chapter 6 work energy and power 1 marks questions 1.if two

55
Chapter 6 Work Energy and Power 1 Marks Questions 1.If two bodies stick together after collision will the collision be elastic or inelastic? Ans: Inelastic collision. 2.When an air bubble rises in water, what happens to its potential energy? Ans: Potential energy of an air bubble decreases because work is done by upthrust on the bubble. 3.A spring is kept compressed by pressing its ends together lightly. It is then placed in a strong acid, and released. What happens to its stored potential energy? Ans: The loss in potential energy appears as kinetic energy of the molecules of the cid. 4.Define triple point of water? Ans. Triple point of water represents the values of pressure and temperature at which water co-exists in equilibrium in all the three states of matter. 5.State Dulong and petit law? Ans.Acc. to this law, the specific heat of all the solids is constant at room temperature and is equal to 3R. 6.Why the clock pendulums are made of invar, a material of low value of coefficient of linear expansion? Ans.The clock pendulums are made of Inver because it has low value of α (co-efficient of linear expansion) i.e. for a small change in temperature, the length of pendulum will not change much.

Upload: khangminh22

Post on 01-Mar-2023

1 views

Category:

Documents


0 download

TRANSCRIPT

Chapter6

WorkEnergyandPower

1MarksQuestions

1.Iftwobodiessticktogetheraftercollisionwillthecollisionbeelasticorinelastic?

Ans:Inelasticcollision.

2.Whenanairbubblerisesinwater,whathappenstoitspotentialenergy?

Ans:Potentialenergyofanairbubbledecreasesbecauseworkisdonebyupthrustonthe

bubble.

3.Aspringiskeptcompressedbypressingitsendstogetherlightly.Itisthenplacedina

strongacid,andreleased.Whathappenstoitsstoredpotentialenergy?

Ans:Thelossinpotentialenergyappearsaskineticenergyofthemoleculesofthecid.

4.Definetriplepointofwater?

Ans.Triplepointofwaterrepresentsthevaluesofpressureandtemperatureatwhichwater

co-existsinequilibriuminallthethreestatesofmatter.

5.StateDulongandpetitlaw?

Ans.Acc.tothislaw,thespecificheatofallthesolidsisconstantatroomtemperatureandis

equalto3R.

6.Whytheclockpendulumsaremadeofinvar,amaterialoflowvalueofcoefficientof

linearexpansion?

Ans.TheclockpendulumsaremadeofInverbecauseithaslowvalueofα(co-efficientof

linearexpansion)i.e.forasmallchangeintemperature,thelengthofpendulumwillnot

changemuch.

7.Whyismercuryusedinmakingthermometers?

Ans.Mercuryisusedinmakingthermometersbecauseithaswideandusefultemperature

rangeandhasauniformrateofexpansion.

8.Howwouldathermometerbedifferentifglassexpandedmorewithincreasing

temperaturethanmercury?

Ans.Ifglassexpandedmorewithincreasingtemperaturethanmercury,thescaleofthe

thermometerwouldbeupsidedown.

9.Showthevariationofspecificheatatconstantpressurewithtemperature?

Ans.

10.Twothermometersareconstructedinthesamewayexceptthatonehasaspherical

bulbandtheotheranelongatedcylindricalbulb.Whichonewillresponsequicklyto

temperaturechange?

Ans.Thethermometerwithcylindricalbulbwillrespondquicklytotemperaturechanges

becausethesurfaceareaofcylindricalbulbisgreaterthantheofsphericalbulb.

11.Abodyconstrainedtomovealongthez-axisofacoordinatesystemissubjecttoa

constantforceFgivenby

Where areunitvectorsalongthe axisofthesystemrespectively.

Whatistheworkdonebythisforceinmovingthebodyadistanceof4malongthe

axis?

Ans.Forceexertedonthebody,

Displacement,s= m

Workdone,W=

Hence,12Jofworkisdonebytheforceonthebody.

12.Amoleculeinagascontainerhitsahorizontalwallwithspeed andangle

30°withthenormal,andreboundswiththesamespeed.Ismomentumconservedinthe

collision?Isthecollisionelasticorinelastic?

Ans.Yes;Collisioniselastic

Themomentumofthegasmoleculeremainsconservedwhetherthecollisioniselasticor

inelastic.

Thegasmoleculemoveswithavelocityof200m/sandstrikesthestationarywallofthe

container,reboundingwiththesamespeed.

Itshowsthatthereboundvelocityofthewallremainszero.Hence,thetotalkineticenergyof

themoleculeremainsconservedduringthecollision.Thegivencollisionisanexampleofan

elasticcollision.

13.ThebobAofapendulumreleasedfrom30°totheverticalhitsanotherbobBofthe

samemassatrestonatableasshowninFig.6.15.HowhighdoesthebobAriseafter

thecollision?Neglectthesizeofthebobsandassumethecollisiontobeelastic.

Ans.BobAwillnotriseatall

Inanelasticcollisionbetweentwoequalmassesinwhichoneisstationary,whiletheotheris

movingwithsomevelocity,thestationarymassacquiresthesamevelocity,whilethemoving

massimmediatelycomestorestaftercollision.Inthiscase,acompletetransferof

momentumtakesplacefromthemovingmasstothestationarymass.

Hence,bobAofmassm,aftercollidingwithbobBofequalmass,willcometorest,whilebob

BwillmovewiththevelocityofbobAattheinstantofcollision.

14.Atrolleyofmass300kgcarryingasandbagof25kgismovinguniformlywitha

speedof27km/honafrictionlesstrack.Afterawhile,sandstartsleakingoutofahole

onthefloorofthetrolleyattherateof0.05 .Whatisthespeedofthetrolley

aftertheentiresandbagisempty?

