effects of oscillating frequency on taylor vortices

10
๊ฐ• ์ฐฝ ์šฐ, 1 ์–‘ ๊ฒฝ ์ˆ˜, *2 Innocent Mutabazi 3 EFFECTS OF OSCILLATING FREQUENCY ON TAYLOR VORTICES Chang-Woo Kang, 1 Kyung-Soo Yang *2 and Innocent Mutabazi 3 We study time-periodic Taylor-Couette flow with the outer cylinder at rest and the inner one oscillating with a mean angular velocity. Varying the frequency of inner cylinder, we investigate the change of Taylor vortices at a given amplitude and a mean angular velocity. With a small frequency of modulation, we find that Taylor vortices appear and disappear periodically. With a higher frequency, Taylor vortices do not disappear, but the intensity of Taylor vortices modulates periodically. As the frequency increases, Taylor vortices modulate harmonically. Key Words : Taylor-Couette (Taylor-Couette Flow), Taylor (Taylor Vortex), (Angular Velocity) Department of physics, Le Havre Univ., France * Corresponding author, E-mail: [email protected] 1. , , , . Taylor (Taylor vortex) , . , Taylor , . , Taylor . Taylor-Couette [1-8]. Taylor-Couette Donnelly[1] . Couette . Kuhlmann [2] ( ) Taylor . Couette , Taylor , Taylor . Taylor 3 Taylor . Barenghi and Jones[3] circular Couette . ( ) . . Taylor-Couette . Aouidef [4] 0 (in-phase) . Tennakoon [5]

Upload: independent

Post on 26-Nov-2023

1 views

Category:

Documents


0 download

TRANSCRIPT

ํ•œ๊ตญ์ „์‚ฐ์œ ์ฒด๊ณตํ•™ํšŒ์ง€ ์ œ14๊ถŒ, ์ œ3ํ˜ธ, pp.95-104, 2009. 9 / 95

์‹ค๋ฆฐ๋”์˜ ํšŒ์ „ ์ฃผํŒŒ์ˆ˜ ์ง„๋™์ด Taylor ์™€๋ฅ˜์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ

๊ฐ• ์ฐฝ ์šฐ,1 ์–‘ ๊ฒฝ ์ˆ˜,*2 Innocent Mutabazi3

EFFECTS OF OSCILLATING FREQUENCY ON TAYLOR VORTICES

Chang-Woo Kang,1 Kyung-Soo Yang*2 and Innocent Mutabazi3

We study time-periodic Taylor-Couette flow with the outer cylinder at rest and the inner one oscillating with a mean angular velocity. Varying the frequency of inner cylinder, we investigate the change of Taylor vortices at a given amplitude and a mean angular velocity. With a small frequency of modulation, we find that Taylor vortices appear and disappear periodically. With a higher frequency, Taylor vortices do not disappear, but the intensity of Taylor vortices modulates periodically. As the frequency increases, Taylor vortices modulate harmonically.

Key Words : Taylor-Couette ์œ ๋™(Taylor-Couette Flow), Taylor ์™€๋ฅ˜(Taylor Vortex), ๊ฐ์†๋„(Angular Velocity)

์ ‘์ˆ˜์ผ: 2009๋…„ 7์›” 20์ผ, ์ˆ˜์ •์ผ: 2009๋…„ 8์›” 27์ผ,

๊ฒŒ์žฌํ™•์ •์ผ: 2009๋…„ 9์›” 4์ผ.

1 ํ•™์ƒํšŒ์›, ์ธํ•˜๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ๊ธฐ๊ณ„๊ณตํ•™๊ณผ

2 ์ •ํšŒ์›, ์ธํ•˜๋Œ€ํ•™๊ต ๊ธฐ๊ณ„๊ณตํ•™๋ถ€

3 Department of physics, Le Havre Univ., France* Corresponding author, E-mail: [email protected]

1. ์„œ ๋ก 

๋™์‹ฌํ™˜ํ˜•๊ด€ ์‚ฌ์ด์—์„œ์˜ ์œ ๋™์€ ์‚ฐ์—…ํ˜„์žฅ์—์„œ ํ”ํžˆ ๋ณผ ์ˆ˜

์žˆ๋Š” ์œ ๋™์œผ๋กœ์„œ ์—ด๊ตํ™˜๊ธฐ, ์ „์ž๊ธฐ๊ธฐ์˜ ๋ƒ‰๊ฐ์‹œ์Šคํ…œ, ์›์ž๋กœ ์‹œ์Šคํ…œ, ํ™”ํ•™๋ฐ˜์‘๊ธฐ ๋“ฑ์—์„œ ์‰ฝ๊ฒŒ ๋ฐœ๊ฒฌ๋œ๋‹ค. ํŠนํžˆ ๋ฐ”๊นฅ ์‹ค๋ฆฐ๋”๊ฐ€ ์ •์ง€ํ•ด ์žˆ๊ณ  ์•ˆ์ชฝ ์‹ค๋ฆฐ๋”๊ฐ€ ํšŒ์ „ํ•˜๋Š” ๊ฒฝ์šฐ ์‹ค๋ฆฐ๋”์˜ ๊ณก๋ฅ 

์— ์˜ํ•˜์—ฌ Taylor ์™€๋ฅ˜(Taylor vortex)๊ฐ€ ์ƒ์„ฑ๋˜๋ฉฐ, ๊ทธ ๊ณตํ•™์ ์ธ ์ค‘์š”์„ฑ ๋•Œ๋ฌธ์— ์˜ค๋ž˜ ์ „๋ถ€ํ„ฐ ์ด์— ๋Œ€ํ•œ ํ™œ๋ฐœํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜ํ–‰๋˜

์–ด ์™”๋‹ค. ์ด๋•Œ ์‹ค๋ฆฐ๋”๊ฐ€ ์ผ์ •ํ•œ ์†๋„๋กœ ํšŒ์ „ํ•˜์ง€ ์•Š๊ณ  ์ฃผ๊ธฐ์ ์œผ๋กœ ํšŒ์ „์†๋„๊ฐ€ ๋ณ€ํ•  ๊ฒฝ์šฐ ๋ฒฝ๋ฉด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ „๋‹จ์‘๋ ฅ์ด

์ฃผ๊ธฐ์ ์œผ๋กœ ๋ณ€ํ•˜๊ฒŒ ๋˜๋ฉฐ, ์ด์— ์˜ํ•ด Taylor ์™€๋ฅ˜๊ฐ€ ์ฃผ๊ธฐ์ ์œผ๋กœ ์ƒ์„ฑ, ์†Œ๋ฉธ๋˜๋Š” ํ˜„์ƒ์ด ๋ฐœ์ƒํ•œ๋‹ค. ์ด์™€ ๊ฐ™์ด ์ƒ์„ฑ, ์†Œ๋ฉธ๋˜๋Š” Taylor ์™€๋ฅ˜๋Š” ๋™์‹ฌํ™˜ํ˜•๊ด€ ๋‚ด์—์„œ ์œ ๋™์˜ ํ˜ผํ•ฉํ˜„์ƒ ๋˜๋Š” ๋ถ€์‹๊ณผ ๊ด€๋ จ๋œ ๋ฌผ์งˆ์ „๋‹ฌ์ด๋‚˜ ์—ด๊ตํ™˜๊ธฐ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์—ด์ „๋‹ฌ

ํšจ์œจ ๋“ฑ์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณตํ•™์  ์‘์šฉ์„ฑ ๋•Œ๋ฌธ์— Taylor-Couette ์œ ๋™์—์„œ ์‹ค๋ฆฐ๋”์˜ ์ฃผ๊ธฐ์ ์ธ ํšŒ์ „์†๋„๊ฐ€ ์œ ๋™์žฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜์–ด ์™”๋‹ค[1-8].์‹ค๋ฆฐ๋”์˜ ํšŒ์ „์†๋„๊ฐ€ ์ฃผ๊ธฐ์ ์œผ๋กœ ์ง„๋™ํ•˜๋Š” Taylor-Couette

์œ ๋™์€ ์ฒ˜์Œ Donnelly[1]์— ์˜ํ•ด ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ๊ทธ๋Š” ์•ˆ์ชฝ ์‹ค๋ฆฐ๋”๊ฐ€ ์ฃผ๊ธฐ์ ์œผ๋กœ ์ง„๋™ํ•˜๊ณ  ๋ฐ”๊นฅ ์‹ค๋ฆฐ๋”๋Š” ์ •์ง€ํ•ด์žˆ๋Š” ๊ฒฝ์šฐ

์‹ค๋ฆฐ๋”์˜ ํšŒ์ „ ์ง„ํญ๊ณผ ์ฃผํŒŒ์ˆ˜๋ฅผ ๋ณ€ํ™”์‹œ์ผœ๊ฐ€๋ฉฐ Couette ์œ ๋™์—์„œ์˜ ๋ถˆ์•ˆ์ •์„ฑ์„ ์‹คํ—˜์  ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. Kuhlmann ๋“ฑ[2]์€ ์ง„ํญ๊ณผ ์ฃผํŒŒ์ˆ˜๊ฐ€ ์ž„๊ณ„ ํ…Œ์ผ๋Ÿฌ ์ˆ˜()์™€

