cold hardiness of horseradish flea beetle (phyllotreta armoraciae (koch))

6
ISSN 1392-3196 ŽEMDIRBYSTĖ=AGRICULTURE Vol. 99, No. 2 (2012) 203 ISSN 1392-3196 Žemdirbystė=Agriculture, vol. 99, No. 2 (2012), p. 203‒208 UDK 635.1:581.15:577.21(043.3) Cold hardiness of horseradish flea beetle (Phyllotreta armoraciae (Koch)) Külli HIIESAAR, Riina KAASIK, Ingrid H. WILLIAMS, Eha ŠVILPONIS, Katrin JÕGAR, Luule METSPALU, Marika MÄND, Angela PLOOMI, Anne LUIK Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences Kreutzwaldi 1, 51014, Tartu, Estonia E-mail: [email protected] Abstract Supercooling ability and cold hardiness in the horseradish flea beetle Phyllotreta armoracia (Koch) (Coleoptera: Chrysomelidae: Alticinae) was investigated. Mean supercooling points (SCP) varied from −10.1 to −23.9°C depending on the season: SCP started to decrease in August, achieved their lowest value in mid-January after four months at 5°C, increased drastically in February and stayed at this high level until May. In contrast, some beetles had a distinctly high SCP during overwintering and survived freezing at their SCP. The beetles acquired sufficient cold hardiness already in September–October with lethal time for 50% mortality of 448 h; the temperature necessary to kill 50% of beetles after 24 h exposure was −12.2°C. The beetles were able to survive very low temperatures only during diapause period. Their cold tolerance decreased on the fifth month of hibernation with Ltemp 50 above −8°C. At the same time the beetles retained a relatively good ability to withstand the moderately low temperature of −6°C for longer periods after termination of diapause as over 60% of them survived 312 h exposure in February; however, all the feeding beetles in May were dead already after 96 h exposure. Key words: Phyllotreta armoraciae, cold hardiness, supercooling, mortality, seasonality. Introduction The horseradish flea beetle Phyllotreta armora- cia (Koch) (Coleoptera: Chrysomelidae: Alticinae) is a univoltine monophagous species feeding in nature only on horseradish, Armoracia rusticana G.M. and Sch. (Brassicaceae) (Nielsen et al., 1979). In the laboratory, the beetles can be reared on several glucosinolate-con- taining cruciferous plants, such as Brassica napus L., Si- napis alba L., Brasssica nigra Koch, and they show no preference between B. nigra and A. rusticana (Vig, Ver- dyck, 2001). However, in choice tests, beetles have pre- ferred feeding on their host plant, horseradish (Hagerup et al., 1990). Horseradish is widely cultivated in Europe as a spice for pickles or as a side dish. It also tends to na- turalize outside the cultivated areas (on abandoned fields). The horseradish flea beetle is the most prevalent and most damaging insect pest of the horseradish plant. The beetles are irregularly distributed: in some habitats plants are densely colonized by them and the leaves entirely perforated, whereas the leaves remain intact throughout the growing season in other locations. According to our long-term observations, the first beetles emerge from their overwintering sites on a sunny, warm day at the end of April and start eating immediately when the horsera- dish has barely sprouted. The major damage is caused by adults in springtime. Females lay their eggs on the peti- oles of young leaves in May, and the larvae burrow into the petioles (Nielsen et al., 1979). The new generation beetles emerge at the end of July and in the beginning of August and feed on the same plant for about one month. In mid-September, they start leaving the plants for their overwintering sites. The adults overwinter in debris and soil crevices not far from the host plants (Vig, 2002). In one of our observation stations, in herb collection garden where horseradish has been grown for many years, the plants were continuously heavily damaged, irrespective of the severity of winter. As a dispersed weed in open fields, plants were much less damaged. So far, there are no reports about hibernation and cold hardiness in the horseradish flea beetle. Gene- rally, insects survive low temperatures by using freeze tolerance or freeze avoidance strategies (Zachariassen, 1985), but some species are known to employ both (Du- man, 1984; Gehrken et al., 1991). It is not known which strategy enables P. armoraciae to survive long and un- stable winters; therefore this study focused on factors in- fluencing supercooling ability and cold hardiness in this species. Our study aimed to assess: 1) seasonal changes in supercooling points (SCP) of adults, 2) seasonal chan- ges in cold tolerance of beetles after exposure to constant subzero temperature for different periods of time, 3) sea- sonal changes in cold tolerance of beetles after exposure of beetles to different subzero temperatures for a constant period of time. Material and methods Beetles. The experiments were performed from 2008 to 2009. The horseradish flea beetles were collected by a manual aspirator from horseradish in the medical

Upload: emu-ee

Post on 13-Nov-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

ISSN 1392-3196 ŽEMDIRBYSTĖ=AGRICULTURE Vol.99,No.2(2012) 203

ISSN 1392-3196 Žemdirbystė=Agriculture,vol.99,No.2(2012),p.203‒208UDK635.1:581.15:577.21(043.3)