Ans.Thesandbagisplacedonatrolleythatismovingwithauniformspeedof27km/h.The

externalforcesactingonthesystemofthesandbagandthetrolleyiszero.Whenthesand

startsleakingfromthebag,therewillbenochangeinthevelocityofthetrolley.Thisis

becausetheleakingactiondoesnotproduceanyexternalforceonthesystem.Thisisin

accordancewithNewton'sfirstlawofmotion.Hence,thespeedofthetrolleywillremain27

km/h.

15.WhichofthefollowingpotentialenergycurvesinFig.6.18cannotpossiblydescribe

theelasticcollisionoftwobilliardballs?Hereristhedistancebetweencentresofthe

balls.

Ans.(i),(ii),(iii),(iv),and(vi)

Thepotentialenergyofasystemoftwomassesisinverselyproportionaltotheseparation

betweenthem.Inthegivencase,thepotentialenergyofthesystemofthetwoballswill

decreaseastheycomeclosertoeachother.Itwillbecomezero(i.e.,V(r)=0)whenthetwo

ballstoucheachother,i.e.,atr=2R,whereRistheradiusofeachbilliardball.Thepotential

energycurvesgiveninfigures(i),(ii),(iii),(iv),and(vi)donotsatisfythesetwoconditions.

Hence,theydonotdescribetheelasticcollisionsbetweenthem.

2MarksQuestions

1.AbodyismovingalongZ–axisofaco–ordinatesystemissubjectedtoaconstant

forceFisgivenby

Where areunitvectoralongthex,yandz–axisofthesystemrespectivelywhat

istheworkdonebythisforceinmovingthebodyadistanceof4malongtheZ–axis?

Ans:

W=12J

2.Aballisdroppedfromtheheighth1andifrebouncestoaheighth2.Findthevalueof

coefficientofrestitution?

Ans:Velocityofapproach

(Balldropsformheighth1)

Velocityofseparation

(Ballreboundstoheighth2)

Coefficientofrestitution

3.Stateandproveworkenergytheoremanalytically?

Ans:Itstatesthatworkdonebyforceactingonabodyisequaltothechangeproducedinits

kineticenergy.

If forceisappliedtomoveanobjectthroughadistancedS

Then

HenceW=Kf–KiWhereKfandKiarefinalandinitialkineticenergy.

4.Anobjectofmass0.4kgmovingwithavelocityof4m/scollideswithanotherobjectof

mass0.6kgmovinginsamedirectionwithavelocityof2m/s.Ifthecollisionisperfectly

inelastic,whatisthelossofK.E.duetoimpact?

Ans:m1=0.4kg,u1=4m/s,m2=0.6kgu2=2m/s.

TotalK.E.beforecollision

Sincecollisionisperfectlyinelastic

TotalK.E.aftercollision

LossinK.E. =Ki–Kf=4.4–3.92=0.48J

5.Whydoesthedensityofsolid|liquiddecreaseswithriseintemperature?

Ans.LetP=Densityofsolid|liquidattemperatureT

P1=Densityofsolid|liquidatTemperatureT+∆T

SinceDensity=

So,P= →(1)P1= (2)

V1=VolumeofsolidattemperatureT+∆T

V=VolumeofsolidattemperatureT

Sinceonincreasingthetemperature,solids|liquidsexpandthatistheirvolumesincreases,

sobyequation

i)&2)Densityisinverselyproportionaltovolumes,soifvolumeincreasesonincreasingthe

temperature,Densitywilldecrease.

6.TwobodiesatdifferenttemperaturesT1,andT2arebroughtinthermalcontactdo

notnecessarilysettledowntothemeantemperatureofT1andT2?

Ans.TwobodiesatdifftemperaturesT1andT2wheninthermalcontactdonotsettlealways

attheirmeantemperaturebecausethethermalcapacitiesoftwobodiesmaynotbealways

equal.

7.Theresistanceofcertainplatinumresistancethermometerisfoundtobe2.56Ωat00c

and3.56Ωat1000c.Whenthethermometerisimmersedinagivenliquid,itsresistance

isobservedto5.06Ω.Determinethetemperatureofliquid?

Ans.Ro=Resistanceat00c=2.56Ω

Rt=ResistanceattemperatureT=1000c=3.56Ω100

Rt=Resistanceatunknowntemperaturet;

Rt=5.06Ω

Since,

t=

t=2500c

8.Aballisdroppedonafloorfromaheightof2cm.Afterthecollision,itrisesuptoa

heightof1.5m.Assumingthat40%ofmechanicalenergylostgoestothermalenergy

intotheball.Calculatetheriseintemperatureoftheballinthecollision.Specificheat

capacityoftheballis800J/k.Takeg=10m/s2

Ans.Initialheight=h1=2m

Finalheight=h2=1.5m

Sincepotentialenergy=mechanicalenergyforabodyatrestasK.E=0

Mechanicalenergylost=

=

=

=5J

Now(mechanicalenergylost)×40%=heatgainedbyball

∆T=2.5×10-30C

9.Athermometerhaswrongcalibration.Itreadsthemeltingpointoficeas–100C.It

reads600Cinplaceof500C.Whatisthetemperatureofboilingpointofwateronthe

scale?

Ans.Lowerfixedpointonthewrongscale=-100C.

Let‘n’=no.divisionsbetweenupperandlowerfixedpointsonthisscale.IfQ=readingon

thisscale,then

Now,C=IncorrectReading=600C

Q=CorrectReading=500C

So,

n=140

Now,

On,theCelsiusscale,Boilingpointofwateris1000C

So,

Q=1300C

10.Writetheadvantagesanddisadvantagesofplatinumresistancethermometer?

Ans.AdvantagesofPlatinumResistancethermometer:-

1)Highaccuracyofmeasurement

2)Measurementsoftemperaturecanbemadeoverawiderangeoftemperaturei.e.from–

2600Cto12000C.

→DisadvantagesofPlatinumResistancethermometer:-

1)HighCost

2)Requiresadditionalequipmentsuchasbridgecircuit,Powersupplyetc.

11.Ifthevolumeofblockofmetalchangesby0.12%whenitisheatedthrough200C.

Whatistheco-efficientoflinearexpansionofthemetal?

