy J (2000) New methods for quantifying macroevolution-ary patterns and processes. Paleobiology 26:707–733

Archer M (1978) Australia’s oldest bat, a possible rhinolophid.Proc Roy Soc Queensl 89:23–24

168 J Mammal Evol (2009) 16:151–173

Arroyo-Cabrales J, Gregorin R, Schlitter DA, Walker A (2002)The oldest African molossid bat cranium (Chiroptera:Molossidae). J Vertebr Paleontol 22:380–387

Avery DM (1998) An assessment of the lower Pleistocenemicromammalian fauna from Swartkrans Members 1–3,Gauteng, South Africa. Géobios 31:393–414

Avery DM (2003) Early and middle Pleistocene environmentsand hominid biogeography; micromammalian evidencefrom Kabwe, Twin Rivers and Mumbwa Caves in centralZambia. Palaeogeogr Palaeoclimatol Palaeoecol 189:55–69

Bailey BE (2004) Biostratigraphy and biochronology of earlyArikareean through late Hemingfordian small mammalfaunas from the Nebraska panhandle and adjacent areas.Paludicola 4:81–113

Barghoorn SF (1977) New material of Vespertiliavus Schlosser(Mammalia, Chiroptera) and suggested relationships ofemballonurid bats based on cranial morphology. Am MusNovitates 2618:1–29

Beard KC, Sigé B, Krishtalka L (1992) A primitive vesperti-lionoid bat from the early Eocene of central Wyoming. CR Acad Sci Paris, sér. 2a 314:735–741

Benton MJ (1998) The quality of the fossil record of thevertebrates. In: Donovan SK, Paul CRC (eds) TheAdequacy of the Fossil Record. John Wiley & Sons,Chichester, pp 269–303

BiochroM’97 (1997) Biochronologie mammalienne du Cén-ozoïque en Europe at domaines reliés. Synthèses ettableaux de corrélations. In: Aguilar JP, Legendre S, andMichaux J (eds) Actes du Congrès BiochroM’97. MémTrav E P H E Inst, Montpellier, France, vol. 21:769–805

Black CC, Krishtalka L (1986) Rodents, bats, and insectivoresfrom the Plio-Pleistocene sediment to the East of LakeTurkana, Kenya. Nat Hist Mus LA Co, Contrib Sci 372:1–15

Butler PM (1978) Insectivora and Chiroptera. In: Maglio VJ,Cooke HBS (eds) Evolution of African Mammals.Harvard University Press, Cambridge, pp 56–68

Butler PM (1984) Macroscelidea, Insectivora and Chiropterafrom the Miocene of East Africa. Palaeovertebrata14:117–200

Butler PM, Greenwood M (1965) Insectivora and Chiroptera.In: Leakey LSB (ed) Olduvai Gorge 1951–1961. Vol. 1.Fauna and Background. Cambridge University Press,Cambridge, pp 13–15

Butler PM, Hopwood AT (1957) Insectivora and Chiropterafrom the Miocene rocks of Kenya colony. Fossil MammalsAfr 13:1–35

Cahn AR (1939) Pleistocene fossils from a cave in AndersonCounty, Tennessee. J Mammal 20:248–250

Cassiliano ML (1999) Biostratigraphy of Blancan and Irving-tonian mammals in the Fish Creek-Vallecito Creek section,southern California, and a review of the Blancan-Irvingto-nian boundary. J Vertebr Paleontol 19:169–186

Čermák S, Wagner J, Fejfar O, Horáček I (2007) New Pliocenelocalities with micromammals from the Czech Republic: apreliminary report. Fossil Rec 10:60–68

Cheetham AJ, Jackson JBC (1998) The fossil record ofcheilostome Bryozoa in the Neogene and Quaternary oftropical America: adequacy for phylogenetic and evolu-tionary studies. In: Donovan SK, Paul CRC (eds) The

Adequacy of the Fossil Record. John Wiley & Sons,Chichester, pp 227–242

Choate JR, Hall ER (1967) Two new species of bats, genusMyotis, from a Pleistocene deposit in Texas. Am Mid Nat78:531–534

Clyde WC, Gingerich PD (1994) Rates of evolution in thedentition of early Eocene Cantius: comparison of size andshape. Paleobiology 20:506–522

Cozzuol MA (2006) The Acre vertebrate fauna: age, diversity,and geography. J So Amer Earth Sci 21:185–203