Cold hardiness of horseradish flea beetle (Phyllotreta armoraciae (Koch))

KülliHIIESAAR,RiinaKAASIK,IngridH.WILLIAMS,EhaŠVILPONIS,KatrinJÕGAR,LuuleMETSPALU,MarikaMÄND,AngelaPLOOMI,AnneLUIKInstituteofAgriculturalandEnvironmentalSciences,EstonianUniversityofLifeSciencesKreutzwaldi1,51014,Tartu,EstoniaE-mail:[email protected]

Abstract SupercoolingabilityandcoldhardinessinthehorseradishfleabeetlePhyllotreta armoracia(Koch)(Coleoptera:Chrysomelidae: Alticinae) was investigated. Mean supercooling points (SCP) varied from −10.1 to −23.9°Cdependingontheseason:SCPstartedtodecreaseinAugust,achievedtheirlowestvalueinmid-Januaryafterfourmonthsat5°C,increaseddrasticallyinFebruaryandstayedatthishighleveluntilMay.Incontrast,somebeetleshadadistinctlyhighSCPduringoverwinteringandsurvivedfreezingattheirSCP.ThebeetlesacquiredsufficientcoldhardinessalreadyinSeptember–Octoberwithlethaltimefor50%mortalityof448h;thetemperaturenecessarytokill50%ofbeetlesafter24hexposurewas−12.2°C.Thebeetleswereabletosurviveverylowtemperaturesonlyduringdiapauseperiod.TheircoldtolerancedecreasedonthefifthmonthofhibernationwithLtemp50above−8°C.Atthesametimethebeetlesretainedarelativelygoodabilitytowithstandthemoderatelylowtemperatureof−6°Cforlongerperiodsafterterminationofdiapauseasover60%ofthemsurvived312hexposureinFebruary;however,allthefeedingbeetlesinMayweredeadalreadyafter96hexposure.

Keywords:Phyllotreta armoraciae,coldhardiness,supercooling,mortality,seasonality.

Introduction ThehorseradishfleabeetlePhyllotreta armora-

cia (Koch) (Coleoptera:Chrysomelidae:Alticinae) isaunivoltinemonophagousspeciesfeedinginnatureonlyon horseradish, Armoracia rusticana G.M. and Sch.(Brassicaceae) (Nielsenetal.,1979). In the laboratory,thebeetles canbe rearedon severalglucosinolate-con-tainingcruciferousplants,suchasBrassica napusL.,Si-napis albaL.,Brasssica nigraKoch,andtheyshownopreferencebetweenB. nigraandA. rusticana(Vig,Ver-dyck,2001).However,inchoicetests,beetleshavepre-ferredfeedingontheirhostplant,horseradish(Hagerupetal.,1990).HorseradishiswidelycultivatedinEuropeasaspiceforpicklesorasasidedish.Italsotendstona-turalizeoutsidethecultivatedareas(onabandonedfields).The horseradish flea beetle is the most prevalent andmostdamaginginsectpestofthehorseradishplant.Thebeetlesareirregularlydistributed:insomehabitatsplantsare densely colonized by them and the leaves entirelyperforated,whereastheleavesremainintactthroughoutthegrowingseasoninotherlocations.Accordingtoourlong-term observations, the first beetles emerge fromtheiroverwinteringsitesonasunny,warmdayattheendofAprilandstarteatingimmediatelywhenthehorsera-dishhasbarelysprouted.Themajordamageiscausedbyadultsinspringtime.Femaleslaytheireggsonthepeti-olesofyoungleavesinMay,andthelarvaeburrowintothe petioles (Nielsen et al., 1979).ThenewgenerationbeetlesemergeattheendofJulyandinthebeginningofAugustandfeedonthesameplantforaboutonemonth.Inmid-September,theystartleavingtheplantsfortheir

overwinteringsites.Theadultsoverwinterindebrisandsoilcrevicesnotfarfromthehostplants(Vig,2002).Inoneofourobservationstations,inherbcollectiongardenwherehorseradishhasbeengrown formanyyears, theplantswerecontinuouslyheavilydamaged, irrespectiveof the severity ofwinter.As a dispersedweed in openfields,plantsweremuchlessdamaged.

So far, there are no reports about hibernationandcoldhardinessinthehorseradishfleabeetle. Gene-rally, insects survive low temperatures by using freezetolerance or freeze avoidance strategies (Zachariassen,1985),butsomespeciesareknowntoemployboth(Du-man,1984;Gehrkenetal.,1991).Itisnotknownwhichstrategyenables P. armoraciae tosurvive longandun-stablewinters;thereforethisstudyfocusedonfactorsin-fluencingsupercoolingabilityandcoldhardinessinthisspecies.

Ourstudyaimedtoassess:1)seasonalchangesinsupercoolingpoints(SCP)ofadults,2)seasonalchan-gesincoldtoleranceofbeetlesafterexposuretoconstantsubzerotemperaturefordifferentperiodsoftime,3)sea-sonalchangesincoldtoleranceofbeetlesafterexposureofbeetlestodifferentsubzerotemperaturesforaconstantperiodoftime.