Taylor ์™€๋ฅ˜์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•˜์—ฌ ์ „์‚ฐ ํ•ด์„์  ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ทธ๋“ค์˜ ์—ฐ๊ตฌ์— ์˜ํ•˜๋ฉด ์ง„ํญ๊ณผ ์ฃผํŒŒ์ˆ˜๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ Couette ์œ ๋™์˜ ๋ถˆ์•ˆ์ •์„ฑ์ด ์ฆ๊ฐ€ํ•จ์„ ๋ณด์˜€์œผ๋ฉฐ, ํšŒ์ „์†๋„๋น„๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ Taylor ์™€๋ฅ˜์˜ ๊ฐ•๋„๊ฐ€ ์ฆ๊ฐ€ํ•˜๋ฉฐ, ์ฃผํŒŒ์ˆ˜๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ Taylor ์™€๋ฅ˜์˜ ๊ฐ•๋„๋„ ์ ์ฐจ ์ฃผ๊ธฐ์ ์œผ๋กœ ๋ณ€ํ•จ์„ ๋ณด์˜€๋‹ค. ํ•˜์ง€๋งŒ ๊ทธ๋“ค์˜ ์—ฐ๊ตฌ๋Š” ๊ณ„์‚ฐ์˜์—ญ์„ ๋ฐ˜๊ฒฝ๋ฐฉํ–ฅ๊ณผ ์ถ•๋ฐฉํ–ฅ์œผ๋กœ ์ œํ•œํ•˜์—ฌ Taylor ์™€๋ฅ˜์˜ 3์ฐจ์›์  ๋ณ€ํ™”๋ฅผ ํŒŒ์•…ํ•  ์ˆ˜ ์—†์—ˆ์œผ๋ฉฐ ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ Taylor ์™€๋ฅ˜์˜ ํ˜•ํƒœ ๋ณ€ํ™”๋ฅผ ์ œ์‹œํ•˜์ง€ ๋ชปํ•˜์˜€๋‹ค. Barenghi and Jones[3]๋Š” ์ด๋ก ์ ์ธ ํ•ด์„์  ๋ฐฉ๋ฒ•์„ ํ†ตํ•˜์—ฌ circular Couette ์œ ๋™์˜ ๋ถˆ์•ˆ์ •์„ฑ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ทธ๋“ค์€ ์ง„ํญ๊ณผ ์ง„๋™์ˆ˜๋ฅผ ๋ณ€ํ™”์‹œ์ผœ๊ฐ€๋ฉฐ ์ž„๊ณ„ ๋ ˆ์ด๋†€์ฆˆ ์ˆ˜()์˜ ๋ณ€ํ™”๋ฅผ ์‚ดํŽด๋ณด์•˜์œผ๋ฉฐ ํ•ด์„๊ฒฐ๊ณผ๋ฅผ ์‹คํ—˜๊ฒฐ๊ณผ์™€ ๋น„๊ต

ํ•˜์˜€๋‹ค. ํ•˜์ง€๋งŒ ๊ทธ๋“ค์˜ ์—ฐ๊ตฌ๋Š” ๋‚ฎ์€ ์ง„๋™์ˆ˜์ธ ๊ฒฝ์šฐ์— ๊ตญํ•œ๋˜์–ด ๋†’์€ ์ง„๋™์ˆ˜์ธ ๊ฒฝ์šฐ์˜ ๋ณ€ํ™”๋Š” ์‚ดํŽด๋ณด์ง€ ๋ชปํ•˜์˜€๋‹ค.์ดํ›„ ์—ฌ๋Ÿฌ ๊ฒฝ์šฐ์˜ Taylor-Couette ์œ ๋™์— ๋Œ€ํ•œ ์„ ํ˜• ์•ˆ์ •์„ฑ

ํ•ด์„ ๋ฐ ์‹คํ—˜๋“ค์ด ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. Aouidef ๋“ฑ[4]์€ ํ‰๊ท  ํšŒ์ „์†๋„๊ฐ€ 0์ด๊ณ  ์•ˆ์ชฝ๊ณผ ๋ฐ”๊นฅ์ชฝ ์‹ค๋ฆฐ๋”๊ฐ€ ๊ฐ™์€ ๊ฐ์†๋„๋กœ ์ฃผ๊ธฐ์ ์ธ ํšŒ์ „์„ ํ•˜๋Š” ๊ฒฝ์šฐ(in-phase)์— ๋Œ€ํ•˜์—ฌ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. Tennakoon ๋“ฑ[5]์€ ์•ˆ์ชฝ๊ณผ ๋ฐ”๊นฅ์ชฝ ์‹ค๋ฆฐ๋”๊ฐ€ ๊ฐ™์€ ๊ฐ์†๋„๋กœ ๊ฐ™

96 / ํ•œ๊ตญ์ „์‚ฐ์œ ์ฒด๊ณตํ•™ํšŒ์ง€ ๊ฐ• ์ฐฝ ์šฐโ€ค์–‘ ๊ฒฝ ์ˆ˜โ€คI. MUTABAZI

Fig. 1 Schematic of flow configuration

L()โจฏM( )โจฏN( )

32โจฏ64โจฏ1024 -0.03121

64โจฏ64โจฏ1024 -0.03242

32โจฏ128โจฏ1024 -0.03116

32โจฏ64โจฏ2048 -0.03177

Table 1 Effect of grid resolution on the radial velocity component averaged in the azimuthal direction and in time at the radial and axial midplanes for and , ,

์€ ๋ฐฉํ–ฅ(in-phase)๊ณผ ๋ฐ˜๋Œ€ ๋ฐฉํ–ฅ(out-phase)์œผ๋กœ ํšŒ์ „ํ•˜๋Š” ๊ฒฝ์šฐ์— ๋Œ€ํ•˜์—ฌ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€์œผ๋ฉฐ, Ern[6] ๊ณผ Ern and Wesfreid[7]๋Š” ์•ˆ์ชฝ๊ณผ ๋ฐ”๊นฅ ์‹ค๋ฆฐ๋”๊ฐ€ ๊ฐ™์€ ๊ฐ์†๋„๋ฅผ ๊ฐ–๊ณ  ์ฃผ๊ธฐ์ ์œผ๋กœ ํšŒ์ „

ํ•˜๋Š” ๊ฒฝ์šฐ์— ๋Œ€ํ•˜์—ฌ ํšŒ์ „ ์ง„ํญ์— ๋Œ€ํ•œ ํ‰๊ท ํšŒ์ „์†๋„ ๋น„๋ฅผ ๋ณ€

ํ™”์‹œ์ผœ๊ฐ€๋ฉฐ ์›์‹ฌ๋ ฅ๊ณผ ์ฝ”๋ฆฌ์˜ฌ๋ฆฌ ํž˜์ด ๋ถˆ์•ˆ์ •์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ

์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. Aouidef and Normand[8]๋Š” ์•ˆ์ชฝ๊ณผ ๋ฐ”๊นฅ์ชฝ ์‹ค๋ฆฐ๋”๊ฐ€ ๊ฐ™์€ ๊ฐ์†๋„๋กœ ๊ฐ™์€ ๋ฐฉํ–ฅ(in-phase)๊ณผ ๋ฐ˜๋Œ€ ๋ฐฉํ–ฅ(out-phase)์œผ๋กœ ํšŒ์ „ํ•˜๋Š” ๊ฒฝ์šฐ์— ๋Œ€ํ•˜์—ฌ ์ง„๋™์ˆ˜์™€ ํšŒ์ „ ์ง„ํญ์— ๋Œ€ํ•œ ํ‰๊ท ํšŒ์ „์†๋„ ๋น„๋ฅผ ๋ณ€ํ™”์‹œ์ผœ๊ฐ€๋ฉฐ ์„ ํ˜• ์•ˆ์ •

์„ฑํ•ด์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ตœ๊ทผ Youd ๋“ฑ[9,10]์€ ์•ˆ์ชฝ ์‹ค๋ฆฐ๋”์˜ ํ‰๊ท ํšŒ์ „์†๋„๊ฐ€ 0์ธ

๊ฒฝ์šฐ์— ๋Œ€ํ•˜์—ฌ ์ „์‚ฐ ํ•ด์„์  ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ทธ๋“ค์€ ํšŒ์ „์†๋„์˜ ์ง„ํญ์ด Taylor ์™€๋ฅ˜๊ฐ€ ํ˜•์„ฑ ๋  ๋งŒํผ ์ถฉ๋ถ„ํžˆ ํฐ ๊ฒฝ์šฐ์— Taylor ์™€๋ฅ˜๋ฅผ ๋‘ ํ˜•ํƒœ๋กœ ๋ถ„๋ฅ˜ ํ•˜์˜€๋‹ค. ๋‚ฎ์€ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ๋Š” ์‹ค๋ฆฐ๋”์˜ ํšŒ์ „๋ฐฉํ–ฅ์— ๋”ฐ๋ผ Taylor ์™€๋ฅ˜์˜ ํšŒ์ „๋ฐฉํ–ฅ์ด ๋ณ€ํ•˜๋Š” ํŠน์„ฑ(Reversing Taylor Vortex Flow)์„ ๋ณด์˜€์œผ๋ฉฐ, ์ƒ๋Œ€์ ์œผ๋กœ ๋†’์€ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ๋Š” ์‹ค๋ฆฐ๋”์˜ ํšŒ์ „๋ฐฉํ–ฅ์ด ๋ณ€ํ•˜์—ฌ๋„

