adaptation of mesocarnivores (mammalia: carnivora) to agricultural landscapes of mediterranean...

39

Upload: usp-br

Post on 10-Nov-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

In: Middle-Sized Carnivores in Agricultural Landscapes ISBN: 978-1-61122-033-9 Editor: L. M. Rosalino and C. Gheler-Costa, pp. 1-38 © 2011 Nova Science Publishers, Inc.

Chapter 1

ADAPTATION OF MESOCARNIVORES (MAMMALIA:

CARNIVORA) TO AGRICULTURAL LANDSCAPES IN

MEDITERRANEAN EUROPE AND SOUTHEASTERN

BRAZIL: A TROPHIC PERSPECTIVE

Luciano M. Verdade¹, Luis Miguel Rosalino², Carla Gheler-Costa¹, Nuno M. Pedroso² and Maria Carolina Lyra-Jorge1

¹ Laboratório de Ecologia Isotópica, CENA / Universidade de São Paulo, Caixa Postal 96, Piracicaba, SP 13400-970, BRASIL

² Centro de Biologia Ambiental, Faculdade de Ciências da Universidade de Lisboa, Ed. C2, Campo Grande, 1749-016 Lisboa, PORTUGAL

ABSTRACT

The conversion of natural ecosystems into silvo/agriculture systems has been occurring for millennia or centuries throughout our planet. While for many carnivores species this landscape transformation can have negative conservation consequences, for others it could represent a window of opportunity. Therefore, we aimed to review the use of agricultural ecosystems of Mediterranean Europe and Southeastern Brazil by carnivores, as well as how these predators use the surplus of food available in those men-shaped environments. Our review shows that most of these studies were carried out in mono-silvicultural landscapes of Southeastern Brazil and in mixed-agricultural landscapes of Southern Europe. Moreover, while Neotropical species prey more upon small vertebrates, Mediterranean species tend to consume more often invertebrates and fruits. We discuss the possible role of this increase in habitat carrying capacity on the enhancement in numbers of these carnivores in opposition to the mesopredator release hypothesis. We believe that mesocarnivores are adapting to take advantage of a trophic resource enhancement opportunity window created by agro-systems practices, which increase the overall landscape carrying capacity as agriculture is re-shaping the landscape for thousands of years. Finally, we discuss the possible conservation value of agricultural landscapes

Luciano M. Verdade, Luis Miguel Rosalino, Carla Gheler-Costa et al. 2

1. INTRODUCTION Large-sized carnivores experienced massive population declines due to habitat

destruction and human hunting pressure (Crooks, 2002). The former is predominantly associated with agriculture expansion (Marino, 2003), whereas the second is mostly related with livestock depredation (Blanco and Cortés, 2007) and illegal trade of skin or other body parts (e.g., Shepherd and Nijman, 2008). Large home ranges, naturally low population densities and a low intrinsic growth rate make large carnivores more prone to these anthropogenic impacts (Crooks, 2002; Caughey, 1977, 1994). This is the case of large felids such as the tiger (Seidensticker et al., 1999), the African and the Asian lion (Chardonnet, 2002) and the jaguar (Hoogesteijn and Mondolfi, 1992), as well as other large carnivores like the brown bear (e.g., Palomero et al., 1997) and the wolf (Mech, 1970).

There are evidences that the extinction of top predators can have an indirect and negative effect on prey species, by increasing the presence of other smaller predators (Wright et al., 1994; Palomares et al., 1995; Palomares et al., 1996; Crooks and Soulé, 1999; Terborgh, 2000; Gehrt and Clark, 2003), which were no longer subjected to a predatory/competition constrain by larger carnivores. However, this interpretation has been subjected to some criticisms (e.g., Litvaitis and Villafuerte, 1996), and other alternative hypotheses have also been proposed. Some authors have argued that more generalist predators are favoured when natural landscapes are fragmented by agriculture, even in the secular absence of larger predators due to an increase in food resources which they can use (Oehler, 1995; Morán-López et al., 2006; McDougall et al., 2006; Sánchez-Hernandéz et al., 2001; Tabeni and Ojeda, 2005).

Agricultural landscapes are mostly mosaics formed by a matrix of an agroecosystem (the landscape element with a high connectivity whose area exceeds the area of all other elements combined – Forman, 1995) permeated by remnant patches of native vegetation. Agroecosystems are cultivated areas of domestic plant species for economic purposes. The permanence of wild species in agricultural landscapes depends basically on the matrix permeability and on the resources available, both in the agroecosystems and in the remnant patches of native vegetation (Gascón et al., 1999). In general, the displacement of native ecosystems by agriculture affects species composition and consequently the ecosystem structure and functioning (Oehler and Litvaitis, 1996). However, some species – in especial mesocarnivores (intermediate body-size mammalian carnivores – Buskirk and Zielinski, 2003) – apparently benefit from this land use change (e.g., Laurance, 1994; Litvaitis and Villafuerte, 1996; Chiarello, 1999; Gehring and Swihart, 2003; Dotta and Verdade, 2007) due to a possible increase in their food resources (Moguel and Toledo, 1999; Faria et al., 2006; Acharya, 2006).

Agriculture has been developed for the last thousands of years (Diamond, 1997, 2005), affecting not only the spatial structure of the landscape but also inducing temporal heterogeneity (Wiens, 2000). Time scale should then be considered in order to evaluate the effects of agriculture on the patterns of abundance and distribution of biodiversity (Balée, 2006). In this study we review the use of food resources by mesopredators in agricultural landscapes from Mediterranean Europe and Southeastern Brazil, as a way to address adaptive processes of mesopredators to Human changes in the landscapes. Agriculture based on deforestation has been implemented in both regions but in different time scales. In southern

Adaptation of Mesocarnivores… 3

Europe this landscape shaping activities induced by man started some millenniums ago. For example, in the island of Crete (Greece - Eastern Mediterranean) 4000-3000 BC the landscapes nearby the city of Kommos already consisted of a intricate mosaic of cultivated fields and orchards interspersed with semi-natural woodlands (Blondel and Aronson, 1999). In Southeastern Brazil, agriculture transformation started only recently (in the last 200 to 300 years – Dean, 1995). Although such a different time scale could act as a diversion variable, this agricultural transformation of the landscape in both geographical regions have similarities: the type of agriculture, together with its management schemes, implemented in Southern America have a southern European origin, since they were introduced in the New World by European colonial settlers and immigrants. Moreover, ecologically similar species of mesopredators are found in both (Jaksić and Delibes, 1987).

Although sharing a common set of evolutionary features the families herein considered vary considerably in their life history strategies. Felids are highly efficient solitary predators hunting mostly on vertebrate prey by ambush. On the other hand, herpestids and canids developed well structured social systems. Ursids, procyonids and viverrids developed three-climb abilities. However, the former are large-sized omnivores, the intermediate are middle-sized omnivores and the later are middle-sized carnivores. At last, mustelids have a slender body shape with a relatively high metabolic rate and a great variation in body size and food habits (García-Perea et al., 1996; Macdonald, 2001; Nowak, 2005).