Material and methodsBeetles.Theexperimentswereperformedfrom

2008to2009.Thehorseradishfleabeetleswerecollectedby amanual aspirator fromhorseradish in themedical

204 Cold hardiness of horseradish flea beetle (Phyllotreta armoraciae (Koch))

herb garden of Tartu University (Estonia) (58°18′ N,26°41′ E). For supercooling points measurements, thebeetleswerepickedfromthehostplantsinAugustandfromsoilcrevices1–3mfromthebedsorfromdifferentweedsonwhich theywere resting inSeptember,whenmosthadalreadyleftthefoodplant.Partofthebeetlescollected in September (a pre-winter group)were keptinafreezer(RF)withnoaccesstofood,at5±1ºCandabsolutedarknessin1-lglassjarswhichwerehalf-filledwithlightlymoistenedpeatuntiltheexperiments.Onlyafewbeetlesdugintothesoilwhereasmostofthemstayedonthewallsandcoversofthejars.

Supercooling points (SCP).TheSCPofthebeet-lesweremeasuredbyachromel-alumel thermocouple-thermometer“RS-232DataLoggerThermometer”(“TESElectrical Electronic”, Taiwan). The low temperatureswereattainedbydeep-freezeHF-103 (−30ºC).Prior tosupercooling, the beetles were slightly anaesthetizedwithethertorenderthemimmobileandthenfixedindi-viduallybyathinVaselinelayertothetopofthethermo-coupleandsealedinaplastictube.Tubeswereplacedinacotton-linedcontainerandtransferredintothefreezingchamber.Acoolingrateof1°Cmin-1wasused.Thetem-perature atwhich freezingproduceda releaseof latentheatwastakenastheSCPoftheindividual.Afterasud-denspikeinthemeasuredtemperaturethebeetleswereremovedfromthefreezerandleftatroomtemperaturetorecoverfor24hbeforetheassessmentoftheircondition.Thebeetleswereconsideredfit if theywereactiveandabletomoveinanormalmanner.Beetlesnotrespondingtotactilestimulationwereconsidereddead.

Supercoolingmeasurementsincludedthebeet-les of the same generation. We started with summerbeetles inAugust 2008 andfinishedwith the overwin-teredbeetles inMay2009.SCPweremeasuredonceamonth, except inNovember. InAugust andSeptemberonly,field-freshbeetleswereusedandbeforestartingtheexperimenttheywereheldfor24hatroomtemperature(23±1°C),withnoaccesstofoodtoallowthemtoemptytheirguts.Inallothermeasurementsbeetlesstoredat5±1°Cwereused.Thenumberofbeetles(N)ineachassess-mentvariedfrom16to20.AfterSCPmeasurementsthesexofbeetleswasdetermined;40%weremaleand60%female.AssexdidnotaffecttheirSCP,mixedsexbeetleswereusedinallexperiments.

Cold tolerance. The cold tolerance of beetlesfromvarious seasonalgroupswasassessed. In thefirstexperiment,theeffectoflong-termexposuretothemor-tality at constant temperatureof−6ºCwasdetermined.Batches of beetleswerewrapped into glass vials linedwithfilter-paperand transferred into the thermostat for24,48,72,96,120,144,or312h.Inthesecondexperi-ment,thebeetleswereexposedtovarioussub-zerotem-peratures: −6, −8, −10, −12, −14, −16, −18 or −20ºCforaconstantperiodof time,24h.Steadycoolingandwarming rateswereachievedusinga liquid thermostat“Ministat230w-2”(“Huber”,Germany).Eachvialwassuppliedwiththermocoupletoregisterthetemperature.Thetemperaturefluctuationinsidethevialsdidnotex-ceed 0.5ºC. The beetles were cooled at a rate of 1ºCmin-1downtotherequiredtemperatureandwarmedupto 20ºC at the same speed after the termination of theexposure.AftertransferringfromthermostatthebeetleswereplacedinPetridisheslinedwithlightlymoistenedfilter-paper and left at room temperature to recover for24–48h;afterwhichsurvivalwasrecorded.

The cold tolerance was estimated at differ-ent dates: 1) inSeptemberwhen thebeetleswere end-ing their pre-winter feeding (field-fresh beetles), 2) attheendofOctober,3)inDecemberand4)attheendofFebruary (non-feedingbeetles stored inRFat 5±1°Candabsolutedarkness),5)inMayafteremergencefromoverwinteringsiteswhenthefoodwasalreadyavailable(field-freshbeetles).Eachgroupofbeetleswasreplicatedthreetimes.ThetotalnumberofbeetlesisrepresentedinTables1and2.

