catalyzed chemoselective amide reduction - diva portal

108
! " #$! $%$$ &'( ) *( + , -% . % . &/0 , 1 2% 3 4 % . 4 ( ( % &( 4 1( 15 % . &/0 , 2 6% 3 ( 4 4 % 7 ( 4 % . 4 8 1 ( 4 / 9 : !0% . 4 4 4 ( 1( 1( 9(;21 % 4 4 % . 1( 1 ( 4 % ! #$! <==%%=>?<<<<9;;,$ 3-" @!A@!,9@@; 3-" @!A@!,9@@## " ( $, @

Upload: khangminh22

Post on 28-Mar-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

Searching for new Mo(CO)6 reactions

Abstract

in situ

N

N

Populärvetenskaplig Sammanfattning påSvenska

List of Publications

I. Chemoselective Reduction of Tertiary Amides underThermal Control: Formation of either Aldehydes orAmines

Angewandte Chemie International Edition 2016 55

II. Transformation of Amides into Highly FunctionalizedTriazolines

ACS Catalysis 2017 7

III. Mild Reductive Functionalization of Amides intoN Sulfonylformamidines

ChemistryOpen 2017 6

IV. An Efficient One pot Procedure for the DirectPreparation of 4,5 Dihydroisoxazoles from Amides

Advanced Synthesis and Catalysis 2017 359

V. Facile Preparation of Pyrimidinediones andThioacrylamides by Reductive Functionalization ofAmides

Chemical Communications 2017 53

Papers not included as part of this thesis:

Chemoselective Reduction of Carboxamides

Chemical Society Reviews 2016 45

Third Generation Amino Acid Furanoside Based Ligands fromMannose for the Asymmetric Transfer Hydrogenation of

Ketones: Catalysts with an Exceptionally Wide Substrate Scope

Advanced Synthesis & Catalysis 2016 358

Bimetallic Catalysis: Asymmetric Transfer Hydrogenation ofSterically Hindered Ketones Catalyzed by Ruthenium andPotassium

ChemCatChem 2015 7

Mo(CO)6 Catalysed Chemoselective Hydrosilylation of, Unsaturated Amides for the Formation of Allylamines

Chemical Communications 2014 50

Ruthenium Catalyzed Tandem Isomerization/Asymmetric Transfer Hydrogenation of Allylic Alcohols

Chemistry A European Journal 2014 20

Automated Annotation and Quantification of Metabolites in1H NMR Data of Biological Origin

Analytical and Bioanalytical Chemistry 2012 403

Contents

N

Abbreviations

ee

p

1. Introduction

1.1 Amides

Figure 1. a) The resonance stabilization by the nitrogen lone pair, the origin ofthe stability. b) The orbital overlap that contributes to the planar conformationof the amides. c) Order of stability for different carbonyl compounds.

N

Scheme 1. Substitution reaction of non planar amide with methanol.

1.2 Reduction of Amides

Scheme 2. Different products formed in the reduction of amides through (a) C–Oand (b) C–N bond cleavage. c) Amide reduction into enamine.

1.2.1 Non Catalytic Reduction of Amides

in situ

N N

1.2.2 Catalytic Hydrogenation of Amides

et al.

Scheme 3. Chemoselective hydrogenation of a secondary amide containing anester moiety.

1.2.3 Catalytic Hydrosilylation of Amides

Figure 2. Structures of a few commercially available silanes used in hydrosilylations.

Scheme 4. Reaction mechanisms suggested for the hydrosilylation;a) Chalk Harrod, b) modified Chalk Harrod, c) bond metathesis and, d) Lewisacid catalyzed.

1.2.4 Chemoselective Reduction of Amides to Amines

et al.

R

R

Scheme 5. Chemoselective reduction as final step in the synthesis of(R) Verapamil.

A

B

Scheme 6. Chemoselective reduction by prior activation of the amide with Tf2O.

Scheme 7. Synthesis of Donepezil.

– epiConium maculatum

Scheme 8. Synthesis of (–) 2 epi pseudoconhydrine.

Scheme 9. Hydrosilylation protocols developed by the Nagashima group.

Scheme 10. Application of the hydrosilylation protocol developed by the Nagashima group in the synthesis of (+) Neostenine.

Scheme 11. Hydrosilylation protocols developed by the Beller group.

Scheme 12. Amide reduction developed by the Brookhart group.

Boc

Scheme 13. Hydrosilylation protocols developed by the Adolfsson group (a andb) and by Keinan and Perez (c).

Scheme 14. Synthesis of Naftifine by hydrosilylation.

Scheme 15. Hydrosilylation protocol developed by Blanchet.

1.2.5 Chemoselective Reduction of Amides to Aldehydes

hydrozirconation

Boc

in situ

in situ

Scheme 16. Hydrozirconation of amides into aldehydes developed by Georg.

B

Scheme 17. Chemoselective amide reduction developed by the Charette group.

i

Scheme 18. Hydrosilylation of tertiary amides followed by hydrolysis of theformed enamines resulted in aldehydes as final products.

