biology of the world's largest invertebrate, the colossal squid

24
1 1 Biology of the world’s largest invertebrate, the colossal squid 2 (Mesonychoteuthis hamiltoni): a short review 3 4 5 Rui Rosa 1* , Vanessa M. Lopes 1 , Miguel Guerreiro 1 , Kathrin Bolstad 2 , José C. 6 Xavier 3,4 7 8 9 10 1 MARE – Marine Environmental Sciences Centre, Laboratório Marítimo da Guia, 11 Faculdade de Ciências da Universidade de Lisboa, Portugal. 12 2 Institute for Applied Ecology New Zealand, Auckland University of Technology, 13 Auckland, New Zealand. 14 3 MARE – Marine and Environmental Sciences Centre (MARE), Department of Life 15 Sciences, University of Coimbra, 3004‐517 Coimbra, Portugal. 16 4 British Antarctic Survey, Natural Environment Research Council, High Cross, 17 Madingley Road, Cambridge CB3 0ET, United Kingdom. 18 19 20 * Corresponding author: [email protected] 21 22 23 24 25 26 27 28 29 30 31 32 33

Upload: khangminh22

Post on 05-Feb-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

1  

Biologyoftheworld’slargestinvertebrate,thecolossalsquid2 

(Mesonychoteuthishamiltoni):ashortreview3 

RuiRosa1*,VanessaM.Lopes1,MiguelGuerreiro1,KathrinBolstad2,JoséC.6 

Xavier3,47 

10 

1MARE –Marine Environmental Sciences Centre, LaboratórioMarítimo da Guia,11 

FaculdadedeCiênciasdaUniversidadedeLisboa,Portugal.12 

2 Institute forApplied EcologyNewZealand,AucklandUniversity of Technology,13 

Auckland,NewZealand.14 

3MARE–MarineandEnvironmentalSciencesCentre(MARE),DepartmentofLife15 

Sciences,UniversityofCoimbra,3004‐517Coimbra,Portugal.16 

4 British Antarctic Survey, Natural Environment Research Council, High Cross,17 

MadingleyRoad,CambridgeCB30ET,UnitedKingdom.18 

19 

20 

*Correspondingauthor:[email protected] 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

2  

Abstract34 

Thepresentstudyaimstoreviewthecurrentbiologicalknowledgeonthelargest35 

(heaviest) living invertebrate, the colossal squid Mesonychoteuthis hamiltoni36 

(Robson,1925).Thissquid isknowntobeendemicoff theSouthernOcean(SO),37 

withacircumpolardistributionspreading fromtheAntarcticcontinentup to the38 

Sub‐AntarcticFront.Smalljuveniles(<40mmmantlelength)aremainlyfoundfrom39 

the surface to 500 m, and the late juvenile stages are assumed to undergo40 

ontogeneticdescenttodepthsreaching2000m.Thus,thisgiantspendsmostpartof41 

itslifeinthemeso‐andbathypelagicrealms,whereitcanreachatotallengthof642 

meters. The maximum weight recorded so far was 495 kg. Mesonychoteuthis43 

hamiltoni is presently reported from the diets of 17 different predator species,44 

comprising penguins, sea birds, fishes and marine mammals, and feeds on45 

myctophids,Patagoniantootfish,sleepersharkandothersquids.Isotopicanalysis46 

placesthecolossalsquidasoneofthetoppredatorsintheSO.Basedonphylogenetic47 

inferences,itisassumedthatthissquidisnotcapableofhigh‐speedpredator–prey48 

interactions,butitisratheranambushpredator.Theireyes,thelargestintheplanet,49 

seemedtohaveevolvedtodetectverylargepredators(e.g.spermwhales)rather50 

thantodetectmatesorpreysatlongdistances.Ontheotherhand,andlikemany51 

otherdeep‐seaanimals,itpossesseslight‐emittingorgansontheeyes,whichmay52 

provide ventral camouflage and counter‐illumination or some sort of deceptive53 

techniquetocapturetheirprey.AlthoughM.hamiltoniisquiteabundantintheSO,54 

its life existence remains one of the ocean’s great mysteries. This unique55 

invertebrategiantcontinuestoattractconsiderableattentionfrommediaandthe56 

publicingeneral,butitsstudyalsoconstitutesavaluablesourceofinsightintothe57 

biophysicalprinciplesbehindbody‐sizeevolution.58 

59 

Keywords:colossalsquid,Mesonychoteuthishamiltoni,cranchiids,SouthernOcean;60 

gigantism61 

62 

3  

Introduction63 

TheSouthernOceanconsistsofasystemofdeep‐seabasinsseparatedbythe64 

ScotiaRidge,theKerguelenplateau(Indiansection)andtheMacquarieRidge(South65 

ofNewZealand).WhilethesouthislimitedbytheAntarcticcontinent,thenorthern66 

part is surrounded by theAntarctic Polar Frontal Zone (APFZ), beginning at the67 

Antarcticconvergence/AntarcticPolarFront(APF).Themainsurfacecurrentisthe68 

AntarcticCircumpolarCurrent(ACC),whichrunseastwardsaroundthecontinent69 

(Orsietal.1995);Mooreetal.(1997);(Mooreetal.1999).Theseassociatedfronts70 

createanobstacletonorth‐south“meridional”circulation,andthediscontinuities71 

of temperature and salinity in the APFZ constitute an important barrier in72 

biogeographicalinteractions(Barnesetal.2006).Nonetheless,Antarcticlifeisrich73 

anddiversewithhighlevelsofendemism(Arntzetal.1994;ClarkeandJohnston74 

2003).75 

Withinthisuniqueregion,cephalopodsareknowntoplayakeyroleinthe76 

marinefoodwebs,becausetheyconstituteavitalalternatefoodsourcetoAntarctic77 

krillEuphausiasuperba(CollinsandRodhouse2006).Theyareimportantprey,and78 

thussustainlargepopulationsofpenguins,procellariformbirds,sealsandtoothed79 

whales(Clarke1980;Xavieretal.2002a;CherelandDuhamel2004;Chereletal.80 

2004;CherelandHobson2005;CherelandHobson2007;Chereletal.2007;Xavier81 

etal.2011).Yet,despitetheirimportantecologicalrole,thebasicknowledgeofthe82 

bio‐ecologyofSouthernOceancephalopodsisstillpoorlyknown(Xavieretal.1999;83 

Xavier et al. 2014; Alvito et al. 2015; Guerreiro et al. 2015), probably due to an84 

absenceofafisheryindustry.Thismayberelatedtothelownumberofexploitable85 

species(Xavieretal.2007),lackofbasicknowledgeofthespecies’biology,stocks’86 

4  

unpredictability,andtherelativeinaccessibilityofthesestocksforexplorationand87 

study(Rodhouseetal.1996;Rodhouse1998;CollinsandRodhouse2006).88 

Themajorityof the resident SouthernOcean cephalopod fauna comprises89 

endemic species of octopods (cirrate and incirrate), and oegopsid squids,which90 

differgreatlyfromthetaxafoundatlowerlatitudes.Thereisalsoatotalabsenceof91 

myopsid squids and cuttlefish, and normally abundant families are rare. Unique92 

Southern Ocean taxa include the squid families Psychroteuthidae and93 

Batoteuthidae, and the genera Psychroteuthis, Kondakovia, Alluroteuthis,94 

Slosarczykovia, Batoteuthis and Mesonychoteuthis. Moreover, several of these95 

cephalopods occupy similar niches to (and compete with) some pelagic top96 

predators,namelysharksandlargefishes(RodhouseandWhite1995;Rodhouseet97 

al.1996;CherelandDuhamel2004;CherelandHobson2005).Oneoftheseisthe98 

mostmassive living cephalopod ‐ the colossal squidMesonychoteuthis hamiltoni99 

(Robson1925)(Fig.1).ThissquidisknowntobeaSouthernOceanendemic,and100 

althoughitispreyedbymanytoppredators,itsbasicbiologyandecologyremain101 

oneof theocean’sgreatmysteries.This reviewaims to summarize thecurrently102 

scattered bio‐ecological knowledge of the elusive, largest living invertebrate; an103 