Statistical analyses.Analysesofvariance(one-wayANOVA)wereusedtoassesstheeffectofseasonal-ityonSCPofbeetles.DifferencesinSCPvaluesbetweenmeasurementdateswereanalysedwithFisherLSDtest.Differences in mortality of beetles between seasonalgroupsdependingonexposuretimeortemperaturewerecomparedbytwo-wayANOVA.DifferencesinmortalitydependingonexposuretimeinFebruarywerecomparedbyone-wayANOVA.Lethaltimetoreach50%mortalityofbeetles(Ltime50)afterexposuretoconstant−6°C,andlower lethal temperature atwhich 50%of beetles died(Ltemp50)whenexposedforaconstant24hperiodwereestimated by Probit Analyses (SAS/STAT version 9.1,SASInstituteInc.,USA).

ResultsSeasonal changes in supercooling ability of

horseradish flea beetles.Figure1illustratestheseasonalchanges in SCP of horseradish flea beetles. ThemeanSCPvariedsignificantlyovertheperiodAugusttoMay(F8;144=38.16,p<0.001); itdecreasedgradually fromAugusttoJanuary,increaseddrasticallyinFebruaryandthenremainedatahighleveluntilMay.

Inmid-August, during the pre-winter feeding,themeanSCPof the beetleswas−14.2ºC. In Septem-ber,whenfeedinghadfinished,themeanSCPdecreased,althoughtherewerenostatisticallysignificantdifferen-cescomparedwiththepreviousperiod.TheSCPvaluestended to decrease further during October–December,whenthebeetlesexhibitedsignificantlylowerSCPthaninSeptember.ThelowestmeanSCP,−23.9ºCaswellasthelowestindividualSCP,−27.2ºCwasattainedinmid-January.

FromAugusttoFebruary,abroadrangeofSCPvalueswasobserved.IndividualswithSCPvaluesofover−10°CsurvivedtheirSCP(markedwithadottedcircleonFig.1);afterre-warming,thesebeetleswereabletomoveinanormalwayandgatheredonthewhitemus-tardleavesweofferedthem.ThebeetleswithSCPbelow−10°CdidnotsurvivetheSCPmeasurement.InFebru-ary,theSCPofmostbeetleshadincreasedandachievedameanvalueof−10.1ºC;bythis time,onlyonebeetlemaintained a very lowSCP (−20.1ºC).FromMarch toMay,themeanSCPdidnotchange,remainingconstantatabout−8ºCwithverysmallindividualvariability.AllthesebeetlessurvivedtheirSCP(Fig.1).

Effect of duration of exposure on mortality of horseradish beetles from various seasonal groups at constant −6ºC.Themeanmortality of beetles fromdifferentseasonalgroupsafterexposureto−6ºCfordif-ferentperiodsof timeisshowninFigure2; itchangedsignificantly over time.The probit analysis results, thetimerequiredtocause50%mortalityofbeetles(Ltime50)arepresentedinTable1.Theoverlappingof their95%fiduciallimitsindicatednosignificantdifferencesinmor-talitybetweenestimatingdates.

ISSN 1392-3196 ŽEMDIRBYSTĖ=AGRICULTURE Vol.99,No.2(2012) 205

Note. Different letters above columns indicate significantdifferencesbetween themeans(Turkey’s test,P<0.001);N=20forbothgroupsinMayandAugust,N=17foreachgroup fromSeptember to January,N=16 foreachgroupfromFebruarytoApril.

Figure 1.Seasonalchangesofsupercoolingpoints(°C,mean±SEM)inadultPhyllotreta armoraciae

Notes.Bars(mean±SEM)withdifferentlowercaseletterswithinthesameexposuredurationaresignificantlydifferent(Fisher LSD test, P < 0.05). Different upper case lettersbelowthebarsindicatethesignificantdifferenceatvariousexposuredurationswithinthesameevaluationdate.

Figure 2.Meanmortality(%)ofPhyllotreta armoraciae beetlesfromdifferentseasonalgroupsafterexposureto−6.0°Cfordifferentperiodsoftime

Table 1.Timerequiredtocause50%(Ltime50)ofPhyl-lotreta armoraciae beetles at a constant temperature−6°C

Estimationtime N Ltime50 h

95%fiduciallimitsh

September 285 448a 337.5to748.2December 282 408a 321.7to599.3

May 236 50b 42.8to56.0Note. Ltime50 of different seasonal groups followed by sameletters are not significantly different based on the overlap oftheir95%fiduciallimits.

Theseason(F3;49=40.36,p<0.001)aswellasthedurationofexposure(F1;49=341.27,p<0.001)hadasignificanteffectonthemortalityofbeetles:thelongertheexposure,thehigherthemortalityinallgroups.Therewasalsoasignificantinteractionbetweenseasonanddu-rationofexposure(F3;49=79.03,p<0.001).