1.3 Reductive Functionalization of Amides

in situ

Scheme 19. General scheme showing (a) electrophilic and (b and c) nucleophilicactivation and functionalization of amides.

1.3.1 Electrophilic Activation of Amides

A

CB

C B

Scheme 20. Different intermediates that can be formed by activation of amideswith triflic anhydride.

D E

F

a) b) c) d) e) f)

ReductionCitric acid

or aqueous NaHCO3

R4(SO)R5 1. R4mMXn

2. H3O+

Scheme 21. Transformations of amides using Tf2O/2 FPyr as activating reagent.

a

Scheme 22. Selected applications of the Tf2O activation of amides.

1.3.2 Nucleophilic Activation of Amides

N

Scheme 23. Chemoselective reductive nucleophilic addition developed by Chida.

N

TMS-CN

Scheme 24. Different nucleophiles used in the reductive functionalization ofamides by the Chida group.

N

Scheme 25. Activation and allylation of a N methoxy amide in the synthesis of(±) Gephyrotoxin.

N

Scheme 26. Alkylation of amides by prior formation of iminium ions.

Aspidospermaepi

Scheme 27. Alkylation of amides by the prior activation/reduction withIrCl(CO)(PPh3)2.

N

NN O

p

Scheme 28. Reductive functionalization developed by the Chida group, employing the IrCl(CO)(PPh3)2 based reduction protocol for the initial reduction.

1.4 Objectives of the Thesis

NN

2. Chemoselective Reduction of TertiaryAmides under Thermal Control (Paper I)

1a 3a

1a´

Scheme 29. a) Previous work. b) Temperature controlled hydrosilylation protocol.

1a’

N N N N

2a p 1b

2bN 2b

2d2e

2f 2gp

1h2h

2i 2j2k 2l

Boc 1j

2m 2q

1mN N

2r 2s

2b, 80% 2 h, 0 °C

3 h, r.t., 86%a

13 h, r.t., 83%b

2c, 67% 6 h, 65 °C

2d, 92% 3 h, r.t.

2e, 81% 48 h, –5 °C

2f,c 69% 5 h, 0 °C

2g,c 95% 24 h, –5 °C

2h,d 81% 5 h, 50 °C

2i, 88% 3 h, r.t.

2j, 62% 5 h, 40 °C

2k,e,f 79%9 h, 40 °C

2l, 74% 16 h, 50 °C

2m, 81% 10 h, 60 °C

2 h, r.t., 88%g

2n, 83% 3 h, 60 °C

2o, 86% 3 h, r.t.

2p,h 82% 5 h, 65 °C

2q, 88% 4 h, 50 °C

N

O

MeO2r,f 81% 24 h, r.t.

2s,f 80% 1 h, 40 °C

Scheme 30. Chemoselective formation of aldehydes from piperidine derived amides 1 (1.0 mmol), isolated yields. a Dibenzyl derived amide 1b’. b Morpholinederived amide 1b’’. c 1H NMR yields using 1,3,5 trimethoxybenzene as internalstandard. d Mo(CO)6 (10 mol%), TMDS (6.0 equiv). e TMDS (8.0 equiv). f Isolationwas performed on 0.5 mmol scale. g N,N dimethyl derived amide 1m’. h Mo(CO)6(10 mol%).

1b 1c

NN N 3b’ 3b’’ N N 3m’

3k 3u

1d 3d3f 3g 3t

1u3u

3h 3i 3v 3j 3m 3w 3m’3k

1r 1s3r 3s

3a, 97% 5 h, 80 °C

3b, 95% 2 h, 70 °C

3b’, 94% 3 h, 80 °C

3b’’, 77% 5 h, 80 °C

3c, 74% 24 h, 80 °C

3d, 92% 3 h, 80 °C

3t, 81% 3 h, 80 °C

3f: X = O, 82%a

3g: X = S, 78%b3u,c 68% 4 h, 80 °C

3h,d 74% 4 h, 80 °C

3i, 78% 3 h, 80 °C

3v, 79% 3 h, 80 °C

3j, 76% 4 h, 80 °C

3m: 4-CO2Me, 86%e

3w: 2-CO2Me, 81%f3m’, 70% 5 h, 80 °C

3k,g 68% 24 h, 80 °C

3r,g 79% 1 h, 80 °C

3s,g 88% 1 h, 80 °C

Scheme 31. Chemoselective formation of amines from amides (1.0 mmol), isolated yields. a 2 h, 65 °C. b 5 h, 65 °C. c 99% ee. d Mo(CO)6 (10 mol%), TMDS(2.0 mmol). e TMDS (2.0 equiv), 9 h, 80 °C. f 24 h, 65 °C. g Isolation was performedon 0.5 mmol scale.

3n 3p

Scheme 32. Chemoselective reduction of amides to amines.

1l p

6a vide infra

2.1 Competitive Study – Chemoselectivity

1b 3b4 2b

Scheme 33. Competitive reduction between amide 1b, ketone 4 and aldehyde 2b.