2. STUDY AREAS

2.1. Mediterranean Region The Mediterranean region is defined by the Mediterranean Sea basin. It’s delimited by

the Euro-Siberian region to the north (with the Palaeartic deciduous and coniferous forests interspersed with steppes), the Saharo-Arabian in the south (influenced by the Sahara desert) and the Irano-Turanian region on the east, which includes high steppes (Blondel and Aronson, 1999). It is composed by diverse ecosystems, adapted to the transitional regime between cold temperate and dry tropical climates that, in a geological scale, can be considered young due to the relatively recent appearance of a Mediterranean climate (Suc, 1984). This climate, characterized by hot, dry summers and cool humid winters, has one defining trait: unpredictability.

The Mediterranean region’s current biodiversity also comprises species whose core distribution is located in the other biogeographical regions, which led to its inclusion in the list of the world’s 25 biodiversity hotspots for conservation priorities (Myers et al., 2000). This rich species diversity and high number of endemisms are a result of the conjunction action of three factors: biogeography, geology and history (Blondel and Aronson, 1999). Although the first two shaped biodiversity and the species natural history, the long lasting Human history in the region seems to be the most important constraining/facilitating factor. Its continuum contact with the vast land of Eurasia and Africa promoted species contact and interaction with a strong influence on species evolution. In addition, its climatic unpredictability created opportunities for specializations (Blondel and Aronson, 1999). However, the Human factor is a constant since the end of the late Pleistocene, with the region

Luciano M. Verdade, Luis Miguel Rosalino, Carla Gheler-Costa et al. 4

being the birth place of the largest and most powerful civilizations of the Old World (e.g., Sumerians, Phoenicians, Greeks, Romans, Ottomansand Sarrasins) and the focus of northern invaders (e.g. Vandals and Visigoths), who have impacted ecosystems everywhere in the basin leading some authors to consider that a ‘coevolution’ has shaped the interactions between Mediterranean ecosystems and humans through constantly evolving land use practices (di Castri, 1981 in Blondel, 2006).

Naveh and Dan (1993 in Blondel and Aronson, 1999) suggested that humans have a direct impact in the Mediterranean landscape for at least 50.000 years leading to an intensive landscape redesign. However, the most intense ecosystem transformation occurred 10.000 years ago, when hunters/collectors began the domestication of animals and cultivation of plants to survive. Since then, pastoralists and agriculturalists were responsible for major deforestation and soil erosion (Blondel and Aronson, 1999). Nowadays, agro-silvo-pastoral Mediterranean landscapes include orchards, fruit farms, olive yards (intensive and extensive), cereal fields, pastures for cattle breeding, or production forests (e.g., Eucalyptus and Pinus), among others. Nevertheless remnants of deciduous (e.g., Quercus spp.), conifers (e.g., Pinus spp.) and riverine (e.g., Populus spp.) forests, matorral (e.g., Erica spp., Cistus spp., Arbutus spp.), tomillares and Phyrgana patches (e.g., Thymus spp., Genista spp.), steppes, grasslands and wetlands can still be found throughout the Mediterranean basin (Blondel and Aronson, 1999).

This long lasting landscape shaping has produced intense modifications in the ecosystems with the transformation of native communities, including the extinction or declining of several species (e.g. Brown bear Ursus arctos and Iberian-lynx, Lynx pardinus populations in Portugal, respectively – Cabral et al., 2005), the invasion of some (e.g., Egyptian mongoose Herpestes ichneumon – Delibes, 1982) and the adaptation of others (e.g., Eurasian badger, Meles meles - Rosalino et al. 2005). Many species with high conservation profiles are associated with traditional land uses and with the human-maintained semi-natural habitats, what can be considered extreme cases of adaptation (Sirami et al., 2008). For example, great bustard Otis tarda, a globally threatened species (Alonso et al., 2003), depends greatly on agricultural areas for survival in the Iberian Peninsula (Lane et al, 2001). Other examples of the importance of man-shaped landscapes are the oak forests (cork and holm), typical Mediterranean forests and the major remaining wood-pasture systems of Europe. They represent a sustainable agro-silvo-pastoral system well adapted to the environmental restrictions of the Mediterranean region (low edaphic and climatic potential) (Pinto-Correia, 2000), important to wildlife conservation (Diáz et al., 1997; Cabral et al., 2005), including endangered species such as the polecat (Mustela putorius) (Santos-Reis et al., 1999) and the wildcat (Felis silvestris) (Virgós et al., 2002).

2.2. Southeastern Brazil The Southeast is the most populated and developed region of Brazil. As a consequence,

this region presents the most dramatic environmental problems of this country including a massive deforestation of its major original biomes, the Atlantic Forest and the Cerrado. The former originally covered 12% of the country from 3º S to 31º S, and from 35º W to 60º W, mainly extending along the Brazilian coast (92%), but also reaching into Paraguay (Cartes and Yanosky, 2003; Huang et al., 2007) and Argentina (Giraudo, 2003).

Adaptation of Mesocarnivores… 5

Possibly due to its large latitudinal range, the Atlantic Forest has a high number of endemic species even higher than some parts of the Amazon Forest (Silva and Leitão Filho, 1982; Peixoto and Gentry, 1990; Barros et al., 1991; Joly et al., 1991; Brown Jr. and Brown, 1992). For this reason, the Atlantic Forest is considered prioritary for conservation among tropical forests (Conservation International, 2008a). According to Joly et al. (1991), the Atlantic Forest is composed by three distinct formations: coastal lowland, steep and plateau forests. In Southeastern Brazil the steep forest formation is predominant.

The Cerrado lato sensu varies from savanna to forest formation due to the physical-chemical characteristics of the soil and the frequency of natural fire (Coutinho, 2002; Ruggiero, 2002). Possibly due to its continental location in South America, the Cerrado has a high diversity of fauna and flora including species from the Amazon and the Atlantic forest as well as from the semi-arid Caatinga at its northeast and the Pantanal at its southwest. However, it has a relatively smaller number of endemic species (Durigan et al., 2007).

Both biomes are characterized the typical climate of Southeastern Brazil which varies from humid subtropical (> 1,200 mm, 20ºC in Southern São Paulo) to semi-arid tropical (< 900 mm, 24ºC in Northern Minas Gerais) (Projeto Cactáceas do Brasil, 2010). The Atlantic Forest tends to cover the more humid areas closer to the seashore, whereas the Cerrado tends to cover the drier continental plateau (Huber, 1987).

Although native South Americans used to make slash-and-burn agriculture in areas of the Atlantic Forest, only after the arrival of the first Europeans in the 1,500’s deforestation became dramatic (Dean, 1995). By its turn, the Cerrado used to be predominantly inhabited by native hunters and gatherers and suffered a massive deforestation only in the late 20th Century due to the expansion of agroindustry in Brazil which also affected the remaining parts of the Atlantic Forest (Dean, 1995). As a result, there is currently only 12% of the Atlantic Forest (Ribeiro et al., 2009) and 20% of the Cerrado remaining in Brazil (Conservation International, 2008b).

3. METHODS In this study we reviewed the diet of species of the order Carnivora from the

Mediterranean Europe (six families, 17 species) and the Southeastern Brazil (four families, 21 species), with special reference to mesocarnivores. Reviewed studies were divided into five silvo-agricultural landscapes types: intensive and extensive exotic pasture, mono- and mixed-agriculture and mono-silviculture. We considered mono-cultures those where an agricultural or silvicultural matrix covers at least 75% of the landscape. Mixed-cultures were defined as those below landscape composition percentage (Agnelli and de Marinis, 1995).We calculated the percentage of diet studies implemented in each of the landscapes units considered in our review.