Ans.07.Theco-efficientofcubicalexpansionyofthemetalisgivenby:-

Here,

∴Co-efficientoflinearexpansionofthemetalis:-

12.Thedensityofasolidat00Cand5000Cisintheratio1.027:1.Findtheco-efficientof

linearexpansionofthesolid?

Ans.Densityat00C=SO

Densityat5000C=S500

Now,SO=S500

Where,Y=Co-efficientofvolumeexpansion

∆T=Changeintemperature

∆T=Changeintemperature

∆T=FinalTemperature–Initialtemperature

∆T=500-00C

∆T=5000C

Or

Now,Co-efficientoflinearexpansion(α)isrelatedtoco-efficientofvolumeexpansion(Y)as

:-

13.IfoneMoleofamonatomicgasismixedwith3molesofadiatomicgas.Whatisthe

molecularspecificheatofthemixtureatconstantvolume?

Ans.09.For,amonatomicgas,Specificheatatconsentvolume=CV1= ;R=Universal

GasConstant

No.ofmolesofmonatomicgas=n1=1mole

No.ofmolesofdiatomicgas=n2=3moles.

For,diatomicgas,specificheatatconstantvolume

Applying,conservationofenergy.

LetCV=Specificheatofthemixture;

R=UniversalGasconstant

14.Calculatethedifferencebetweentwoprincipalspecificheatsof1gofheliumgasat

N.T.P.GivenMolecularweightofHelium=4andJ=4.186J/calandUniversalGas

constant,R=8.314J/mole/K?

Ans.10.MolecularweightofHelium=M=4

UniversalGasConstant,R=8.31J|mole|K

CP=specificheatatconstantPressure

CV=specificheatatconstantVolume

Now, for1moleofgas.

WhereR=UniversalGasConstant=8.31J|mole|K

J=4.186J|cal

M=MolecularweightofHelium=4

15.Whydoesheatflowfromabodyathighertemperaturetoabodyatlower

temperature?

Ans.11.Whenabodyathighertemperatureisincontactwithabodyatlowertemperature,

moleculewithmorekineticenergythatareincontactwithlessenergeticmoleculesgiveup

someoftheirkineticenergytothelessenergeticones.

16.Aoneliterflaskcontainssomemercury.ITisfoundthatatdifferenttemperatures,

thenvolumeofairinsidetheflaskremainsthesame.Whatisthevolumeofmercuryin

theflask?Giventheco-efficientoflinearexpansionofglass=9×10-6/0Candco-

efficientofvolumeexpansionofmercury=1.8×10-4/0C

Ans.Itisgiventhatvolumeofairintheflaskremainsthesameatdifferenttemperature.This

ispossibleonlywhentheexpansionofglassisexactlyequaltotheexpansionofmercury,

Co-efficientofcubicalexpansionofglassis:-

Co-efficientofcubicalexpansionofmercuryis:→

Volumeofflask,V=1liter=1000cm3.

LetVmCm3bethevolumeofmercuryintheflask.

Expansionofflask=ExpansionofMercury

∴VolumeofMercury,

17.Thepotentialenergyfunctionforaparticleexecutinglinearsimpleharmonic

motionisgivenbyV(x)= /2,wherekistheforceconstantoftheoscillator.Fork=

0.5N ,thegraphofV(x)versusxisshowninFig.6.12.Showthataparticleoftotal

energy1Jmovingunderthispotentialmust'turnback'whenitreachesx=±2m.

Ans:Totalenergyoftheparticle,E=1J

Forceconstant,k=0.5N

Kineticenergyoftheparticle,K=

Accordingtotheconservationlaw:

E=V+K

Atthemomentof‘turnback',velocity(andhenceK)becomeszero.

Hence,theparticleturnsbackwhenitreachesx= m.

18.Stateifeachofthefollowingstatementsistrueorfalse.GivereasonsforyourAns..

(a)Inanelasticcollisionoftwobodies,themomentumandenergyofeachbodyis

conserved.

(b)Totalenergyofasystemisalwaysconserved,nomatterwhatinternalandexternal

forcesonthebodyarepresent.

(c)Workdoneinthemotionofabodyoveraclosedloopiszeroforeveryforcein

nature.

(d)Inaninelasticcollision,thefinalkineticenergyisalwayslessthantheinitialkinetic

energyofthesystem.

Ans.(a)False

(b)False

(c)False

(d)True

Explanation:(a)Inanelasticcollision,thetotalenergyandmomentumofboththebodies,

andnotofeachindividualbody,isconserved.

(b)Althoughinternalforcesarebalanced,theycausenoworktobedoneonabody.Itisthe

externalforcesthathavetheabilitytodowork.Hence,externalforcesareabletochangethe

energyofasystem.

(c)Theworkdoneinthemotionofabodyoveraclosedloopiszeroforaconservationforce

only.

(d)Inaninelasticcollision,thefinalkineticenergyisalwayslessthantheinitialkinetic

energyofthesystem.Thisisbecauseinsuchcollisions,thereisalwaysalossofenergyinthe

formofheat,sound,etc.

19.Abodyisinitiallyatrest.Itundergoesone-dimensionalmotionwithconstant

acceleration.Thepowerdeliveredtoitattimetisproportionalto

(i) (ii)t(iii) (iv)

Ans.(ii)t

Massofthebody=m

Accelerationofthebody=a

UsingNewton'ssecondlawofmotion,theforceexperiencedbythebodyisgivenbythe

equation:

F=ma

Bothmandaareconstants.Hence,forceFwillalsobeaconstant.

F=ma=Constant…(i)

Forvelocityv,accelerationisgivenas,

Where, isanotherconstant

Powerisgivenbytherelation:

P=F.v

Usingequations(i)and(iii),wehave:

Hence,powerisdirectlyproportionaltotime.