2.2 Applications of the Reduction Protocol

1d

2d

Scheme 34. Scale up reactions of the chemoselective and tunable amide reduction into aldehyde and amine.

5

5

Scheme 35. Employing the Mo(CO)6 catalyzed protocol for late stage functionalization in the synthesis of Donepezil.

2.3 Conclusions

2d 3d

3. Mo(CO)6 Catalyzed Enamine Formationfrom Amides (Papers II – V)

3.1 Introduction

Scheme 36. Enamine formation a) with acid catalysis, b) Pd catalyzed amination of vinyl halides, and c) hydroaminomethylation of alkenes.

viai

Scheme 37. Enamine synthesis by hydrosilylation a) employing stoichiometricamounts of Ti(OiPr)4, b) Ir catalysis, and c) base mediated amide hydrosilylation.

t

Scheme 38. Application of the hydrosilylation protocol in the synthesis of Turkiyenine.

viaA

B

R1N

OR3

R2H

M-H R1N

R3

R2H

H OMR1

NR3

R2H

R1N

R3

R2

HDeprotonation

Elimination

Iminium ionB

HemiaminalA

Enamine

Amide

Deprotonation

Reduction-OSiR3

Scheme 39. Suggested pathways for the formation of enamines by hydrosilylation.

3.2 Optimization

trans

Table 1. Optimization of reaction conditions for the enamine formation.a

Entry Solvent Time [h] Enamine 7a [%]b

6a

3.3 Scope

7b 7h

6b 6c 6f 6g 6h6g

6i 6j

vide infra 6k

7a, >95% 1 h

7b, >95% 3 h

7c, >95% 3 h

7d, >95% 1 h

7e, >95% 1 h

7f, >95%2 h, 75 °C

7g,a 85% 24 h

7h, 80% 2 h

7i, >95% 3 h

7j,a >95% 2 h

7k,b 67% 7 h

7l, 70% 2 h, 80 °C

7m, >95% 1 h

7n, 89% 5 h, 40 °C

7o, >95% 4 h

7p, >95% 0.5 h

7q, >95%3 h

7r, >95% 1 h

7s, >95% 2 h

7t, >95% 1 h

7u, >95% 5 h

7v, >95% 1 h

7w,c 88% 3 h

7x,a >95% 24 h

7y,d >95% 15 h

7z,a >95% 9 h

Scheme 40. Chemoselective formation of enamines from amides (0.5 mmol).1H NMR yields using 1,3,5 trimethoxybenzene as internal standard. a Mo(CO)6(5 mol%). b 1,4 dimethoxybenzene was used as internal standard. c Unpublishedresults. d Et3N (10 mol%) added.

6l

7l

7m 7n7o

6q6a

N 7s 7t7u 7v

7wN N 6x

N 6y

7z

6a 6p 6r

Table 2. Comparison between amides with different N substituents in the formation of enamines.a

Entry Amide Enamine [%]

6a 7a

6p 7p

6r 7r6

6aa 6ad6ae

6af

6ag6ah

6ai6aj

6ak

6al

6al

6aa 6ab 6ac 6ad

6ae 6af 6ag 6ah

6ai 6aj 6ak 6al

Scheme 41. Amides that did not successfully undergo enamine formation usingthe Mo(CO)6 catalyzed protocol.

trans 7k

3.4 Conclusions

e.g

4. Reductive Functionalization of Amides intoTriazolines and Triazoles (Paper II)

4.1 Introduction

Hi

Figure 3. Structures of triazoline and triazole.

Scheme 42. Cu catalyzed “Click” reaction between an alkyne and an azide forming triazole as product.

i

ACS Catalysis 2017 7triazolines triazoles.

e.g

in situet al.

p

Scheme 43. Synthesis of triazolines through a) 1,3 cycloaddition of azides withactivated olefins, b) cycloaddition with in situ formed enamines, c) triazole formation via triazoline intermediates.

in situ

4.2 Results

8a 7a9a

Scheme 44. One pot formation of triazolines from amides.

9d

7b7c

9d 6k9e

cis 6l9f

9g 9h 9i

9a, 91% 2 h

9b, 86% 2 h

9c, 88% 2 h

9d, 83% 2.5 h

9e,a,b 61% 15 h

9f, 66% 3 h

9g, 94% 2 h

9h, 84% 2.5 h

9i, 88% 3 h

Scheme 45. Evaluation of tertiary amides 6 in the chemoselective reduction andsubsequent cycloaddition reaction with enamines from amides (1 mmol) withorganic azide 8a, isolated yields. a Reaction performed at 60 °C. b Diastereomerswere obtained in a 2:1 ratio.

Scheme 46. Distribution of diastereomers for compound 9e.

6al

in situ

p8b

9j

Scheme 47. Tandem reaction for the aldehyde containing amide 6al (0.5 mmol)into the corresponding triazoline 9j.