In order to gather prey items presence/absence data on carnivores diet in a systematic approach, we clustered data into 12 food items categories: fruits, other plant materials, microinvertebrates, macroinvertebrates, fish, amphibians, reptiles, passerine- and non-passerine birds, small, middle and large-sized mammals. Again, we calculated the percentage of diet studies mentioning the consumption of these 12 prey items by carnivores in the silvo-agriculture landscapes of Southwestern Brazil (A) and Mediterranean Europe.

6

lpsS

tscaci

FBmlm

L6

We found

landscapes opublished betsilvicultural Southern Eur

Howetype of agro/subsist (with cover all, or aanalysis. For carnivores ininformation a

Figure 1. PerceBrazil (A) andmatrix); MSi (landscapes (< matrix); Pex: E

Luciano M. V

d 151 articlesf the Meditetween 1974 alandscapes oope (Figure 1ever it’s inter/forest systemmore or less at least most, example, wh

n Brazil, espabout areas of

entage of carnid Mediterranea(Silvicultural m75% of the la

Extensive exoti

erdade, Luis

s containing ierranean Euroand 2007 (Tabof Southeaste1). resting to conm, which canconflicts) in mof the agricu

hile there is specially regarf intensive agr

ivore diet studan Europe (B) monocultures (andscape matriic pastures (> 7

Miguel Rosal

4. RESULT

information oope and the ble 1). Most oern Brazil a

nfirm that alln be an indicman shaped e

ultural landscasome informarding livestoriculture and

dies implement[MAg: Agricu(> 75% of theix); Pin: Intens75% of the land

lino, Carla Gh

TS

of diet of CarnSoutheastern

of these studieand in mixed

l of the studication that thecosystems. Hapes in both ration on the u

ock depredatilivestock pro

ted in differentultural monocue landscape msive exotic pasdscape matrix)]

heler-Costa e

nivora specien Brazil in Ses were carried-agricultural

ied species ushis species a

However, thesregions, whichuse of extension by jagua

oduction is sca

A

t landscapes frultures (> 75%atrix); Mal (Mstures (> 75% ].

t al.

es in agricultuSouth Ameried out in monl landscapes

se, at least, oare managing se studies do nh could bias osive pastures ars and pumarce (Table 1)

A

B

rom Southwest of the landsca

Mixed agricultuof the landsca

ural ica, no-

of

one to

not our by

mas, ).

tern ape ural ape

cUccboMcdc

FiIRM

The Medconsidered laUrsus arctos)can be inclucommunities brachyurus anof NeotropicaMediterraneacomplement diverse diet. carnivores in

Figure 2. Percein SouthwesterIma: Macro invReptiles; Apa: Medium-sized

diterranean caarge carnivor). In South eded in the la

(jaguar Pannd giant otteral carnivore

an species tetheir consumAlso releva

both regions

entage of diet srn Brazil (A) vertebrates (> Passerine birdmammals (500

Adaptati

arnivore guildres (Europeaneastern Brazilarge carnivornthera oncar Pteronura bspecies, incluend to cons

mption of vertant is the rel

(Figure 2).

studies mentionand Mediterra10g), Imi: Mic

ds; Anp: Non-p0 - 5,000g); Ml

on of Mesoca

d includes 17n lynx Lynx l we identifieres group, us, Puma Pumbrasiliensis). uding large fsume more tebrate preyslatively high

ning the consuanean Europe (cro invertebratepasserine birds;la: Large sized

arnivores…

7 species, onllynx, wolf C

ed 21 speciessing the samma concolorSmall verteb

felids (Figureoften inver

, resulting inconsumption

umption of a pa(B) [Fru: Fruites (< 10g); Fis; Msm: Small-sd mammals (> 5

ly three (18%Canis lupus a, and again o

me patterns ar, maned worates predom

e 2). On the rtebrates andn a tendency n of birds b

articular prey itts; Opm: Othes: Fish; Amp: Asized mammal5,000g)].

%) of which and brown bonly four (19as for Europeolf Chrysocy

minate in the dother hand, t

d fruits, whito have a mo

by middle-siz

A

B

tem by carnivor plant materia

Amphibians; Rs (< 500g); Mm

7

are ear %) ean yon diet the ich ore zed

ores als;

Rep: me:

Table 1. Diet and habitat use by Carnivora (Mammalia) in Mediterranean Europe and Southern South America

Taxon Conserv. status

Diet Environments

REGION / Taxon IUCN Fru Opm Ima Imi Fis Amp Rep Apa Anp Msm Mme Mla MAg MSi Mal Pin Pex

SOUTHERN BRAZIL

Felidae

Panthera onca NT 1 2 3

1 2 1 2 3

2 3

1 3 4 5

Puma concolor NT 2 2 2 1 6

2 2 6

1 2 6 7

8 9

6 8 9 10 11 12 13 14 15

16 17

Leopardus pardalis LC 18 19 23

6 20

1 6 8 18 20 21 23 24

8 21 23

9 6 9 10 11 12 13 14 25

22

Puma yagouaroundi LC 10 11

16

Leopardus tigrinus NT 23 23 10 11 14

16

Leopadus weidii LC 26 26 26 21 23 26 16

Canidae

Taxon Conserv. status

Diet Environments

REGION / Taxon IUCN Fru Opm Ima Imi Fis Amp Rep Apa Anp Msm Mme Mla MAg MSi Mal Pin Pex

Chrysocyon brachyurus

NT 27 27 27 6 27

6 27

6 27

27 9 6 9 10 11 13 14 15

27

Cerdocyon thous LC 28 28 28 29

28 28 28 28 28 9 30 31

9 10 11 12 13 14 15 29

28 16

Lycalopex vetulus DD 32 32 32 32 32 14 32

Mustelidae

Eira barbara LC 31 10 11 12 13 14

16

Conepatus semistriatus

LC 9 9 10 11 14 15

Galioctis vittata LC 31 16

Table 1. (continued)

Taxon Conserv. status

Diet Environments

REGION / Taxon IUCN Fru Opm Ima Imi Fis Amp Rep Apa Anp Msm Mme Mla MAg MSi Mal Pin Pex

Galictis cuja LC 9 9 10 11 12 14

Lontra longicaudis DD 33 33 33 33 33 33 33 9 9 10 11 13

33

Ptenoura brasiliensis EN

Procionidae

Procyon cancrivorus LC 27 27 27 27 27 27 27 27 9 31 9 10 11 12 13 14 15

27 16

Nasua nasua LC 9 30 31

9 10 11 12 13 14

16

MEDITERRANEAN

EUROPE

Felidae

Taxon Conserv. status

Diet Environments

REGION / Taxon IUCN Fru Opm Ima Imi Fis Amp Rep Apa Anp Msm Mme Mla MAg MSi Mal Pin Pex

Lynx pardinus CR C2a(i)