20.Abodyismovingunidirectionallyundertheinfluenceofasourceofconstant

power.Itsdisplacementintimetisproportionalto

(i) (ii)t(iii) (iv)

Ans.(iii)

Powerisgivenbytherelation:

P=Fv

Integratingbothsides:

Fordisplacement ofthebody,wehave:

Where Newconstant

Onintegratingbothsides,weget:

21.Apumponthegroundfloorofabuildingcanpumpupwatertofillatankofvolume

30 in15min.Ifthetankis40mabovetheground,andtheefficiencyofthepumpis

30%,howmuchelectricpowerisconsumedbythepump?

Ans.Volumeofthetank,V=

Timeofoperation,t=15min=15×60=900s

Heightofthetank,h=40m

Efficiencyofthepump, =30%

Densityofwater,

Massofwater,m=

Outputpowercanbeobtainedas:

Forinputpower ,efficiency isgivenbytherelation:

22.Abodyofmass0.5kgtravelsinastraightlinewithvelocity where

.Whatistheworkdonebythenetforceduringitsdisplacementfromx=

0tox=2m?

Ans.Massofthebody,m=0.5kg

Velocityofthebodyisgovernedbytheequation,

Initialvelocity,u(atx=0)=0

Finalvelocityv(atx=2m)

Workdone,W=Changeinkineticenergy

23.Afamilyuses8kWofpower.(a)Directsolarenergyisincidentonthehorizontal

surfaceatanaveragerateof200Wpersquaremeter.If20%ofthisenergycanbe

convertedtousefulelectricalenergy,howlargeanareaisneededtosupply8kW?(b)

Comparethisareatothatoftheroofofatypicalhouse.

Ans.

(a)

(a)Powerusedbythefamily,P=8kW= W

Solarenergyreceivedpersquaremetre=200W

Efficiencyofconversionfromsolartoelectricityenergy=20%

Arearequiredtogeneratethedesiredelectricity=A

Aspertheinformationgiveninthequestion,wehave:

(b)Theareaofasolarplaterequiredtogenerate8kWofelectricityisalmostequivalentto

theareaoftheroofofabuildinghavingdimensions14m×14m.

24.Aboltofmass0.3kgfallsfromtheceilingofanelevatormovingdownwithan

uniformspeedof7 .Ithitstheflooroftheelevator(lengthoftheelevator=3m)

anddoesnotrebound.Whatistheheatproducedbytheimpact?WouldyourAns.be

differentiftheelevatorwerestationary?

Ans.

Massofthebolt,m=0.3kg

Speedoftheelevator=7m/s

Height,h=3m

Sincetherelativevelocityoftheboltwithrespecttotheliftiszero,atthetimeofimpact,

potentialenergygetsconvertedintoheatenergy.

Heatproduced=Lossofpotentialenergy

=mgh= =8.82J

Theheatproducedwillremainthesameeveniftheliftisstationary.Thisisbecauseofthe

factthattherelativevelocityoftheboltwithrespecttotheliftwillremainzero.

25.Considerthedecayofafreeneutronatrest:n→p+e-

Showthatthetwo-bodydecayofthistypemustnecessarilygiveanelectronoffixed

energyand,therefore,cannotaccountfortheobservedcontinuousenergydistribution

inthe decayofaneutronoranucleus(Fig.6.19).

[Note:Thesimpleresultofthisexercisewasoneamongtheseveralarguments

advancedbyW.Paulitopredicttheexistenceofathirdparticleinthedecayproducts

of decay.Thisparticleisknownasneutrino.Wenowknowthatitisaparticleof

intrinsicspin½(likee-,porn),butisneutral,andeithermasslessorhavingan

extremelysmallmass(comparedtothemassofelectron)andwhichinteractsvery

weaklywithmatter.Thecorrectdecayprocessofneutronis:n→p+e-+v]

Ans.

Thedecayprocessoffreeneutronatrestisgivenas:

FromEinstein'smass-energyrelation,wehavetheenergyofelectronas

Where,

Δm=Massdefect=Massofneutron-(Massofproton+Massofelectron)

c=Speedoflight

Δmandcareconstants.Hence,thegiventwo-bodydecayisunabletoexplainthecontinuous

energydistributioninthe decayofaneutronoranucleus.Thepresenceofneutrinovon

theLHSofthedecaycorrectlyexplainsthecontinuousenergydistribution.

3MarksQuestions

1.Provethatinanelasticcollisioninonedimensiontherelativevelocityofapproach

beforeimpactisequaltotherelativevelocityofseparationafterimpact?

Ans.

Accordingtolawofconservationoflinearmomentum

K.E.alsoremainsconserved.

Dividing(2)by(1)

I.e.Relativevelocityofapproach=Relativevelocityofseparation.

2.CalculateCpforair,giventhatCv=0.162calg-1k-1anddensityairatN.T.Pis0.001293

g|cm3?

Ans.Specificheatatconstantpressure=Cp=?

Specificheatatconstantvolume=Cv=0.162Calg-1k-1

Now,Cp–Cv=

OrCP–Cv=

Cp–Cv=

=

=

=6.8×10-4+2

Cp–Cv=0.068

Cp=0.162+0.068

Cp=0.23Calg-1k-1

3.Developarelationbetweentheco-efficientoflinearexpansion,co-efficient

superficialexpansionandcoefficientofcubicalexpansionofasolid?

Ans.Since,co-efficientoflinearexpansion=α=

∆L=changeinlength

L=length

∆T=changeintemperature

Similarly,co-efficientofsuperficialexpansion=β=

∆S=changeinarea

S=originalarea

∆T=changeintemperature

Co-efficientofcubicalexpansion,=Y=

∆V=changeinvolume

V=originalvolume

∆T=changeintemperature.