Table 3. Comparison between enamines containing different N substituents inthe cyclization with phenyl azide (8).a

Entry Enamine Triazoline [%]

7a 9a

7p 9k

7r 9n6

7a 7p7r

7p

N 9k 9q

9k, 90% 3 h

9l, 72% 3 h

9m, 78% 1 h

9n, 92% 3 h

9o, 90% 5 h

9p,a 82% 5 h

9q,a 60% 3 h

Scheme 48. Evaluation of tertiary amides 6 in the chemoselective reduction andsubsequent cycloaddition reaction of enamines from amides (1 mmol), isolatedyields. a p CF3 phenyl azide (8b) was used.

9r9s 9t 9v 9aa 9y

9x 9ai 4aj 4ak9ah

9r, 92% 3 h

9s, 85% 3 h

9t, 93% 3 h

9u, 88% 2 h

9v, 78% 3 h, 65 °C

9w, 75% 15 h, 65 °C

9x, 88% 3 h, r.t.

9y, 79% 22 h, 50 °C

9z, 95% 3 h

9aa, 82% 3 h

9ab, 80%2 h

9ac, 85% 3 h

9ad, 92% 2 h

9ae, 89% 20 h

9af, 97% 3 h

9ag, 85% 7 h

9ah, 35% 3 h

9ai, 91% 3 h

9aj, 90% 3 h

9ak, 93% 3 h

Scheme 49. Evaluation of organic azides 8 in the chemoselective reduction andsubsequent cycloaddition reaction with enamines from amides 6 (1 mmol), isolated yields.

7g pp

8b 10a

10b

10c

10d 10e

10e

10a,a 58% 15 h, r.t.

10b,b,c 79% 24 h, 80 °C

10c,b 96% 65 h, 80 °C

10d,a,d 92% 3 h, 65 °C

10e,b,d 78% 2 h, r.t.

Scheme 50. Evaluation of tertiary amides 6 and azides 8 in the chemoselectivereduction and subsequent cycloaddition reaction with enamines from amides(1 mmol), isolated yields. a Piperidine derived amide was used. b Pyrrolidine derived amide was used. c Isolation was performed on 0.5 mmol scale. d KOH inmethanol (2M, 0.25 equiv) was added and reaction was left for additional 3 h at65 °C.

9aj10f

Scheme 51. Scale up reactions of the protocols for (a) triazoline and (b) triazoleformation.

4.3 Conclusions

5. Reductive Functionalization of Amides intoN Sulfonylformamidines (Paper III)

5.1 Introduction

et al.

et al

R1 NH2

O AlMe3 2.8 equivR2 NH2

R1 NH

OR2

R3

HN

R4

1. Ph3P / I2 1.5 equivEt3N 5.0 equiv

R1 N

NR2

R4

R1 NH2

NR2

R1 N

OR3

R2R4

HN

R5

1. Tf2O 1.3 equiv

R1 N

NR3

R5R4

R2 = H

R1 N

NR3

R4

R2 = alkylR5 = H

R2

or2.

2.

a)

b)

c) R3

R1 NR3 TsN3 1.5 equiv

CH2Cl2, r.t., 20 min

d)

R2 R1 N

NR3

R2

Ts

Scheme 52. Preparation of amidines through electrophilic amide activationa) by Charette and Grenon, b) Velavan et al. and c) Phakhodee et al.

N N

5.2 Results

11a9 N 12a

11a12a

6ae

Scheme 53. One pot formation of N sulfonylformamidine by reductive functionalization of amides.

N in situ 711a

N N 12b 12c12d 12e N N 12f N N

12g 12h 12i 12jN N 12k

12a, 78% 12b, 64% 12c,a 60%

12d, 68% 12e,a 57% 12f, 75%

SN

O O

NiPr

iPr

12g, 72% 12h, 66% 12i, 58%

12j, 39% 12k, 63%Scheme 54. Evaluation of tertiary amides 6 in the chemoselective reduction andsubsequent reaction of enamines from amides (1 mmol) with sulfonyl azide 11a,isolated yields. a p NO2 sulfonyl azide 11b was used.

N

12o 12t 12p 12x12w 12v

N 12z 12aa

12l, 50% 12m, 57% 12n, 50%

12o, 70% 12p, 49% 12q, 61%

12r, 63% 12s, 55% 12t, 60%

12u, 54% 12v, 79% 12w, 60%

12x, 47% 12y, 69%

12z, 83% 12aa, 58% Scheme 55. Evaluation of sulfonyl azides (11) in the chemoselective reductionand subsequent reaction of enamine from amide 6p (1 mmol) with sulfonyl azides, isolated yields.

N 12a

Scheme 56. Synthesis of N sulfonylformamidine 12a on a preparative scale.

9

10

N NH 10

N

12

Scheme 57. Proposed mechanism for the cleavage of the formed triazoline bya) Ramström, Yan and Houk, b) Li and co workers.

9

13

14via

13

Scheme 58. Proposed mechanism of triazoline decomposition leading toN sulfonylformamidine and aryldiazomethane (13) and trapping experimentwith benzoic acid to form ester 14.