overviewofthespecies’taxonomyanddetailedtreatmentofthemorphologywillbe104 

treatedinaseparateforthcomingpublication(Bolstadetal.inprep).105 

106 

Polargigantismandsomekeymorphologicalfeaturesofthecolossalsquid107 

Foralongtimepolarscientistshaveobservedthatorganismsofsuchareas108 

canreachremarkablylargesizes.Polargigantismisnotabletoolforunderstanding109 

the biophysical principles and ecological theories (e.g. temperature‐size rule,110 

Bergmannrule,oxygenavailabilitycoupledwith lowmetabolicrateshypothesis)111 

5  

behindbodysizeevolution(Atkinson1994;ChapelleandPeck1999;Chapelleand112 

Peck 2004; Vermeij 2016). Although not consensual, some argue that this113 

phenomenon may be linked to the fact that polar giant taxa share common114 

evolutionary histories with deep‐sea taxa. In other words, polar gigantism is115 

associated with abyssal gigantism. Yet, it is worth noting that the evolutionary116 

historyof(benthic)SouthernOceanfaunaiscomplexandtherespective“invasions”117 

workedbothways(i.e.shelftodeepandviceversa)(Brandtetal.2007;Strugnellet118 

al.2011).OneextremecaseofpolargigantismintheSouthernOcean(whereother119 

examples of this phenomenon include foraminiferans, sponges, ctenophores,120 

isopods,copepods,amphipods,pycnogonids,pteropods,annelids,echinoderms)is121 

the colossal squid (Fig. 1), which was first described by Robson (1925) from122 

fragments from two squids obtained from sperm whale stomach contents.123 

Posteriorly,thedescriptionofitsbeakswasdonebyKlumovandYukhov(1975),124 

McSweeny (1970), and then reviewed by Clarke (1980) and Xavier and Cherel125 

(2009).126 

ThecolossalsquidbelongstothefamilyCranchiidae,or“glass”squids,which127 

are generally small‐to‐medium sized species; M. hamiltoni is several orders of128 

magnitudelargerthansomeothercranchiidspecies,attainingamaximummantle129 

length(ML)of2.5metersandtotallength(TL)of6meters.Themaximumweight130 

recordedtodatewas495kg(Fig.1)(JerebandRoper2010).Apartfromthecoelom131 

(fluid‐filledbuoyancychamber),whilemostcranchiidshavetranslucentbodies(see132 

examplesinFig.2A,BandC),M.hamiltonihasmuchmoremuscledensity(Fig.2D133 

andE).Afurthernotabledifferencebetweenthecolossalsquidandothercranchiids134 

isthepresenceofswivellinghooksonitstentacleclubs(Voss1980;Vossetal.1992)135 

(Fig.2G).Thus,thecolossalsquidisaclear“outlier”inthecranchidgroup.136 

6  

137 

Earlystages138 

Recordsofeggmassesandhatchlingsareessentiallynon‐existent.Between139 

1962and1985,only33juvenileswerereported,allcaughtusingRMTandIKMT140 

nets (Fig. 3). Their mantle length (ML) ranged from 3 to 146mm, with a clear141 

relationshipbetweenjuvenilesizeanddepthofcapture.Infact,individualsbelow142 

ML40mmhavebeenmostly foundbetweenthesurfaceand500m(Fig.3) (see143 

more juvenile morphometric information in McSweeny 1970; Fillipova 1972;144 

Filippova 1979; Rodhouse and Clarke 1985; Filippova 1991; Filippova and145 

Pakhomov1994;LuandWilliams1994;AndersonandRodhouse2002;Filippova146 

2002).Nonetheless,themajorityofthespecimensknownsofarhavebeencollected147 

bytrawls(N=155;Fig.3)butbesidestheirlocationnootherrelevantdata(e.g.ML,148 

lifestage)areavailable.149 

150 

Age,growthandreproduction151 

Besidesthecharacteristiclowtemperatures,theSouthernOceanisalsowell152 

knownbythedrasticannualcyclesofproductivity.Theoscillationsfromabundance153 

to famine are thought to be associated with increased resistance to starvation,154 

reducedcompetitionandunusuallyslowgrowthrates(LindstedtandBoyce1985;155 

ArnettandGotelli2003;Clarke2003).Deep‐seaandpolarenvironmentsarealso156 

usuallylinkedwithlowmetabolicratesandlongerlongevity.Forinstance,Robison157 

et al. (2014) recently reported a female deep‐sea benthic octopus Graneledone158 

boreopacifica undertaking an astonishing 53‐month brooding period (by far the159 

longestegg‐broodingperiodeverreportedforanyanimal).Ifbroodingcomprises160 

aboutaquarterofthisoctopodlifespan,thisspeciesmaybeamongthelongest‐lived161 

7  

ofallcephalopods.Theirfindingsareunparalleledbythosefromthewell‐studied162 

shallow‐waterspeciesandhighlightsthenotionofhowlittleweknowaboutlifein163 

marineextremeenvironments(deep‐seaandpoles).Withinthiscontext,onemight164 

imaginethatM.hamiltonimaylivemuchlongerthantheirtemperateandtropical165 

counterparts, i.e. far longerthan12to18months.Themostcommonmethodfor166 

measuringgrowthincephalopods,andconsequentagedetermination,iscounting167 

growth increments on statoliths (Lipinski 1986; Rodhouse and Hatfield 1990);168 

however,M. hamiltoni material reported to date has not yet been sufficient to169 

validatetheperiodicityofstatolith‐ringformationforthisspecies.170 

The colossal squid takes longer to mature and reproduce than its more171 

northernrelatives,becomingmatureatlengthsofatleast1mandweightabove30172 

kg(JerebandRoper2010).Althoughincolderwaterscephalopodstendtoproduce173 

a low number of large eggs (Collins and Rodhouse 2006), the colossal squid’s174 

potentialfecundityhasbeenestimatedatamaximumof4.2millionoocytes(Jereb175 

andRoper2010),whichmakes itoneofthemost fecundcephalopods,especially176 

whencomparedtootherpolarcephalopodfauna(CollinsandRodhouse2006).177 

178 

Distribution179 

Part of the known distribution of the colossal squid is based on the rare180 

encounterswithliveorrecentlydeadspecimensaboard(mainly)toothfishfishing181 

(e.g. Fig. 1 D and E) vessels and the stomach contents of the squid’s predators.182 