Now,∆L=αL∆T

L+∆L=L+αL∆T

L+∆L=L(1+α∆T)→(1)

SimilarlyV+∆V=V(1+Y∆T)→(2)

AndS+∆S=S(1+β∆T)→(3)

Also,(V+∆V)=(L+∆L)3

V+∆V=

V+∆V=L3

Sinceα2,α3arenegligible,so,

V+γV∆T=V(1+3α∆T)[asL3=V]

So,V+γV∆T=V+V3α∆T

γV∆T=3α∆T

Y=3α

Similarly,β=2α[usingL2=S(Area)]

So,

4.Calculatetheamountofheatrequiredtoconvert1.00kgoficeat–100cintosteamat

1000catnormalpressure.Specificheatofice=2100J|kg|k.Latentheatoffusionofice=

3.36x105J|kg,specificheatofwater=4200J|kg|k.Latentheatofvaporizationofwater=

2.25x106J|kg?

Ans.(1)Here,heatisrequiredtoraisethetemperatureoficefrom–100cto00c.

So,changeintemperature=∆T=T2-T1=0-(-10)=100c

So,∆Q1=cm∆T

C=specificheatofice

M=Massofice

∆T=100c

∆Q1=2100×1×10=21000J

(2)Heatrequiredtomelttheiceto00cwater:-

∆Q2=mL

L=Latentheatoffusionofice=3.36×105J/kg

m=Massofice

∆Q2=1×3.36×105J/kg

∆Q2=3.36×105J

∆Q2=336000J

(3)Heatrequiredtoraisethetemperatureofwaterfrom00cto1000c:-

∆T=T2-T1=100-0=1000c

∆Q3=cm∆Tc=specificheatofwater

=4200×1×100

=420,000J

(4)Heatrequiredtoconvert1000cwatertosteamat1000c

∆Q4=mLL=Latentheatofvapourisation=2.25×106J/kg

∆Q4=1×2.25×106J|kg

∆Q4=2250000J

∴TotalHeatrequired=∆Q1+∆Q2+∆Q3+∆Q4

∆Qtotal=21000+336000+420000+2250000

∆Qtotal=3027000J

∆Qtotal=3.027x106J

5.Thesignofworkdonebyaforceonabodyisimportanttounderstand.State

carefullyifthefollowingquantitiesarepositiveornegative:

(a)Workdonebyamaninliftingabucketoutofawellbymeansofaropetiedtothe

bucket.

(b)Workdonebygravitationalforceintheabovecase,

(c)Workdonebyfrictiononabodyslidingdownaninclinedplane,

(d)Workdonebyanappliedforceonabodymovingonaroughhorizontalplanewith

uniformvelocity,

(e)Workdonebytheresistiveforceofaironavibratingpenduluminbringingitto

rest.

Ans.(a)Positive

Inthegivencase,forceanddisplacementareinthesamedirection.Hence,thesignofwork

doneispositive.Inthiscase,theworkisdoneonthebucket.

(b)Negative

Inthegivencase,thedirectionofforce(verticallydownward)anddisplacement(vertically

upward)areoppositetoeachother.Hence,thesignofworkdoneisnegative.

(c)Negative

Sincethedirectionoffrictionalforceisoppositetothedirectionofmotion,theworkdoneby

frictionalforceisnegativeinthiscase.

(d)Positive

Herethebodyismovingonaroughhorizontalplane.Frictionalforceopposesthemotionof

thebody.Therefore,inordertomaintainauniformvelocity,auniformforcemustbe

appliedtothebody.Sincetheappliedforceactsinthedirectionofmotionofthebody,the

workdoneispositive.

(e)Negative

Theresistiveforceofairactsinthedirectionoppositetothedirectionofmotionofthe

pendulum.Hence,theworkdoneisnegativeinthiscase.

6.Underlinethecorrectalternative:

(a)Whenaconservativeforcedoespositiveworkonabody,thepotentialenergyofthe

bodyincreases/decreases/remainsunaltered.

(b)Workdonebyabodyagainstfrictionalwaysresultsinalossofitskinetic/potential

energy.

(c)Therateofchangeoftotalmomentumofamany-particlesystemisproportionalto

theexternalforce/sumoftheinternalforcesonthesystem.

(d)Inaninelasticcollisionoftwobodies,thequantitieswhichdonotchangeafterthe

collisionarethetotalkineticenergy/totallinearmomentum/totalenergyofthesystem

oftwobodies.

Ans.(a)Decreases

(b)Kineticenergy

(c)Externalforce

(d)Totallinearmomentum

Explanation:

(a)Aconservativeforcedoesapositiveworkonabodywhenitdisplacesthebodyinthe

directionofforce.Asaresult,thebodyadvancestowardthecentreofforce.Itdecreasesthe

separationbetweenthetwo,therebydecreasingthepotentialenergyofthebody.

(b)Theworkdoneagainstthedirectionoffrictionreducesthevelocityofabody.Hence,

thereisalossofkineticenergyofthebody.

(c)Internalforces,irrespectiveoftheirdirection,cannotproduceanychangeinthetotal

momentumofabody.Hence,thetotalmomentumofamany-particlesystemisproportional

totheexternalforcesactingonthesystem.

(d)Thetotallinearmomentumalwaysremainsconservedwhetheritisanelasticcollisionor

aninelasticcollision.

7.Answercarefully,withreasons:

(a)Inanelasticcollisionoftwobilliardballs,isthetotalkineticenergyconserved

duringtheshorttimeofcollisionoftheballs(i.e.whentheyareincontact)?

(b)Isthetotallinearmomentumconservedduringtheshorttimeofanelasticcollision

oftwoballs?

(c)Whataretheanswersto(a)and(b)foraninelasticcollision?

(d)Ifthepotentialenergyoftwobilliardballsdependsonlyontheseparationdistance

betweentheircentres,isthecollisionelasticorinelastic?(Note,wearetalkinghereof

potentialenergycorrespondingtotheforceduringcollision,notgravitationalpotential

energy).

Ans.(a)No

Inanelasticcollision,thetotalinitialkineticenergyoftheballswillbeequaltothetotalfinal

kineticenergyoftheballs.Thiskineticenergyisnotconservedattheinstantthetwoballs

areincontactwitheachother.Infact,atthetimeofcollision,thekineticenergyoftheballs

willgetconvertedintopotentialenergy.