Czaplewski NJ (1987) Middle Blancan vertebrate assemblagefrom the Verde Formation, Arizona. Contrib Geol, UnivWyoming 25:133–155

Czaplewksi NJ (1991) Miocene bats from the lower ValentineFormation of northeastern Nebraska. J Mammal 72:715–722

Czaplewski NJ (1993) Late Tertiary bats (Mammalia, Chirop-tera) from the southwestern United States. Southwest Nat38:111–118

Czaplewski NJ (1996) Opossums (Didelphidae) and bats(Noctilionidae and Molossidae) from the late Miocene ofthe Amazon basin. J Mammal 77:84–94

Czaplewski NJ (1997) Chiroptera. In: Kay RF, Madden RH,Cifelli RL, Flynn JJ (eds) Vertebrate Paleontology in theNeotropics: The Miocene fauna of La Venta, Colombia.Smithsonian Institution Press, Washington, pp 410–431

Czaplewski NJ, Bailey BE, Corner RG (1999) Tertiary bats(Mammalia: Chiroptera) from northern Nebraska. TransNebr Acad Sci 25:83–93

Czaplewksi NJ, Cartelle C (1998) Pleistocene bats from cavedeposits in Bahia, Brazil. J Mammal 79:784–803

Czaplewski NJ, Morgan GS (2000) A new vespertilionid bat(Mammalia: Chiroptera) from the early Miocene (Hemi-ngfordian) of Florida, USA. J Vertebr Paleontol 20:736–742

Czaplewski NJ, Morgan GS, McLeod SA (2008) Chiroptera.In: Janis CM, Gunnell GF, Uhen MD (eds) Evolution ofTertiary mammals of North America. Volume 2. Smallmammals, xenarthrans, and marine mammals. CambridgeUniversity Press, Cambridge, pp 174–197

Czaplewski NJ, Morgan GS, Naeher T (2003a) Molossid batsfrom the late Tertiary of Florida with a review of theTertiary Molossidae of North America. Acta Chiropterolog5:61–74

Czaplewski NJ, Takai M, Naeher TM, Shigehara N, SetoguchiT (2003b) Additional bats from the Middle Miocene LaVenta Fauna of Colombia. Rev Acad Colomb Cienc27:263–282

Czaplewski NJ, Peachey WD (2003) Late Pleistocene bats fromArkenstone Cave, Arizona. Southwest Nat 48:597–609

Czaplewski NJ, Rincón AD, Morgan GS (2005) Fossil bat(Mammalia: Chiroptera) remains from Inciarte Tar Pit,Sierra de Perijá, Venezuela. Caribb J Sci 41:768–781

Dalquest WW (1978) Early Blancan mammals of the BeckRanch Local Fauna of Texas. J Mammal 59:269–298

Dalquest WW (1983) Mammals of the Coffee Ranch LocalFauna Hemphillian of Texas. Tex Mem Mus, Pearce-Sellards Ser 38:1–41

Dalquest WW, Roth E (1970) Late Pleistocene mammals froma cave in Tamaulipas, Mexico. Southwest Nat 15:217–230

de Bonis L, Crochet J-Y, Rage J-C, Sigé B, Sudre J, Vianey-Liaud M (1973) Nouvelles faunes de vertébrés oligocènes

J Mammal Evol (2009) 16:151–173 169

des phosphorites du Quercy Bull Mus Natn Hist Nat,Paris, 3e série 174:105–113

Ducrocq S, Jaeger J-J, Sigé B (1993) Un mégachiroptère dansl’eocène supérieur de Thaïlande—incidence dans ladiscussion phylogénique du groupe. N Jb Geol PaläontMh 9:561–575

Eick GN, Jacobs DS, Matthee CA (2005) A nuclear DNAphylogenetic perspective on the evolution of echolocationand historical biogeography of extant bats (Chiroptera).Mol Biol Evol 22:1869–1886

Engesser B (1972) Die obermiozäne Säugetier Fauna vonAnwil (Baselland). Tätigkeitsberichte NaturforschGesellsch, Baselland 28:37–363

Engesser B, Ziegler R (1996) Didelphids, insectivores, andchiropterans from the later Miocene of France, CentalEurope, Greece, and Turkey. In: Bernor RL, Fahlbusch V,Mittman H-W (eds) The Evolution of Western EurasianNeogene Mammal Faunas. Columbia University Press,New York, pp 157–167