Taylor ์™€๋ฅ˜์˜ ํšŒ์ „๋ฐฉํ–ฅ์€ ๋ณ€ํ•˜์ง€ ์•Š๋Š” ํŠน์„ฑ(Non-Reversing Taylor Vortex Flow)์„ ๋ณด์˜€๋‹ค.๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์•ˆ์ชฝ์‹ค๋ฆฐ๋”๊ฐ€ ํ‰๊ท ํšŒ์ „์†๋„๋ฅผ ๊ฐ–๊ณ  ์ฃผ๊ธฐ์ 

์œผ๋กœ ์ง„๋™ํ•˜๊ณ , ๋ฐ”๊นฅ์ชฝ ์‹ค๋ฆฐ๋”๋Š” ์ •์ง€ํ•ด์žˆ๋Š” ๊ฒฝ์šฐ์— ๋Œ€ํ•˜์—ฌ 3

์ฐจ์› ์ „์‚ฐ ํ•ด์„์  ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์‹ค๋ฆฐ๋”์˜ ํšŒ์ „์†๋„์— ์˜ํ–ฅ์„ ์ฃผ๋Š” 3๊ฐœ์˜ ํŒŒ๋ผ๋ฉ”ํ„ฐ์ธ ํ‰๊ท ํšŒ์ „์†๋„, ์ง„ํญ, ์ง„๋™ ์ฃผํŒŒ์ˆ˜ ์ค‘์—์„œ ํ‰๊ท ํšŒ์ „์†๋„์™€ ์ง„ํญ์€ ๊ณ ์ •์‹œํ‚ค๊ณ  ์ง„๋™ ์ฃผํŒŒ์ˆ˜

๋ฅผ ๋ณ€ํ™”์‹œํ‚ค๋ฉฐ ์ฃผ๊ธฐ์ ์œผ๋กœ ์ƒ์„ฑ, ์†Œ๋ฉธ๋˜๋Š” Taylor ์™€๋ฅ˜์˜ ํŠน์„ฑ์„ ์‚ดํŽด๋ณด์•˜๋‹ค.

2. ์ˆ˜์น˜ํ•ด์„ ๋ฐฉ๋ฒ• ๋ฐ ๊ฒ€์ฆ

๋ณธ ์—ฐ๊ตฌ์—์„œ์˜ ์ง€๋ฐฐ๋ฐฉ์ •์‹์€ ๋น„์••์ถ•์„ฑ ์—ฐ์†๋ฐฉ์ •์‹, ์šด๋™๋Ÿ‰ ๋ฐฉ์ •์‹์œผ๋กœ ์›ํ†ต์ขŒํ‘œ๊ณ„( )์—์„œ ์ •์˜๋˜์—ˆ๋‹ค.

โˆ‡ยท (1)

ยทโˆ‡

โˆ‡โˆ‡ (2)

์—ฌ๊ธฐ์„œ ๋Š” ์†๋„๋ฒกํ„ฐ, ๋Š” ์••๋ ฅ์„ ๋‚˜ํƒ€๋‚ด๊ณ  ๋Š” ๋ฐ€๋„, ๋Š” ๋™์ ์„ฑ ๊ณ„์ˆ˜์ด๋‹ค. โˆ‡๋Š” Laplacian ์—ฐ์‚ฐ์ž๋ฅผ ์˜๋ฏธํ•œ๋‹ค. ๊ฐ ์ง€๋ฐฐ๋ฐฉ์ •์‹์€ ์œ ํ•œ์ฒด์ ๋ฒ•(Finite Volume Method)์œผ๋กœ ์ฐจ๋ถ„๋œ๋‹ค. ์‹œ๊ฐ„์—์„œ์˜ ์ ๋ถ„์€ ํ˜ผํ•ฉ ๊ธฐ๋ฒ•์œผ๋กœ์„œ, ๋น„์„ ํ˜• ํ•ญ ๋ฐ ๊ต์ฐจํ™•์‚ฐํ•ญ(cross diffusion term)์€ 3์ฐจ ์ •ํ™•๋„์˜ Runge-Kutta ๊ธฐ๋ฒ•์œผ๋กœ ๋ช…์‹œ์ (explicit)์œผ๋กœ ์ ๋ถ„ํ•˜์˜€๊ณ , ์ ์„ฑํ•ญ์€ Crank-Niccolson ๋ฐฉ๋ฒ•์œผ๋กœ ๋ฌต์‹œ์ (implicit)์œผ๋กœ ์ ๋ถ„๋˜์—ˆ๋‹ค. ์—ฐ์†๋ฐฉ์ •์‹๊ณผ ์šด๋™๋Ÿ‰๋ฐฉ์ •์‹์„ ๋ถ„๋ฆฌํ•˜๊ธฐ ์œ„ํ•˜์—ฌ Fractional Step ๊ธฐ๋ฒ•[11]์ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค.๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉ๋œ ํ˜•์ƒ์€ Fig. 1๊ณผ ๊ฐ™๋‹ค. ์™€ ๋Š” ๊ฐ๊ฐ

์•ˆ์ชฝ๊ณผ ๋ฐ”๊นฅ์ชฝ ์‹ค๋ฆฐ๋”์˜ ๋ฐ˜๊ฒฝ์„ ์˜๋ฏธํ•˜๋ฉฐ ๋Š” ์‹ค๋ฆฐ๋” ์‚ฌ์ด์˜

๊ฐ„๊ฒฉ, ๋Š” ์ถ•๋ฐฉํ–ฅ ๊ธธ์ด๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๋ฐ”๊นฅ ์‹ค๋ฆฐ๋”์— ๋Œ€ํ•œ ์•ˆ์ชฝ ์‹ค๋ฆฐ๋”์˜ ๋ฐ˜๊ฒฝ๋น„()๋Š” 0.8, ์‹ค๋ฆฐ๋” ์‚ฌ์ด์˜ ๊ฐ„๊ฒฉ()์— ๋Œ€ํ•œ ์ถ•๋ฐฉํ–ฅ ๊ณ„์‚ฐ์˜์—ญ()์˜ ๋น„()๋Š” 114์ด๋‹ค. ๊ฒฝ๊ณ„์กฐ๊ฑด์œผ๋กœ๋Š” ์‹ค๋ฆฐ๋”์˜ ์•ˆ์ชฝ๊ณผ ๋ฐ”๊นฅ์ชฝ ํ‘œ๋ฉด ๋ฐ ๋ฐ”๋‹ฅ๋ฉด๊ณผ ์œ—๋ฉด์—๋Š” ์ ์ฐฉ

(no-slip)์กฐ๊ฑด์„ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ ์•ˆ์ชฝ ์‹ค๋ฆฐ๋”์™€ ๋ฐ”๊นฅ์ชฝ ์‹ค๋ฆฐ๋”๋Š” ๊ฐ๊ฐ ๋‹ค์Œ ์‹๊ณผ ๊ฐ™์€ ๊ฐ์†๋„๋กœ ์ฃผ๊ธฐ์ ์ธ ํšŒ์ „์šด๋™์„ ํ•œ๋‹ค.

์‹ค๋ฆฐ๋”์˜ ํšŒ์ „ ์ฃผํŒŒ์ˆ˜ ์ง„๋™์ด Taylor ์™€๋ฅ˜์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ ์ œ14๊ถŒ, ์ œ3ํ˜ธ, 2009. 9 / 97

v/vc-1-0.500.51

0.2

0.4

0.6

0.8

1

t= 0

v/vc-1-0.500.51

0.2

0.4

0.6

0.8

1

t= 1/8T

v/vc-1-0.500.51

0.2

0.4

0.6

0.8

1

t= 2/8T

v/vc-1-0.500.51

0.2

0.4

0.6

0.8

1

t= 3/8T

v/vc-1-0.500.51

0.2

0.4

0.6

0.8

1

t= 4/8T

(b)

Fig. 2 Time evolutions of the primary flow profile over half a period for ; (a) , (b) . The horizontal axis is the azimuthal velocity and the vertical one is the radial dimensionless coordinate x(x=0 corresponds to the inner cylinder and x=1 to the outer cylinder). ; solid line : analytic solution, symbol : present

v/vc-1-0.500.51

0.2

0.4

0.6

0.8

1

t= 0

v/vc-1-0.500.51

0.2

0.4

0.6

0.8

1

t= 1/8T

v/vc-1-0.500.51

0.2

0.4

0.6

0.8

1

t= 2/8T

v/vc-1-0.500.51

0.2

0.4

0.6

0.8

1

t= 3/8T

v/vc-1-0.500.51

0.2

0.4

0.6

0.8

1

t= 4/8T

(a)

cos for (3)

for (4)

๊ฒฉ์ž์ ์˜ ๊ฐœ์ˆ˜๋Š” ๊ฒฉ์ž ์„ธ๋ถ„ํ™” ๊ณผ์ •์„ ํ†ตํ•ด ๋ฐ˜๊ฒฝ๋ฐฉํ–ฅ, ํšŒ์ „๋ฐฉํ–ฅ, ์ถ•๋ฐฉํ–ฅ์œผ๋กœ ๊ฐ๊ฐ ร—ร— ๊ฒฉ์ž๊ฐ€ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. Table 1์€ ๊ฒฉ์ž ์„ธ๋ถ„ํ™” ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ๊ณ„์‚ฐ ์˜์—ญ์˜