Mesonychoteuthis hamiltoni has a circumpolar distribution, ranging from the183 

Antarcticcontinent(excludingrespectiveshelvesandKerguelenPlateau)uptothe184 

Sub‐AntarcticFront(SAF)(Fig.4).BasedonXavieretal.(2015b),thehighestvalues185 

ofthespecies’predictedhabitatsuitabilityarefound:i)betweentheWeddellSea186 

8  

(Atlanticsector)andthewestoftheKerguelenarchipelago(~60°E),andii)between187 

180°Eand120°WintheRoss/Amundsenareas.188 

189 

Vertical(ontogenetic)movements190 

Available information on colossal squid’s verticalmigrating habits is very191 

scarce.AsshowninFigure3,smalljuveniles(<40mmML)aremainlyfoundfrom192 

thesurfaceto500m.Thehigherproductivitynearthesurfacemayconfertheyoung193 

higherchancesoffeedingbetweenhatchingandtheirprobablemigrationtodeeper194 

waters.Atlatejuvenilestages,M.hamiltoni isassumedtoconductanontogenetic195 

descenttodepthsaround2000m(LuandWilliams1994).Thus,thecolossalsquid196 

likelyspendsthemajorityofitslife(latejuvenile,subadultandadultstages)inthe197 

meso‐andbathypelagiczonesoftheSouthernOcean.Nonetheless,itisworthnoting198 

that femalespecimenshavebeencapturedbyfishingvesselsatdepthsshallower199 

thantheabovementionedrange,suggestingthatfemalesmaymigratetoshallower200 

waterstospawn,asdoothercranchiids.201 

202 

Predatorandpreyinteractions203 

Theundigestedremainsofcolossalsquid(beaks,tentacularhooksorsucker204 

rings)havebeenfoundinagreatvarietyofpredators’stomachcontents.Presently,205 

M.hamiltoni isknownfromthedietsof17differentpredatorspecies,comprising206 

penguins,seabirds,fishesandmarinemammals(Table1).Thelargerpredatorsof207 

the colossal squids are the spermwhales (Clarke 1980) and the sleeper sharks208 

(CherelandDuhamel2004) (Fig.5),but in contrast to the former, the latter isa209 

bottom scavenger and ambush predator. One of the more remarkable predator210 

9  

observations has beenmade at the Kerguelen Islands, where 66% of the shark211 

stomachscontainedcolossalsquidremains(CherelandDuhamel2004).212 

ColossalsquidbeakshavealsobeenfoundquitefrequentlyinthePatagonian213 

toothfish (Dissostichus eleginoides) stomach contents (Fig. 5), and in turn, beak‐214 

shapedbitesandscratches fromclubhooks (matching thecolossal squid’s)have215 

alsobeenfoundalongthebodiesofcapturedPatagoniantoothfish(Remesloetal.216 

2015).Thismaysuggestreciprocalpredator‐preydynamics.Patagoniantoothfish217 

may be able to forage squids larger themselves because they attack dead or218 

moribundcolossalsquids.Remesloetal.(2015)alsoarguethat,duetoanatomical219 

constraints(namelytoothshape),thetoothfishmayonlyscavengetheleftoversof220 

otherpredators,includingthecolossalsquiditself.Cannibalismisalsoverycommon221 

amongcephalopods,includinggiantsquids(BolstadandO'Shea2004;Ibáñezand222 

Keyl2010).223 

Seabirds,namelyalbatrosses,arealsoknowtoscavengeM.hamiltoni(Fig.5).224 

Albatrossstomachsoftencontaintheremainsofcephalopodpreythatwouldhave225 

been several times heavier that their ownmean size (Croxall and Prince 1994;226 

Xavier et al. 2003b; Xavier and Croxall 2007; Alvito et al. 2015; Guerreiro et al.227 

2015).Infact, incertainperiods(e.g.endofinterbreeding/beginningofbreeding228 

period)scavengingplaysacrucialroleinthedietsofwandering(Diomedeaexulans),229 

black‐browed (Thalassarche melanophrys) and grey‐headed (Thalassarche230 

chrysostoma)albatrosses,asmorethan60%ofthecephalopodremainsrecovered231 

had potentially been scavenged (more than 95% of the total estimatedmass of232 

cephalopodsconsumed)(Alvitoetal.2015).233 

Regarding the squid’s own feeding ecology,M. hamiltoni specimens with234 

intactorundigestedstomachcontentsremainunknown.Moreover,dietarystudies235 

10  

incephalopodsaredifficulttoconductasgutcontentsareusuallyinanadvanced236 

state of digestion, making identification of prey items difficult to impossible.237 

Cephalopodsalsomaceratetheirpreysfinelybeforeingestion,usingtheirbeaksand238 

radula. It hasbeen suggested thatM.hamiltoni feedsonmyctophids, Patagonian239 

toothfish, sleeper sharks andother squids (Jereb andRoper2010;Roberts et al.240 

2011). Based on phylogenetic (metabolic) inferences and polar gigantism241 

constraints,RosaandSeibel(2010)arguedthatthecolossalsquidisprobablynota242 

predatorcapableofhigh‐speedpredator–prey interactions (seealsosection3.5).243 

Therefore, the very large but immobilized (or weakened) toothfish specimens244 

captured by longline would present easy, opportunistic prey for M. hamiltoni245 

(Yukhov2012;Remesloetal.2015).246 

Anumberofstudieshavealsousedadifferentapproachtodeterminethe247 

trophicpositionofthecolossalsquid,namelytheuseofisotopicanalysis(e.g.Cherel248 

andHobson2005).Nitrogenisotopesratio(δ15N)indicatetheconsumer’strophic249 

position,whereascarbonisotopesratio(δ13C)canprovideinformationonhabitat250 

occupation. Assessment of the nitrogen signatures have demonstrated that M.251 

hamiltoniisdefinitelyoneofthetoppredatorsintheSouthernOcean(Fig.6).252 

253 

Vision254 

Giant(Architeuthisdux)andcolossalsquidspossessthelargesteyesinthe255 

Worldoceans(Fig.7),andontheplanet(Walls1942;LandandNilsson2002).Since256 

bothofthesesquidspeciesarepelagicorganismsthatshare(orcompetefor)similar257 

ecologicalnicheswithother(vertebrate)toppredators,thetremendousdifferences258 

ineyesizemayindicateadifferentpurposefortheuseofeyes.Nilssonetal.(2012)259 

11  

suggestedthattheverylargeeyesmayhaveconferredanevolutionaryadvantagein260 

increased ability to detect large predators (especially spermwhales), rather for261 

utilityindetectingmatesorpreyatlongdistances.Theseauthorsmodelledlarge262 

squids’visualrangeandproposedthatthegianteyesenablethemtodetectsperm263 

whales as they trigger plankton bioluminescence while swimming through the264 

water column. In other words, as whales conduct hunting dives, they attain265 

considerable speed and agitate the deep waters where a great variety of266 

bioluminescentorganismsthrive.Thecolossalsquid’seyes,duetotheirlargeretina,267 

areabletodetectsuchsmallsourcesoflightfromadistance,althoughtheymaynot268 

necessarilyregisterthepredatorsbeforebeingdetectedthemselvesbythewhale’s269 

sonar(therangeofwhichcanexceed120m).Thesquidmay,however,bevisually270 

warnedinsufficienttimetoattemptanescape(Nilssonetal.2012).Nonetheless,it271 

isworthnotingthatSchmitzetal.(2013)alsoarguedthatM.hamiltoni’seyesare272 

withintheexpectedallometricrangeforsquids,andthusmaybeasimpleresultof273 

aphylogeneticallyconservedtrait.274 

275 

Metabolism276 

Rosa and Seibel (2010) calculated the metabolic rates and energy277 

requirements of the colossal squid through a depth‐temperature gradient278 

representative of the Southern Ocean (Fig. 8). This phylogenetic inference was279 