Foote M, Raup DM (1996) Fossil preservation and thestratigraphic ranges of taxa. Paleobiology 22:121–140

Fox DL, Fisher DC, Leighton LR (1999) Reconstructingphylogeny with and without temporal data. Science284:1816–1819

Galbreath EC (1962) A new myotid bat from the middleOligocene of northeastern Colorado. Trans Kansas AcadSci 65:448–451

Gauthier JA, Kluge AG, Rowe T (1988) Amniote phylogenyand the importance of fossils. Cladistics 4:105–209

Ginsburg L (1963) Les mammifères fossiles récoltés à Sansanau cours du XIXe siècle. Bull Soc Geol France, 7e série5:3–15

Godawa J (1993) Pliocene bats of the genus Myotis (Mamma-lia: Chiroptera) from Podlesice (Poland) and Osztramos 9and 13 (Hungary). Acta Zool Cracov 36:241–250

Gradstein FM, Ogg JG, Smith AG (eds) (2004) A GeologicTimescale 2004. Cambridge University Press, Cambridge

Grady FV, Olson SL (2006) Fossil bats from Quaternarydeposits on Bermuda (Chiroptera: Vespertilionidae). JMammal 87:148–152

Gunnell GF, Jacobs BF, Herendeen PS, Head JJ, Kowalski E,Msuya C, Mizambwa FA, Harrison T, Habersetzer J,Storch G (2003) Oldest placental mammal from sub-Saharan Africa: Eocene microbat from Tanzania—evi-dence for early evolution of sophisticated echolocation.Palaeontol Electron 5(3):10

Gunnell GF, Simmons NB (2005) Fossil evidence and theorigin of bats. J Mammal Evol 12:209–246

Gunnell GF, Simons EL, Seiffert ER (2008) New bats(Mammalia: Chiroptera) from the late Eocene and earlyOligocene, Fayum Depression, Egypt. J Vertebr Paleontol28:1–11

Habersetzer J, Storch G (1987) Klassifikation und funktionelleFlügelmorphologie paläogener Fledermäuse (Mammalia,Chiroptera). Cour Forschung Senckenberg 91:11–150

Hand SJ (1985) New Miocene megadermatids (Chiroptera:Megadermatidae) from Australia with comments onmegadermatid phylogenetics. Aust Mammal 8:5–43

Hand SJ (1990) First Tertiary molossid (Microchiroptera:Molossidae) from Australia: its phylogenetic and biogeo-graphic implications. Mem Queensl Mus 28:175–192

Hand SJ (1993) First skull of a species of Hipposideros(Brachipposideros) (Microchiroptera: Hipposideridae),from Australian Miocene sediments. Mem Queensl Mus33:179–192

Hand SJ (1996) New Miocene and Pliocene megadermatids(Mammalia, Microchiroptera) from Australia, with com-ments on broader aspects of megadermatid evolution.Géobios 29:365–377

Hand S (1997a) Hipposideros bernardsigei, a new hipposiderid(Mammalia: Microchiroptera) from the Australian Mio-cene and a reconsideration of the monophyly of relatedspecies groups. Münchner Geowiss Abh 34:73–92

Hand SJ (1997b) Miophyllorhina riversleighensis gen. et sp.nov., a Miocene leaf-nosed bat (Microchiroptera: Hippo-sideridae) from Riversleigh, Queensland. Mem QueenslMus 41:351–354

Hand SJ (1997c) New Miocene leaf-nosed bats (Microchir-optera: Hipposideridae) from Riversleigh, northwesternQueensland. Mem Queensl Mus 41:335–349

Hand SJ (1998a) Riversleigha williamsi gen. et sp. nov., a largeMiocene hipposiderid (Microchiroptera) from Riversleigh,Queensland. Alcheringa 22:259–276

Hand SJ (1998b) Xenorhinos, a new genus of Old World leaf-nosed bats (Microchiroptera: Hipposideridae) from theAustralian Miocene. J Vertebr Paleontol 18:430–439

Hand SJ, Archer M (2005) A new hipposiderid genus (Micro-chiroptera) from an early Miocene bat community inAustralia. Palaeontology 48:371–383

Hand SJ, Kirsch JAW (2003) Archerops, a new annectenthipposiderid genus (Mammalia: Microchiroptera) from theAustralian Miocene. J Paleontol 77:1139–1151

Hand SJ, Murray P, Megirian D, Archer M, Godthelp H (1998)Mystacinid bats (Microchiroptera) from the AustralianTertiary. J Paleontol 72:538–545