๋ฐ˜๊ฒฝ๋ฐฉํ–ฅ๊ณผ ์ถ•๋ฐฉํ–ฅ์˜ ์ค‘์•™์ธ ์œ„์น˜

์—์„œ ํšŒ์ „๋ฐฉํ–ฅ๊ณผ ์‹œ๊ฐ„์— ๋Œ€ํ•ด ํ‰๊ท ๋œ ๋ฐ˜๊ฒฝ๋ฐฉํ–ฅ ์†

๋„๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ์—ฌ๊ธฐ์„œ ์•ˆ์ชฝ ์‹ค๋ฆฐ๋”์˜ ํ‰๊ท ํšŒ์ „์†๋„๋ฅผ ๊ธฐ์ค€์œผ

๋กœ ํ•œ ๊ฐ€ ์ด๊ณ , ๋ฌด์ฐจ์›ํ™”๋œ ์ง„๋™์ˆ˜

๊ฐ€ ์ด๋ฉฐ ๋ฐ˜๊ฒฝ๋ฐฉํ–ฅ ์†๋„๋Š” ์•ˆ์ชฝ ์‹ค๋ฆฐ๋”์˜ ํ‰

๊ท ํšŒ์ „์†๋„๋กœ ๋ฌด์ฐจ์›ํ™” ๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉ๋œ

๊ฒฉ์ž์˜ ๊ณ„์‚ฐ๊ฒฐ๊ณผ์™€ ๊ฐ ๋ฐฉํ–ฅ์œผ๋กœ 2๋ฐฐ์”ฉ ์ฆ๊ฐ€๋œ ๊ฒฉ์ž์˜ ๊ฒฐ๊ณผ๊ฐ€ ์ตœ๋Œ€ ์˜ ์˜ค์ฐจ๋ฅผ ๋ณด์ธ๋‹ค.๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉ๋œ ์ฝ”๋“œ๋ฅผ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด์„œ Ern and

Wesfreid[7]์˜ ํ•ด์„์  ๊ฒฐ๊ณผ์™€ Youd and Barenghi[12]์˜ ์ˆ˜์น˜ํ•ด์„ ๊ฒฐ๊ณผ์™€ ๋น„๊ตํ•˜์—ฌ ์ฝ”๋“œ์˜ ํƒ€๋‹น์„ฑ์„ ๊ฒ€ํ† ํ•˜์˜€๋‹ค.

Fig. 2๋Š” Taylor ์™€๋ฅ˜๊ฐ€ ํ˜•์„ฑ๋˜์ง€ ์•Š๋Š”

๋ฒ”์œ„์—์„œ ์•ˆ์ชฝ ์‹ค๋ฆฐ๋”์™€ ๋ฐ”๊นฅ์ชฝ ์‹ค๋ฆฐ๋”๊ฐ€ ๊ฐ™์€ ๋ฐฉํ–ฅ์œผ๋กœ ์ง„

๋™ํ•˜๋Š” ๊ธฐ๋ณธ์œ ๋™(Base Flow)์— ๋Œ€ํ•˜์—ฌ Ern and Wesfreid[7]์˜

98 / ํ•œ๊ตญ์ „์‚ฐ์œ ์ฒด๊ณตํ•™ํšŒ์ง€ ๊ฐ• ์ฐฝ ์šฐโ€ค์–‘ ๊ฒฝ ์ˆ˜โ€คI. MUTABAZI

t

z/d

75 8040

45

50

55

60

0.050.040.030.020.010-0.01-0.02-0.03-0.04-0.05

t

z/d

110 115 12040

45

50

55

60

0.070.060.050.040.030.020.010-0.01-0.02-0.03-0.04-0.05-0.06-0.07

(a) (b)

Fig. 5 Space-time contours of radial velocity component on a center of the annulus for , . ; (a) , (b)

t

u r Ta

118 120 122

-0.06

-0.04

-0.02

0

0.02

35

40

45

50

55

60

65urTa

(b)

Fig. 4 Evolutions over two periods of the radial velocity component averaged in the azimuthal direction at the radial and axial midplanes, , . ; (a) , (b)

t

u r Ta

135 140

-0.06

-0.04

-0.02

0

0.02

35

40

45

50

55

60

65urTa

(a)

tn/d2

u r Re(t)

4 4.5 5 5.5

0

10

20

30

-200

-100

0

100

200PresentYoud and BarenghiRe

Fig. 3 Radial velocity versus time over a cycle for and mod

ํ•ด์„์  ๊ฒฐ๊ณผ(analytic solution)์™€ ๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉ๋œ ์ฝ”๋“œ๋ฅผ ์ด์šฉํ•œ ๊ณ„์‚ฐ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ตํ•˜์—ฌ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋‹ค. ์—ฌ๊ธฐ์„œ

๋Š” frequency parameter ์ด๋ฉฐ ๋Š” ๋ฌด์ฐจ์›ํ™”๋œ ์ง„๋™์ˆ˜๋ฅผ ์˜๋ฏธํ•œ๋‹ค. ๋น„๊ต์  ๋†’์€ ์ง„๋™์ˆ˜์ธ ์ธ ๊ฒฝ์šฐ ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ํšŒ์ „๋ฐฉํ–ฅ ์†๋„๋ถ„ํฌ๊ฐ€ ํ•ด์„์  ๊ฒฐ๊ณผ์™€ ์ž˜ ์ผ์น˜ํ•˜๊ณ  ์žˆ๋‹ค.

Fig. 3์€ ๋ฐ”๊นฅ์ชฝ ์‹ค๋ฆฐ๋”๋Š” ์ •์ง€ํ•ด์žˆ๊ณ  ์•ˆ์ชฝ ์‹ค๋ฆฐ๋”์˜ ํ‰๊ท  ํšŒ์ „์†๋„๊ฐ€ 0์ธ ๊ฒฝ์šฐ ๋ฐ˜๊ฒฝ๋ฐฉํ–ฅ๊ณผ ์ถ•๋ฐฉํ–ฅ์œผ๋กœ ์ค‘์•™์ธ ์œ„์น˜ ์—์„œ ํšŒ์ „๋ฐฉํ–ฅ์œผ๋กœ ํ‰๊ท ๋œ ๋ฐ˜๊ฒฝ

๋ฐฉํ–ฅ์˜ ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ์†๋„๋ณ€ํ™”๋ฅผ Youd and Barenghi[12]์˜ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ์™€ ๋น„๊ตํ•˜์—ฌ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋‹ค. ์—ฌ๊ธฐ์„œ ์•ˆ์ชฝ ์‹ค๋ฆฐ๋”์˜ Reynolds ์ˆ˜๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •์˜ ๋˜์—ˆ๋‹ค.

modcos mod (5)

๋ฐ˜๊ฒฝ๋ฐฉํ–ฅ ์†๋„๋ณ€ํ™”๋ฅผ ์‚ดํŽด๋ณด๋ฉด ๊ฐ€ ์ตœ๋Œ€๊ฐ€ ๋˜๋Š” ์‹œ

๊ฐ„, ์ฆ‰ ํšŒ์ „์†๋„๊ฐ€ ์ตœ๋Œ€๊ฐ€ ๋˜๋Š” ์ง€์ ์—์„œ Taylor ์™€๋ฅ˜๊ฐ€ ํ˜•์„ฑ๋˜์—ˆ๋‹ค๊ฐ€ ์‚ฌ๋ผ์ง€๊ณ , ๋‹ค์‹œ ๋ฐ˜๋Œ€๋ฐฉํ–ฅ์œผ๋กœ ํšŒ์ „์†๋„๊ฐ€ ์ตœ๋Œ€๊ฐ€ ๋˜๋Š” ์‹œ๊ฐ„์—์„œ Taylor ์™€๋ฅ˜๊ฐ€ ํ˜•์„ฑ๋จ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ๋ณ€ํ™” ์–‘์ƒ์ด Youd and Barenghi[12]์˜ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ์™€ ์ž˜ ์ผ์น˜ํ•˜๊ณ  ์žˆ์Œ์„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค.

3. ๊ฒฐ ๊ณผ

๋ฐ”๊นฅ์ชฝ ์‹ค๋ฆฐ๋”๋Š” ๊ณ ์ •๋˜์–ด ์žˆ๊ณ , ์•ˆ์ชฝ ์‹ค๋ฆฐ๋”์˜ ํ‰๊ท ํšŒ์ „์†๋„๊ฐ€ Taylor ์™€๋ฅ˜๊ฐ€ ํ˜•์„ฑ๋˜๋Š” ์ž„๊ณ„ ํšŒ์ „์†๋„(โ‰ˆ)๋ณด

๋‹ค ๋†’์€ ๊ฒฝ์šฐ์— ๋Œ€ํ•˜์—ฌ ์ง„ํญ

์„ ๋กœ ๊ณ ์ •์‹œํ‚ค๊ณ  ์ง„๋™ ์ฃผํŒŒ์ˆ˜

์‹ค๋ฆฐ๋”์˜ ํšŒ์ „ ์ฃผํŒŒ์ˆ˜ ์ง„๋™์ด Taylor ์™€๋ฅ˜์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ ์ œ14๊ถŒ, ์ œ3ํ˜ธ, 2009. 9 / 99

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 1T/8

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 2T/8

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 3T/8

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 4T/8

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 5T/8

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 6T/8

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 7T/8

(r-ri)/dz/d

0 0.5 154

56

58

60t= 8T/8

Fig. 7 Contours of azimuthal component of vorticity over one period on plane for , and . ; solid line : positive, dotted line : negative