conducted based on other deep‐sea cranchiid data and followed the expected280 

allometricrelationshipbetweenbodysizeandmetabolism(Seibel2007;Seibeland281 

Drazen2007;Rosaetal.2009).Basedontheirfindings,theauthorsarguedthatthe282 

colossal squid “is not a voracious predator capable of high‐speed predator–prey283 

interactions.Itis,rather,anambushorsit‐and‐floatpredatorthatusesthehookson284 

12  

itsarmsandtentaclestoensnarepreythatunwittinglyapproach”.Thecolossalsquid285 

waslongthoughttobeanintrepidpredator,duetothe“kraken”‐relatedmythsand286 

storiesassociatedwithitslargesize,butafterthisstudy,ithasbeenpostulatedthat287 

thecolossalsquidperhapsdoesnotdeservesuchareputation.Thequestionthatwe288 

nowraiseis:doesanorganismneedtobeanactivepursuitpredatortobefearsome?289 

Forinstance,whitesharks,leopards,crocodiles,largemonkfishandpythonsareall290 

ambushpredators(manywithlowenergydemands),anditistheircapabilitytohide291 

andstrikewithoutwarningthatmakestheminherentlyaggressive.292 

293 

Bioluminescence294 

Likethegreatmajorityofdeepseainhabitants,M.hamiltonipossesseslight‐emitting295 

organs(photophores),intheformoftwoelongatestructuresontheventralsurface296 

ofeacheye(Fig.9)(Herringetal.2002).Thesmallerislocatedanteriorlywhilethe297 

largeriscrescent‐shapedandlocatedposteriorlyaroundtheoutsiderimoftheiris298 

(Voss1980).M.hamiltoniphotocytescontaincrystalloidswhoseprofilesappearas299 

rectangularblocksorelongateneedles,andthereflectorplateletsareunusual,being300 

associated with a microtubular array that confers their edges a comb‐like301 

appearance (Fig. 9). Interestingly,withinCranchiidae,members of the subfamily302 

Cranchiinaeobliteratethesilhouetteoftheeyeballbyilluminatingnumeroussmall303 

ventrallydirectedphotophores,whereasthetaoniines(includingM.hamiltoni)use304 

fewer,moreelaborate,elongatereflectorstospreadthelightfromthephotophores305 

overtheentireprojectedventralsurfaceoftheeyeball(Herringetal.2002).Likeall306 

taoniines, the two photophores of the M. hamiltoni have a mirror‐image307 

arrangementinwhichtheilluminatedsurfaceofeachlight‐emittingorganextends308 

towards the other, across the main ventral area of the eyeball. The subocular309 

13  

photophores of M. hamiltoni may serve as ventral camouflage and counter‐310 

illumination, to blend in with downwelling light when seen from below (Young311 

1975;Young1977;Youngetal.1980).Yet,thisseemstobenotusefulinlargesquid312 

individuals since their main predators are not visually‐orientated hunters.313 

Photophoresmayalsobeusedasadeceptivetechnique–whenilluminated,other314 

organismsmaydisregardthecolossalsquidasathreat,allowingittoapproachits315 

prey.Alternatively,thephotophoresmaybeusedas“flashlights”tomoreaccurately316 

predictthedistanceneededtostretchitshookedtentaclesandsuccessfullycapture317 

unwittingprey.318 

319 

Futuredirections320 

Furthereffortsshouldbemadetounderstandmoreaboutthelifeofthisgiant.Ithas321 

beenassumedthatM.hamiltoniisquiteabundantintheSouthernOcean(biomass322 

ofaround90milliontonnes)andtherehavebeensomereportsonitsinterestto323 

fisheries(JerebandRoper2010).Everysample,fragmentorsightinghasprovedto324 

beahighlyvaluablesourceofinformationandhelpedscientiststounveilmoreand325 

moreaboutM.hamiltoni.Baitedcamerasandremotelyoperatedvehiclescouldbe326 

deployedinthesearchoflivefootage,ashashappenedrecentlyforotherdeepsea327 

“giant”squids,e.g.Architeuthisdux(KuboderaandMori2005)andTaningiadanae328 

(Kuboderaetal.2006).M.hamiltoniandotherAntarcticorganismshasbeenwidely329 

usedforeducationandoutreachactivitiesworldwide(Xavieretal.2015a).Besides330 

the fact that these unique invertebrate giants continue to attract considerable331 

attentionfrommediaandthepublicingeneral,itisimportanttohighlight,inthe332 

words of Vermeij (2016), that: “Gigantism is (… ) a functionally distinct and333 

ecologicallyimportantconditionthatisbothenabledbyresourcesandcompelledby334 

14  

naturalselection.Thedistributionofmaximumsizeintimeandspacecantherefore335 

informourunderstandingofmajorpatternsinthehistoryoflife.”336 

337 

Acknowledgements338 

ThisstudybenefitedfromthestrategicprogramofMARE,financedbyFCT(MARE‐339 

UID/MAR/04292/2013). JX is supported by the Investigator FCT program340 

(IF/00616/2013)andbytheFoundationforScienceandTechnology(Portugal)and341 

isassociatedtoSCARAnT‐ERA,SCAREGBAMM,ICED,BAS‐CEPHprograms.RRis342 

supportedbytheInvestigatorFCTprogram(IF/01373/2013).343 

344 

References345 

346 

Alvito PM, Rosa R, Phillips RA, Cherel Y, Ceia F, Guerreiro M, Seco J, Baeta A, Vieira RP, Xavier 347 JC (2015) Cephalopods in the diet of nonbreeding black‐browed and grey‐headed 348 albatrosses from South Georgia. Polar Biology 38:631‐641  349 

Anderson CIH, Rodhouse PG (2002) Distribution of juvenile squid in the Scotia Sea in relation to 350 regional oceanography. Bulletin of Marine Science 71:97‐108  351 

Arata J, Robertson G, Valencia J, Xavier J, Eacute C, Moreno  CA (2004) Diet of grey‐headed 352 albatrosses at the Diego Ramírez Islands, Chile: ecological implications. Antarctic 353 Science 16:263‐275 doi doi:10.1017/S095410200400207X 354 

Arnett AE, Gotelli NJ (2003) Bergmannʼs rule in larval ant lions: tes ng the starva on resistance 355 hypothesis. Ecol Entomol 6:645‐650  356 

Arntz WE, Brey T, A. GV (1994) Antarctic zoobenthos. Oceanogr Mar Biol Ann Rev 32:241‐304  357 Atkinson D (1994) Temperature and organism size ‐ a biological law for ectotherms? . Adv Ecol 358 

Res 25:1‐58  359 Barnes DKA, Hodgson DA, Convey P, Allen CS, Clarke A (2006) Incursion and excursion of 360 

Antarctic biota: past, present and future Global Ecology and Biogeography 15:121‐142  361 Bolstad KS, O'Shea S (2004) Gut contents of a giant squid Architeuthis dux (Cephalopoda: 362 

Oegopsida) from New Zealand waters. New Zealand Journal of Zoology 31:15‐21  363 Brandt A, Gooday AJ, Brandão SN, Brix S, Brökeland W, Cedhagen T, Choudhury M, Cornelius 364 