5.3 Conclusions

N

N

N 12a

via 13

6. Reductive Functionalization of Amides into4,5 Dihydroisoxazoles (Paper IV)

6.1 Introduction

ii

in situ

Scheme 59. In situ preparation of nitrile oxides.

ii

Adv. Synth. Catal. 2017 3592 isoxazoline.

Scheme 60. Synthesis of 4,5 dihydroisoxazoles from (a) alkenes, (b) isolatedenamines and (c) in situ prepared enamines.

in situ,

N

ON

NO

N

SO2NH2ValdecoxibYield: 60%

N

Cl

OH

0.8 equiv

Et3N 1.1 equiv

DCM, 25 °C, 2 - 3 h

89% GC yield

69% GC yield

Scheme 61. Reported synthesis of Valdecoxib, a nonsteroidal anti infammatorydrug.

6.2 Results

in situ7p

16a15a

in situ 15a

16a

Table 4. Optimization of reaction conditions for the formation of 2 isoxazoline.a

Entry 15a [equiv] Additive [equiv] 2 Isoxazoline 16a [%]b

15a 6p7p

16a 16b16c 16d 16e

16f N N 16g 16h16i

N N 6w

16a, 84% 16b, 94% 16c, 84% 16d, 85%

16e, 93% 16f, 84% 16g,a 92% 16h, 79%

16i, 81% 16j, 93% 16k, 80% 16l, 91%

16m, 80% 16n, 55% 16o, 91%

16p, 93% 16q, 96% 16r,a 74%Scheme 62. Evaluation of tertiary amides 6 in the chemoselective reduction andsubsequent cycloaddition reaction with enamines from amides (1 mmol), isolatedyields. a Isolation was performed on 0.5 mmol scale.

16l 16j 16k16o

6c 6h

16m

16n6l

16o 16p 16q 16r6o

p 16s16t p 16u p 16v

16w

16x 16y

16s, 89% 16t, 91% 16u, 90% 16v, 87%

16w, 80% 16x, 89% 16y, 83%Scheme 63. Evaluation of hydroximinoyl chlorides 15 in the chemoselective reduction and subsequent cycloaddition reaction with enamine from amide 6p(1 mmol), isolated yields.

17

16a19

19

Scheme 64. a) Different regioisomers that can be formed in the 1,3 dipolar cycloaddition. b) Determination of the regioisomer formed under the developedreaction conditions.

6.3 Conclusions

via

7. Reductive Functionalization of Amides intoPyrimidinediones and Thioacrylamides(Paper V)

7.1 Introduction

et al.in situ

Scheme 65. (a) General structure of pyrimidinedione. Synthesis of pyrimidinediones by (b) cyclization and (c) dimerization of ynamides.

Scheme 66. The synthesis of thioacrylamides from enamines (a) and (b) amides.

7.2 Results

20a 7p21a 22a

22a

20a

6p22a

Scheme 67. Formation of pyrimidinedione 22a from enamine 7p.

7a 7p

N N 7r22a

Table 5. Comparison between enamines containing different N substituents inthe cyclization with phenyl isocyanate (20a).a

Entry Enamine Pyrimidinedione 22a [%]

7a

7p

7r6

22b 22c

6l 22d22e

22f 22g 22h22i

7f

20a p20b

22f

p 7g

22a,a 75% 22b, 92% 22c, 76%

22d, 57% 22e,a 85% 22f,a,b 85%

22g,a,c 64% 22h,d 71% 22i,d,e 76%

Scheme 68. Evaluation of amides 6 in the chemoselective reduction and subsequent functionalization with enamines from piperidine derivated amides(1 mmol), isolated yields. a Enamine from pyrrolidine derivated amide was used.b p Fluoro phenyl isocyanate 20b (3.5 equiv) was used, 65 °C, 72 h. c 65 °C, 16 h.d Isolation was performed on 0.5 mmol scale. e Phenyl isocyanate 20a (3.0 equiv)was used.

20N

22j

22k 22l 22m22n 22o

p

22j, 40% 22k,a 83% 22l,b 75%

N

N

OPh

O

CN

CN

22m, 94% 22n,a,c 86% 22o, 84%Scheme 69. Evaluation of aryl isocyanates 20 in the chemoselective reductionand subsequent functionalization with enamine from amide 6p (1 mmol), isolatedyields. a 65 °C, 16 h. b Isocyanate (3.0 equiv), 65 °C, 16 h. Isolation was performedon 0.5 mmol scale.

23a24a

25a

23a25a

6p25a6p

22

Scheme 70. Evaluation of phenyl isothiocyanate 23a in the synthesis of pyrimidinethione 24a. Formation of pyrimidinedione 22a from enamine 7p.