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 1T/8

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 2T/8

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 3T/8

(r-ri)/dz/d

0 0.5 154

56

58

60t= 4T/8

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 5T/8

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 6T/8

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 7T/8

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 8T/8

Fig. 6 Contours of radial velocity component over one period on plane for , and . ; solid line : positive, dotted line : negative

๋ฅผ ๋ณ€ํ™”์‹œ์ผœ๊ฐ€๋ฉฐ ๊ณ„์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค.Fig. 4๋Š” ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ์€ ์ง„๋™ ์ฃผํŒŒ์ˆ˜์ธ ๊ฒฝ์šฐ ๋ฐ˜๊ฒฝ๋ฐฉํ–ฅ๊ณผ

์ถ•๋ฐฉํ–ฅ์œผ๋กœ ์ค‘์•™์ธ ์œ„์น˜ ์—์„œ ํšŒ

์ „๋ฐฉํ–ฅ์œผ๋กœ ํ‰๊ท ๋œ ๋ฐ˜๊ฒฝ๋ฐฉํ–ฅ์˜ ์†๋„์™€ ์•ˆ์ชฝ ์‹ค๋ฆฐ๋”์˜ ํšŒ์ „์†

๋„๋ฅผ ๊ธฐ์ค€์œผ๋กœ ํ•œ ์˜ ๋ณ€ํ™”๋ฅผ ๋‘ ์ฃผ๊ธฐ ๋™

์•ˆ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋‹ค. ์—ฌ๊ธฐ์„œ ๋ฐ˜๊ฒฝ๋ฐฉํ–ฅ ์†๋„๋Š” ์•ˆ์ชฝ ์‹ค๋ฆฐ๋”์˜ ํ‰๊ท ํšŒ์ „์†๋„()๋กœ ๋ฌด์ฐจ์›ํ™” ๋˜์—ˆ๊ณ , ์ฃผ๊ธฐ๋Š” ์•ˆ์ชฝ ์‹ค๋ฆฐ๋”์˜

ํšŒ์ „ ์ฃผ๊ธฐ( )์ด๋ฉฐ ์˜ ์Œ์ˆ˜๋Š” ์•ˆ์ชฝ ์‹ค๋ฆฐ๋”๋กœ ๋“ค์–ด

์˜ค๋Š” ๋ฐฉํ–ฅ(inflow jet)์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. Fig. 4(a,b)๋ฅผ ๋ณด๋ฉด ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์ฃผ๊ธฐ์ ์œผ๋กœ ๋ฐ˜๊ฒฝ๋ฐฉํ–ฅ ์†๋„๊ฐ€ ๋ณ€ํ™”ํ•˜๋Š” ๊ฒƒ์„ ๊ด€์ฐฐํ•  ์ˆ˜

์žˆ๋‹ค. ์ด๋•Œ ๋ฐ˜๊ฒฝ๋ฐฉํ–ฅ ์†๋„๊ฐ€ ํ˜•์„ฑ๋œ๋‹ค๋Š” ๊ฒƒ์€ Taylor ์™€๋ฅ˜๊ฐ€ ์ƒ์„ฑ๋œ๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•˜๋ฉฐ ๋ฐ˜๊ฒฝ๋ฐฉํ–ฅ์˜ ์†๋„๊ฐ€ 0์ด ๋œ๋‹ค๋Š” ๊ฒƒ

์€ Taylor ์™€๋ฅ˜๊ฐ€ ์†Œ๋ฉธ๋˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ๋˜ํ•œ ์˜ ๊ธฐ์šธ๊ธฐ

๋ณ€ํ™”๋ฅผ ๋น„๊ตํ•ด๋ณด๋ฉด ์ด ํ˜•์„ฑ๋  ๋•Œ์˜ ๊ธฐ์šธ๊ธฐ๊ฐ€ ๋” ๊ธ‰๊ฒฉํžˆ ๋ณ€

ํ•˜๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Š” Taylor ์™€๋ฅ˜์˜ ์ƒ์„ฑ์ด ์†Œ๋ฉธ๋  ๋•Œ๋ณด๋‹ค ๋” ๊ธ‰๊ฒฉํžˆ ์ผ์–ด๋‚œ๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์˜ ๊ธฐ์šธ๊ธฐ๊ฐ€ ์ ์ฐจ ์™„๋งŒํ•ด์ง€๋ฉฐ ์ด 0์ผ ๋•Œ์˜

๊ตฌ๊ฐ„์ด ์ ์ฐจ ์ค„์–ด๋“œ๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.Fig. 5๋Š” Taylor ์™€๋ฅ˜์˜ ์ฃผ๊ธฐ์ ์ธ ๋ณ€ํ™”๋ฅผ ๊ด€์ฐฐํ•˜๊ธฐ ์œ„ํ•ด์„œ

๋ฐ˜๊ฒฝ๋ฐฉํ–ฅ์œผ๋กœ ์ค‘์•™์ธ ํ•œ ์œ„์น˜( )์—์„œ ์‹œ

๊ฐ„์— ๋”ฐ๋ฅธ ๋ฐ˜๊ฒฝ๋ฐฉํ–ฅ ์†๋„์„ฑ๋ถ„์˜ ๋“ฑ๊ณ ์„ ์„ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋‹ค. ํฐ์ƒ‰์€ ์–‘์˜ ๊ฐ’(outflow jet)์„ ๋‚˜ํƒ€๋‚ด๊ณ  ๊ฒ€์€ ์ƒ‰์€ ์Œ์˜ ๊ฐ’(inflow jet)์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. Fig. 5(a)๋Š” ์•ˆ์ชฝ ์‹ค๋ฆฐ๋”์˜ ํšŒ์ „์†๋„๊ฐ€ ์ผ์ •ํ•œ ๊ฒฝ์šฐ( )๋กœ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์ผ์ •ํ•œ ํ˜•ํƒœ์˜ Taylor ์™€๋ฅ˜๊ฐ€ ํ˜•์„ฑ๋œ๋‹ค. ์ด์— ๋ฐ˜ํ•ด ์•ˆ์ชฝ ์‹ค๋ฆฐ๋”์˜ ํšŒ์ „์†๋„๊ฐ€ ์ฃผ๊ธฐ์ 

100 / ํ•œ๊ตญ์ „์‚ฐ์œ ์ฒด๊ณตํ•™ํšŒ์ง€ ๊ฐ• ์ฐฝ ์šฐโ€ค์–‘ ๊ฒฝ ์ˆ˜โ€คI. MUTABAZI

t

u r Ta

74 75 76 77

-0.06

-0.04

-0.02

0

0.02

35

40

45

50

55

60

65urTa

Fig. 8 Evolutions over two periods of the radial velocity component averaged in the azimuthal direction at the radial and axial midplanes, , and

t

z/d

80 8540

45

50

55

60

0.060.050.040.030.020.010-0.01-0.02-0.03-0.04-0.05-0.06

t

z/d

60 62.5 6540

45

50

55

60

0.060.050.040.030.020.010-0.01-0.02-0.03-0.04-0.05-0.06

(a) (b)

Fig. 9 Space-time contours of radial velocity component on a center of the annulus for , . ; (a) , (b)

์œผ๋กœ ๋ณ€ํ•˜๋Š” ๊ฒฝ์šฐ Fig. 5(b)์—์„œ์™€ ๊ฐ™์ด Taylor ์™€๋ฅ˜๊ฐ€ ์ฃผ๊ธฐ์ ์ธ ํ˜•ํƒœ๋ฅผ ๋ณด์ธ๋‹ค.

Fig. 6๊ณผ Fig. 7์€ ์ธ ๊ฒฝ์šฐ ํ‰๋ฉด์—์„œ ํ•œ ์ฃผ๊ธฐ ๋™์•ˆ์˜ ๋ฐ˜๊ฒฝ๋ฐฉํ–ฅ ์†๋„์„ฑ๋ถ„๊ณผ ํšŒ์ „๋ฐฉํ–ฅ ์™€๋„()์˜ ๋“ฑ๊ณ ์„ ์„

๊ฐ๊ฐ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋‹ค. ์‹ค์„ ์€ ์–‘์˜ ๊ฐ’์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ ์ ์„ ์€ ์Œ์˜ ๊ฐ’์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. Fig. 6์—์„œ ์›ํ˜• ์‹ค์„ ๊ณผ ์›ํ˜• ์ ์„  ํ•œ ์Œ์ด ํ•œ ์Œ์˜ Taylor ์™€๋ฅ˜๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์‹ค๋ฆฐ๋”์˜ ์ฃผ๊ธฐ์ ์ธ ํšŒ์ „์†๋„์˜ ๋ณ€ํ™”๋กœ ์ธํ•ด ์ผ ๋•Œ์™€ ๊ฐ™์ด ๊ฐ•๋„๊ฐ€ ์ปค์ง„ Taylor ์™€๋ฅ˜๋Š” ์ ์ฐจ ๊ฐ•๋„๊ฐ€ ์ค„์–ด๋“ค์–ด ์ผ ๋•Œ๋Š” Taylor ์™€๋ฅ˜๊ฐ€ ์™„์ „ํžˆ ์†Œ๋ฉธ๋˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ์‹ค๋ฆฐ๋”์˜ ํšŒ์ „์†๋„

๊ฐ€ ๋‹ค์‹œ ์ปค์ง์— ๋”ฐ๋ผ ์ผ ๋•Œ์™€ ๊ฐ™์ด Taylor ์™€๋ฅ˜๊ฐ€ ๋‹ค์‹œ ์ƒ์„ฑ๋˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ Fig. 7์„ ๋ณด๋ฉด ์‹œ๊ฐ„ ์— ๋”ฐ๋ผ Taylor ์™€๋ฅ˜๋Š” ์ฃผ๊ธฐ์ ์œผ๋กœ ๋ณ€ํ™”ํ•˜์ง€๋งŒ Taylor ์™€๋ฅ˜ ํ•œ ์Œ์˜ ์ถ•๋ฐฉํ–ฅ ๊ธธ์ด๋Š” ์ผ์ •ํ•จ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.