(b)Yes

Inanelasticcollision,thetotallinearmomentumofthesystemalwaysremainsconserved.

(c)No;Yes

Inaninelasticcollision,thereisalwaysalossofkineticenergy,i.e.,thetotalkineticenergyof

thebilliardballsbeforecollisionwillalwaysbegreaterthanthataftercollision.

Thetotallinearmomentumofthesystemofbilliardsballswillremainconservedeveninthe

caseofaninelasticcollision.

(d)Elastic

Inthegivencase,theforcesinvolvedareconservation.Thisisbecausetheydependonthe

separationbetweenthecentresofthebilliardballs.Hence,thecollisioniselastic.

8.Apersontryingtoloseweight(dieter)liftsa10kgmass,onethousandtimes,toa

heightof0.5meachtime.Assumethatthepotentialenergylosteachtimeshelowers

themassisdissipated.(a)Howmuchworkdoesshedoagainstthegravitationalforce?

(b)Fatsupplies Jofenergyperkilogramwhichisconvertedtomechanical

energywitha20%efficiencyrate.Howmuchfatwillthedieteruseup?

Ans.(a)Massoftheweight,m=10kg

Heighttowhichthepersonliftstheweight,h=0.5m

Numberoftimestheweightislifted,n=1000

∴Workdoneagainstgravitationalforce:

(b)Energyequivalentof1kgoffat= J

Efficiencyrate=20%

Mechanicalenergysuppliedbytheperson'sbody:

Equivalentmassoffatlostbythedieter:

4MarksQuestions

1.Abodyofmass2kginitiallyatrestmovesundertheactionofanappliedhorizontal

forceof7Nonatablewithcoefficientofkineticfriction=0.1.

Computethefollowing:

(a)Workdonebytheappliedforcein10s,

(b)Workdonebyfrictionin10s,

(c)Workdonebythenetforceonthebodyin10s,

(d)Changeinkineticenergyofthebodyin10s,

andinterpretyourresults.

Ans.Massofthebody,m=2kg

Appliedforce,F=7N

Coefficientofkineticfriction, =0.1

Initialvelocity,u=0

Time,t=10s

TheaccelerationproducedinthebodybytheappliedforceisgivenbyNewton'ssecondlaw

ofmotionas:

Frictionalforceisgivenas:

=

heaccelerationproducedbythefrictionalforce:

Totalaccelerationofthebody:

Thedistancetravelledbythebodyisgivenbytheequationofmotion:

(a)Workdonebytheappliedforce, F×s=7×126=882J

(b)Workdonebythefrictionalforce,

(c)Netforce= =5.04N

Workdonebythenetforce, =5.04×126=635J

(d)Fromthefirstequationofmotion,finalvelocitycanbecalculatedas:

v=u+at

=0+2.52×10=25.2m/s

Changeinkineticenergy

2.Atrolleyofmass200kgmoveswithauniformspeedof36km/honafrictionless

track.Achildofmass20kgrunsonthetrolleyfromoneendtotheother(10maway)

withaspeedof4 relativetothetrolleyinadirectionoppositetotheitsmotion,

andjumpsoutofthetrolley.Whatisthefinalspeedofthetrolley?Howmuchhasthe

trolleymovedfromthetimethechildbeginstorun?

Ans.Massofthetrolley,M=200kg

Speedofthetrolley,v=36km/h=10m/s

Massoftheboy,m=20kg

Initialmomentumofthesystemoftheboyandthetrolley

=(M+m)v

=(200+20)×10

=2200kgm/s

Letv'bethefinalvelocityofthetrolleywithrespecttotheground.

Finalvelocityoftheboywithrespecttotheground

Finalmomentum

Asperthelawofconservationofmomentum:

Initialmomentum=Finalmomentum

2200=

Lengthofthetrolley,l=10m

Speedoftheboy,v''=4m/s

Timetakenbytheboytorun,

∴Distancemovedbythetrolley

3.A1kgblocksituatedonaroughinclineisconnectedtoaspringofspringconstant

100 Nm-1asshowninFig.6.17.Theblockisreleasedfromrestwiththespringin

theunstretchedposition.Theblockmoves10cmdowntheinclinebeforecomingto

rest.Findthecoefficientoffrictionbetweentheblockandtheincline.Assumethatthe

springhasanegligiblemassandthepulleyisfrictionless.

Ans.Massoftheblock,m=1kg

Springconstant,k=

Displacementintheblock,x=10cm=0.1m

Thegivensituationcanbeshownasinthefollowingfigure.

Atequilibrium:

Normalreaction,R=mgcos37°

Frictionalforce,f R=mgsin37°

Where, isthecoefficientoffriction

Netforceactingontheblock=

=

Atequilibrium,theworkdonebytheblockisequaltothepotentialenergyofthespring,i.e.,

4.GiveninFig.6.11areexamplesofsomepotentialenergyfunctionsinonedimension.

Thetotalenergyoftheparticleisindicatedbyacrossontheordinateaxis.Ineachcase,

specifytheregions,ifany,inwhichtheparticlecannotbefoundforthegivenenergy.

Also,indicatetheminimumtotalenergytheparticlemusthaveineachcase.Thinkof

simplephysicalcontextsforwhichthesepotentialenergyshapesarerelevant.

Ans.(a)x>a;0

Totalenergyofasystemisgivenbytherelation:

E=P.E.+K.E.

Kineticenergyofabodyisapositivequantity.Itcannotbenegative.Therefore,theparticle

willnotexistinaregionwhereK.E.becomesnegative.

Inthegivencase,thepotentialenergy( )oftheparticlebecomesgreaterthantotalenergy

(E)forx>a.Hence,kineticenergybecomesnegativeinthisregion.Therefore,theparticle

willnotexististhisregion.Theminimumtotalenergyoftheparticleiszero.

(b)Allregions

Inthegivencase,thepotentialenergy( )isgreaterthantotalenergy(E)inallregions.