25a 25g

p 7g

25e N

25f 25g N N 25h

7p N N 7r 7a7q

25i25j 25k 25l

ptert

7p

25a, 94% 25b, 94% 25c, 75% 25d, 60%

25e, 89% 25f, 67% 25g, 39% 25h, 71%

25i, 83% 25j, 82%

25k, 94% 25l, 97%Scheme 71. Evaluation of amides (6) and isothiocyanates (23) in the chemoselective reduction and subsequent functionalization of enamines from amides(1 mmol), isolated yields.

257

25a26

d6

et al

N

Scheme 72. Hydrolysis of thioacrylamide 25a into the corresponding aldehyde26.

7.3 Conclusions

insitu

in situ

Concluding Remarks

N

N

Appendix A: Contribution List

I.

II.

III.

IV.

V.

Appendix B: Reprint Permissions

I.Angew. Chem. Int. Ed., 2016 55

II.

ACS Catalysis 2017 7

III.ChemistryOpen 2017 6

IV.Adv. Synth. Catal. 2017 359

V.Chem. Commun. 2017 53

Acknowledgements

Hans Adolfsson

Pher G. Andersson

Hasse Fredrik Paz Alexey ErikMarkus

Dr. Paz TrilloDr. Fredrik Tinnis Dr. Helena Lundberg Dr. Alexey Volkov Andrey Shatskiy Ida Pershagen Tove Kivijärvi Gabriella Kervefors

Fredrik Alexey Paz

Fredrik

Alexeythe hard way

Paz

Tove Gabriella

Berit Olofsson Nicklas Selander

Grasshopper

Broffice

Jenny Louise Sigrid Carin Kristina Ola MartinCarin

girl gangSara Johanna Tanja Elin Gabbi Tove

Department of Organic Chemistry

Knut & Alice Wallenbergs Stiftelse Ångpanneföreningens Forskningsstiftelse Gålöstiftelsen Stiftelsen Längmanska KulturfondenHelge Ax:on Johnsons stiftelse Vetenskapsrådet The Royal SwedishAcademy of Science

To all my friends and relatives, especially the Delzanno mob!

Moa Sara

Isabelle

mum dad

Frida

Erik

References

2017

Green Chemistry: Theory and Practice1998Chem. Eur. J. 2017 23

Adv. Drug Deliver. Rev 2002 54Nature 2011 480

The Chemistry of Amides 1970

Stereoelectronic Effects: A Bridge between Structure andReactivity 2016

J. Org. Chem 2016 81, Angew. Chem. Int. Ed 2015 54

Adv. Synth. Catal 2014356

Angew. Chem. Int. Ed 2012 51Top. Catal 2010

53J. Org. Chem 1986 51

J. Org. Chem 1988 53Synthesis 1987 12

J. Chem. Soc., Perkin Trans 1 1990

Synthesis 2006 2Chem. Com

mun 2009 12Org. Process Res. Dev 2006

10

Org. Process Res. Dev. 2003 7

Prudent Practices in the Laboratory: Handling and Disposal of Chemicals1995

Studies in Organic Chemistry 1: Complex Hydrides1979 Reductions by Alumino and Boro hydrides inOrganic Synthesis 1991

Tetrahedron Lett 1976 17J. Chem. Soc., Perkin Trans. 1

1980 1 Synthesis 1986 6

J. Org. Chem. 1992 57

Tetrahedron Lett 2011 52

Tetrahedron Lett 196952

J. Korean Chem. Soc 1983 27

J. Org. Chem 1973 38J. Org. Chem 1968 33

Tetrahedron 1992 48Angew. Chem. Int. Ed 1989 28J. Chem. Soc., Perkin Trans. 1

1991 J. Org. Chem1981 46

Synthesis 1975 9Justus Liebigs Ann. Chem 1959 623

et al 19642005

Bull. Korean Chem. Soc 2009 30

J. Am. Chem. Soc. 1964 86J. Am. Chem. Soc 1964 86

J. Am. Chem. Soc 1964 86Tetrahedron Lett 1981 22

Angew. Chem. Int. Ed. 199938

Chem. Rev 2014 114Catalysis Without Precious Metals2010

Chem. Soc. Rev2016 45

Chem. Eur. J. 2017 23ChemCatChem 2016 8

The Chemistry of Organic Silicon Compounds1989 Comprehensive Hand

book on Hydrosilylation 1992Catalytic Asymmetric Synthesis1993 Catalytic Asymmetric