Fig. 8์€ ์ƒ๋Œ€์ ์œผ๋กœ ๋†’์€ ์ง„๋™ ์ฃผํŒŒ์ˆ˜์ธ ์ธ ๊ฒฝ์šฐ ๋ฐ˜๊ฒฝ๋ฐฉํ–ฅ๊ณผ ์ถ•๋ฐฉํ–ฅ์œผ๋กœ ์ค‘์•™์ธ ์œ„์น˜

์—์„œ ํšŒ์ „๋ฐฉํ–ฅ์œผ๋กœ ํ‰๊ท ๋œ ๋ฐ˜๊ฒฝ๋ฐฉํ–ฅ์˜ ์†๋„์™€ ์•ˆ์ชฝ ์‹ค๋ฆฐ๋”์˜

ํšŒ์ „์†๋„๋ฅผ ๊ธฐ์ค€์œผ๋กœ ํ•œ ์˜ ๋ณ€ํ™”๋ฅผ ๋‘

์ฃผ๊ธฐ ๋™์•ˆ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋‹ค. ์—ฌ๊ธฐ์„œ ๋ฐ˜๊ฒฝ๋ฐฉํ–ฅ ์†๋„๋Š” ์•ˆ์ชฝ ์‹ค๋ฆฐ๋”์˜ ํ‰๊ท ํšŒ์ „์†๋„()๋กœ ๋ฌด์ฐจ์›ํ™” ๋˜์—ˆ๊ณ , ์ฃผ๊ธฐ๋Š” ์•ˆ์ชฝ

์‹ค๋ฆฐ๋”์˜ ํšŒ์ „ ์ฃผ๊ธฐ( )์ด๋ฉฐ ์˜ ์Œ์ˆ˜๋Š” ์•ˆ์ชฝ ์‹ค๋ฆฐ

๋”๋กœ ๋“ค์–ด์˜ค๋Š” ๋ฐฉํ–ฅ(inflow jet)์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ด๋•Œ ์˜ ๋ณ€ํ™”๋ฅผ

์‚ดํŽด๋ณด๋ฉด ๋‚ฎ์€ ์ง„๋™ ์ฃผํŒŒ์ˆ˜์ธ ๊ฒฝ์šฐ์™€ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์•ˆ์ชฝ ์‹ค๋ฆฐ

๋”์˜ ์ฃผ๊ธฐ์ ์ธ ์†๋„๋ณ€ํ™”๋กœ ์ธํ•ด ๋„ ์ฃผ๊ธฐ์ ์ธ ํ˜•ํƒœ๋ฅผ ๋ณด์ด

์ง€๋งŒ ์ด 0์ด ๋˜์ง€๋Š” ์•Š๋Š”๋‹ค. ์ด๋Š” Taylor ์™€๋ฅ˜๊ฐ€ ์†Œ๋ฉธ๋˜์ง€

์•Š๊ณ  Taylor ์™€๋ฅ˜์˜ ๊ฐ•๋„๊ฐ€ ์ฃผ๊ธฐ์ ์œผ๋กœ ๋ณ€ํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ๋˜ํ•œ ์ด ์ฆ๊ฐ€ํ•  ๋•Œ์™€ ๊ฐ์†Œํ•  ๋•Œ์˜ ๊ธฐ์šธ๊ธฐ๋ฅผ ๋น„๊ตํ•ด๋ณด๋ฉด

์˜ ํฌ๊ธฐ๊ฐ€ ์ฆ๊ฐ€ํ•  ๋•Œ์˜ ๊ธฐ์šธ๊ธฐ๊ฐ€ ๊ธ‰๊ฒฉํ•œ ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.

์ด๋Š” Taylor ์™€๋ฅ˜์˜ ๊ฐ•๋„๊ฐ€ ๊ฐ•ํ•ด์งˆ ๋•Œ๊ฐ€ ์•ฝํ•ด์งˆ ๋•Œ๋ณด๋‹ค ๊ธ‰๊ฒฉํžˆ ๋ณ€ํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค.

Fig. 9๋Š” ๋ฐ˜๊ฒฝ๋ฐฉํ–ฅ์œผ๋กœ ์ค‘์•™์ธ ์œ„์น˜( )์—

์„œ ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ๋ฐ˜๊ฒฝ๋ฐฉํ–ฅ ์†๋„์„ฑ๋ถ„์˜ ๋“ฑ๊ณ ์„ ์„ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด

๋‹ค. ํฐ์ƒ‰์€ ์–‘์˜ ๊ฐ’(outflow jet)์„ ๋‚˜ํƒ€๋‚ด๊ณ  ๊ฒ€์€ ์ƒ‰์€ ์Œ์˜ ๊ฐ’(inflow jet)์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ Taylor ์™€๋ฅ˜์˜ ์ฃผ๊ธฐ์ ์ธ ๋ณ€ํ™”๊ฐ€ ์ž˜ ๊ด€์ฐฐ๋œ๋‹ค.

Fig. 10๊ณผ Fig. 11์€ ์ธ ๊ฒฝ์šฐ ํ‰๋ฉด์—์„œ ํ•œ ์ฃผ๊ธฐ ๋™์•ˆ์˜ ๋ฐ˜๊ฒฝ๋ฐฉํ–ฅ ์†๋„์„ฑ๋ถ„๊ณผ ํšŒ์ „๋ฐฉํ–ฅ ์™€๋„()์˜ ๋“ฑ๊ณ ์„ ์„

๊ฐ๊ฐ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋‹ค. ์‹ค์„ ์€ ์–‘์˜ ๊ฐ’์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ ์ ์„ ์€ ์Œ์˜ ๊ฐ’์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. Fig. 10์—์„œ ์›ํ˜• ์‹ค์„ ๊ณผ ์›ํ˜• ์ ์„  ํ•œ ์Œ์ด ํ•œ ์Œ์˜ Taylor ์™€๋ฅ˜๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์‹ค๋ฆฐ๋”์˜ ์ฃผ๊ธฐ์ ์ธ ํšŒ์ „์†๋„ ๋ณ€ํ™”๋กœ ์ธํ•ด Taylor ์™€๋ฅ˜์˜ ์ฃผ๊ธฐ์ ์ธ ๊ฐ•๋„ ๋ณ€ํ™”๊ฐ€ ์ž˜ ๋‚˜ํƒ€๋‚œ๋‹ค. ์ผ ๋•Œ Taylor ์™€๋ฅ˜์˜ ๊ฐ•๋„๊ฐ€ ์ตœ๋Œ€๊ฐ€ ๋˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ์‹ค๋ฆฐ๋”์˜ ํšŒ์ „์†๋„๊ฐ€ ๊ฐ์†Œํ•จ์— ๋”ฐ๋ผ

Taylor ์™€๋ฅ˜์˜ ๊ฐ•๋„๋Š” ์ ์ฐจ ์ค„์–ด๋“ค์–ด ์ผ ๋•Œ ์ตœ์†Œ๊ฐ€ ๋œ๋‹ค. ์ด๋•Œ Taylor ์™€๋ฅ˜๋Š” ์†Œ๋ฉธ๋˜์ง€ ์•Š๊ณ  ๋ฏธ์•ฝํ•˜๊ฒŒ ํ˜•์„ฑ๋˜์–ด ์žˆ๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฏธ์•ฝํ•ด์ง„ Taylor ์™€๋ฅ˜๋Š” ์‹ค๋ฆฐ๋”์˜ ํšŒ์ „์†๋„๊ฐ€ ๋‹ค์‹œ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์ผ ๋•Œ์™€ ๊ฐ™์ด Taylor ์™€๋ฅ˜์˜ ๊ฐ•๋„๋„ ์ ์ฐจ ์ปค์ง€๋ฉด์„œ ์ฃผ๊ธฐ์ ์ธ ํ˜•ํƒœ๋ฅผ ๋ณด์ธ๋‹ค.