N, Danis B, De Mesel I (2007) First insights into the biodiversity and biogeography of 365 the Southern Ocean deep sea. Nature 447:307‐311  366 

Chapelle G, Peck LS (1999) Polar gigantism dictated by oxygen availability. Nature 399:114‐115  367 Chapelle G, Peck LS (2004) Amphipod crustacean size spectra: new insights in the relationship 368 

between size and oxygen. Oikos 106:167‐175  369 Cherel Y, Duhamel G (2004) Antarctic jaws: cephalopod prey of sharks in Kerguelen waters. 370 

Deep‐Sea Research Part I‐Oceanographic Research Papers 51:17‐31 doi 371 10.1016/j.dsr.2003.09.009 372 

15  

Cherel Y, Duhamel G, Gasco N (2004) Cephalopod fauna of subantarctic islands: new 373 information from predators. Marine Ecology Progress Series 266:143‐156 doi 374 10.3354/meps266143 375 

Cherel Y, Hobson KA (2005) Stable isotopes, beaks and predators: a new tool to study the 376 trophic ecology of cephalopods, including giant and colossal squids. Proceedings of 377 Royal Society B 272:1601‐1607  378 

Cherel Y, Hobson KA (2007) Geographical variation in carbon stable isotope signatures of 379 marine predators: a tool to investigate their foraging areas in the Southern Ocean. 380 Marine Ecology Progress Series 329:281‐287 doi 10.3354/meps329281 381 

Cherel Y, Hobson KA, Guinet C, Vanpe C (2007) Stable isotopes document seasonal changes in 382 trophic niches and winter foraging individual specialization in diving predators from 383 the Southern Ocean. Journal of Animal Ecology 76:826‐836 doi 10.1111/j.1365‐384 2656.2007.01238.x 385 

Cherel Y, Klages N (1998) A review of the food of albatrosses. In: Robertson G, Gales R (eds) 386 Albatross Biology and Conservation. Surrey Beatty & Sons, Chipping Norton, Australia, 387 pp 113‐136 388 

Clarke A (2003) Evolution, adaptation, and diversity: global ecology in an Antarctic context. In: 389 Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) 390 Antarctic Biology in a Global Context. Int. Biol. Symp. Backhuys Publishers, Leiden, pp 391 3‐17 392 

Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol Ann Rev 393 41:47‐114  394 

Clarke MR (1980) Cephalopoda in the diet of sperm whales of the southern hemisphere and 395 their bearing on sperm whale biology. Discovery Reports 37:324  396 

Clarke MR, Goodall N (1994) Cephalopods in the diets of three Odontoceti cetacean species 397 stranded at Tierra del Fuego, Globicephala melaena (Traill, 1809), Hyperoodon 398 planifrons Flower, 1882 and Cephalorhynchus commersonii (Lacepede, 1804). Antarctic 399 Science 6:149‐154  400 

Clarke MR, MacLeod N (1982) Cephalopod remains from the stomachs of sperm whales caught 401 in the Tasman sea. Memoirs of the National Museum Victoria 43:25‐42  402 

Clarke MR, MacLeod N, Paliza O (1976) Cephalopod remains from the stomachs of Sperm 403 whales caught off Peru and Chile. Journal of Zoology 180:477‐493  404 

Clarke MR, Prince PA (1981) Cephalopod remains in regurgitations of black‐browed and grey‐405 headed albatrosses at South Georgia. British Antarctic Survey Bulletin 54:1‐8  406 

Collins MA, Rodhouse PG (2006) Southern Ocean cephalopods. Advances in Marine Biology 407 50:191‐265  408 

Cooper J, Brown CR (1990) Ornithological research at the sub‐Antarctic Prince Edward Islands: 409 a review of achievements. South Africa Trans Nav Antarkt 20:40‐57  410 

Cooper J, Henley S, Klages N (1992) The diet of the wandering albatross Diomedea exulans at 411 subantarctic Marion Island. Polar Biology 12:477‐484  412 

Croxall JP, Prince PA (1994) Dead or alive, night or day ‐ how do albatrosses catch squid. 413 Antarctic Science 6:155‐162  414 

Filippova J (1991) Morpho‐ecological aspects of the study of Antarctic squids. Bull Mar Sci 415 49:662  416 

Filippova JA (2002) Review of Soviet/Russian studies on squids in the Antarctic Ocean. Bulletin 417 of Marine Science 71:255‐267  418 

Filippova JA, Pakhomov EA (1994) Young squid in the plankton of Prydz Bay, Antarctica. 419 Antarctic Science 6:171‐173 doi doi:10.1017/S095410209400026X 420 

Filippova JAY, V. L. (1979) Specific composition and distribution of cephalopod molluscs in 421 meso‐ and bathypelagic Antarctic waters. Antarktika Doklady Komissi:175‐187  422 

Fillipova JA (1972) New data on the squids (Cephalopoda: Oegopsida) from the Scotia Sea 423 (Antarctic). Malacologia 11:391‐406  424 

16  

Fiscus CH, Rice DW, Wolman AA (1989) Cephalopods from the stomachs of sperm whales 425 taken off California. NOAA Technical Report NMFS 83:1‐12  426 

Fonseca Vd, Petry M (2007) Evidence of food items used by Fulmarus glacialoides (Smith 1840) 427 (Procellariiformes: Procellariidae) in Southern Brazil. Polar Biology 30:317‐320 doi 428 10.1007/s00300‐006‐0185‐7 429 

Green K, Kerry KR, Disney T, Clarke MR (1998) Dietary studies of light‐mantled sooty 430 albatrosses Phoebetria palpebrata from Macquarie and Heard Islands. Marine 431 Ornithology 26:19‐26  432 

Guerreiro M, Phillips RA, Cherel Y, Ceia FR, Alvito P, Rosa R, Xavier JC (2015) Habitat and 433 trophic ecology of Southern Ocean cephalopods from stable isotope analyses. Marine 434 Ecology Progress Series 530:119‐134 doi 10.3354/meps11266 435 

Herring PJ, Dilly PN, Cope C (2002) The photophores of the squid family Cranchiidae 436 (Cephalopoda: Oegopsida). Journal of Zoology 258:73‐90  437 

Ibáñez CM, Keyl F (2010) Cannibalism in cephalopods. Rev Fish Biol Fish 20:123‐136  438 Imber MJ (1992) Cephalopods eaten by wandering albatrosses Diomedea exulans L. breeding 439 

at six circumpolar localities. Journal of the Royal Society of New Zealand 22:243‐263  440 Imber MJ, Berruti A (1981) Proccellariiform seabirds as squid predators. In: Cooper J (ed) 441 

Proceedings of the Symposium on Birds of the Sea and Shore. African Seabird Group, 442 Cape Town, pp 43‐61 443 

Jereb P, Roper CFE (2010) Cephalopods of the world. An annotated and illustrated catalogue of 444 cephalopod species known to date. Myopsidae and Oegopsidae. FAO, Rome 445 

Jereb P, Roper CFE, Norman MD, Finn JK (2014) Cephalopods of the world. An annotated and 446 illustrated catalogue of cephalopod species known to date. Volume 3. Octopods and 447 Vampire Squids. . FAO, Rome 448 