Thebeetlesacquiredhighcoldtolerancealreadyinautumn.Thehighestcoldtolerancewithlowestmor-talitywasobservedinOctober;whenmorethan60%ofbeetlessurvived312hexposureat−6°CandcalculatedLtime50was448h.InDecembercoldtoleranceofbeetlesdid not change substantially; therewas no statisticallysignificantdifferencefromthepreviousperiod(p >0.05),their 95% fiducial limits of calculated Ltime50 valuesoverlapped.InFebruary, thebeetlesstarted losing theircold tolerance and themortalityofbeetleswas signifi-cantlyhigherthaninOctoberorDecember(p<0.001),stillsignificantlylowerthaninMay(p<0.001).LTime50 valueinFebruaryisnotshown;thedatadidnotenablecalculationoftheirfiduciallimits,becausemortalityrateremainedalmostonaplateauatdifferentexposuredu-rations, although the percentage ofmortality increasedslowlyandsignificantlywithprolongedexposure(F4;10=3.50,p=0.049).MostsensitivetolowtemperaturesweretheoverwinteredfeedingbeetlesinMaywithnosurvi-ving96hexposureat−6ºC,Ltime50equalledto50h.

Effect of low temperatures on mortality of horseradish beetles from various seasonal groups after constant 24 h exposure.Mortalityofbeetlesfromvariousseasonalgroupsafter24hexposuretodifferentlowtem-peraturesispresentedinFigure3andTable2.Mortalityincreasedwiththedecreaseoftemperaturesinallgroupsirrespectiveoftheseason(F1;30=426.85,p<0.001).Theeffectofmeasuringdatewasnotsignificant(F1;30=1.98,p=0.12),howevertheinteractionbetweendateandtem-peraturewassignificant(F3;30=6.13,p<0.001).

Note.Differentlettersabovethedatapointsindicatestatisti-cally significant difference between the different seasonalgroupsatthesametemperature(FisherLSDtest,P<0.05).

Figure 3. Mortality ofPhyllotreta armoraciae beetlesfrom different seasonal groups after 24 h exposure tovarioussubzerotemperatures

ThebeetlesacquiredahighcapacitytosurviveverylowtemperaturesforashortperiodalreadyinSep-temberwhentheyhadstoppedfeeding.InOctober, thecoldtoleranceofbeetlesincreasedslightly;nevertheless

206 Cold hardiness of horseradish flea beetle (Phyllotreta armoraciae (Koch))

therewasnosignificantdifference inmortalityatmosttemperaturesincomparisonwiththepreviousperiod.Inthe frame of this experiment, themost tolerant to lowtemperatureswere thebeetles inOctoberwithLtemp50 =−13.8hwithover10%ofbeetlessurviving−18°C.InFebruary,theircoldhardinessdecreasednotably,assig-nificantlyfewerbeetlessurvivedatalltemperatures;thetemperaturenecessarytokill50%ofbeetleswas−7.7°C.The toleranceofbeetles remained lowuntil thespring.InMaytheLtemp50was−7.1°C.ThelowesttemperaturethebeetlescouldsurviveaswellinFebruaryasinMaywas−12.0°C.

Table 2. Temperature required to cause 50%mortalityPhyllotreta armoraciaebeetles(Ltemp50)after24hex-posure

Estimationtime N Ltemp50

°C95%fiduciallimits

°CSeptember 546 −12.2a −12.7to−11.7October 570 −13.8a −14.7to−12.9February 282 −7.7b −8.3to−7.2May 307 −7.1b −7.7to−6.4

Note.Ltemp50ofdifferentseasonalgroupsfollowedbydifferentlettersaresignificantlydifferentbasedonthelackofoverlapoftheir95%fiduciallimits.

Discussion Supercooling points (SCP) measurements in

combination with survival data indicated that the coldhardiness and supercooling ability of horseradish fleabeetleschangedseasonally.Thisphenomenonhasbeenreported by many authors for different insect species(Sømme, 1982;Koštal, Šimek, 1995;Vernon,Vannier,2002;Kochetal.,2004,Worland,2010).SCPaswellascoldtoleranceareprimarilyinfluencedbytwoprocesses:coldacclimationanddevelopmentofdiapauseandwiththephysiologicalchangesaccompanyingtheseprocessesliketheaccumulationofcryoprotectantsandantifreezes,dehydration of organism, inactivation of ice-nucleatingagentsetc.(Zachariassen,1985;Denlinger,1991;Block,2003;Hodkova,Hodek,2004;Koštal,2006).ThegradualloweringinSCPandincreaseincoldtoleranceinhorse-radishfleabeetlesstartedwiththeonsetofthediapauseinAugustwhenthetemperaturedecreasedanddaysshort-ened,deepenedastheautumnprogressedandthebeetlesstoppedfeeding(acclimationanddiapausedevelopment)and achieved themaximum inmid-January (deep dia-pause).InFebruarySCPofbeetlesincreaseddrasticallyandsimultaneously,whereascoldtolerancedecreased.