Fig. 12๋Š” ์ธ ๊ฒฝ์šฐ ํ•œ ์ฃผ๊ธฐ ๋™์•ˆ์˜ ๊ณผ ์•ˆ์ชฝ ์‹ค๋ฆฐ

๋”์˜ ํšŒ์ „์†๋„๋ฅผ ๊ธฐ์ค€์œผ๋กœ ํ•œ ์˜ ๋ณ€ํ™”๋ฅผ

๋ณด์—ฌ์ค€๋‹ค. ์˜ ๋ณ€ํ™”๋ฅผ ์‚ดํŽด๋ณด๋ฉด โ‰ˆ ์ผ ๋•Œ ํฌ๊ธฐ๊ฐ€

์ตœ๋Œ€๊ฐ€ ๋˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์˜ ๋ณ€ํ™”์™€ ๋น„๊ตํ•ด๋ณด๋ฉด ์•ˆ์ชฝ ์‹ค๋ฆฐ๋”์˜ ํšŒ์ „์†๋„๊ฐ€ ์ตœ๋Œ€๊ฐ€ ๋  ๋•Œ์™€ Taylor ์™€๋ฅ˜์˜ ๊ฐ•๋„๊ฐ€ ์ตœ๋Œ€๊ฐ€ ๋  ๋•Œ๋Š” ์•ฝ ์ •๋„์˜ phase-lag ์ด ์ƒ๊ธฐ๋Š” ๊ฒƒ

์‹ค๋ฆฐ๋”์˜ ํšŒ์ „ ์ฃผํŒŒ์ˆ˜ ์ง„๋™์ด Taylor ์™€๋ฅ˜์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ ์ œ14๊ถŒ, ์ œ3ํ˜ธ, 2009. 9 / 101

Fig. 12 Evolution over a period of the radial velocity component averaged in the azimuthal direction at the radial and axial midplanes for , and

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 1T/8

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 2T/8

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 3T/8

(r-ri)/dz/d

0 0.5 154

56

58

60t= 4T/8

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 5T/8

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 6T/8

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 7T/8

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 8T/8

Fig. 10 Contours of radial velocity component over one period on plane for , and . ; solid line : positive, dotted line : negative

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 1T/8

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 2T/8

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 3T/8

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 4T/8

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 5T/8

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 6T/8

(r-ri)/d

z/d

0 0.5 154

56

58

60t= 7T/8

(r-ri)/dz/d

0 0.5 154

56

58

60t= 8T/8

Fig. 11 Contours of azimuthal component of vorticity over one period on plane for , and . ; solid line : positive, dotted line : negative

s

f/T

2 4 6 8 10

0.1

0.2

0.3

Fig. 13 Phase-lag for various for ,

102 / ํ•œ๊ตญ์ „์‚ฐ์œ ์ฒด๊ณตํ•™ํšŒ์ง€ ๊ฐ• ์ฐฝ ์šฐโ€ค์–‘ ๊ฒฝ ์ˆ˜โ€คI. MUTABAZI

Fig. 14 Vortical structures over a period for , and . ; [13]

Fig. 15 Vortical structures over a period for , and . ; [13]

์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ phase-lag ์€ ๋‹ค๋ฅธ ์ง„๋™ ์ฃผํŒŒ์ˆ˜ ๋ฒ”์œ„์—์„œ๋„ ํ™•์ธ๋œ๋‹ค. Fig. 13๋Š” ์ง„๋™ ์ฃผํŒŒ์ˆ˜์— ๋”ฐ๋ฅธ phase-lag์„ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋‹ค. ์ง„๋™ ์ฃผํŒŒ์ˆ˜๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ phase-lag ๋„ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์—ฌ์ค€๋‹ค.

Fig. 14,15๋Š” Taylor ์™€๋ฅ˜์˜ 3์ฐจ์›์  ๋ณ€ํ™”๋ฅผ ๊ฐ€์‹œํ™”ํ•˜์—ฌ ๋‚˜ํƒ€๋‚ด๊ธฐ ์œ„ํ•ด์„œ Jeong and Hussain[13]์ด ์ œ์‹œํ•œ ๋ฅผ ์ด์šฉ

ํ•˜์—ฌ ํ•œ ์ฃผ๊ธฐ ๋™์•ˆ์˜ ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ์™€๋ฅ˜์˜ ๊ตฌ์กฐ๋ฅผ ๋‚˜ํƒ€๋‚ธ

๊ฒƒ์ด๋‹ค. Fig. 14๋Š” ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ์€ ์ง„๋™ ์ฃผํŒŒ์ˆ˜์ธ ์ธ

์‹ค๋ฆฐ๋”์˜ ํšŒ์ „ ์ฃผํŒŒ์ˆ˜ ์ง„๋™์ด Taylor ์™€๋ฅ˜์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ ์ œ14๊ถŒ, ์ œ3ํ˜ธ, 2009. 9 / 103

T

u r

0 0.25 0.5 0.75 1

-0.06

-0.04

-0.02

0

s=3s=4s=6s=8s=10

Fig. 16 Evolutions over a period of the radial velocity component averaged in the azimuthal direction at the radial and axial midplanes for various

s

wq

0 2 4 6 8 10

0.4

0.6

0.8

1

No oscillation(s=0)

Fig. 17 Maximum azimuthal component of vorticity for various for ,

s

CM

0 2 4 6 8 100.06

0.065

0.07

No oscillation(s=0)

Fig. 18 Torque coefficient for various for ,

๊ฒฝ์šฐ ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ Taylor ์™€๋ฅ˜์˜ ๋ณ€ํ™”๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. โˆผ ์ผ ๋•Œ Taylor ์™€๋ฅ˜๊ฐ€ ์ ์  ์•ฝํ•ด์ง€๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ โˆผ ์ผ ๋•Œ Taylor ์™€๋ฅ˜๋Š” ์†Œ๋ฉธ๋˜์–ด ์™€๋ฅ˜ ๊ตฌ์กฐ๊ฐ€ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š๋Š”๋‹ค. Fig. 15๋Š” ์ƒ๋Œ€์ ์œผ๋กœ ๋†’์€ ์ง„๋™ ์ฃผํŒŒ์ˆ˜์ธ ์ธ ๊ฒฝ์šฐ ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ Taylor ์™€๋ฅ˜์˜ ๋ณ€ํ™”๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ์‹ค๋ฆฐ๋”์˜ ํšŒ์ „์†๋„๊ฐ€ ์ž‘์•„์ง€๋”๋ผ๋„ Taylor์™€๋ฅ˜๊ฐ€ ์†Œ๋ฉธ๋˜์ง€ ์•Š๊ณ  ์ผ ๋•Œ์™€ ๊ฐ™์ด ๋ฏธ์•ฝํ•œ Taylor ์™€๋ฅ˜๊ฐ€ ํ˜•์„ฑ๋˜์–ด ์žˆ๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

Fig. 16์€ ์˜ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ํ•œ ์ฃผ๊ธฐ ๋™์•ˆ์˜ ์˜ ๋ณ€ํ™”๋ฅผ

๋ณด์—ฌ์ค€๋‹ค. ์—ฌ๊ธฐ์„œ ์ฃผ๊ธฐ( )๋Š” ๊ฐ ์˜ ์ฃผ๊ธฐ์ด๋‹ค. ๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์˜ ์ตœ๋Œ€๊ฐ’์€ ์ ์ฐจ ๊ฐ์†Œํ•˜๋ฉฐ ์ตœ์†Œ๊ฐ’์€ ์ ์ฐจ ์ฆ๊ฐ€ํ•˜

๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์ด๊ณ  ์žˆ๋‹ค. ์ด๋Š” ๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ Taylor ์™€๋ฅ˜

์˜ ์ตœ๋Œ€ ๊ฐ•๋„๋Š” ์ ์ฐจ ๊ฐ์†Œํ•˜๋ฉฐ ์ตœ์†Œ ๊ฐ•๋„๋Š” ์ ์ฐจ ์ฆ๊ฐ€ํ•จ์„

์˜๋ฏธํ•œ๋‹ค. ๋˜ํ•œ ๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์˜ ๋ณ€ํ™” ํ˜•ํƒœ๊ฐ€ ์ ์ฐจ

์™„๋งŒํ•œ ์กฐํ™”ํ•จ์ˆ˜ ํ˜•ํƒœ๋กœ ๋‚˜ํƒ€๋‚จ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Š” Taylor ์™€๋ฅ˜์˜ ๊ฐ•๋„๋„ ์™„๋งŒํ•˜๊ฒŒ ๋ณ€ํ•จ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋Ÿฌํ•œ Taylor ์™€๋ฅ˜์˜ ์ตœ๋Œ€ ๊ฐ•๋„ ๋ณ€ํ™”๋ฅผ Fig. 17 ์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. Fig. 17์€ ์˜ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์‹ค๋ฆฐ๋” ๋‚ด Taylor ์™€๋ฅ˜์˜ ๊ฐ•๋„๊ฐ€ ์ตœ๋Œ€๊ฐ€ ๋˜์—ˆ์„๋•Œ ํšŒ์ „๋ฐฉํ–ฅ ์™€๋„ ์˜ ์ตœ๋Œ€๊ฐ’์„ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋‹ค. ์—ฌ๊ธฐ์„œ ์™€

๋„๋Š” ์•ˆ์ชฝ ์‹ค๋ฆฐ๋”์˜ ํ‰๊ท ํšŒ์ „์†๋„()์™€ ์‹ค๋ฆฐ๋” ์‚ฌ

์ด์˜ ๊ฐ„๊ฒฉ()์œผ๋กœ ๋ฌด์ฐจ์›ํ™” ๋˜์—ˆ๋‹ค. ํŒŒ์„ ์€ ์•ˆ์ชฝ์‹ค๋ฆฐ๋”์˜ ํšŒ์ „์†๋„๊ฐ€ ์ผ์ •ํ•œ ๊ฒฝ์šฐ( )์˜ ํšŒ์ „๋ฐฉํ–ฅ ์™€๋„์˜ ์ตœ๋Œ€๊ฐ’

์ด๋‹ค. ๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ Taylor ์™€๋ฅ˜์˜ ๊ฐ•๋„๊ฐ€ ์ ์ฐจ ๊ฐ์†Œํ•˜๋Š” ๊ฒƒ์„ ๋ณด๋‹ค ๋ช…ํ™•ํžˆ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ๋‹ค.