Kent S, Seddon J, Roberston G, Wienecke BC (1998) Diet of Adélie penguins Pygoscelis adeliae 449 at Shirley Island, East Antarctica, January 1992. Marine Ornithology 26:7‐10  450 

Klumov SK, Yukhov VL (1975) Mesonychoteuthis hamiltoni Robson, 1925 (Cephalopoda: 451 Oegopsida). Antarktika Doklady Komission 14:159‐189  452 

Korabelnikov L (1959) The diet of sperm whales in the Antarctic seas. Priroda 3:103‐104  453 Kubodera T, Koyama Y, Mori K (2006) Observations of wild hunting behaviour and 454 

bioluminescence of a large deep‐sea, eight‐armed squid, Taningia danae. Proceedings 455 of Royal Society B doi:10.1098/rspb.2006.0236  456 

Kubodera T, Mori K (2005) First‐ever observations of a live giant squid in the wild. Proceedings 457 of Royal Society B in press  458 

Land MF, Nilsson D‐E (2002) Animal Eyes. Oxford University Press, Oxford 459 Lindstedt SL, Boyce MS (1985) Seasonality, fasting endurance, and body size in mammals. Am 460 

Nat 125:873‐878  461 Lipinski MR (1986) Methods for the validation of squid age from statoliths. Journal of the 462 

Marine Biological Association of the United Kingdom 66:505‐526 doi 463 doi:10.1017/S0025315400043095 464 

Lipinski MR, Jackson S (1989) Surface‐feeding on cephalopods by procellariiform seabirds in 465 the southern Benguela region, South Africa. Journal of Zoology 218:549‐563  466 

Lu CC, Williams R (1994) Contribution to the biology of squid in the Prydz Bay region, 467 Antarctica. Antarctic Science 6:223‐229 doi doi:10.1017/S0954102094000349 468 

McClain CR, Balk MA, Benfield MC, Branch TA, Chen C, Cosgrove J, Dove AD, Gaskins LC, Helm 469 RR, Hochberg FG (2015) Sizing ocean giants: patterns of intraspecific size variation in 470 marine megafauna. PeerJ 3:e715  471 

McSweeny ES (1970) Description of the juvenile form of the Antarctic squid Mesonychoteuthis 472 hamiltoni Robson. Malacologia:323‐332  473 

Moore JK, Abbott MR, Richman JG (1997) Variability in the location of the Antarctic Polar Front 474 (90 degrees‐20 degrees W) from satellite sea surface temperature data. Journal of 475 Geophysical Research‐Oceans 102:27825‐27833 doi 10.1029/97jc01705 476 

17  

Moore JK, Abbott MR, Richman JG (1999) Location and dynamics of the Antarctic Polar Front 477 from satellite sea surface temperature data. Journal of Geophysical Research‐Oceans 478 104:3059‐3073  479 

Nilsson DE, Warrant EJ, Johnsen S, Hanlon R, Shashar N (2012) A unique advantage for giant 480 eyes in giant squid. Current biology : CB 22:683‐688 doi 10.1016/j.cub.2012.02.031 481 

Orsi AH, Whitworth T, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic 482 Circumpolar Current Deep‐Sea Research Part I‐Oceanographic Research Papers 483 42:641‐673 doi 10.1016/0967‐0637(95)00021‐w 484 

Petrov AF, Tatarnikov VA (2011) Results of investigation of the diet of antarctic toothfish 485 Dissostichus mawsoni (Nototheniidae) in the Lazarev Sea. Journal of Ichthyology 486 51:131‐135 doi 10.1134/S0032945210051017 487 

Remeslo AV, Yakushev MR, Laptikhovsky V (2015) Alien vs. Predator: interactions between the 488 colossal squid (Mesonychoteuthis hamiltoni) and the Antarctic toothfish (Dissostichus 489 mawsoni). Journal of Natural History 49:2483‐2491 doi 490 10.1080/00222933.2015.1040477 491 

Ridoux V (1994) The diets and dietary segregation of seabirds at the Subantarctic Crozet 492 Islands. Marine Ornithology 22:1‐192  493 

Roberts J, Xavier JC, Agnew DJ (2011) The diet of toothfish species Dissostichus eleginoides and 494 Dissostichus mawsoni with overlapping distributions. J Fish Biol 79:138‐154 doi 495 10.1111/j.1095‐8649.2011.03005.x 496 

Robertson G, Williams R, Green K, Robertson L (1994) Diet composition of emperor penguin 497 chicks Aptenodytes forsteri at two Mawson Coast colonies, Antarctica. Ibis 136:19‐31  498 

Robison BH, Seibel BA, Drazen JC (2014) Deep‐Sea Octopus (Graneledone boreopacifica) 499 conducts the longest‐known egg‐brooding period of any animal. Plos One 9:e103437  500 

Robson GC (1925) On Mesonychoteuthis, a new genus of oegopsid Cephalopoda. Annals and 501 Magazine of Natural History:272‐277  502 

Rodhouse P, Hatfield E (1990) Age determination in squid using statolith growth increments. 503 Fisheries Research 8:323‐334  504 

Rodhouse PG (1998) Large and meso‐scale distribution of the ommastrephid squid Martialia 505 hyadesi in the Southern Ocean: a synthesis of information relevant to fishery 506 forecasting and management. Korean Journal of Polar Research 8:145‐154  507 

Rodhouse PG, Arnbom T, Fedak MA, Yeatman J, Murray AWA (1992) Cephalopod prey of the 508 southern elephant seal, Mirounga leonina L. Canadian Journal of Zoology 70:1007‐509 1015  510 

Rodhouse PG, Clarke MR (1985) Growth and distribution of young Mesonychoteuthis hamiltoni 511 Robson (Mollusca: Cephalopoda): An Antarctic squid. Vie et Milieu 35:223‐230  512 

Rodhouse PG, Clarke MR, Murray AWA (1987) Cephalopod prey of the wandering albatross 513 Diomedea exulans. Marine Biology 96:1‐10  514 

Rodhouse PG, Prince PA, Trathan PN, Hatfield EMC, Watkins JL, Bone DG, Murphy EJ, White 515 MG (1996) Cephalopods and mesoscale oceanography at the Antarctic Polar Front: 516 Satellite tracked predators locate pelagic trophic interactions. Marine Ecology Progress 517 Series 136:37‐50 doi 10.3354/meps136037 518 

Rodhouse PG, White MG (1995) Cephalopods occupy the ecological niche of epipelagic fish in 519 the Antactic Polar Frontal zone. Biological Bulletin 189:77‐80 doi 10.2307/1542457 520 

Rosa R, Seibel BA (2010) Slow pace of life of the Antarctic colossal squid. Journal of the Marine 521 Biological Association of the United Kingdom 90:1375‐1378 doi 522 10.1017/s0025315409991494 523 

Rosa R, Trueblood L, Seibel BA (2009) Ecophysiological influence on scaling of aerobic and 524 anaerobic metabolism of pelagic gonatid squids. Physiological and Biochemical Zoology 525 82:419‐429  526 

18  

Schmitz L, Motani R, Oufiero C, Martin C, McGee M, Gamarra A, Lee J, Wainwright P (2013) 527 Allometry indicates giant eyes of giant squid are not exceptional. BMC Evolutionary 528 Biology 13:45  529 

Seibel BA (2007) On the depth and scale of metabolic rate variation: scaling of oxygen 530 consumption rates and enzymatic activity in the Class Cephalopoda (Mollusca). Journal 531 of Experimental Biology 210:1‐11  532 

Seibel BA, Drazen JC (2007) The rate of metabolism in marine animals: environmental 533 constraints, ecological demands and energetic opportunities. Philosophical 534 Transactions of the Royal Society B 362:2061‐2078  535 

Seibel BA, Thuesen EV, Childress JJ (2000) Light‐limitation on predator‐prey interactions: 536 consequences for metabolism and locomotion of deep‐sea cephalopods. Biological 537 Bulletin 198:284‐298  538 

Stowasser G, Atkinson A, McGill RAR, Phillips RA, Collins MA, Pond DW (2012) Food web 539 dynamics in the Scotia Sea in summer: A stable isotope study. Deep Sea Research Part 540 II: Topical Studies in Oceanography 59‐60:208‐221 doi 10.1016/j.dsr2.2011.08.004 541 

Strugnell JM, Cherel Y, Cooke IR, Gleadall IG, Hochberg FG, Ibáñez CM, Jorgensen E, 542 Laptikhovsky VV, Linse K, Norman Mea (2011) The Southern Ocean: Source and sink? 543 Deep Sea Res Part II 58:196‐204  544 

Vermeij GJ (2016) Gigantism and Its Implications for the History of Life. Plos One 11:e0146092 545 doi 10.1371/journal.pone.0146092 546 

Voss N, Stephen SJ, Dong Z (1992) Family Cranchiidae. Smithsonian Contributions to Zoology 547 513:187‐210  548 

Voss NA (1980) A generic revision of the Cranchiidae (Cephalopoda, Oegopsida). Bulletin of 549 Marine Science 30:365‐412  550 

Walls GL (1942) The vertebrate eye and its adaptive radiation. Bloomfield Hills, Cranbrook 551 Xavier JC, Allcock L, Cherel Y, Hoving H‐J, Lipinski M, Gomes‐Pereira JN, Piatkowski U, Pierce G, 552 

Rodhouse PG, Rosa R, Liz Shea L, Strugnell J, Vidal E, Villanueva R, Ziegler A (2015a) 553 The future challenges in cephalopod research for the next decade. Journal of the 554 Marine Biological Association of the United Kingdom 95:999‐1015  555 

Xavier JC, Cherel Y (2009) Cephalopod beak guide for the Southern Ocean. British Antarctic 556 Survey, Cambridge, UK 557 

Xavier JC, Croxall JP (2007) Predator‐prey interactions: why do larger albatrosses eat bigger 558 squid? Journal of Zoology 271:408‐417 doi 10.1111/j.1469‐7998.2006.00224.x 559 

Xavier JC, Croxall JP, Reid K (2003a) Inter‐annual variation in the diet of two albatross species 560 breeding at South Georgia: implications for breeding performance. Ibis 145:593‐610  561 

Xavier JC, Croxall JP, Trathan PN, Rodhouse PG (2003b) Inter‐annual variation in the 562 cephalopod component of the diet of wandering albatrosses Diomedea exulans 563 breeding at Bird Island, South Georgia. Marine Biology 142:611‐622  564 

Xavier JC, Phillips RA, Cherel Y (2011) Cephalopods in marine predator diet assessments: why 565 identifying upper and lower beaks is important. ICES Journal of Marine Science 566 68:1857‐1864 doi 10.1093/icesjms/fsr103 567 

Xavier JC, Raymond B, Jones DC, Griffiths H (2015b) Biogeography of cephalopods in the 568 Southern Ocean using habitat suitability prediction models. Ecosystems 19:220‐247 doi 569 10.1007/s10021‐015‐9926‐1 570 

Xavier JC, Rodhouse PG, Purves MG, Daw TM, Arata J, Pilling GM (2002a) Distribution of 571 cephalopods recorded in the diet of the Patagonian toothfish (Dissostichus 572 eleginoides) around South Georgia. Polar Biology 25:323‐330  573 

Xavier JC, Rodhouse PG, Purves MG, Daw TM, Arata J, Pilling GM (2002b) Distribution of 574 cephalopods recorded in the diet of the Patagonian toothfish (Dissostichus 575 eleginoides) around South Georgia. Polar Biology 25:323‐330 doi 10.1007/s00300‐001‐576 0343‐x 577 

19  

Xavier JC, Rodhouse PG, Trathan PN, Wood AG (1999) A Geographical Information System (GIS) 578 atlas of cephalopod distribution in the southern ocean. Antarctic Science 11:61‐62  579 

Xavier JC, Walker K, Elliott G, Cherel Y, Thompson D (2014) Cephalopod fauna of South Pacific 580 waters: new information from breeding New Zealand wandering albatrosses. Marine 581 Ecology Progress Series 513:131‐142 doi 10.3354/meps10957 582 

Xavier JC, Wood AG, Rodhouse PG, Croxall JP (2007) Interannual variations in cephalopod 583 consumption by albatrosses at South Georgia: implications for future commercial 584 exploitation of cephalopods. Marine and Freshwater Research 58:1136‐1143 doi 585 10.1071/mf06237 586 

Young RE (1975) Transitory eye shapes and the vertical distribution of two midwater squids. 587 Pacific Science 29:243‐255  588 

Young RE (1977) Ventral bioluminescence countershading in midwater cephalopods. In: Nixon 589 M, Messenger J (eds) Biology of cephalopods Symposia of the Zoological Society of 590 London Nº38 Academic Press, London, pp 161‐190 591 

Young RE, Kampa EM, Maynard SD, Mencher FM, Roper CFE (1980) Counterillumination and 592 the upper depth limits of midwater animals. Deep‐Sea Research Part A 27:671‐691  593 

Yukhov VL (2012) Antarctic deep‐water squid (АDS) Mesonychoteuthis hamiltoni, Robson, 594 1925. Distribution and borders of the geographic range. Main results of complex 595 research in the Azov and Black Seas Basin and the World Ocean. Kerch: YugNIRO 596 50:241‐248. Russian  597 

 598 

599 

20  

Table1–Listofknownpredatorsofthecolossalsquid(Mesonychoteuthishamiltoni)600 

Predatorgroupsandcommonnames

Species Geographicallocation Reference

Penguins

Kingpengin Aptenodytespatagonicus Crozet Ridoux(1994)Adéliepenguin Pygoscelisadeliae ShirleyIslands,EastAntarctica Kentetal.(1998)Emperorpenguin Aptenodytesforsteri Mawson Robertsonetal.(1994) Seabirds Southernfulmar Fulmarusglacialoides SouthBrazil FonsecaandPetry(2007)Wanderingalbatross Diomediaexulans Marion,Macquarie,PrinceEdward,

CrozetIs.,SouthGeorgia,Antipodes(ClarkeandPrince1981;ImberandBerruti1981;Rodhouseetal.1987;CooperandBrown1990);Cooperetal.(1992);(Imber1992;Ridoux1994;CherelandKlages1998;Xavieretal.2003a;Xavieretal.2003b)

Black‐browedalbatross Thalassarchemelanophrys SouthGeorgia Xavieretal.(2003a)Grey‐headedalbatross Thalassarchechrysostoma DiegoRamirez;SouthGeorgia, (CherelandKlages1998;Xavieretal.2003a;Arataetal.