135 125 130 131 135

130 131 135

124 125 128 129 130 131 135 21

125 130 131 135

129 133 134

Lynx lynx NT 63A 23 63A

19 20 23 24 178 63A

178

Felis silvestris LC 51 52

75

116 51 52 70 75 82 106

115 116 117 51 52 70 75 82 96 106

70 82

115 116 117 51 52 70 75 82 96 106

115 116 117 51 52 70 75 82 96 106

115 116 117 51 52 70 75 82 106

82 114 51 52 70

Canidae

Canis lupus LR/cd 96 112

68 96 49 50 68 81 99

50 68 99

49 50 73 68 81 99 112

41 50 81

Table 1. (continued)

Taxon Conserv. status

Diet Environments

REGION / Taxon IUCN Fru Opm Ima Imi Fis Amp Rep Apa Anp Msm Mme Mla MAg MSi Mal Pin Pex

Vulpes vulpes LC 43 45 47 48 51 52 54 58 64 65 83 87 90 94 96 100 105 107 124

43 45 54 64 83 87 90 94 100 107

65 89

43 45 47 48 51 52 54 58 64 65 83 87 89 90 94 96 100 105 107 124

90

45 51 52 65 83 90 96 100 107

47 48 58 64 65 83 87 90 94 96 105

45 48 51 52 54 58 64 65 83 87 90 94 96 100 105 107

43 45 47 48 51 52 54 58 64 65 83 90 94 96 100 105 107

43 45 47 48 51 52 58 64 65 83 87 90 94 100 105 124

45 48 58 64 65 83 90 105 107

58

45 51 52 94 105 107 113

Mustelidade

Mustela nivalis LR/lc 67 96 67 67 96

67 67 96

67 96

67 67

Mustela erminea LR/lc 79 158

162 79 162

79 79 44 41 42 43 45

160 79 53 160

Taxon Conserv. status

Diet Environments

REGION / Taxon IUCN Fru Opm Ima Imi Fis Amp Rep Apa Anp Msm Mme Mla MAg MSi Mal Pin Pex

Mustela putorius LR/lc 93 179

93 179

144 184

93 144 145 151 179 184

93 144 179

93 144 179 184

93 144 179 184

93 144 151 179 184

93 144 151 179 184

150 182

93 148 149 152 179 119

Mustela vison LR/lc* 143 143 144

121 126 127 139 143 183 184

121 126 127 139 143 184

121 126 139 143 144 184

121 126 127 139 183

121 126 127 139 143 144 183 184

121 127 139 143 144 183 184

121 126 127 139 143 144 183 184

143 144 184

119

Mustela lutreola EN A1ace 118 121 120 182 119

Martes foina LR/lc 35 40 45 69 78 83 88 104 105 107 108

35 45 78 83 107

35 40 45 69 78 83 104 105 107 108

69 104

35 35 40 45 69 83 104 107 108

35 40 69 83 104 107

35 40 45 69 78 83 104 105 107 108

35 40 45 69 78 83 104 105 107 108

35 40 45 69 78 83 104 105 108

35 45 69 83 107

35 40 69 80 98 104 105 107

Martes martes LR/lc 34 39 55 57 96

39 55

34 39 55 57 96

55 96

34 39 55 96

34 39 55 57 96

55

55

55

Table 1. (Continued)

Taxon Conserv. Status

Diet Environments

REGION / Taxon IUCN Fru Opm Ima Imi Fis Amp Rep Apa Anp Msm Mme Mla MAg MSi Mal Pin Pex Lutra lutra NT 153

154 155 157 165 166 168 171 172 173 174 175 176 177

153 154 155 157 161 163 165 166 168 169 171 172 173 174 175 176 177

96 153 154 155 157 161 163 165 166 168 169 171 172 173 174 175 176 177

153 154 155 157 161 163 165 166 168 169 171 172 173 174 175 176 177

96 153 154 155 157 161 163 165 166 168 169 171 172 173 174 175 176 177

155 157 161 165 166 171 172 173 174 175 177

155 157 161 165 166 168 171 172 173 174 175 177

96 155 157 161 163 165 166 168 173 174 175 176 177

164

Taxon Conserv. status

Diet Environments

REGION / Taxon IUCN Fru Opm Ima Imi Fis Amp Rep Apa Anp Msm Mme Mla MAg MSi Mal Pin Pex Meles meles LR/lc 36

38 42 47 54 59 66 71 74 76 77 91 95 96 97 101 124

36 54 59 74 76 77 97

36 38 42 47 54 59 66 71 74 76 77 91 95 96 97 101 124

36

36 42 47 66 77 91 95 97 101

36 42 54 59 66 71 77 95 96 97 101

36 47 59 71 77 91 101

36 38 42 59 66 71 74 76 91 95 96 97 101

36 38 42 47 59 66 71 74 76 77 91 95 96 101

36 38 59 66 71 76 77 91 95 97 101 124

36 74 91

36 38 42 47 71 76 101

Ursidade Ursus arctos LR/lc 72 72 72 72 92 Viverridae Genetta genetta LR/lc 37

46 51 52 55 56 60 62 96 102 103 105 109 110

37 55 60 85 86 102

85 86 102 103

37 46 51 52 55 56 60 62 70 85 86 96 102 103 105 109 110 111

46 56 103

46 56 60 85 86 103 110 111

37 46 51 52 55 56 60 62 70 85 86 96 102 103 109 110 111

37 46 56 60 70 102

37 46 51 52 55 56 60 62 70 85 86 96 102 103 105 109 110 111

37 46 51 52 55 56 60 62 70 85 86 96 102 103 105 109 110 111

37 46 51 52 55 56 60 70 86 105 102 103 111

46 55 56 102

46 51 52 55 70 102 103 105

Table 1. (Continued)

Taxon Conserv. status

Diet Environments

REGION / Taxon IUCN Fru Opm Ima Imi Fis Amp Rep Apa Anp Msm Mme Mla MAg MSi Mal Pin Pex

Herpestidae Herpestes ichneumon LR/lc 105 61

63 86

84 86

61 63 85 86 105

63 63 84 85 86

61 63 84 85 86 105

61 84 86 105

61 63 85 105

61 63 84 85 86 105

61 63 84 85 86 105

84 105

Fru: Fruits; Opm: Other plant materials; Ima: Macro invertebrates (> 10g), Imi: Micro invertebrates (< 10g); Fis: Fish; Amp: Amphibians; Rep: Reptiles; Apa: Passerine birds; Anp: Non-passerine birds; Msm: Small-sized mammals (< 500g); Mme: Medium-sized mammals (500 - 5,000g); Mla: Large sized mammals (> 5,000g); MAg: Agricultural monocultures (> 75% of the landscape matrix); MSi (Silvicultural monocultures (> 75% of the landscape matrix); Mal (Mixed agricultural landscapes (< 75% of the landscape matrix); Pin: Intensive exotic pastures (> 75% of the landscape matrix); Pex: Extensive exotic pastures (> 75% of the landscape matrix). 1 Taber et al., 1997; 2 Leite and Galvão, 2002; 3 Crawshaw, 2007; 4 Conforti and Azevedo, 2003; 5 Soisalo and Cavalcanti, 2006; 6 Mantovani, 2001; 7 Hass and Valenzuela, 2002; 8 Mazzolli, 2000; 9 Dotta, 2005; 10 Gargaglioni et al., 1998; 11 Talamoni et al., 2000; 12