Horseradishfleabeetleshadhighsupercoolingabilityandwereabletosurviveashort(24h)exposuretorelativelylowtemperaturesorlongerexposurestoamoderatelylowconstanttemperature(−6°C)fromSep-tember to January during pre-diapausing and diapau-sing periods. Relatively low mortality of beetles wasobservedin thisperiod.Generally inmostof thebeet-lesthediapauseisterminatedbeforetheendofJanuary(Koštal,Šimek,1996).Basedonspecificationofinsectdiapause(Koštal,2006)horseradishfleabeetlesbelongtothespecieswhosediapausereacheditsendspontane-ously despite keeping them at constant above freezingtemperature and resumption of their development fol-

lowedimmediately.InFebruary,afterfifthmonthsat5°Cwhensomeoftheoverwinteringbeetlesweretransferredto room temperature and providedwithwhitemustardleaves they started eating and, in a littlewhilemating.By this time SCP of beetles increased drastically andremained unchanged untilMay; at the same time tem-perature atwhich 50% of beetleswould die (Ltemp50)increased.Still, probit analysesdatadidnot enable es-timationof thefiducial limits for lethal time (Ltime50),becausemortality didnot changemuchwith extensionof exposureduration atmoderately low temperature inFebruarywhenthedevelopmentwaspreventedonlybylowtemperature.Evidently,thecohortofbeetlestestedatdifferentdatesconsistedofindividualswithdifferentvia-bility.Oninspectionofthebeetlesoverwinteringat5°Cwe found that the lessviablebeetles (nearly25%)hadbeen deadbyFebruarybecauseofundeterminedreasons,definitelynotbecauseof the low temperatureandonlythestronger individualswithachanceof survivaluntilspringwereincludedinthetrial.Activefeedingbeetlescollected inMay prove to be the most cold sensitive,noneofwhichsurvived96hexposureto−6°C.

The overwintering insectswould die not onlybecauseofthefreezing.Severalphysiological,biochemi-calandmetabolicdysfunctionsinducedbycoldarede-scribedbyRenault(2011).AccordingtoDanks(2005),mortalityinmanyinsectsresultsfromtheeffectofcoldratherthanfreezing.Long-termexposuretakesweeksormonthsandleadstosignificantmortalityintheabsenceoffreezing(Rojas,Leopold,1996).Thetemperatureof−6ºCused forprolongedexposurewashigher than themeanSCPofhorseradishbeetlesinallseasonalgroups.Thatiswhywesupposethatmortalityinbeetlescouldre-sultfromthecumulativeeffectofchillinjuriesduringex-posuretimesnotfromthefreezing.Despitetheincreasedmortalityafterterminationofdiapauses,arelativelylargeproportionofthebeetlesmaintainedtheirabilitytowith-standmoderatelylowtemperatureforalongerperiodofexposure.This reflects the adaptation of beetles to thelongperiodtheymustspendinunfavourablecoldcondi-tionsbeforetheonsetofwarmweather.

Generally,insectssurvivelowtemperaturesbytheuseoffreezetoleranceorfreezeavoidancestrategies(Zachariassen,1985;Lee,1991).Freezeavoidanceusu-allyinvolvesarelativelylowSCP,whereasfreezetole-rant insects usually have a highSCP (Turnock,Fields,2005).HighSCPoffeedinginsectsisexplainedbyfoodparticlesintheiralimentarytractwhichinduceiceforma-tionatrelativelyhightemperatures(Zachariassen,1985)and with high water content in its organism (Block,2003).OverwinteringhorseradishfleabeetlesaremostlyfreezeavoidingwithlowSCPinthediapausingperiod,however,atthesametime,afewspecimenshadarela-tivelyhighSCPirrespectiveoftheseasonorfeedingrate(Fig. 1).IndividualswithSCPupto−10°CsurvivedtheirSCP even though their gut contents were not causingfreezingsincetheywereinnon-feedingstate.Soonafterre-warmingtheywereabletomoveinanormalway;in-dividualswithaSCPsubstantiallylowergotkilled.Thissuggests that this species may simultaneously possesstwo different strategies. In the literature, some speciesemployingbothstrategiesaredescribed(Gehrkenetal.,1991;Koštal,Havelka,2000;Sinclaireetal.,2003).For

ISSN 1392-3196 ŽEMDIRBYSTĖ=AGRICULTURE Vol.99,No.2(2012) 207

example, freeze-tolerant sugar-beet maggot would be-comefreezeavoidantasaresultofmicrohabitatselection(Rinehartetal.,2009).AccordingtoBaleetal.(2001),theresponsetomultiplefreeze-thawcyclesinvolvesbet-hedging strategy with some individuals retaining theirinitial freeze tolerance, whereas others become freezeavoiding.Thehorseradishfleabeetleoverwintersinde-bris and soil crevices a fewcentimetresbelow the soilsurfacenotburrowingdeeplyintheground(Vig,2002).In snowless, unstable winters they are highly exposedto repeatedly fluctuating temperatures and freeze-thawcycles,sotwodifferentstrategieswouldenablethemtosurviveunpredictablewinters.

Winter survival of insects is greatly related tothechoiceofoverwinteringsitesandontheseverityofagivenwinter.Onereasonforanoccasionallyhighpopu-lationdensityinNordictemperateareascouldprobablybe the presence of suitable overwintering sites nearby;for instance in our experiment, horseradish bed had ahedgerow locatedwithin10mof it anda trenchfilledwith debris closely surrounding it. In large openfieldswith less suitablemicrohabitats theplantswere almostundamaged.

Conclusions1.Supercoolingabilityaswellascoldhardiness

ofhorseradishfleabeetleschangedseasonally.Thelow-estmeansupercoolingpoints(SCP)(−27ºC)weremea-suredinJanuary;therapidincreaseofSCPwereobservedinFebruary,whenthemeanSCProseto−11ºC.Thehigh-estcoldtolerancewithlowestmortalitywasobservedinOctoberwhenthetimerequiredtocause50%mortality(Ltime50)ataconstanttemperature−6°Cequalled448h;temperature required to cause50%mortality (Ltemp50)after24hexposureequalled −13.8°C.Thebeetlesaremostsusceptibletolowtemperaturesinspringtimeafterterminationofthediapause.

2. Horseradish flea beetles have two differentoverwinteringstrategies:beetleswith lowsupercoolingability(SCP−7…−12ºC)duringdiapauseperiodbelongtothefreezetolerantgroupandbeetleswithhighsuper-coolingability(−18…−24ºC)belongtothefreezeavoid-inggroup.

AcknowledgementsThisresearchwassupportedbyEstonianScien-

ceFoundationgrants9449,8895andtheEstonianMinis-tryofEducationandResearchtargetedfinancingprojectSF 0170057s09.

Received16112011Accepted16032012

ReferencesBale J. S.,WorlandM.R.,BlockW.Effect of summer frost

exposureson thecold tolerancestrategyofa subantarticbeetle // Journal of Insect Physiology. – 2001, vol. 47,p. 1161–1167

BlockW.Water or ice? The challenge for invertebrate coldsurvival // Science Progress. – 2003, vol. 86, No. 1–2,p. 77–101

DanksH.V.Keythemesinthestudyofseasonaladaptationsin insect //JournalofAppliedEntomologicalZoology.–2005,vol.40,No.2,p.199–211

DenlingerD.L.Relationshipbetweencoldhardinessanddia-pause//Insectatlowtemperatures/LeeR.E.,DenlingerD.L.(eds).–1991,London,UK,p.174–198

DumanJ.G.ChangeinoverwinteringmechanismintheCucu-jidbeetle,Cucujus clavipes //InesctPhysiology.–1984,vol.30,No.3,p.235–239

Gehrken U., StrømmeA., Lundheim R., Zachariassen K. E.Inoculative freezing in overwintering tenebrionid beetle,Bolitophagus reticulatusPanz.//JournalofInsectPhysio-logy.–1991,vol.37,No.9,p.683–687

HagerupM., Søndergaard I.,Nielsen J.K.Measurements ofareasconsumedfromleafdiscsbychewingphytophagousinsects: description of a new method involving imageprocessing//EntomologiaExperimentalisetApplicata.–1990,vol.57,p.105–113

HodkovaM.,HodekL.Photoperiod,diapauseandcold-hardi-ness//EuropeanJournalofEntomology.–2004,vol.101,p.445–458

Koch R. L., Carrillo M. A., Venette R. C., Cannon C. A.,HutchisonW.D.ColdhardinessofthemulticoloredAsianladybeetle(Coleoptera:Coccinellidae) //EnvironmentalEtomology.–2004,vol.33,p.815–822

KoštalV.Eco-physiologicalphasesofinsectdiapause//JournalofInsectPhysiology.–2006,vol.52,p.113–117

KoštalV.,HavelkaJ.DiapausinglarvaeofthemidgeAphido-letes aphidimyza (Diptera: Cecidomyiidae) survive atsubzero temperatures in a supercooled state but toleratefreezingifinoculatedbyexternalice//EuropeanJournalofEntomology.–2000,vol.97,p.433–436

KoštalV.,ŠimekP.BiochemistryandphysiologyofAestivohi-bernationintheadultappleblossomweevil,Anthonomus pomorum (Coleoptera:Curculionidae) //European Jour-nalofEntomology.–1996,vol.8,p.727–733

KoštalV.,ŠimekP.Dynamicsofcoldhardiness,supercoolingandcryoprotectantsindiapausingandnon-diapausingpu-paeofthecabbagerootfly,Delia radicumL.//EuropeanJournalofEntomology.–1995,vol.7,p.627–634

LeeR.E.Principlesofinsectlowtemperaturetolerance//In-sectsatlowtemperature/LeeR.E.,DenlingerD.L.(eds).–NewYork,USA,1991,p.17–46

NielsenJ.K.,LarsenL.M.,SorensenH.HostplantselectionofthehorseradishfleabeetlePhyllotreta armoraciae(Co-leoptera:Chrysomelidae): identification of two flavonolglycosides stimulating feeding in combinationwith gly-cosinolates//EntomologiaExperimentalisetApplicata.–1979,vol.26,p.40–48