2004;Alvitoetal.2015)Light‐mantledalbatross Phoebetriapalpebrata Crozet,PrinceEdwardIsland,

MarionIsland;MacquarieandHeardislands

(ImberandBerruti1981;CooperandBrown1990;Ridoux1994;CherelandKlages1998;Greenetal.1998)

White‐chinnedpetrel Procellariaaequinoctialis SouthAfrica(BenguelaCurrent);MarionIs.

LipinskiandJackson(1989)

Sootyalbatross Phoebetriafusca MarionandCrozetIslands (ImberandBerruti1981;CooperandBrown1990;Ridoux1994;CherelandKlages1998)

Fishes Sleepershark Somniosuscf.Microcephalus Kerguelen CherelandDuhamel(2004)Patagoniantoothfish Dissostichuseleginoides Crozet,SouthGeorgia (Xavieretal.2002b;Chereletal.2004)Antarctictoothfish Dissostichusmawsoni LazarevSea,SouthSandwich

Islands(PetrovandTatarnikov2011;Robertsetal.2011)

21  

601 

602 

603 

604 

605 

606 

607 

608 

609 

610 

611 

612 

613 

614 

615 

616 

617 

618 

619 

Marinemammals Southernelephantseal Miroungaleonina SouthGeorgia Rodhouseetal.(1992)Spermwhale Physetermacrocephalus Antarctica,SouthAmerica,South

Georgia,PeruandChile,Tasmansea

(Korabelnikov1959;Clarkeetal.1976;Clarke1980;ClarkeandMacLeod1982;Fiscusetal.1989)

Southernbottlenosewhale Hyperoodonplanifrons SouthAmerica ClarkeandGoodall(1994)Long‐finnedpilotwhale Globicephalamelaena SouthAmerica ClarkeandGoodall(1994)

22  

620 

Figurecaptions621 

622 

Figure1–Lengthandweight(logarithmicscale)ofthemarineinvertebrate(grey623 

bars) and vertebrate giants (blue bars), with a special emphasis on the624 

cephalopods:giantoctopus(Enteroctopusdofleini),giantsquid(Architeuthis625 

dux) and colossal squidMesonychoteuthis hamiltoni (red bar). Cephalopod626 

datafromJerebandRoper(2010)andJerebetal.(2014).Othergroups’data627 

fromMcClainetal.(2015)andreferenceswithin.628 

629 

Figure 2 – Morphological dissimilarities between the colossal squid630 

(Mesonychoteuthishamiltoni)andothercranchiidspecies.PanelsA,BandC631 

showthetranslucentbodiesofdeep‐seaglasssquidsTeuthoweniapellucida632 

and Taonius borealis (copyright: MBARI). Panels D and E show the much633 

densermusculatureofthecolossalsquid(photocredits:APSanAspringcrew634 

ofSanfordCompany).PanelsF,G,Hhighlightthebeaksize,thepresenceof635 

rotating hooks on its tentacles, and eye lens size of the colossal squid636 

(copyright:MuseumofNewZealandTePapaTongarewa).637 

638 

Figure3–Numberofcolossalsquid(Mesonychoteuthishamiltoni)specimenscaught639 

in nets (RMT‐ Rectangular midwater trawl, IKMT – Isaacs‐Kidd Midwater640 

trawl, and other trawls) within the Southern Ocean, and the relationship641 

betweenjuvenilemantlelength(mm)anddepthofcapture.642 

643 

Figure 4 – Map of the locations of all known colossal squid (Mesonychoteuthis644 

hamiltoni) occurrences. “Squid” symbol represents locations obtained from645 

nets and the other symbols represent predator diet studies (penguins,646 

seabirds,fishandsharks)[modifiedfromXavieretal.(2015b)].647 

648 

Figure5–Predictedmantle length(mm)of thecolossalsquid(Mesonychoteuthis649 

hamiltoni)foundinthestomachsremains(namelybeaks)ofitspredators.The650 

estimatedvaluesarebasedonbeaks’morphometrics(namely lowerrostral651 

length)andtherespectiveallometricequation(seeXavierandCherel2009).652 

23  

Abbreviations: A.p. – Aptenodytes patagonicus; Dio.e. – Diomedia exulans;653 

Diss.e. ‐ Dissostichus eleginoides; G.m. ‐ Globicephala melaena; H.p. ‐654 

Hyperoodonplanifrons;P.f.–Phoebetriafusca;P.m.–Physetermacrocephalus;655 

P.p. ‐ Phoebetria palpebrata; S.m. – Somniosus cf Microcephalus; T.c. ‐656 

Thalassarche chrysostoma. The references for beak data (for the different657 

predatorspecies)canbefoundinTable1.658 

659 

Figure6–δ15Nvalues(trophiclevel)ofsquid(greybars)andothermarineanimals660 

collected in the Southern Ocean. * ‐ corrected (beak) values. Data from661 

Guerreiroetal.(2015),Stowasseretal.(2012)andreferenceswithin.662 

663 

Figure7–Biggesteyes(mm)intheocean.DatafromWalls(1942),LandandNilsson664 

(2002)andNilssonetal.(2012).665 

666 

Figure8–Metabolicecologyofthecolossalsquid(Mesonychoteuthishamiltoni)in667 

the Southern Ocean. Panel A: Effect of size in the routine mass‐specific668 

metabolic rate of deep‐sea cranchiid squids (blue circles, from a 0.017g669 

Liocranchia valdiviae to 500 kg M. hamiltoni) and of other cephalopod670 

counterparts, including loliginids(green line), coastalommastrephids (dark671 

red line), coastal benthic octopods (red line), pelagic gelatinous octopods672 

(lightblue line)andvampiresquid(purple line).Valueof20kggiantsquid673 

(Architeuthisspp.;solidtriangle)wasbasedontheactivityofcitratesynthase674 

measuredinmantlemuscle(Seibeletal.2000).Rateswerestandardizedto675 

1.5ºC assuming a Q10 of 2. Data from Rosa and Seibel (2010) and Seibel676 

(2007).PanelsBandCrepresentdepth‐relatedchangesintemperatureinthe677 

circum‐AntarcticSouthernOcean.Dashedlinesrepresentsub‐Antarcticareas678 

(50.58S0.58E;50.58S90.58E;50.58S179.58W;50.58S90.58W)andsolidlines679 

represent Antarctic areas (60.58S0.58E; 60.58S90.58E; 60.58S179.58W;680 

60.58S90.58W);(B)projectedenergyconsumption(kcalday‐1;basedon4.7681 

kcal/lO2)asafunctionofdepth(temperaturedependenceof2)inthecircum‐682 

AntarcticSouthernOceanregion.Thicksolidlinerepresentsthemeanvalues683 

obtainedfromthedifferenttemperatureprofiles.Thindashedlinerepresents684 

24  

the95%confidence interval for themeans (modified fromRosaandSeibel685 

2010).686 

687 

Figure9–Photophoresofthecolossalsquid(Mesonychoteuthishamiltoni).PanelA688 

showsthelightorganattherearoftheeyeball,whilePanelBshowstheeyelid689 

beingpulledbacktorevealpartofthelightorgan(attherearoftheeyeball)690 

(copyright: Museum of New Zealand Te Papa Tongarewa). Panels C and D691 

show the colossal squid’s photocytes containing paracrystalline aggregates692 

(needle‐likeorrectanglestructures)andPanelEshowsthereflectorplatelets693 

with edges of comb‐like appearance (modified from Herring et al. 2002;694 

copyright:JohnWiley&Sons,Inc.).695 

696