Silva, 2002; 13 Tozetti, 2002; 14 Lyra-Jorge et al., 2008; 15 Hulle, 2006; 16 Chiarello, 1999; 17 Mazzolli et al., 2002; 18Sunquist et al., 1989; 19 Murray and Gardner, 1997; 20 Chinchila, 1997; 21 Miranda et al., 2005; 22 Trolle and Kéry, 2003; 23 Wang, 2002; 24 Meza et al., 2002; 25 Lopes and Mantovani, 2005; 26

Azevedo, 1996; 27 Motta-Júnior et al., 1996; 28 Gatti et al., 2006; 29 Beisiegel, 1999;3 0 Gheler-Costa et al., 2002; 31 Briani et al., 2001; 32 Dalponte, 1997; 33

Pardini, 1998;34 Agnelli and de Marinis, 1995; 35 Alegre et al., 1991; 36 Balestrieri et al., 2004; 37 Ballesteros et al., 2000; 38 Barea-Azcón et al., 2001; 39 Bermejo and Guita, 1996; 40 Bertolino and Dore, 1995 ; 41 Blanco and Cortés 2007; 42 Boesi and Biancardi, 2002 ; 43 Boldreghini and Pandolfi, 1991; 44 Bounous et al., 1995 ; 45 Brangi, 1995 ; 46 Calviño et al., 1984; 47 Canova and Rosa, 1993; 48 Cantini, 1991 ; 49 Capitani et al., 2004 ; 50 Carreira and Petrucci-Fonseca, 2000; 51 Carvalho and Gomes, 2001; 52 Carvalho and Gomes, 2004 ; 53 Ceña and Ceña, 2000; 54 Ciampalini and Lovari, 1985; 55

Clevenger, 1995 ; 56 Cugnasse and Riols, 1984; 57 de Marinis and Massetti, 1995; 58 Debernardi et al., 1991 ; 59 del Bove and Isotti, 2001 ; 60 Delibes, 1974; 61 Delibes, 1976; 62 Delibes, 1977; 63 Delibes et al., 1984; 63A Jobin et al., 2000; 64 Fais et al., 1991 ; 65 Fedriani, 1996; 66 Fedriani et al., 1998 ; 67 Fragoso and Santos-Reis, 2000; 68 Gazzola et al., 2005; 69 Gil-Sánchez, 1996; 70 Gil-Sánchez, 1998; 71 Kruuk and de Kock 1981; 72 Lagalisse et al., 2003; 73 Llaneza et al., 2000; 74 Lucherini and Crema 1995; 75 Malo et al., 2004.; 76 Marassi and Biancardi, 2002; 77 Martín et al., 1995; 78 Martinoli and Preatoni 1995 ; 79 Martinoli et al., 2001 ; 80 Masseti, 1995; 81 Mattioli et al., 2004;82 Moleón and Gil-Sánchez, 2003; 83 Padial et al., 2002; 84 Palomares, 1993; 85 Palomares and Delibes, 1991a; 86 Palomares and Delibes, 1991b; 87 Pandolfi and Bonacoscia, 1991 ; 88 Pandolfi et al., 1996 ; 89 Pandolfi et al., 1991 ; 90 Papageorgiou et al., 1988; 91

Pigozzi, 1991; 92 Posillico et al., 2004 ; 93 Prigioni and de Marinis, 1995; 94 Prigioni and Tacchi, 1991; 95 Revilla and Palomares, 2002; 96 Rivera and Rey, 1983 ; 97 Rodríguez and Delibes, 1992; 98 Rondinini and Boitani, 2002; 99 Roque et al., 2001; 100 Rosa et al., 1991; 101 Rosalino et al., 2005; 102 Rosalino and Santos-Reis, 2002; 103 Ruiz-Olmo and López-Martín, 1993; 104 Ruiz-Olmo and Palazon, 1993; 105 Santos et al., 2007; 106 Sarmento, 1996; 107 Serafini and

Lovari, 1993; 108 Such and Calabuig, 2003 ; 109 Torre et al., 2003; 110 Virgós et al., 1996 ; 111 Virgós et al., 1999 ; 112 Vos, 2000; 113 Yom-Tov et al., 2007; 114 Lozano et al., 2003; 115 Aymerich, 1982; 116 Ragni, 1981 ; 117 Gil-Sánchez et al., 1999; 118 Bonesi and Palazon, 2007; 119 Ceña et al., 2003; 120 Bravo and Bueno, 1999; 121 Vidal-Figueroa and Delibes, 1987; 124 Fedriani et al., 1999; 125 Delibes et al., 2000; 126 Bueno and Bravo, 1985; 127 Palazón and Ruiz-Olmo, 1997; 128 Palma, 1980; 129 ICN, 2003 ; 130 Calzada, 2000; 131 Beltrán and Delibes, 1991; 133 Castro and Palma, 1996; 134 Fernández et al., 2006 ; 135 Gil-Sánchez et al., 2006; 136 Stahl et al., 2002 ; 137 Stahl et al., 2001a; 139 Bueno, 1994; 140 Molinari et al., 2001; 143 Bravo, 2002; 144 Lodé, 1999; 145 Lodé, 2000; 148 Marcelli et al., 2003; 149 Rondinini et al., 2006 ; 150 Zabala et al., 2005; 151 Virgós, 2002; 152 Mestre et al., 2007; 153 Clavero et al., 2005 ; 154 Clavero et al., 2006 ; 155 Pedroso and Santos-Reis, 2006; 158 Remonti et al., 2006; 160 Azcón and Duperon, 1999; 161 Sales-Luís et al., (2007); 162 Ruiz-Olmo et al., 1997; 163 Beja, 1991; 164 Bifolchi and Lodé, 2005; 165 Prigioni et al., 2006a; 166 Prigioni et al., 2006b; 168 Clavero et al., 2004; 169 Ruiz-Olmo, 2006; 171 Beja, 1996; 172

Adrián and Moreno, 1986; 173 Adrián and Delibes, 1987 ; 174 Callejo and Delibes, 1987; 175 Ruiz-Olmo et al., 1989 ; 176 Arcá and Prigioni, 1987; 177 Prigioni et al., 1991; 178 Stahl et al., 2001b; 179 Prigioni and De Marinis, 1995; 182 Fournier et al., 2007; 183 Ruiz-Olmo 1987; 184 Lodé 1993.

Luciano M. Verdade¹, Luis Miguel Rosalino², Carla Gheler-Costa 18

While canids (Chrysocyon brachyurus, Cerdocyon thous and Lycalopex vetulus) are the most generalist species in Southeastern Brazil (Figure 2), in the Mediterranean Region mustelids, viverrids and herpestids, share this generalist trophic behavior with canids (Table 1). Large-sized carnivores such as jaguars, pumas and wolves are frequently associated with large-sized livestock depredation (i.e., cattle and sheep). Nevertheless, smaller species can also be associated with small-sized livestock (i.e., chicken and fish) depredation (Table 1) (e.g., Genet consumption of ducks - Rosalino and Santos-Reis, 2002; Eurasian otter consumption of stocked fish – Freitas et al., 2007).