Hand S, Novacek M, Godthelp H, Archer M (1994) FirstEocene bat from Australia. J Vertebr Paleontol 14:375–381

Handley CO (1959) A Revision of Bats of the Genera Eudermaand Plecotus. Smithsonian Institution Press, Washington

Heller F (1935) Fledermäuse aus der Eozänen Braunkohle desGeisel tales bei Halle a. S. Nov Acta Leopold Neue Folge2:301–314

Heller F (1936) Eine oberplicäne Wirbeltierfauna aus Rhein-hessen. N Jb Mineral, Geol, Paläont B 76:99–160

Hendey QB (1981) Paleoecology of the late Tertiary fossiloccurrences in “E” Quarry, Langebaanweg, South Africa,and a reinterpretation of their geological context. Ann SAfr Mus 84:1–104

Hermsen EJ, Hendricks JR (2008) W(h)ither fossils? Studyingmorphological character evolution in the age of molecularsequences. Ann Mo Bot Gard 95:72–100

Hibbard CW (1950) Mammals from the Rexroad Formationfrom Fox Canyon, Kansas. Contr Mus Paleont, Univ Mich8:113–192

Hoofer SR, van den Bussche RA, Horáček I (2006) Genericstatus of the American pipistrelles (Vespertilionidae) withdescription of a new genus. J Mammal 87:981–992

Hooker JJ (1996) A primitive emballonurid bat (Chiroptera,Mammalia) from the earliest Eocene of England. Palae-overtebrata 25:287–300

Horáček I (1986) Kerivoula (Mammalia, Chiroptera), fossil inEurope? Acta Univ Carolinae-Geol, Špinar 2:213–222

170 J Mammal Evol (2009) 16:151–173

Horáček I (2001) On the early history of vespertilionid bats inEurope: the lower Miocene record from the BohemianMassif. Lynx 32:123–154

Horáček I, Fejfar O, Hulva P (2006) A new genus ofvespertilionid bat from early Miocene of Jebel Zelten,Libya, with comments on Scotophilus and early history ofvespertilionid bats (Chiroptera). Lynx 37:131–150

Hulva P, Horáček I, Benda P (2007) Molecules, morphometricsand new fossils provide an integrated view of theevolutionary history of Rhinopomatidae (Mammalia:Chiroptera). BMC Evol Biol 7:165, 15 pp

Jepsen GL (1966) Early Eocene bat from Wyoming. Science154:1333–1339

Jin C-Z, Dong W, Liu J-Y, Wei G-B, Xu Q-Q, Zheng J-J,Zheng L-T, Han L-G, Wang F-Z (2000) A preliminarystudy on the early Pleistocene deposits and the mammalianfauna from the Renzi Cave, Fanchang, Anhui, China. ActaAnthropol Sinica 19(supp):235–245

Jones KE, Bininda-Emonds ORP, Gittleman JL (2005) Bats,clocks, and rocks: diversification patterns in Chiroptera.Evolution 59:2243–2255

Jones KE, Purvis A, MacLarnon A, Bininda-Emonds ORP,Simmons NB (2002) A phylogenetic supertree of the bats(Mammalia: Chiroptera). Biol Rev 77:223–259

Kormos T (1930) Diagnosen neuer Säugetiere aus der ober-pliozänen Fauna des Somlyóberges bei Püspökkfürdő.Ann Mus National Hungarici 27:237–246

Kowalski K (1956) Insectivores, bats and rodents from theearly Pleistocene bone breccia of Podlesice near Kroczyce(Poland). Acta Palaeontol Pol 1:331–393

Kowalski K (1962a) Bats of the early Pleistocene fromKoneprusy (Czechoslovakia). Acta Zool Cracov 7:145–156

Kowalski K (1962b) Fauna of bats from the Pliocene of Wężein Poland. Acta Zool Cracov 7:39–51

Kowalski K (1995) Taphonomy of bats (Chiroptera). Géobios18:251–256

Lavocat R (1961) Le gisement de vertébrés Miocènes de BeniMellal (Maroc): étude systematique de la faune demammiféres. Notes Mém Serv Mines Carte Géol Maroc155:29–144

Lawrence B (1943) Miocene bat remains from Florida, withnotes on the generic characters of the humerus of bats. JMammal 24:356–369