Synthesis 2000Org. Process Res. Dev 2016 20

Org. Process Res. Dev 2010 14J. Chem. Soc., Perkin Trans. 1

1999J. Am. Chem. Soc. 1999 121

Synlett 2005 12Polymethylhydrosiloxane, e EROS Encyclopedia of Reagents for Or

ganic Synthesis, 2003 Silicones: Preparation, Properties and Performance

2005Tetrahedron Lett 1998 39

Chem. Commun. 2007 46

J. Am. Chem. Soc. 2009 131J. Am. Chem. Soc. 2012 134

Angew. Chem. Int. Ed 2015 54An

gew. Chem. Int. Ed 2009 48Angew. Chem. Int. Ed 2012 51

Chem. Commun 2011 47ChemCatChem 2011

3 Eur. J. Org. Chem2013 Angew.Chem. Int. Ed 2009 48

J. Am. Chem. Soc 2013 135Appl. Organomet. Chem 2010 24

J. Am. Chem. Soc 2010Chem. Eur. J

2011 17Org. Lett. 2015 17

Chem. Eur. J. 2011 17

Adv. Synth. Catal 2013355

Tetrahedron Lett 2015 56ACS Catal 2015 5

Angew. Chem. Int. Ed. 2013 52J. Org. Chem 2014 79

Chem. Commun 2014 50

J. Am. Chem. Soc 1965 87Angew. Chem. Int. Ed 1988 27

Organometallics 1992 11

Organometallics 2002 21

J. Organomet. Chem 1975 94Modern Reduction Methods

2008Organometallics 2010 29

J. Am. Chem. Soc. 2012 134

Organometallics 2015 34Dalton Trans

2015 44

J. Org. Chem 1978 43J. Organomet. Chem 1976 117

J. Am. Chem. Soc 1996 118J. Org. Chem 2000 65

Angew. Chem. Int. Ed. 2008 47

J. Am. Chem. Soc 1964 86Kirk Othmer Encyclopedia of Chemi

cal Technology 1992

Org.Process Res. Dev 2000 4

J. Am. Chem. Soc 2008 130

J. Am. Chem. Soc 2010 132

J. Org. Chem 2016 81Synthesis 2014

46Org. Chem. Front 2015 2

Synlett 2010Organometallics 2011 30

Chem. Eur. J. 2016 22Chem. Commun 2012 48

Chem. Eur. J 2016 22

Chem. Commun. 2014 50J. Org. Chem. 1987 52

Chem. Eur. J. 2017 23J. Am. Chem. Soc 2000 122

Tetrahedron Lett 2004 45

J. Am. Chem. Soc2007 129

Org. Lett 2014 16Angew. Chem. Int. Ed. 1996 35

Ber. Dtsch. Chem. Ges 1893 26Ber. Dtsch. Chem. Ges 1927 60

J. Chem. Soc 1931Angew. Chem. Int. Ed 1962 1

Chem. Ber 1959 92

J. Am. Chem. Soc 1926 48J. Am. Chem. Soc 1954 76

Eur. J. Org. Chem 2013J. Org. Chem 2015 80

Angew. Chem.Int. Ed 1981 20

Can. J. Chem. 2001 79

Chem. Rev 1988 88Chem. Asian J. 2011 6

Tetrahedron 2000 56J. Org. Chem. 2009 74

Angew. Chem. Int. Ed 201453

J. Am. Chem.Soc 2013 135

J. Org. Chem. 2015 80

J. Am. Chem. Soc 2016 138Nat. Chem 2012 4

Sci. Rep 2016 6

J. Org. Chem 2016 81Angew. Chem. Int. Ed

2010 49Angew. Chem. Int. Ed 2012 51

Org. Lett 2015 17

Angew. Chem. Int. Ed2017 56

J. Org. Chem 2016 81

Chem. Commun 2014 50

Angew. Chem. Int. Ed 2012 51

J. Org. Chem 2012 77J. Org. Chem 2016 81

J. Org. Chem 2016 81Org. Lett 2012 14

Org. Biomol. Chem 2014 12Chem.

Eur. J 2014 20

Angew. Chem. Int. Ed 2014 53Org. Lett 2013 15

Angew. Chem. Int. Ed. 2017 56Chem. Sci. 2017 in press

Angew. Chem. Int. Ed 2016 55

Chem. Eur. J., 2015 21Chem. Commun 2016 52

Org. Lett 2015 17, J. Am.