4. DISCUSSION

4.1. Mesopredator Release The present results suggest a possible competition between large- and middle-sized

Carnivora species as both have small-sized mammals as preys. In addition, there seems to be some consumption of middle-sized mammals (including carnivores) by large-sized species in Brazil, and by many species in Europe. In such circumstance the local extinction of top predators could decrease competition for food items concurrently as it also decreases predation pressure over medium-sized carnivores. These two processes combined could result on an increase in the fitness of mesopredators, due mainly to an increment in the natality rate (as a result of higher food resource availability) as well as a decrease on mortality rate as a consequence of absence of top predators. These two aspects corroborate the mesopredator release hypothesis (Wright et al., 1994; Palomares et al., 1995, 1996; Crooks and Soulé, 1999; Terborgh, 2000; Gehrt and Clark, 2003), which was defined by Prugh et al. (2008) as “the expansion in density or distribution, or the change in behavior of a middle-ranked predator, resulting from a decline in the density or distribution of an apex predator”. However, the actual ecological relevance of these aspects is not clear, especially in man-altered and fragmented landscapes. In these environments mesopredator outbreaks can be the result of the disappearing of top predators, due to their need of wider areas, some of which not fragmented, and their higher probability of conflict with man (use of similar resources – e.g. livestock depredation by wolves and jaguars) leading to a higher persecution levels (Prugh et al., 2008). However, fragmentation can also enhance the resources available to mesopredators, especially those directly related with human activities such as pet food, crops and crop pests.

4.1. Increase in Carrying Capacity Some evidences of the increase food availability in agro-forest systems are already

available. For example, Silva et al. (2008) showed that agricultural units of a Mediterranean cork-oak landscape recorded the highest abundance and richness levels of ground beetles, which are regularly included in the diet of southern European mesocarnivores (e.g., Rosalino et al., 2005; Santos et al., 2007). Moreover, in southeastern Brazil, sugarcane plantations also support higher densities of rodents than pristine landscapes (Gheler-Costa, 2006). Such

Adaptation of Mesocarnivores… 19

rodents are an important resource for many carnivores (Rocha et al., 2004; Tófoli et al., 2009). Furthermore, the simple existence of agricultural patches, specially those devoted to fruit production, increase the environmental carrying capacity, in particular to those species highly adaptable in using fruits as a trophic resource, often highly energetic (e.g., olives). For example, a study reviewing fruit consumption by carnivores in Mediterranean Europe showed that more than 20% of fruits eaten by predators such as the red fox, stone marten, pine marten, Eurasian badger and the common genet where originated in orchard or fruit trees plantations (e.g., grapevine Vitis vinifera, loquats Eriobotrya japonica, persimmon Diospyros sp.) (Rosalino and Santos-Reis, 2009).

These evidences seem to point out that human altered landscapes (by agriculture or forestry) can be an important food source for more generalist species per se, allowing more foraging opportunities, due to higher trophic resources availability (increasing the landscape carrying capacity), even in the presence of top predators, when comparing with some type of more natural habitats. Actually, the simple fact that most of the studied species use, at least, one type of agro/forest system (see figure 1) seems to indicate that they are using available resources present in those areas, most likely as surplus of food resources. This ecological adaptation can develop in short/medium time scale, with species starting to use new resources made available by human activities. For example, since the beginning of the 1980’ fish farming has been implemented as an important industry in Portuguese estuaries, producing fish species which are not naturally abundant in those areas (Freitas et al., 2007). Recent studies have determined that 60% of prey consumed by otters in fish farming areas are produced marine fish species (Freitas et al., 2007), and that fish farms had a 76% visiting rate by otters, indicating that otters are using a surplus food resource, nowadays highly available, but probably less common 30 years ago.

We thus believe that mesocarnivores are adapting to take advantage of a trophic resource enhancement opportunity window created by agro-systems practices, which increase the overall landscape carrying capacity, some of which are shaping the landscape for thousands of years (e.g., Mediterranean Region) (Pinto-Correia and Vos ,2004).

4.3. Conservation Value of Agricultural Landscapes It is possible and necessary to promote good management practice that allows a balanced

promotion of biodiversity and maintenance of production, integrating conservation with production objectives. This can be achieved through several approaches. For example, the main problem when dealing with monocultures is the habitat homogeneity. Maintaining landscape connectivity is difficult when dealing with agricultural landscapes, especially in intensive management schemes. The presence of water courses (rivers and streams) with riparian vegetation, constitute areas of high biodiversity (Naiman et al., 2005), including not only typical aquatic species (e.g. Eurasian otter and European mink in Europe; neotropical otter in Brasil), but also more terrestrial carnivores that use these corridors as refuge, access to prey (e.g. fish, crayfish, birds), routes for juvenil dispersion, and often as the only habitats that enable successful reproduction in a intensive agriculture landscape (e.g., Virgós, 2001; Matos et al., 2009). Therefore, the maintenance of an ecological flow and improvement of the riparian vegetation in this water courses constitute an important contribute to improve biodiversity. The example of the legal obligation regarding maintaining buffers of vegetation

Luciano M. Verdade, Luis Miguel Rosalino, Carla Gheler-Costa et al. 20

(30m) along the water courses in Brazil is, therefore, one to maintain and promote (Metzger et al., 2010).

Another example is based on the fact that ecological corridors can be accomplished by the conservation or reimplementation of patches of adequate habitat for certain species, or species guilds. This can be achieved by maintaining or creating hedges or walls for smaller carnivores (Macdonald et al. 2007), or larger patches of favorable habitat for all carnivores, in general. Traditionally, hedgerows are part of agricultural landscape in Europe, as well as a cultural element of the landscape structure and diversity. Therefore, these structures may act as important commuting and hunting routes, allowing the survival of some species which use these areas as refuges while feeding on the contiguous agricultural fields. In some cases the fields' boundary areas comprise the most species-rich prey community (Tattersall et al., 2002) resulting in ideal hunting grounds for carnivores, where protective cover is associated to higher prey density. Often, these corridors do not have to be prime habitats. Regarding the Iberian lynx, a species considered highly specialist in habitat requirements (and prey), Palomares et al. (1991) stated that these corridors can even support moderate habitat degradation due to human activity. However, this species uses mixed landscapes, with Mediterranean woods and scrubland, and avoids intensive plantations and agriculture (Rodríguez and Delibes, 1990).

Agricultural landscapes are also commonly used as grazing pastures. The establishment of areas without pasture, mainly in extensive exploration schemes, allows the growth of grasslands and scrubland mosaic, which could promote some prey species availability (e.g., wild rabbit – Monzón et al., 2004), and consequently be used by several carnivore species that exploit those food resources (Verdú et al., 2000; Ferrer and Negro, 2004).

The importance of this mosaic is well expressed in the Iberian cork and oak woodland (Quercus suber and Quercus rotundifolia), the “montado” in Portugal and “Dehesa” in Spain. These are mixed farming landscapes around extensive woodlands, interspersed with patches of scrubland, grassland and cultivated fields. The montado/dehesa is one of the best examples for the balance between biodiversity and human activity (Pinto-Correia and Vos, 2004), providing both economic value (from the extensive cattle raising, the cork extraction of the Q. suber, mushrooms collecting, ecotourism) and natural value (which encompass a wide range of carnivores, including the wildcat, polecat, genet, stone marten and Iberian lynx).