Fig. 18์€ ์˜ ๋ณ€ํ™”์— ๋Œ€ํ•˜์—ฌ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •์˜๋˜๋Š” ํ‰๊ท  ํ† ํฌ ๊ณ„์ˆ˜์˜ ๋ณ€ํ™” ๋ณด์—ฌ์ค€๋‹ค[14].

(6)

์—ฌ๊ธฐ์„œ ๋Š” ์•ˆ์ชฝ ์‹ค๋ฆฐ๋”๋ฅผ ํšŒ์ „์‹œํ‚ค๋Š”๋ฐ ํ•„์š”ํ•œ ํ‰๊ท  ํ† ํฌ

์ด๋‹ค. ํŒŒ์„ ์€ ์•ˆ์ชฝ์‹ค๋ฆฐ๋”์˜ ํšŒ์ „์†๋„๊ฐ€ ์ผ์ •ํ•œ ๊ฒฝ์šฐ( )์˜ ์ด๋‹ค. ์•ˆ์ชฝ ์‹ค๋ฆฐ๋”๊ฐ€ ์ฃผ๊ธฐ์ ์ธ ํšŒ์ „์†๋„๋ฅผ ๊ฐ–๊ณ  ํšŒ์ „ํ• 

๋•Œ ์ธ ๊ฒฝ์šฐ๋ณด๋‹ค ํฐ ํ† ํฌ๊ฐ€ ํ˜•์„ฑ๋˜๋ฉฐ, ๊ฐ€ ๋‚ฎ์„์ˆ˜๋ก ๋” ํฐ ํ† ํฌ๊ฐ€ ํ•„์š”ํ•œ ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

4. ๊ฒฐ ๋ก 

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์•ˆ์ชฝ ์‹ค๋ฆฐ๋”๊ฐ€ ํšŒ์ „ํ•˜๊ณ  ๋ฐ”๊นฅ์ชฝ ์‹ค๋ฆฐ๋”๋Š”

๊ณ ์ •๋˜์–ด์žˆ๋Š” Taylor-Couette ์œ ๋™์—์„œ ์•ˆ์ชฝ ์‹ค๋ฆฐ๋”๊ฐ€ ํ‰๊ท ํšŒ์ „์†๋„๋ฅผ ๊ฐ–๊ณ  ์ฃผ๊ธฐ์ ์œผ๋กœ ์ง„๋™ํ•˜๋Š” ๊ฒฝ์šฐ์— ๋Œ€ํ•˜์—ฌ ์ง„๋™ ์ฃผ

104 / ํ•œ๊ตญ์ „์‚ฐ์œ ์ฒด๊ณตํ•™ํšŒ์ง€ ๊ฐ• ์ฐฝ ์šฐโ€ค์–‘ ๊ฒฝ ์ˆ˜โ€คI. MUTABAZI

ํŒŒ์ˆ˜๊ฐ€ Taylor ์™€๋ฅ˜์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•˜์—ฌ ์•Œ์•„๋ณด์•˜๋‹ค.์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ์€ ์ง„๋™ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ ์‹ค๋ฆฐ๋”์˜ ์ฃผ๊ธฐ์ ์ธ

ํšŒ์ „์šด๋™์œผ๋กœ ์ธํ•˜์—ฌ Taylor ์™€๋ฅ˜๋Š” ์ฃผ๊ธฐ์ ์œผ๋กœ ์ƒ์„ฑ, ์†Œ๋ฉธ ๋˜์—ˆ์œผ๋ฉฐ, Taylor ์™€๋ฅ˜๊ฐ€ ์ƒ์„ฑ, ์†Œ๋ฉธ๋  ๋•Œ ๊ธ‰๊ฒฉํ•˜๊ฒŒ ์ƒ์„ฑ๋˜์—ˆ๋‹ค๊ฐ€ ์†Œ๋ฉธ๋˜๋Š” ๊ฒƒ์ด ๊ด€์ฐฐ ๋˜์—ˆ๋‹ค. ๋†’์€ ์ง„๋™ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ๋Š” ์‹ค๋ฆฐ๋”์˜ ์ฃผ๊ธฐ์ ์ธ ํšŒ์ „์†๋„ ๋ณ€ํ™”๋กœ ์ธํ•˜์—ฌ Taylor ์™€๋ฅ˜์˜ ๊ฐ•๋„๊ฐ€ ์ฃผ๊ธฐ์ ์œผ๋กœ ๋ณ€ํ•˜๋Š” ๊ฒƒ์ด ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ์ด ๊ฒฝ์šฐ์—๋Š” Taylor ์™€๋ฅ˜๊ฐ€ ์†Œ๋ฉธ๋˜์ง€ ์•Š์•˜๋‹ค. ์ง„๋™ ์ฃผํŒŒ์ˆ˜๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ Taylor ์™€๋ฅ˜๋Š” ์™„๋งŒํ•œ ์กฐํ™”ํ•จ์ˆ˜ ํ˜•ํƒœ๋กœ ์ฃผ๊ธฐ์ ์ธ ๋ณ€ํ™”๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, Taylor ์™€๋ฅ˜์˜ ๊ฐ•๋„ ๋ณ€ํ™”๋Š” ์ ์ฐจ ๊ฐ์†Œํ•˜์˜€๋‹ค. ๋˜ํ•œ ์ง„๋™ ์ฃผํŒŒ์ˆ˜๊ฐ€ ์ฆ๊ฐ€ํ•˜๋ฉด phase-lag์ด ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€์œผ๋ฉฐ ์‹ค๋ฆฐ๋”๋ฅผ ํšŒ์ „์‹œํ‚ค๊ธฐ ์œ„ํ•œ ํ† ํฌ๋Š” ์ ์ฐจ ๊ฐ์†Œํ•˜๋Š” ๊ฒฝํ–ฅ์„

๋ณด์˜€๋‹ค.

ํ›„ ๊ธฐ

๋ณธ ๋…ผ๋ฌธ์€ ํ•œ๊ตญ๊ณผํ•™์žฌ๋‹จ์˜ 2008๋…„๋„ ๊ตญ์ œํ˜‘๋ ฅ์—ฐ๊ตฌ์‚ฌ์—…(F01-2008-000-10108-0)์˜ ์ง€์›์„ ๋ฐ›์•„ ์ˆ˜ํ–‰๋œ ์—ฐ๊ตฌ์ž„.

์ฐธ๊ณ ๋ฌธํ—Œ

[1] 1964, Donnelly, R.J., "Experiments on the stability of viscous flow between rotating cylinders. โ…ข. Enhancement of stability by modulation," Proc. R. Soc. Lond. A, Vol.781, pp.130-139.

[2] 1989, Kuhlmann, H., Roth, D. and Luecke, M., "Taylor vortex flow under harmonic modulation of the driving force," Phys. Rev. A, Vol.39, pp.745-762.

[3] 1989, Barenghi, C.F. and Jones, C.A., "Modulated Taylor-couette flow," J. Fluid Mech., Vol.208, pp.127-160.

[4] 1994, Aouidef, A., Normand, C., Stegner, A. and Wesfreid, J.E., "Centrifugal instability of pulsed flow," Phys. Fluids, Vol.6, pp.3665-3676.

[5] 1997, Tennakoon, S.G.K., Andereck, C.D., Aouidef, A. and Normand, C., "Pulsed flow between concentric rotating cylinders," Eur. J. Mech. B, Vol.16, pp.227-248.

[6] 1998, Ern, P., "A study on time-periodic finite-gap Taylor-Couette flows," C. R. Acad. Sci. Paris โ…กb, Vol.326, pp.727-732.

[7] 1999, Ern, P. and Wesfreid, J.E., "Flow between time-periodically co-rotating cylinders," J. Fluid Mech., Vol.397, pp.73-98.

[8] 2000, Aouidef, A. and Normand, C., "Coriolis effects on the stability of pulsed flows in a Taylor-Couette geometry," Eur. J. Mech. B, Vol.19, pp.89-107.

[9] 2003, Youd, A.J., Willis, A.P. and Barenghi, C.F., "Reversing and non-reversing modulated Taylor-Couette flow," J. Fluid Mech., Vol.487, pp.367-376.

[10] 2005, Youd, A.J., Willis, A.P. and Barenghi, C.F., "Non-reversing modulated Taylor-Couette flows," Fluid Dyn. Res., Vol.36, pp.61-73.

[11] 1985, Kim, J. and Moin, P., "Application of a fractional-step method to incompressible Navier-Stokes equation," J. Comput. Phys., Vol.59, pp.308-323.

[12] 2005, Youd, A.J., Willis, A.P. and Barenghi, C.F., "Reversing and nonreversing modulated Taylor-Couette flow at finite aspect ratio," Phys. Rev. E, Vol.72, p.056321.

[13] 1995, Jeong, J. and Hussain, F., "On the identification of a vortex," J. Fluid Mech., Vol.285, pp.69-94.

[14] 1979, Schlichting, H., Boundary layer theory, McGraw-Hill.