Chem. Soc 2016 138

J. Am. Chem. Soc.2012 134

Angew. Chem. Int. Ed., 2011 50

Eur. J. Org. Chem. 2008

Org. Process Res. Dev., 2007 11

J. Am. Geriatr. Soc. 2003 51J. Am. Chem. Soc. 1954 76J. Am. Chem. Soc. 1956 78

J. Am. Chem. Soc. 1963 85 Enamines;Synthesis, Structure and Reactions 1998

Chem. Rev. 2007 107

J. Am. Chem. Soc. 2008 131

Ber. Dtsch. Chem. Ges. 1936 69J. Org. Chem. 2006 71

Eur. J. Org. Chem.2004 10Org. Lett. 2005 7Chem. Commun. 2005 8Org. Lett. 2012 14

Angew. Chem. Int. Ed.2003 42

Org. Lett. 2014 16

Eur. J. Org.Chem. 2016

transJ. Org. Chem. 1970 35

Green Chem.2008 10

Green Chem. 2016 18J. Phys. Chem. 1987 91

J. Org. Chem. 1967 32

Pharm. Res.1996 13

Biorg. Med. Chem. 1996 4 Curr. Med.Chem. 2003 10

Inflamm Cell Signal 2014 1:e95Eur. J. Med. Chem. 2012

48 Chem. Sci 2016 7J. Am. Chem. Soc

2013 135 Adv. Heterocycl. Chem. 1984 37 1,3 Dipolar CycloadditionChemistry 1984

Chem. Rev 2008 108

Angew. Chem. Int. Ed. 2009 48Angew. Chem. Int. Ed. 2013 52

Angew. Chem. Int. Ed. 2005 44Justus Liebigs Ann. Chem. 1912 394

Chem. Ber. 1966 99Tetrahedron

1971 27J. Org. Chem. 1991 53

J. Am. Chem. Soc. 1964 86J. Org. Chem 1975 40J. Org. Chem. 2013 78

Bull. Chem. Soc. Jpn

1981 54 Chem. Rev. 1969 69

Gazz. Chim. Ital 1967 97

Gazz. Chim. Ital. 1969 99Chem. Commun

2016 52Eur. J. Org. Chem. 2016 10

Chem. Eur. J. 2013 19Chem. Eur. J. 2011 17

Chem. Eur. J. 2011 17Synthesis 2017 49

Org. Lett. 2016 18Angew. Chem.

Int. Ed. 2014 53Tetrahedron Lett. 2004 45 Tetrahedron1969 25 Tetrahedron 1966 22

Chem. Eur. J. 2003 9Tetrahedron 1982 38Prog. Med. Chem. 1993 30

Eur. J. Med. Chem. 2013 59

J. Med. Chem. 2009 52

J. Am. Chem. Soc. 2011 133

Bioorg. Med. Chem. Lett. 2010 20Bioorg. Med. Chem. 2012 20

Bioorg.Med. Chem. Lett. 2013 23

Bioorg. Med. Chem. Lett. 2011 21

, J. Med. Chem. 2014 57Coord. Chem. Rev. 1994 133

Inorg. Chem. 2009 48Eur. J. Org. Chem.

2010 Dalton Trans. 2013 42

Nat. Chem. 2016 8J. Am. Chem. Soc. 2006 128

Tetrahedron Lett 1997 38Org. Lett 2013

15Org. Lett. 2015 17Org. Lett. 2014 16

Org. Lett. 2016 18

J. Org. Chem. 2013 78Org. Biomol. Chem., 2009 7J. Am. Chem. Soc. 2015 137

Tetrahedron Lett. 2000 41Eur. J. Org. Chem. 2014

Tetrahedron Lett. 2016 57

Green Chem 2013 15Synlett 2011 9

J. Heterocycl. Chem.1979 16

Angew. Chem. Int. Ed 2004 43

Chem. Ber 1963 96

Eur. J. Org Chem. 2014J. Am. Chem. Soc

2015 137J. Am. Chem. Soc 2008 130

Eur. J. Org. Chem 2009Org. Lett

2010 12

J. Am. Chem. Soc. 2004 126

J. Org. Chem. 2016 81

Eur. J. Med. Chem. 2017 126

Eur. J. Med. Chem. 2016123

Eur. J. Med. Chem. 2015 95Eur. J. Med. Chem. 2014 77

Eur. J. Med.Chem. 2009 44

Bioorg. Med. Chem. Lett. 2009 19

Bioorg. Med. Chem. Lett., 2007 17Int. J. Chem. Sci.

2007 5Med. Chem. Res. 2007 15

Bioorg. Med. Chem. 2003 11

Synthesis ofHeterocycles via Cycloadditions I 2008

Org. Lett. 2005 7J. Org. Chem 2008 73

Org. Lett 2001 3J. Am. Chem. Soc 2005 127

Tetrahedron 201066

J. Org. Chem. 2010 75Org. Lett.

2002 4J. Chem.

Pharm. Res. 2015 7Nature 1950 166

J. Am. Chem. Soc. 1960 82J. Org. Chem. 1996

61 J. Org. Chem.1997 62Org. Lett. 2005 7 Chem.Eur. J. 2010 16

Nippon Kagaku Kaishi 2002 3

Org. Lett. 2009 11Org. Lett. 2011 13

Org. Lett. 2013 15Synthesis 2014 46

J. Org. Chem. 1964 29Bull. Chem. Soc. Jpn. 1968 41

J. Heterocycl. Chem 198017

J. Chem. Research (S)1984

Synlett 2013 24

Synth. Commun 2012 42J. Comput. Chem. 1998 19

Adv. Synth. Catal. 2015 357J. Chem. Soc., Perkin Trans. 1 1977 3

Curr. Sci. 2006 90Eur. J. Med. Chem. 2015 97

Arch. Pharm. Pharm. Med. Chem. 2002 6J. Hetercyclic. Chem. 1969 6

Ann. Univ. Sarav., Math.Naturwiss. Fak 1981 16

J. Org. Chem 2017 82

Phosphorus and Sulfur Relat. Elem.1988 35

Z. Chem 1987 27Synth.

Commun. 1996 26Synthesis 2000 6

J. Am. Chem. Soc 1962 84J. Org. Chem 2005

70

Chem. Eur. J. 2015 21