Hence,theparticlewillnotexistinthisregion.

(c

Inthegivencase,theconditionregardingthepositivityofK.E.issatisfiedonlyintheregion

betweenx>aandx<b.

Theminimumpotentialenergyinthiscaseis .Therefore, =E+V1.

Therefore,forthepositivityofthekineticenergy,thetotalenergyoftheparticlemustbe

greaterthan .So,theminimumtotalenergytheparticlemusthaveis .

(d)

Inthegivencase,thepotentialenergy( )oftheparticlebecomesgreaterthanthetotal

energy(E)for .Therefore,theparticlewillnotexistinthese

regions.

Theminimumpotentialenergyinthiscaseis .Therefore,K.E.= .

Therefore,forthepositivityofthekineticenergy,thetotalenergyoftheparticlemustbe

greaterthan .So,theminimumtotalenergytheparticlemusthaveis .

5.Anelectronandaprotonaredetectedinacosmicrayexperiment,thefirstwith

kineticenergy10keV,andthesecondwith100keV.Whichisfaster,theelectronorthe

proton?Obtaintheratiooftheirspeeds.(electronmass= kg,protonmass=

kg,1eV= J).

Ans.Electronicsfaster;Ratioofspeedsis13.54:1

Massoftheelectron, kg

Massoftheproton,

Kineticenergyoftheelectron, =10keV= eV

=

=

Kineticenergyoftheproton,

Forthevelocityofanelectron ,itskineticenergyisgivenbytherelation:

Forthevelocityofaproton ,itskineticenergyisgivenbytherelation:

Hence,theelectronismovingfasterthantheproton.

Theratiooftheirspeeds:

6.Thebobofapendulumisreleasedfromahorizontalposition.Ifthelengthofthe

pendulumis1.5m,whatisthespeedwithwhichthebobarrivesatthelowermostpoint,

giventhatitdissipated5%ofitsinitialenergyagainstairresistance?

Ans.Lengthofthependulum,l=1.5m

Massofthebob=m

Energydissipated=5%

Accordingtothelawofconservationofenergy,thetotalenergyofthesystemremains

constant.

Atthehorizontalposition:

Potentialenergyofthebob,EP=mgl

Kineticenergyofthebob,EK=0

Totalenergy=mgl…(i)

Atthelowermostpoint(meanposition):

Potentialenergyofthebob,EP=0

Kineticenergyofthebob,

Totalenergy …(ii)

Asthebobmovesfromthehorizontalpositiontothelowermostpoint,5%ofitsenergygets

dissipated.

Thetotalenergyatthelowermostpointisequalto95%ofthetotalenergyatthehorizontal

point,i.e.,

7.ThebladesofawindmillsweepoutacircleofareaA.(a)Ifthewindflowsata

velocityvperpendiculartothecircle,whatisthemassoftheairpassingthroughitin

timet?(b)Whatisthekineticenergyoftheair?(c)Assumethatthewindmillconverts

25%ofthewind'senergyintoelectricalenergy,andthatA= ,v=36km/handthe

densityofairis1.2kg .Whatistheelectricalpowerproduced?

Ans.Areaofthecirclesweptbythewindmill=A

Velocityofthewind=v

Densityofair=p

(a)Volumeofthewindflowingthroughthewindmillpersec=Av

Massofthewindflowingthroughthewindmillpersec=pAv

Massm,ofthewindflowingthroughthewindmillintimet=pAvt

(b)Kineticenergyofair

(c)Areaofthecirclesweptbythewindmill=A=30m2

Velocityofthewind=v=36km/h

Densityofair,

Electricenergyproduced=25%ofthewindenergy

Electricalpower

5MarksQuestions

1.(a)Definepotentialenergy.Giveexamples.

(b)Drawagraphshowingvariationofpotentialenergy,kineticenergyandthetotal

energyofabodyfreelyfallingonearthfromaheighth?

Ans:(a)Potentialenergyistheenergypossessedbyabodybyvirtueofitspositioninafield

orduetochangeinitsconfigurationexample–Agascompressedinacylinder,Awound

springofawater,waterraisedtotheoverheadtankinahouseetc.

(i)Gravitationalpotentialenergydecreasesasthebodyfallsdownwardsandiszeroatthe

earth

(ii)Kineticenergyincreasesasthebodyfallsdownwardsandismaximumwhenthebody

juststrikestheground.

(iii)Accordingtolawofconservationofenergytotalmechanical(KE+PE)energyremains

constant.

2.Answerthefollowing:

(a)Thecasingofarocketinflightburnsupduetofriction.Atwhoseexpenseistheheat

energyrequiredforburningobtained?Therocketortheatmosphere?

(b)Cometsmovearoundthesuninhighlyellipticalorbits.Thegravitationalforceon

thecometduetothesunisnotnormaltothecomet'svelocityingeneral.Yetthework

donebythegravitationalforceovereverycompleteorbitofthecometiszero.Why?

(c)Anartificialsatelliteorbitingtheearthinverythinatmospherelosesitsenergy

graduallyduetodissipationagainstatmosphericresistance,howeversmall.Whythen

doesitsspeedincreaseprogressivelyasitcomescloserandclosertotheearth?

(d)InFig.6.13(i)themanwalks2mcarryingamassof15kgonhishands.InFig.

6.13(ii),hewalksthesamedistancepullingtheropebehindhim.Theropegoesovera

pulley,andamassof15kghangsatitsotherend.Inwhichcaseistheworkdone

greater?

Fig.6.13

Ans.(a)Rocket

Theburningofthecasingofarocketinflight(duetofriction)resultsinthereductionofthe

massoftherocket.

Accordingtotheconservationofenergy:

TotalEnergy(T.E.)=Potentialenegry(P.E.)+Kineticenergy(K.E.)

Thereductionintherocket'smasscausesadropinthetotalenergy.Therefore,theheat

energyrequiredfortheburningisobtainedfromtherocket.