RenaultD.Long-term after-effects of cold exposure in adultAphitobius diaperinus (Tenebrionidae): the need to linksurvival ability with subsequent reproductive success //EcologicalEntomology.–2011,vol.36,No.1,p.36–42

RinehartJ.P.,YocumG.D.,Chirumamilla-ChaparaA.,BoetelM.Supercoolingpointplasticityduringcoldstorageinthefreeze-tolerantsugar-beetrootmaggotTetanops myopae-formis//PhysiologicalEntomology.–2009,vol.34,No. 3,p.224–230

RojasR.R.,LeopoldR.A.Chillinginjuryinthehouseflyevi-dencefortheroleofoxidativestresspuparationandemer-gence//Cryobiology.–1996,vol.33,p.447–458

SinclaireB.J.,VernonP.,KlokJ.C.,ChownS.L.Insectsatlowtemperatures:anecologicalperspective//TrendsinEco-logyandEvolution.–2003,vol.18,No.5,p.257–262

SømmeL.Supercooling andwinter survival in terrestrial ar-thropods //ComparativeBiochemistryandPhysiology.–1982,partA,vol.73,p.519–543

TurnockJ.,FieldsP.Winterclimatesandcoldhardinessinter-restrialinsect//EuropeanJournalofEntomology.–2005,vol.102,p.561–576

208 Cold hardiness of horseradish flea beetle (Phyllotreta armoraciae (Koch))

VernonP.,VannierG.Evolutionoffreezingsusceptibilityandfreezingtoleranceinterrestrialarthropods//ComptesRen-dus,Biologies.–2002,vol.325,p.1185–1190

VigK.Data on the biology of the crucifer flea beetle,Phyl-lotreta cruciferae(Goeze,1777)(Coleoptera,Chrysomeli-dae,Alticinae)//MededRijksunivGentFakLandbouwkdToegepBiolWet.–2002,vol.67,No.3,p.537–546

VigK.,VerdyckP.Dataontheplantselectionofthehorserad-ishfleabeetle,Phyllotreta armoraciae(Koch,1803)(Co-

leoptera, Chrysomelidae, Alticinae) // Meded RijksunivGentFakLandbouwkdToegepBiolWet.–2001,vol.66,No.2a,9,p.277–283

WorlandM.R.Eretmoptera murphyi: pre-adapted to survivea colder climate // Physiological Entomology. – 2010,vol. 35,p.140–147

ZachariassenK.E.Physiologyof cold tolerance in insects //PhysiologicalReviews.–1985,vol.65,p.799–832

ISSN 1392-3196 Žemdirbystė=Agriculture,vol.99,No.2(2012),p.203‒208UDK635.1:581.15:577.21(043.3)

Krienų spragės (Phyllotreta armoracia (Koch)) atsparumas šalčiui

K.Hiiesaar,R.Kaasik,I.H.Williams,E.Švilponis,K.Jõgar,L.Metspalu,M.Mänd,A.Ploomi,A.LuikEstijosgyvybėsmokslųuniversitetoŽemėsūkioiraplinkosmokslųinstitutas

Santrauka Tirta krienų spragėsPhyllotreta armoracia (Koch) (Coleoptera:Chrysomelidae:Alticinae) geba ištverti žemątemperatūrą ir atsparumas šalčiui. Priklausomai nuo sezono, vidutinė žemiausia temperatūra, kurią toleravospragės,buvonuo−10,1iki−23,9°C.Žemiausiatoleruotinatemperatūraėmėmažėtirugpjūčiomėnesį,žemiausiasreikšmespasiekėsausiomėn.viduryje,poketuriųmėnesiųekspozicijosesant+5°Ctemperatūrai,staigiaipadidėjovasariomėnesį ir tame pačiame lygmenyje išliko iki gegužėsmėnesio.Atvirkščiai, kai kurie vabalų individaižiemojimometuturėjoaukštątoleruotinąžemiausiątemperatūrąirišgyvenojuosšaldantjųtoleruotinoježemojetemperatūroje. Krienų spragės pakankamą atsparumą šalčiui įgijo jau rugsėjo–spalio mėnesiais: 448 valandųekspozicija buvo letalinis laikas, lėmęs 50% spragių mirtingumą; temperatūra, būtina žūti 50% spragių po24valandųekspozicijos,buvo−12,2°C.Spragės labaižemoje temperatūroje sugebėjo išgyventi tikdiapauzėsmetu.Jųatsparumasšalčiuisumažėjopenktąžiemojimomėnesį,Ltemp50esantdaugiaunei−8°Cšalčio.Kartuspragėsišlaikėganagerągebėjimąištvertividutiniškaižemą−6°Ctemperatūrąilgesnįlaikąpasibaigusdiapauzei,nesdaugiaunei60%spragių išgyveno312valandųekspozicijąvasariomėnesį.Tačiaugegužėsmėnesįvisosbesimaitinančiosspragėsžuvojaupo96valandųekspozicijos.

Reikšminiaižodžiai:Phyllotreta armoraciae,atsparumasšalčiui,didelisatšaldymas,mirtingumas,sezoniškumas.