Legendre S (1980) Un chiroptère emballonuridé dans lenéogène d’Europe occidentale; considerations paléobio-géographiques. Géobios 13:839–847

Legendre S (1982) Hipposideridae (Mammalia: Chiroptera)from the Mediterranean middle and late Neogene, andevolution of the genera Hipposideros and Asellia. JVertebr Paleontol 2:372–385

Legendre S (1985) Molossidés (Mammalia, Chiroptera) cén-ozoïques de l’Ancien et du Nouveau Monde; statutsystématique; integration phylogénique des données. NJb Geol Paläont Abh 170:205–227

Lemon RRH, Churcher CS (1961) Pleistocene geology andpaleontology of the Talara Region, northwest Peru. Am JSci 259:410–429

Lindsay EH, Jacobs LL (1985) Pliocene small mammals fromChihuahua. Paleontol Mex 51:1–45

MacFadden BJ (1985) Patterns of phylogeny and rates ofevolution in fossil horses: hipparions from the Miocene

and Pliocene of North America. Paleobiology 11:245–257

Maitre E, Sigé B, Escarguel G (2008) A new family of bats inthe Paleogene of Europe: systematics and implications forthe origin of emballonurids and rhinolophoids. N Jb GeolPaläont Abh 250:199–216

Marandat B, Crochet J-Y, Godinot M, Hartenberger J-L,Legendre S, Rémy JA, Sigé B, Sudre J, Vianey-Liaud M(1993) Une nouvelle faune à mammifères d’âge éocène(Lutétien supérieur) dans les phosphorites du Quercy.Géobios 26:617–623

Meschinelli L (1903) Un nuovo chirottero fossile (Archae-opteropus transiens Mesch.) delle Ligniti di Monteviale.Atti Reale Ist Veneto Sci, Lett, Arti 62:1329–1344

Miller-Butterworth CM, Murphy WJ, O’Brien SJ, Jacobs DS,Springer MS, Teeling EC (2007) A family matter: conclu-sive resolution of the taxonomic position of the long-fingered bats, Miniopterus. Mol Biol Evol 24:1553–1561

Morgan GS (1989) Fossil Chiroptera and Rodentia from theBahamas, and the historical biogeography of the Baha-mian mammal fauna. In: Woods CA (ed) Biogeography ofthe West Indies. Sandhill Crane, Gainesville, pp 685–740

Morgan GS (1991) Neotropical Chiroptera from the Plioceneand Pleistocene of Florida. Bull Am Mus Nat Hist206:176–213

Morgan GS, Czaplewski NJ (1999) First fossil record ofAmorphochilus schnablii (Chiroptera: Furipteridae), fromthe late Quaternary of Peru. Acta Chiropterolog 1:75–79

Morgan GS, Czaplewski NJ (2003) A new bat (Chiroptera:Natalidae) from the early Miocene of Florida, withcomments on natalid phylogeny. J Mammal 84:729–752

Morgan GS, Linares OJ, Ray CE (1988) New species of fossilvampire bats (Mammalia: Chiroptera: Desmodontidae)from Florida and Venezuela. Proc Biol Soc Wash101:912–928

Morgan GS, Ridgeway RB (1987) Late Pliocene (late Blancan)vertebrates from the St. Petersburg Times site, PinellasCounty, Florida, with a brief review of Florida Blancanfaunas. Papers Florida Paleontol 1:1–22

Myers T, Crosby K, Archer M, Tyler M (2001) The EncoreLocal Fauna, a late Miocene assemblage from Riversleigh,northwestern Queensland. Mem Assoc Austr Palaeontol25:147–154

Norell MA, Novacek MJ (1992) The fossil record andevolution: comparing cladistic and paleontologic evidencefor vertebrate history. Science 255:1690–1693

Ostrander GE (1983) New early Oligocene (Chadronian)mammals from the Raben Ranch Local Fauna, northwestNebraska. J Paleontol 57:128–139

Paul CRC (1998) Adequacy, completeness and the fossil record.In: Donovan SK, Paul CRC (eds) The Adequacy of theFossil Record. John Wiley & Sons, Chichester, pp 1–22

Pocock TN (1987) Plio-Pleistocene fossil mammalian micro-fauna of southern Africa—a preliminary report includingdescription of two new fossil muroid genera (Mammalia:Rodentia). Paleontol Afr 26:69–91

Popov VV (2004) Pliocene small mammals (Mammalia, Lip-otyphla, Chiroptera, Lagomorpha, Rodentia) from Muse-lievo (north Bulgaria). Geodiversitas 26:403–491

Qiu Z, Storch G (2000) The early Pliocene micromammalianfauna of Bilike, Inner Mongolia, China (Mammalia: Lip-

J Mammal Evol (2009) 16:151–173 171

otyphla, Chiroptera, Rodentia, Lagomorpha). SenckenbergLeth 80:173–229

Qiu Z, Han D, Qi G, Yufen L (1985) A preliminary report on amicromammalian assemblage from the hominoid localityof Lufeng Co. Yunnan Province. Acta Anthropol Sinica4:13–32

Quinet G (1965) Myotis misonnei n. sp. chiroptere de l’Oligo-cene de Hoogbutsel. Bull Inst R Sci Nat Belg 41:1–11

Rana RS, Singh H, Sahni A, Rose KD, Saraswati PK (2005)Early Eocene chiropterans from a new mammalianassemblage (Vastan Lignite Mine, Gujarat, Western Pen-insular Margin): oldest known bats from Asia. J PalaeontolSoc India 50:93–100

Ray CE (1967) Pleistocene mammals from Ladds, BartowCounty, Georgia. Bull Georgia Acad Sci 25:120–150

Revilliod P (1917) Fledermäuse aus der Braunkohle vonMessel bei Darmstadt. Abh Grossherz-hess Geol Land-esanst 7:161–201

Revilliod P (1919) L’état actuel de nos connaissances sur leschiroptères fossiles (note préliminaire). C R Soc Sci PhysNat Genève 36:93–96

Revilliod P (1922) Contribution a l’étude des chiropters desterrains tertiares. Troisième partie et fin. Mém Soc PaléontSuisse 45:133–195

Rossina VV, Kruskop SV, Tesakov AS, Titov VV (2006) Thefirst record of Late Miocene Bat from European Russia.Acta Zool Cracov 49A:125–133

Russell DE, Louis P, Savage DE (1973) Chiroptera andDermoptera of the French early Eocene. Univ Cal PubGeol Sci 95:1–57

Samonds KE (2007) Late Pleistocene bat fossils from AnjohibeCave, northwestern Madagascar. Acta Chiropterolog 9:39–65

Savage DE (1951) A Miocene phyllostomatid bat fromColombia, South America. Univ Cal Bull Dep Geol Sci28:357–366

Savage DE, Russell DE (1983) Mammalian Paleofaunas of theWorld. Addison-Wesley, Reading, Massachusetts

Sevilla P (1989) Quaternary fauna of bats in Spain: paleoeco-logic and biogeographic interest. In: Hanák V, Horáček I,Gaisler J (eds) European Bat Research 1987. CharlesUniversity Press, Prague, pp 349–355

Sevilla P (1990) Rhinolophoidea (Chiroptera, Mammalia) fromthe upper Oligocene of Carrascosa del Campo (CentralSpain). Géobios 23:173–188

Sevilla P (1991) Murcielagos fosiles de España. In: Benzal J, dePaz O (eds) Los Murciélagos de España y Portugal. Icona,Madrid, pp 21–36

Sigé B (1968) Les chiroptères du miocène inférieur deBouzigues. I.-Étude Systématique. Palaeovertebrata 1:65–133

Sigé B (1974) Données nouvelles sur le genre Stehlinia(Vespertilionoidea, Chiroptera) du Paléogène d’Europe.Palaeovertebrata 6:253–272

Sigé B (1976) Les Megadermatidae (Chiroptera, Mammalia)Miocènes de Béni Mellal, Maroc. Géol Médit 3:71–86

Sigé B (1985) Les chiroptères oligocènes du Fayum, Egypte.Geol Palaeontol 19:161–189

Sigé B (1990) Nouveaux chiroptères de l’oligocène moyen desphosphorites du Quercy, France. C R Acad Sci Paris310:1131–1137

Sigé B (1991) Rhinolophoidea et Vespertilionoidea (Chirop-tera) du Chambi (eocène inférieur de Tunisie). Aspectsbiostratigraphique, biogéographique et paléoécologique del’origine des chiroptères modernes. N Jb Geol Paläont Abh182:355–376

Sigé B, Hand S, Archer M (1982) An Australian MioceneBrachipposideros (Mammalia, Chiroptera) related to Mio-cene representatives from France. Palaeovertebrata12:149–172