(b)Gravitationalforceisaconservativeforce.Sincetheworkdonebyaconservativeforce

overaclosedpathiszero,theworkdonebythegravitationalforceovereverycompleteorbit

ofacometiszero.

(c)Whenanartificialsatellite,orbitingaroundearth,movesclosertoearth,itspotential

energydecreasesbecauseofthereductionintheheight.Sincethetotalenergyofthesystem

remainsconstant,thereductioninP.E.resultsinanincreaseinK.E.Hence,thevelocityof

thesatelliteincreases.However,duetoatmosphericfriction,thetotalenergyofthesatellite

decreasesbyasmallamount.

(d)Inthesecondcase

Case(i)

Mass,m=15kg

Displacement,s=2m

Workdone,W

Where, =Anglebetweenforceanddisplacement

Case(ii)

Mass,m=15kg

Displacement,s=2m

Here,thedirectionoftheforceappliedontheropeandthedirectionofthedisplacementof

theropearesame.

Therefore,theanglebetweenthem,

Since

Workdone,

=

Hence,moreworkisdoneinthesecondcase.

3.Araindropofradius2mmfallsfromaheightof500mabovetheground.Itfalls

withdecreasingacceleration(duetoviscousresistanceoftheair)untilathalfits

originalheight,itattainsitsmaximum(terminal)speed,andmoveswithuniformspeed

thereafter.Whatistheworkdonebythegravitationalforceonthedropinthefirstand

secondhalfofitsjourney?Whatistheworkdonebytheresistiveforceintheentire

journeyifitsspeedonreachingthegroundis ?

Ans.Radiusoftheraindrop,r=2mm= m

Volumeoftheraindrop,

Densityofwater,

Massoftheraindrop,

=

Gravitationalforce,F=mg

=

Theworkdonebythegravitationalforceonthedropinthefirsthalfofitsjourney:

=

=0.082J

Thisamountofworkisequaltotheworkdonebythegravitationalforceonthedropinthe

secondhalfofitsjourney,i.e., ,=0.082J

Asperthelawofconservationofenergy,ifnoresistiveforceispresent,thenthetotalenergy

oftheraindropwillremainthesame.

∴Totalenergyatthetop:

=

=0.164J

Duetothepresenceofaresistiveforce,thedrophitsthegroundwithavelocityof10m/s.

∴Totalenergyattheground:

∴Resistiveforce=

4.Twoidenticalballbearingsincontactwitheachotherandrestingonafrictionless

tablearehithead-onbyanotherballbearingofthesamemassmovinginitiallywitha

speedV.Ifthecollisioniselastic,whichofthefollowingfigureisapossibleresultafter

collision?

Ans.Case(ii)

Itcanbeobservedthatthetotalmomentumbeforeandaftercollisionineachcaseis

constant.

Foranelasticcollision,thetotalkineticenergyofasystemremainsconservedbeforeand

aftercollision.

Formassofeachballbearingm,wecanwrite:

Totalkineticenergyofthesystembeforecollision:

Case(i)

Totalkineticenergyofthesystemaftercollision:

Hence,thekineticenergyofthesystemisnotconservedincase(i).

Case(ii)

Totalkineticenergyofthesystemaftercollision:

Hence,thekineticenergyofthesystemisconservedincase(ii).

Case(iii)

Totalkineticenergyofthesystemaftercollision:

Hence,thekineticenergyofthesystemisnotconservedincase(iii).

5.Abulletofmass0.012kgandhorizontalspeed strikesablockofwoodof

mass0.4kgandinstantlycomestorestwithrespecttotheblock.Theblockis

suspendedfromtheceilingbymeansofthinwires.Calculatetheheighttowhichthe

blockrises.Also,estimatetheamountofheatproducedintheblock.

Ans.

Massofthebullet,m=0.012kg

Initialspeedofthebullet, =70m/s

Massofthewoodenblock,M=0.4kg

Initialspeedofthewoodenblock, =0

Finalspeedofthesystemofthebulletandtheblock=v

Applyingthelawofconservationofmomentum:

Forthesystemofthebulletandthewoodenblock:

Massofthesystem,m'=0.412kg

Velocityofthesystem=2.04m/s

Heightuptowhichthesystemrises=h

Applyingthelawofconservationofenergytothissystem:

Potentialenergyatthehighestpoint=Kineticenergyatthelowestpoint

Thewoodenblockwillrisetoaheightof0.2123m.

Heatproduced=Kineticenergyofthebullet-Kineticenergyofthesystem

6.Twoinclinedfrictionlesstracks,onegradualandtheothersteepmeetatAfrom

wheretwostonesareallowedtoslidedownfromrest,oneoneachtrack(Fig.6.16).Will

thestonesreachthebottomatthesametime?Willtheyreachtherewiththesame

speed?Explain.Given =30°, =60°,andh=10m,whatarethespeedsandtimes

takenbythetwostones?

Ans.

No;thestonemovingdownthesteepplanewillreachthebottomfirst

Yes;thestoneswillreachthebottomwiththesamespeed

=14m/s

=2.86s; =1.65s

Thegivensituationcanbeshownasinthefollowingfigure:

Here,theinitialheight(AD)forboththestonesisthesame(h).Hence,bothwillhavethe

samepotentialenergyatpointA.

Asperthelawofconservationofenergy,thekineticenergyofthestonesatpointsBandC

willalsobethesame,i.e.,

,say

Where,

m=Massofeachstone

v=SpeedofeachstoneatpointsBandC

Hence,bothstoneswillreachthebottomwiththesamespeed,v.

ForstoneI:

Netforceactingonthisstoneisgivenby:

ForstoneII:

Usingthefirstequationofmotion,thetimeofslidecanbeobtainedas:

ForstoneI:

ForstoneII:

Hence,thestonemovingdownthesteepplanewillreachthebottomfirst.

Thespeed(v)ofeachstoneatpointsBandCisgivenbytherelationobtainedfromthelawof

conservationofenergy.

Thetimesaregivenas: