brain and spine mri artifacts at 3tesla

8
Please cite this article in press as: Vargas MI, et al. Brain and spine MRI artifacts at 3Tesla. Journal of Neuroradiology (2008), doi:10.1016/j.neurad.2008.08.001 ARTICLE IN PRESS +Model NEURAD-129; No. of Pages 8 Journal of Neuroradiology (2008) xxx, xxx—xxx Disponible en ligne sur www.sciencedirect.com REVIEW Brain and spine MRI artifacts at 3Tesla Artéfacts en IRM 3Tesla du cerveau et de la moelle M.I. Vargas a,, J. Delavelle a , R. Kohler b , C.D. Becker b , K. Lovblad a a Division of Neuroradiology, Department of Radiology, Geneva University Hospital, 24, road Micheli-du-Crest, 1211 Geneva 14, Switzerland b Department of Radiology, Geneva University Hospital, Switzerland KEYWORDS Artifacts; 3 Tesla; Brain; Spine; Magnetic resonance imaging Summary Introduction. — We illustrate here the most common MRI artifacts found on routine 3 T clinical neuroradiology that can simulate pathology and interfere with diagnosis. Materials and methods. — Our group has worked with a 3-T Magnetom Trio (Siemens, Erlangen, Germany) system for two years, with 50% of our time devoted to clinical work and 50% dedicated to research; 65% of the clinical time is dedicated to neuroradiology (2705 patients) and the remaining time to whole-body MRI. We have detected these artifacts during our case readings and have selected the most representative of each type to illustrate here. Results. — We have observed magnetic susceptibility artifacts (29%), pulsation artifacts (57%), homogeneity artifacts (3%), motion artifacts (6%), truncation artifacts (3%) and, finally, artifacts due to poor or inadequate technique in the examined region. Conclusion. — High-field imaging offers the benefit of a higher signal-to-noise ratio, thus making possible the options of a higher imaging matrix, thinner slices, the use of spectroscopy and dif- fusion tensor imaging in the routine clinical neuroradiology with a reduction in time spent. It is vital to be able to recognize these artifacts in everyday practice as they can mimic pathological appearances, thus causing diagnostic errors that could lead to unnecessary treatment. Indeed, most of these artifacts could be avoided with an adequate technique. © 2008 Elsevier Masson SAS. All rights reserved. MOTS CLÉS Artéfacts ; 3 Tesla ; Cerveau ; Rachis ; Imagerie par résonance magnétique Résumé Introduction. — Nous illustrons les artéfacts les plus fréquents en IRM à 3 T que nous avons rencontrés en pratique quotidienne et qui peuvent simuler une pathologie et donc interférer avec le diagnostic. Matériel et méthodes. — Notre groupe travaille sur un système 3 T Siemens depuis deux ans, avec une activité clinique représentant 50 % du temps machine et 50 % du temps restant dédié à la recherche fondamentale ; 65 % du temps d’activité clinique est dédié à la neuroradiologie (2705 patients au total) et le reste dédié à une activité corps entier. Nous avons identifié ces artéfacts pendant nos lectures et montrons les plus représentatifs. Corresponding author. E-mail address: [email protected] (M.I. Vargas). 0150-9861/$ – see front matter © 2008 Elsevier Masson SAS. All rights reserved. doi:10.1016/j.neurad.2008.08.001

Upload: unige

Post on 25-Nov-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

ARTICLE IN PRESS+ModelNEURAD-129; No. of Pages 8

Journal of Neuroradiology (2008) xxx, xxx—xxx

Disponib le en l igne sur www.sc iencedi rec t .com

REVIEW

Brain and spine MRI artifacts at 3 TeslaArtéfacts en IRM 3 Tesla du cerveau et de la moelleM.I. Vargasa,∗, J. Delavellea, R. Kohlerb, C.D. Beckerb, K. Lovblada

a Division of Neuroradiology, Department of Radiology, Geneva University Hospital, 24, road Micheli-du-Crest,1211 Geneva 14, Switzerlandb Department of Radiology, Geneva University Hospital, Switzerland

KEYWORDSArtifacts;3 Tesla;Brain;Spine;Magnetic resonanceimaging

SummaryIntroduction. — We illustrate here the most common MRI artifacts found on routine 3 T clinicalneuroradiology that can simulate pathology and interfere with diagnosis.Materials and methods. — Our group has worked with a 3-T Magnetom Trio (Siemens, Erlangen,Germany) system for two years, with 50% of our time devoted to clinical work and 50% dedicatedto research; 65% of the clinical time is dedicated to neuroradiology (2705 patients) and theremaining time to whole-body MRI. We have detected these artifacts during our case readingsand have selected the most representative of each type to illustrate here.Results. — We have observed magnetic susceptibility artifacts (29%), pulsation artifacts (57%),homogeneity artifacts (3%), motion artifacts (6%), truncation artifacts (3%) and, finally, artifactsdue to poor or inadequate technique in the examined region.Conclusion. — High-field imaging offers the benefit of a higher signal-to-noise ratio, thus makingpossible the options of a higher imaging matrix, thinner slices, the use of spectroscopy and dif-fusion tensor imaging in the routine clinical neuroradiology with a reduction in time spent. It isvital to be able to recognize these artifacts in everyday practice as they can mimic pathologicalappearances, thus causing diagnostic errors that could lead to unnecessary treatment. Indeed,most of these artifacts could be avoided with an adequate technique.© 2008 Elsevier Masson SAS. All rights reserved.

MOTS CLÉSRésuméIntroduction. — Nous illustrons les artéfacts les plus fréquents en IRM à 3 T que nous avons

Artéfacts ;3 Tesla ;

rencontrés en pratique quotidienne et qui peuvent simuler une pathologie et donc interféreravec le diagnostic.

tre groupe travaille sur un système 3 T Siemens depuis deux ans,

Cerveau ; Matériel et méthodes. — No

Please cite this article in press as: Vargas MI, et al. Brain and spine MRI artifacts at 3 Tesla. Journal of Neuroradiology(2008), doi:10.1016/j.neurad.2008.08.001

Rachis ;Imagerie parrésonancemagnétique

avec une activité clinique représentant 50 % du temps machine et 50 % du temps restant dédiéà la recherche fondamentale ; 65 % du temps d’activité clinique est dédié à la neuroradiologie(2705 patients au total) et le reste dédié à une activité corps entier. Nous avons identifié cesartéfacts pendant nos lectures et montrons les plus représentatifs.

∗ Corresponding author.E-mail address: [email protected] (M.I. Vargas).

0150-9861/$ – see front matter © 2008 Elsevier Masson SAS. All rights reserved.doi:10.1016/j.neurad.2008.08.001

ARTICLE IN PRESS+ModelNEURAD-129; No. of Pages 8

2 M.I. Vargas et al.

Résultats. — Nous illustrons chaque type ainsi que les pathologies qu’ils peuvent simuler. Nousavons observé des artéfacts de susceptibilité magnétique (29 %), artéfacts de pulsation (57 %),artéfacts d’homogénéité (3 %) artéfacts de troncature (3 %), artéfacts de mouvement (6 %)et finalement des artéfacts liés à un mauvais choix de technique d’examen pour la régionanatomique explorée.Conclusion. — L’imagerie à champ élevé offre l’avantage d’un rapport signal sur bruit élevé,rendant ainsi possible l’acquisition avec une matrice plus élevée, des coupes plus fines, ainsique l’utilisation en routine clinique de la spectroscopie et de l’imagerie du tenseur de diffusion.Pour la pratique quotidienne, il est indispensable d’apprendre à reconnaître ces artéfacts carla plupart peuvent être évités. En plus, ils peuvent simuler une pathologie et ainsi induire deserreurs diagnostiques et en conséquence un traitement inapproprié.© 2008 Elsevier Masson SAS. All rights reserved.

I

Ttttacupiiatsmsbwiad

M

Wgdcciawt

iays

R

Wn

dpad(

icestoaFctinTli(

ii

aaci

Fafpv

hFc

ntroduction

he use of a higher magnetic field provides a higher signal-o-noise ratio, which allows a higher imaging matrix andhinner slices, and improvements in the quality of spec-roscopy, functional magnetic resonance imaging (fMRI), MRngiography [1] and diffusion tensor techniques [2], thatan also now be acquired within a reasonable time frame;p to now, this technology has been reserved for researchurposes only because of the long acquisition times. Its well-known that, although image quality is significantlymproved on increasing magnetic field strength, there arelso more artifacts generated at 3 T than at 1.5 T. Evenhough the physical basis of most of these 3 T artifacts is theame as at 1.5 T, there are nevertheless variations that areore misleading and appear more frequently at high field

trengths. For these reasons, we believe it is important toe aware of the existence of such artifacts. In this report,e illustrate the most common ones encountered at 3 T dur-

ng our routine clinical MRI investigations that can simulatepathological finding and, thus, interfere with the correct

iagnosis and treatment.

aterials and methods

e have been using a 3-T Magnetom Trio (Siemens, Erlan-en, Germany) unit for two years: 50% of its activity isedicated to clinical work and 50% to research; 65% of thelinical workload (2705 patients, 2094 brain and 611 spine)onsists of neuroradiology, and the remaining time is ded-cated to whole-body MRI investigations. Having looked fornd detected artifacts during our everyday case readings,e have here selected the most typical examples of each

ype.The present study was retrospective: the patients exam-

ned over the past two years in our practice were all lookedt systematically by two neuroradiologists, each with 10ears of experience in neuro-MRI. These artifacts were clas-ified according to their consensus.

Please cite this article in press as: Vargas MI, et al. Brain and(2008), doi:10.1016/j.neurad.2008.08.001

esults

e noted many different types of artifacts, such as mag-etic susceptibility artifacts (air—tissue interfaces, metallic

pttS

ental and orthopedic implants), cerebrospinal fluid (CSF)ulsation artifacts, artifacts due to blood flow, homogeneityrtifacts, motion artifacts, truncation artifacts and artifactsue to poor or inadequate technique in the examined regionTable 1).

Susceptibility artifacts are found in cases of dentalmplants, where there is a loss of signal in the facial andervical regions mainly on spin-echo (SE) T1- and gradient-cho T2-weighted images (Fig. 1A). The brain can alsohow pseudoenhancement on T1-weighted images after con-rast administration (Fig. 1B), as well as, major distortionsn diffusion-weighted images (DWI; Fig. 1C). There maylso be low signal intensities on three-dimensional (3D)lair images extending over anatomical structures in theortex (Fig. 2A), associated with pseudoenhancement inhe brain parenchyma and ocular globe on T1-weightedmages using contrast medium (Fig. 2B). The sponta-eous retroocular hyperintense signals on unenhanced1-weighted images with fat saturation are secondary to a

ack of selective saturation of the retroocular fat due tonhomogeneity of the magnetic field due to dental implantsFig. 3A).

We have also observed high signal intensities on Flairmages in the temporal region caused by cerebral electrodesn patients with epilepsy (Fig. 3B).

On T1-weighted SE images, the artifacts induced byir—tissue interfaces, such as in the frontal region, maylso cause pseudoenhancement (Fig. 4) as well as pseudois-hemic lesions on DWI induced by the air—tissue interfacen the sphenoidal region (Fig. 5).

CSF pulsation artifacts can create hyperintensities onlair images at the level of the third and fourth ventricles,nd hypointensities at the level of the suprasellar cistern onast spin-echo (FSE) T2-weighted images (Fig. 6A, B). Thesehantom images can show up on either side of the thirdentricle (Fig. 7).

CSF pulsation artifacts in the spine correspond toypointensities on FSE T2 sequences and hyperintensities onlair images located in front of the pons and cervical spinalord (Fig. 8).

Other types of flow artifacts caused by the vessels are

spine MRI artifacts at 3 Tesla. Journal of Neuroradiology

ossible: transverse linear high signal intensities due tohe encoding direction of the sequence provoked by theransverse sinus or the carotid arteries can be visible onET1-weighted images after contrast injection as well as on

ARTICLE IN PRESS+ModelNEURAD-129; No. of Pages 8

Brain and spine MRI artifacts at 3 Tesla 3

Table 1 Most frequent MRI artifacts encountered at 3 T andhow to correct them.Artéfacts les plus fréquents rencontrés en IRM à 3 T ainsique leurs solutions.

Artifacts Technical solution

Air—tissue interface Increase the receiverbandwidthApply parallel imagingtechniquesShorten the TE

Blood-flow artifacts Change the orientation of thephase gradientUse spatial presaturationpulses

Homogeneity artifacts Obtain a highly homogeneousstatic magnetic fieldEnsure B0 around the isocenter

Motion artifacts Use saturation bandsUse respiratory orcardiac-gating methodsReconfigure the k-space linesUse of head and body restraintsEnsure the patient is informedremovements

Metal artifacts Use a fast SE sequenceTitanium implants cause fewerartifacts than ferromagneticsteel; more common withEGT2, DWI and fat-sat imaging

CSF pulsation artifacts Change the phase andfrequency-encoding directionIncrease the number ofexcitations

Inadequate or poortechnique

Ensure proper techniciantraining

Truncation or Gibbs Increase the spatial resolution

Figure 1 Susceptibility artifacts in a patient with a dentalimplant: there is loss of signal in the face (SET1, GET2) and cer-vical spine (arrows in 1A) associated with pseudoenhancementon enhanced T1-weighted images (arrows in 1B) as well as majordistortions on diffusion-weighted images (1C).Artéfacts de susceptibilité chez un patient avec un implantdentaire : il existe une chute de signal au niveau de la face(SET1, GET2) et de la colonne cervicale (flèches sur la Fig.1A), associée avec une pseudoprise de contraste sur les imagespll

umma

pcssa

•••••

D

Hcmttechnical improvements. What’s more? There is an increase

artifacts Apply reconstruction filters(such as a Hanning filter)

constructive interference in steady state (CISS) 3D images(Fig. 9).

Another type of blood-flow artifact is possible in thevessel itself and can mimic dissection of the vessel on 3Dtime-of-flight (TOF) images (Fig. 10). In addition, inhomo-geneity artifacts are visible on DWI (Fig. 11).

There are also unexplained artifacts such as a high signalintensity in the pons that resembles an ischemic lesion onlyon axial FSE T2 images: its artifactual nature can be con-firmed by the absence of anomalies in all other sequences aswell as the absence of clinical signs attributable to ischemia(Fig. 12).

Artifacts are more frequently generated at the level of

Please cite this article in press as: Vargas MI, et al. Brain and(2008), doi:10.1016/j.neurad.2008.08.001

the spinal cord than in the brain. We have observed kineticartifacts caused by discreet patient movement, and artifactsmay also be caused at the cervical level by swallowing or bycardiac motion at the thoracic level, despite the use of sat-

iacn

ondérées en T1 après injection de contraste (flèches sur Fig.A et 1B) ainsi que des phénomènes de distorsions majeures sures images pondérées en diffusion (Fig. 1C).

ration bands (Fig. 13). Truncation artifacts (Gibbs ringing)ay also be seen (Fig. 8). In addition, artifacts caused byetallic orthopedic implants are more extensive at 3 T than

t 1.5 T (Fig. 14).We have also observed other types of artifacts due to

oor technique such as the wrong choice of coils, which canause hyperintense lines in the anterior part of the lumbarpine (Fig. 15). Choosing the wrong encoding direction canimulate a syrinx of the cervical cord that disappears as soons the encoding direction is changed (Fig. 16).

Overall, the frequency of these artifacts is as follows:

flow artifacts, 57%;magnetic susceptibility artifacts, 29%;motion artifacts, 6%;homogeneity and Gibbs artifacts, 3% each;all others, 2%.

iscussion

igh-field MRI technology is becoming more widely clini-ally available, and radiologists are now being confronted byore images with higher contrast and better definition and,

hus, more complex pathologies detectable through these

spine MRI artifacts at 3 Tesla. Journal of Neuroradiology

n patients’ expectations. This is why, it is important to beble to recognize images that are, in fact, artifacts thatan mimic pathology, thereby suggesting an incorrect diag-osis. Artifacts are defined as any image (signal or loss of

Please cite this article in press as: Vargas MI, et al. Brain and spine MRI artifacts at 3 Tesla. Journal of Neuroradiology(2008), doi:10.1016/j.neurad.2008.08.001

ARTICLE IN PRESS+ModelNEURAD-129; No. of Pages 8

4 M.I. Vargas et al.

Figure 2 This patient shows low signal intensities on 3D Flair images in the pre- and postcentral cortical regions (arrows in 2A);there is also pseudoenhancement in the brain parenchyma and ocular globe (arrows in 2B) caused by a dental implant.Chez ce patient, il existe une hypo-intensité sur les images Flair 3D au niveau de la région corticale pré- et postcentrale(flèches — Fig. 2A) ; il existe également une pseudoprise de contraste au niveau du parenchyme cérébral et du globe oculaire(flèches — Fig. 2B) liée à un implant dentaire.

Figure 3 Retroocular high signal intensities on unenhanced T1-weighted images with fat saturation (arrows) due to inhomogene-ity of the magnetic field induced by a dental implant (3A); high signal intensities are seen on Flair images in the temporal region(arrows) caused by cerebral electrodes (3B).A : hyper-intensité rétro-oculaire sur les images pondérées en T1 avec saturation de graisse (flèches) secondaire à une inho-mogénéité du champ magnétique induite par un implant dentaire. B : hyper-intensités sur les images Flair au niveau temporal(flèches) liées à des électrodes cérébrales.

Figure 4 The frontal region shows artifacts at the ‘‘air—tissueinterface’’ with pseudoenhancement (arrows).Artéfacts au niveau frontal induits par l’interface air—tissuavec une pseudoprise de contraste (flèches).

Figure 5 This pseudoischemic lesion in the pons (arrow),caused by sphenoidal air, was not visualized on Flair.Pseudolésion du pons (flèche) liée à la présence d’air dans lesphénoïde non retrouvée sur l’image Flair.

Please cite this article in press as: Vargas MI, et al. Brain and spine MRI artifacts at 3 Tesla. Journal of Neuroradiology(2008), doi:10.1016/j.neurad.2008.08.001

ARTICLE IN PRESS+ModelNEURAD-129; No. of Pages 8

Brain and spine MRI artifacts at 3 Tesla 5

Figure 6 Flair hyperintensities in the third and fourth ventricles caused by CSF pulsation artifacts (6A, arrows); FSE T2-weightedimages show hypointensities at the level of the suprasellar cistern (6B, arrows).A : hyper-intensités en Flair au niveau des troisième et quatrième ventricules correspondant à des artéfacts de pulsation du liquidecérébrospinal. B : images FSE T2 montrant des hypo-intensités au niveau de la citerne suprasellaire (flèches).

signal) that has no anatomical basis, but is the result ofdistorted, additional or suppressed ‘‘information’’. Someartifacts are readily identifiable as such, while others maybe more subtle, requiring a repeat examination or specificinvestigation for clinical signs. Many artifacts are due to adefective MRI unit or a poor choice of technical parame-ters, but most are inherent in the principles of physics [3].We have found a larger number of artifacts at 3 T comparedwith 1.5 T. Even, when they are similar in nature to thosefound at 1.5 T, at 3 T, they tend to be increased in both sizeand number. A good knowledge of technique, as well as ofanatomy and pathology, will improve the detection of theseartifacts.

Figure 7 Phantom images due to CSF pulsation (arrows) canbe seen on both sides of the third ventricle.Images fantômes des deux côtés du troisième ventricule liéesà des artéfacts de pulsation (flèches).

Magnetic susceptibility artifacts

These artifacts are caused by either the presence of fer-romagnetic materials or an air—tissue interface, and arecommonly found close to the skull base (Figs. 4 and 5). Thesusceptibility of a tissue reflects its ability to become mag-netized when placed in a magnetic field. A wide variation ofsusceptibility causes a major local gradient that generatesincreased spin dephasing, resulting in signal loss and imagedistortions at the tissue interface [4].

These susceptibility artifacts increase at higher magneticfields and are especially problematic in sequences such asDWI and gradient-echo. However, such distortions can bereduced by decreasing the echo spacing of the readout train

Figure 8 CSF pulsation artifact with hypointensities on theFSE T2 image, and hyperintensities on Flair in front of the ponsand cervical spinal cord (arrows). Truncation artifacts can alsobe seen in the cord (arrowheads).Artéfacts de pulsation du liquide cérébrospinal avec hypo-intensités sur les images FSE T2 et présence d’hyper-intensitéssur les images Flair devant le pons et la moelle épinière(flèches). Il existe également des artéfacts de troncature auniveau de la moelle (flèches).

ARTICLE IN PRESS+ModelNEURAD-129; No. of Pages 8

6 M.I. Vargas et al.

Figure 9 Blood-flow artifacts: linear hyperintensities due topulsations from the transverse sinus and carotid arteries fol-low a transverse direction due to the encoding direction of thesequence visible on SET1 and CISS images (arrows).Artéfacts de flux : hyper-intensités linéaires dues aux pulsa-ttv

(lSarTta

rbtprstigs

Figure 10 This vascular-flow artifact simulates dissection inthe left internal carotid artery (arrows).Artéfacts de flux simulant une dissection de l’artère carotideinterne gauche (flèches).

FiA

ions du sinus transverse et des artères carotides qui suivent unrajet transversal dans la direction du codage de la séquence ,isibles sur les images SET1 et CISS.

increasing the receiver bandwidth) or by applying paral-el imaging techniques to reduce the echo-train length [5].hmueli et al. have attempted to suppress this type ofrtifact by evaluating it on a phantom model, using mate-ials to mimic soft tissue (wax) and bone (plastic skull).he authors concluded that the phantom model is a usefulool for evaluating and comparing different susceptibilityrtifact-reduction techniques [6].

The artifacts caused by ‘‘metal implants’’ (Figs. 1—3)esult from the vast difference in magnetic propertiesetween living human tissue and metal implants. The factorshat influence the creation of these artifacts are the com-osition, size and orientation of the implant as well as itselationship to the external magnetic field, the type of pulseequence applied and the sequence parameters [7]. The

Please cite this article in press as: Vargas MI, et al. Brain and spine MRI artifacts at 3 Tesla. Journal of Neuroradiology(2008), doi:10.1016/j.neurad.2008.08.001

ype of metal used in the implant also affects the artifact:mplants in titanium (Fig. 14), which are non-ferromagnetic,enerate fewer artifacts than those made of ferromagneticteel [7—10].

Figure 11 These homogeneity artifacts can be seen ondiffusion-weighted imaging.Artéfacts d’homogénéité sur les images pondérées en diffusion.

igure 12 This unexplained artifact mimicking an ischemic lesion in the pontine region was only visible on axial FSE T2-weightedmages (arrow).rtéfact inexpliqué simulant une lésion ischémique pontique seulement visible sur les images axiales T2 FSE (flèches).

ARTICLE IN PRESS+ModelNEURAD-129; No. of Pages 8

Brain and spine MRI artifacts at 3 Tesla 7

Figure 13 Motion artifacts (arrows) due to cardiac and

Figure 15 These hyperintense linear artifacts in the lumbarspine were due to an inappropriate choice of coils.Ab

B

T

patient movements despite the presence of saturation bands.Artéfacts (flèches) liés aux mouvements cardiaques et dupatient malgré les bandes de saturation.

CSF pulsation artifacts

The body’s mean daily CSF production is 500 mL, and it hasa pulsatile motion due to the expansion and contraction ofthe brain and intracranial vessels associated with the cardiaccycle. This pump effect causes the CSF flow in the cervicalspaces to be 40% as fast as in the carotid arteries [11—13],resulting in multiple artifacts that may appear hypointenseon T2-weighted, and hyperintense on Flair, images — and notonly in front of or behind the spinal cord, where they can be

Please cite this article in press as: Vargas MI, et al. Brain and(2008), doi:10.1016/j.neurad.2008.08.001

very impressive, but also in the ventricles (Fig. 6A), and thesuprasellar and prepontine cisterns (Figs. 6B and 8). Phan-tom images are frequently seen along the ventricles at 3 T,especially around the third ventricle (Fig. 7).

Figure 14 Orthopedic metal implants cause more extensiveartifacts at 3 T than at 1.5 T. In this case, they presented as a lowsignal intensity in the dorsal spine (arrows) with deformation ofthe cord.Artéfacts métalliques : les implants orthopédiques métalliquessont responsables de plus d’artéfacts à 3 T qu’à 1,5 T. Dans cecas, il existe une hypo-intensité au niveau de la moelle (flèches)causée par les implants orthopédiques avec déformation de lamoelle.

dhoiefofl(

FseeMddd(

rtéfacts linéaires hyper-intenses au niveau de la colonne lom-aire dus à un choix inapproprié d’antennes.

lood-flow artifacts

wo types of these artifacts may occur. Artifacts may beue to the pulsation of the vessels themselves, causingyperintense transverse or longitudinal lines (dependingn the orientation of the phase gradient) and resultingn signal degradation in the parenchyma. With less-xperienced readers, these images may be mistaken foralse enhancement and may also hide an underlying pathol-

spine MRI artifacts at 3 Tesla. Journal of Neuroradiology

gy (Fig. 9). Flow artifacts may also be due to turbulentow within the vessel itself and may simulate dissectionFig. 10).

igure 16 Using the wrong encoding direction causes a falseyrinx appearance in the cervical spinal cord with a left-to-rightncoding direction (arrows in 16A). With an anteroposteriorncoding direction, the artifact disappears (arrows in 16B).auvaise direction de codage à l’origine d’une image de pseu-ocavitation au niveau de la moelle cervicale dans la directione codage gauche-droite (flèches sur la Fig. 16A). Avec uneirection de codage antéro-postérieure cet artéfact disparaîtflèches sur la Fig. 16B).

INN

8

T

Ta‘ThtotoioMtae

H

Taiiwpeel(

M

Tshmst

I

Tut

U

Ftoo

C

Iotu

R

[

[

[

[

[

ARTICLE+ModelEURAD-129; No. of Pages 8

runcation or Gibbs artifacts

hese bright or dark lines are seen parallel to edges ofbrupt intensity changes (Fig. 8), sometimes described as‘ringing’’ artifacts following signal-intensity borders [3].hese occur when the number of phase-encoding steps atigh spatial resolution is undersampled and, hence, is unableo faithfully reproduce the true anatomical details of theriginal image [14,15]. In addition, these may occur whenhe number of peripheral Fourier lines in the k-space is smallr insufficient [14]. These artifacts are observed particularlyn spinal imaging at 3 T, and frequently as a consequencef the improved signal-to-noise ratio in comparison to 1.5 TRI. Their occurrence can be reduced by either increasing

he spatial resolution or applying reconstruction filters, suchs the Hanning filter, to smoothly reduce the signal at thedges of k-space [5].

omogeneity artifacts

hese artifacts may be caused by the MRI system itselfnd by the composition of the tissue sample being exam-ned. An extremely homogeneous static magnetic field (B0)s required around the isocenter of the magnet because thisill influence the distribution of the Larmor frequencies ofrotons as well as the linearity of the magnetic-field gradi-nts required for spatial encoding [5]. These artifacts arespecially important on DWI sequences, which are particu-arly sensitive to inhomogeneity of the local magnetic fieldFig. 11).

otion artifacts

hese artifacts are probably more commonly and extensivelyeen at the level of the spinal cord than in the brain. Weave observed kinetic artifacts caused by discreet patientovement; they may also be caused at the cervical level by

wallowing and at thoracic level by cardiac motion, despitehe use of saturation bands (Fig. 13).

nadequate technique

he artifacts due to poor or inadequate technical choices arenlimited, and their resolution depend considerably uponhe realization that a wrong choice was made.

nexplained artifacts

Please cite this article in press as: Vargas MI, et al. Brain and(2008), doi:10.1016/j.neurad.2008.08.001

inally, we have observed unexplained artifacts where theirruly artifactual nature was only confirmed by the absencef anomalies on all other sequences (Fig. 12), the absencef clinical signs or by a repeat evaluation by MRI.

[

PRESSM.I. Vargas et al.

onclusion

t is vital in everyday neurological practice to learn to rec-gnize all of these artifacts as they can mimic pathology,hus leading to diagnostic errors that could result in thennecessary treatment of patients.

eferences

[1] Zimmerman RA, Bilaniuk LT. 3T magnetic resonance arteri-ography in pediatric cerebrovascular disease. J Neuroradiol2007;34:95—100.

[2] Jissendi P, Baudry S, Baleriaux D. Diffusion tensor imaging(DTI) and tractography of the cebellar projections to prefrontaland posterior parietal cortices: a study at 3 T. J Neuroradiol2008;35:42—50.

[3] Stadler A, Schima W, Ba-Ssalamah A, Kettenbach J, EisenhuberE. Artifacts in body MR imaging: their appearance and how toeliminate them. Eur Radiol 2007;17:1242—55.

[4] Franc J. Artefacts. In: Imagerie par résonance magnétique.Paris, France: Masson; 1994, 52.

[5] Dietrich O, Reiser MF, Schoenberg SO. Artifacts in 3-T MRI:physical background and reduction strategies. Eur J Radiol2008;65:29—35.

[6] Shmueli K, Thomas DL, Ordidge RJ. Design, construction andevaluation of an anthropomorphic head phantom with realisticsusceptibility artifacts. J Magn Reson Imaging 2007;26:202—7.

[7] Lee MJ, Kim S, Lee SA, Song HT, Huh YM, Kim DH, et al.Overcoming artifacts from metallic orthopedic implants athigh-field-strength MR imaging and multi-detector CT. Radio-graphics 2007;27:791—803.

[8] Eggers G, Rieker M, Kress B, Fiebach J, Dickhaus H, HassfeldS. Artefacts in magnetic resonance imaging caused by dentalmaterial. MAGMA 2005;18:103—11.

[9] Suh JS, Jeong EK, Shin KH, Cho JH, Na JB, Kim DH, et al.Minimizing artifacts caused by metallic implants at MR imag-ing: experimental and clinical studies. AJR Am J Roentgenol1998;171:1207—13.

10] Ganapathi M, Joseph G, Savage R, Jones AR, Timms B, LyonsK. MRI susceptibility artefacts related to scaphoid screws: theeffect of screw type, screw orientation and imaging parame-ters. J Hand Surg [Br] 2002;27:165—70.

11] Lisanti C, Carlin C, Banks KP, Wang D. Normal MRI appearanceand motion-related phenomena of CSF. AJR Am J Roentgenol2007;188:716—25.

12] Bradley Jr WG, Kortman KE, Burgoyne B. Flowing cerebrospinalfluid in normal and hydrocephalic states: appearance on MRimages. Radiology 1986;159:611—6.

13] Baledent O, Henry-Feugeas MC, Idy-Peretti I. Cerebrospinalfluid dynamics and relation with blood flow: a magneticresonance study with semi-automated cerebrospinal fluid seg-mentation. Invest Radiol 2001;36:368—77.

14] Peh WC, Chan JH. Artifacts in musculoskeletal magnetic res-

spine MRI artifacts at 3 Tesla. Journal of Neuroradiology

onance imaging: identification and correction. Skeletal Radiol2001;30:179—91.

15] Czervionke LF, Czervionke JM, Daniels DL, Haughton VM. Char-acteristic features of MR truncation artifacts. Am J Neuroradiol1988;9:815—24.