Sigé B, Legendre S (1983) L’historie des peuplements dechiroptères du bassin Méditerranéen: l’apport comparé desremplissages karstiques et des dépôts fluvio-lacustres.Mém Biospéol 10:209–225

Sigé B, Russell DE (1980) Compléments sur les chiroptères del’Eocène moyen d’Europe. Les genres Palaeochiropteryxand Cecilionycteris. Palaeovertebrata, Mém Jubil R Lavo-cat, pp 91–126

Sigé B, Thomas H, Sen S, Gheerbrant E, Roger J, Al-SulaimaniZ (1994) Les chiropters de Taqah (oligocène inférieur,Sultanat d’Oman). Premier inventaire systématique.Münchner Geowiss Abh 26:35–48

Silva-Taboada G (1974) Fossil Chiroptera from cave deposits incentral Cuba, with descriptions of two new species (generaPteronotus and Mormoops) and the first West Indianrecord of Mormoops megalophylla. Acta Zool Cracov19:33–73

Simmons NB (2005) Order Chiroptera. In: Wilson DE, ReederDM (eds) Mammal Species of the World: a Taxonomicand Geographic Reference, 3rd edn. The Johns HopkinsUniversity Press, Baltimore, pp 312–529

Simmons NB, Geisler JH (1998) Phylogenetic relationships ofIcaronycteris, Archaeonycteris, Hassianycteris, and Palaeo-chiropteryx to extant bat lineages, with comments on theevolution of echolocation and foraging strategies inMicrochiroptera. Bull Am Mus Nat Hist 235:1–182

Simmons NB, Seymour KL, Habersetzer J, Gunnell GF (2008)Primitive early Eocene bat from Wyoming and theevolution of flight and echolocation. Nature 451:818–822

Smith JD, Storch G (1981) New middle Eocene bats from“Grube Messel” near Darmstadt, W-Germany (Mammalia:Chiroptera). Senckenberg Biol 61:153–167

Smith R, Russell DE (1992) Mammifères (Marsupialia,Chiroptera) de l’Yprésien de la Belgique. Bull Inst RoySci Nat Belg, Sci Terre 62:223–227

Smith T, Rana RS, Missiaen P, Rose KD, Sahni A, Singh H,Singh L (2007) High bat (Chiroptera) diversity in the earlyEocene of India. Naturwissenschaften 94:1003–1009

Springer MS, Teeling EC, Madsen O, Stanhope MJ, de JongWW (2001) Integrated fossil and molecular data recon-struct bat echolocation. Proc Natl Acad Sci USA 98:6241–6246

Stirton RA (1931) A new genus of the family Vespertilionidaefrom the San Pedro Pliocene of Arizona. Univ California,Bull Dep Geol Sci 20:27–30

Storch G (1999) Order Chiroptera. In: Rossner GE, Heissig K(eds) The Miocene Land Mammals of Europe. Verlag DrFriedrich Pfeil, Munich, Germany, pp 81–90

Storch G, Sigé B, Habersetzer J (2002) Tachypteron franzeni n.gen., n. sp., earliest emaballonurid bat from the middleEocene of Messel (Mammalia, Chiroptera). Paläontol Zeit76:189–199

172 J Mammal Evol (2009) 16:151–173

Storer JE (1984) Mammals of the Swift Current Creek LocalFauna (Eocene; Uintan), Saskatchewan. Nat Hist Contrib,Mus Nat Hist, Regina 7:1–158

Strand E (1928) Miscellanea nomenclatorica zoologica etpalaeontologica. Arch Naturgesch 92:30–75

Suárez W, Díaz-Franco S (2003) A new fossil bat (Chiroptera:Phyllostomidae) from a Quaternary cave deposit in Cuba.Caribb J Sci 39:371–377

Sutton JF, Genoways HH (1974) A new vespertilionine batfrom the Barstovian deposits of Montana. Occ Papers,Mus Tx Tech Univ 20:1–8

Teeling EC, Springer MS, Madsen O, Bates P, O’Brien SJ,Murphy WJ (2005) A molecular phylogeny for batsilluminates biogeography and the fossil record. Science307:580–584

Tejedor MF, Czaplewski NJ, Goin FJ, Aragón E (2005) Theoldest record of South American bats. J Vertebr Paleontol25:990–993

Thewissen JGM, Smith GR (1987) Vespertilionid bats (Chi-roptera, Mammalia) from the Pliocene of Idaho. ContribMus Paleont, Univ Mich 27:237–245