Another important aspect regarding increasing carrying capacity for biodiversity is the presence of small and medium-sized water reservoirs. These aquatic systems, common in the Mediterranean region, where river flows are irregular and many dry out during summer, constitute a water source for cattle and, sometimes, irrigation for agriculture. The role of these systems in the ecology and conservation of carnivores is still somewhat unknown. However, it is obvious that they constitute resources for mammalian carnivores (among others), namely water and prey availability. For example, Basto et al. (in press) detected that the abundance of American crayfish (Procambarus clarkii) was one of the most important variables positively associated with the Eurasian otter’s use of these smaller reservoirs. Moreover, in more open agriculture landscapes, such as arable steppes or pasturelands, the vegetation developing in these reservoirs margins can also provide some refuge for mesocarnivores. The positive association of the reservoirs’ use with the availability of refuges was already referred in other studies (e.g. Elliot, 1983; Prenda et al., 2001). Ideally, the maintenance or creation of these water bodies, usually associated with livestock production, should be accompanied by a moderate/low use by cattle, which is rather difficult. Higher cattle pressure promotes a high

Adaptation of Mesocarnivores… 21

disturbance around the reservoir and reduces cover, and consequently refuges, for carnivore species.

Conservation of pristine habitats, still occurring in agriculture landscapes, is also an important way of ensuring the maintenance of biodiversity in these human altered habitats, especially because they can offer protective cover which is often lacking in the agricultural fields. Most of these patches remain in the agricultural landscape due to difficulty of implementing agriculture practices in those terrains. Valleys and steep slopes are among these areas. However, they have been greatly reduced in the last decades (Tscharntke et al., 2005), maybe due to the increase of machinery capability and pressure for soil use.

Presently, in some countries where intensive agriculture has led to an alarming level of ecological degradation, an increasing number of efforts are now being made to restore agricultural landscapes and enhance biodiversity by implementing agro-environmental programs, such as introducing semi-natural habitats and field margins into farmland (Jeanneret et al., 2003).

4.4. Adaptive Processes of Mesopredators to Agricultural Landscapes Time in evolutionary processes should be counted in number of generations of the

population in question and not in years (Simpson, 1949). In addition, genetic adaptive changes tend to be faster in changing environments (Levins, 1968). Alterations in food resources availability and spatial-temporal heterogeneity tend to act as selection forces towards individuals. On a single generation time scale, individuals tend to respond to such alterations by behavioural changes (Tuyttens and Macdonald, 2000) which can be called “acclamation”. Individuals’ success in such circumstance depends basically upon their phenotypic plasticity (Relya, 2004). On the other hand, along a certain number of generations a population tends to respond to environmental changes by genetic changes (Dobzhansky, 1970). Populations’ success in such circumstance depends basically upon their genetic variability (Sinclair et al., 2006). Both acclamation and adaptation to agricultural landscapes should involve changes in two basic behavioural-ecological processes: feeding ecology and use of space. The former is related to changes in food resources availability whereas the later is related to the land use change in spatial terms where, for instance, shelters quality and availability may alter. Mesocarnivores seem extremely plastic both in terms of diet and space use. The present results (high number of generalist species in both European and South American carnivore guilds) corroborate the former whereas their apparently higher abundance in agricultural landscapes (e.g., Dotta and Verdade, 2007) corroborates the later. The extinction or absence of top predators – usual in agricultural landscapes – may potentiate these characteristics. The present results suggest that mesocarnivores may benefit from agricultural landscapes: directly by the increase in the abundance of fruits (Rosalino et al., 2009) or indirectly by the increase in the abundance of seeds or green matter (plant biomass) and consequent increase in rodents’ abundance (Gheler-Costa, 2006). Systematized studies about the use of space by mesocarnivores in agricultural landscapes should be prioritized as information about it is still scarce. We need to better understand the possible impact of land shaping mechanisms associated with Human activities (e.g. agro-environmental schemes, habitat management) in order to promote the increase of conservation value of agricultural landscapes, namely regarding carnivores.

Luciano M. Verdade, Luis Miguel Rosalino, Carla Gheler-Costa et al. 22

4.5. Possible Ecological Imbalances and the Domestication of Nature The extinction of top predators and consequent “mesopredator release” has been

considered to result on an increase in bird predation and their consequent population decline (e.g., Soulé et al., 1988; Crooks and Soulé, 1999; Galetti et al., 2009). Although the present results indicate a consistent consumption of birds by middle-sized carnivores there is no evidence that this consumption is higher in agricultural landscapes and/or in the absence of top predators. However, in general these studies are based on short-term surveys where both dependent and independent variables are circumscribed on a smashed time frame. Thus, there is not enough information available about the possible consequences of mesopredator release on a long-term basis. Middle-sized carnivores are also considered as reservoir for pathogens that can cause diseases in domestic carnivores (i.e., dogs and cats) as well as in humans (Whiteman et al., 2007). There seems to be indeed a lot of contact between domestic and wild carnivores (e.g., predation, physical contact with urine and feces etc, hybridization) (Oliveira et al., 2008). It is possible that such contact increase in the absence of top predator as they prey on both domestic and wild smaller carnivores. However, in this case domestic animals should be excluded from conservation units and even from unprotected natural areas as they compete with wild carnivores for food resources (Lepczyk et al., 2003; Bonnaud et al., 2007; Campos et al., 2007). As small-sized carnivores adapt to anthropogenic environments we might expect a certain process of domestication occurring in agricultural landscapes. The concept of domestic or domesticated nature depends on the human perception of nature (Descola, 1986). However, no matter how subjective the concept of nature and natural can be, the fact that small-sized carnivores may depend on anthropogenic habitats to succeed may become their – and ours - most complex conservation problem.

REFERENCES

Acharya, K.P. (2006) Linking tree on farms with biodiversity conservation in subsistence farming in Nepal. Biodiversity and Conservation, 15, 631-646.

Adrián, M. I. and Delibes, M. (1987). Food habits of the otter (Lutra lutra) in two habitats of the Doñana National Park, SW Spain. Journal of Zoology, 212, 399–406.

Adrián, M. I. and Moreno, S. (1986). Notas sobre la alimentación de la nutria (Lutra lutra) en el embalse de Matavacas, Huelva. Doñana, Acta Vertebrata, 13, 189–191.

Agnelli, P., de Marinis, A. M. (1995). Notes on winter feeding habits of the pine marten Martes martes in Val Gressoney (Western Italian Alps). Hystrix, 7, 155-157.

Alegre, J, Hernández, A., Purroy, F. J., Salgado, J. M. and Fuertes, B. (1991). Dieta Otoño-Invernal de la garduña, Martes foina (Erxleben, 1777), en un habitat rural de León (España). Ecologia, 5, 265-273.

Alonso, J. C., Palacı́n, C. and Martin, C. A. (2003). Status and recent trends of the great bustard (Otis tarda) population in the Iberian Peninsula. Biological Conservation, 110, 185–195.

Arcá, G. and Prigioni, C. (1987). Food of the otter on the Fiora River (Central Italy). Acta Theriologica, 32, 134–140.

Adaptation of Mesocarnivores… 23

Aymerich, M. (1982). Étude comparative des régimes alimentaires du lynx pardelle (Lynx pardina Temminck, 1824) et du chat sauvage (Felis silvestris Schreber, 1777) au centre de la péninsule Ibérique. Mammalia, 46, 515–521.