Tong Y-S (1997) Middle Eocene small mammals fromLiguanqiao Basin of Henan Province and Yuanqu Basinof Shanxi Province, central China. Paleontol Sinica C26:1–256

Topál G (1963) Description of a new bat, Rhinolophusmacrorhinus sp. n. from the lower Pleistocene of Hungary.Vertebr Hung 5:219–227

Topál G (1974) The first record of Megaderma in Hungary(Pliocene sediments of Osztramos, Locality 10). VertebrHung 15:95–104

Topál G (1983) New and rare fossil mouse-eared bats from themiddle Pliocene of Hungary (Mammalia, Chiroptera).Fragm Mineral Palaeontol 11:43–54

Topál G (1985) Bats from the lowermost Pleistocene locality 15at Beremend, Hungary (Mammalia, Chiroptera). FragmMineral Palaeontol 12:51–57

Topál G (1989a) New Tertiary plecotines from Hungary(Mammalia, Chiroptera). In: Hanák V, Horáček I, GaislerJ (eds) European Bat Research 1987. Charles UniversityPress, Prague, pp 77–86

Topál G (1989b) Tertiary and early Quaternary remains ofCorynorhinus and Plecotus from Hungary (Mammalia,Chiroptera). Vertebr Hung 23:33–55

Valentine JW (1989) How good was the fossil record? Cluesfrom the California Pleistocene. Paleobiology 15:83–94

Walker A (1969) True affinities of Propotto leakeyi Simpson1967. Nature 223:647–648

Wesselmann HB (1984) The Omo Micromammals. Systematicsand Paleoecology of Early Man Sites from Ethiopia.Karger, New York

Wessels W, Fejfar O, Peláez-Campomanes P, van der MeulenA, de Bruijn H (2003) Miocene small mammals fromJebel Zelten, Libya. Coloq Paleont 1(suppl):699–715

White JA (1969) Late Cenozoic bats (subfamily Nyctophyli-nae) from the Anza-Borrego Desert of California. MiscPubl, Univ Kansas Mus Nat Hist 51:275–282

Wilson RL (1968) Systematics and faunal analysis of a lowerPliocene vertebrate assemblage from Trego County,Kansas. Contrib Mus Paleontol, Univ Mich 22:75–126

Wołoszyn BW (1986) A new species of long-winged batMiniopterus tao sp. n. (Mammalia: Chiroptera) fromLocality 1 at Choukoutien, China. Acta Universit Carolin-Geol, Spinar 2:205–211

Wood AR, Zelditch ML, Rountrey AN, Eiting TP, Sheets HD,Gingerich PD (2007) Multivariate stasis in the dentalmorphology of the Paleocene-Eocene condylarth Ectocion.Paleobiology 33:248–260

Worthy TH, Holdaway RN (1994) Quaternary fossil faunasfrom caves in Takaka valley and on Takaka Hill, northwestNelson, South Island, New Zealand. J Roy Soc NewZealand 24:297–391

Yang J (1977) On some Salientia and Chiroptera fromShanwang, Linqu, Shandong Vertebr Palasiatica 15:76–80

Yoon MH, Kuramoto T, Uchida TA (1984) Studies of middlePleistocene bats including Pleistomyotis gen. et sp. nov.and two new extinct Myotis species from the Akiyoshi-daiPlateau. Bull Akiyoshi-dai Mus Nat Hist 19:15–26

Zapfe H (1950) Die fauna der Mioznäen Spaltenflülung vonNeudorf an der March (ČSSR). Chiroptera. Sitzungber-ichte Akad Wissenschaft Wien, Abt 1 159:51–64

Zapfe H (1970) Paleptesicus nom. nov. fur. “Paraptesicus”(Chiroptera) aus der Mioznäen Spaltenflülung von Neudorfan der March (ČSSR). Sitzungsberichte Math-Naturwissen-schaft Klasse, Österreich Akad Wissenschaft 6:93–94

Ziegler R (1994) Die Chiroptera (Mammalia) aus demUntermiozän von Stubersheim 3 (Baden-Württemberg).Münchner Geowiss Abh 26:97–116

Ziegler R (2003) Bats (Chiroptera, Mammalia) from middleMiocene karstic fissure fillings of Petersbuch near Eich-stätt, Southern Franconian Alb (Bavaria). Géobios36:447–490

J Mammal Evol (2009) 16:151–173 173