Azcón, J. M. and Duperon, E. (1999). Carnívoros Ibéricos. Serie de Estudios y Proyectos de Biología. Nº 2. Granada: Colegio Oficial de Biólogos de Andalucía.

Azevedo, F. C. (1996). Notes on the behavior of the margay, Felis wiedii, in the brazilian atlantic forest. Mammalia, 60, 325-328.

Balée, W. (2006). The research program of historical ecology. Annual Review of Anthropology, 35, 75-98.

Balestrieri, A., Remonti, L. and Prigioni, C. (2004). Diet of the Eurasian badger (Meles meles) in an agricultural riverine habitat (NW Italy). Hystrix, 15, 3-12.

Ballesteros, T., Degollada, A. and Plaza, V. (2000). Dieta de la geneta (Genetta genetta) al Parc natural de Sant Llorenç del Munt i l’Obac (pp. 123-125). Barcelona: IV Trobada d’Estudiosos de Sant Llorenç del Munt i l’Obac. Diputació de Barcelona.

Barea-Azcón, J. M., Ballesteros, E. and Gil-Sánchez, J. M. (2001). Ecología trófica del téjon (Meles meles L., 1758) en una localidad de las Sierras Subbéticas (SE España). Resultados preliminares. Galemys, 13, 127-138.

Barros, F., Melo, M. M. R. F., Chiea, S. A. C., Kirizawa, M., Wanderley, M. G. L., and Jung-Mendaçolli, S. L. (1991). Caracterização geral da vegetação e listagem das espécies ocorrentes. Flora Fanerogâmica da Ilha do Cardoso - Volume 1. São Paulo: Instituto de Botânica.

Basto, M., Pedroso, N. M., Mira, A. and Santos-Reis, M. (in press). Use of small and medium-sized water reservoirs by otters in a Mediterranean ecosystem. Animal Biology.

Beisiegel, B.(1999). Contribuição ao estudo da história natural do cachorro do mato e do cachorro vinagre. PhD thesis. São Paulo: Universidade de São Paulo.

Beja, P. R. (1991). Diet of otters (Lutra lutra) in closely associated freshwater, brackish and marine habitats in south-west Portugal. Journal of Zoology, 225, 141-152.

Beja, P. R. (1996). An analysis of otter Lutra lutra predation on introduced American crayfish Procambarus clarkii in Iberian streams. Journal of Applied Ecology, 33, 1156–1170.

Beltrán, J. F. and Delibes, M. (1991). Ecologia trofica del lince ibérico en Doñana durante un periodo seco. Doñana Acta Vertebrata, 18, 113-122.

Bermejo, T. and Guita, J. (1996). Consumo de frutos y dispersión de semillas de serbal (Sorbus aucuparia L.) por zorros y martas en la Cordillera Cantábrica Occidental. Doñana, Acta Vertebrata, 23, 215-227.

Bertolino, S. and Dore, B. (1995). Food habits of the stone marten Martes foina in "La Mandria" Regional Park (Piedmont Region, North-Western Italy). Hystrix, 7, 105-111.

Bifolchi, A and Lodé, T. (2005). Efficiency of conservation shortcuts: An investigation with otters as umbrella species. Biological Conservation, 126, 523–527.

Blanco, J. C. and Cortés, Y. (2007). Dispersal patterns, social structure and mortality of wolves living in agricultural habitats in Spain. Journal of Zoology, 273, 114-124.

Blondel, J. (2006). The ‘design’ of Mediterranean landscapes: a millennial story of humans and ecological systems during the historic period. Human Ecology, 34, 713–729.

Blondel, J. and Aronson, J. (1999). Biology and wildlife of the mediterrenean region. Oxford: Oxford University Press.

Luciano M. Verdade, Luis Miguel Rosalino, Carla Gheler-Costa et al. 24

Boesi R. and Biancardi, C. M. (2002). Diet of the Eurasian badger Meles meles (Linnaeus, 1758) in the Natural Reserve of Lago di Piano. Northern Italy. Mammalian Bioogy, 67, 120-125.

Boldreghini, P. and Pandolfi, M. (1991). Diet of the red fox (Vulpes vulpes) in the Sibillini area (Central Apennines). Hystrix, 3, 113-118.

Bonesi, L. and Palazon, S. (2007). The American mink in Europe: status, impacts, and control. Biological Conservation, 134, 470-483.

Bonnaud, E., Bourgeois, K., Vidal, E., Kayser, Y., Tranchant, Y. and Legrand, J. (2007). Feeding ecology of a feral cat population on a small Mediterranean island. Journal of Mammalogy, 88, 1074-1081.

Bounous, E., Orecchia, G. and Dore, B. (1995). Population study on Mustela erminea in Northwest Italy (Valle d'Aosta region): captures, morphometric data, diet. Hystrix, 7, 51-55.

Brangi, A. (1995). Seasonal changes of trophic niche overlap in the stone marten (Martes foina) and the red fox (Vulpes vulpes) in a mountainous area of the Northern Apennines (N-Italy). Hystrix, 7, 113-118.

Bravo, C. (2002). Mustela vison Schreber, 1777. In L. J. Palomo and J. Gisbert (Eds.), Atlas de los mamíferos terrestres de España (pp. 258-261). Madrid: Dirección General de Conservación de la Naturaleza – SECEM – SECEMU.

Bravo, C. and Bueno, F. (1999). El Visón Americano. Galemys, 11, 3-16. Briani, D. C., Santori, R. T., Vieira, M. V. and Gobbi, N. (2001). Mamíferos não voadores de

um fragmento de mata mesófila semidecídua do interior do estado de são Paulo, Brasil. Holos, 1, 141-149.

Brown Jr., K. S. and Brown, G. G. (1992). Habitat alteration and species loss in Brazilian forests. In: T. C. Whitmore and J. A. Sayer (Eds.), Tropical deforestation and species extinction. (pp.129-142). London: Chapman and Hall.

Bueno, F. (1994). Alimentación del visón americano (Mustela vison Schreber) en el río Voltoya (Ávila, Cuenca del Duero). Doñana Acta Vertebrata, 21, 5-13.

Bueno, F. and Bravo, C. (1985). Impacto ecológico del visón americano (Mustela vison Schreber) en España. Informe inédito. Madrid: CEOTMA, MOPU.

Buskirk, S.W. and Zielinski, W.J. (2003). Small and mid-sized carnivores. In: C. J. Zabel and A. Robert (Eds.), Mammal Community Dynamics. Management and conservation in the coniferous forest of western North America. (pp. 207-249). Cambridge: Cambridge University Press.

Cabral, M.J. (Coord.), Almeida J, Almeida PR, Dellinger T, Ferrand de Almeida N, Oliveira ME, Palmeirim JM, Queiroz A, Rogado L, Santos-Reis M (Eds.) (2005). Livro Vermelho dos Vertebrados de Portugal. Lisboa: Instituto da Conservação da Natureza.

Callejo, A. and Delibes, M. (1987). Dieta de la nutria Lutra lutra (Linnaeus, 1758) en la cuence del alto Ebro, Norte de España. Miscellanea Zoologica, 11, 353–362.

Calviño, F., de Castro, A., Canals, J. L. S., Guitian, J. and Bas, S. (1984). Regimén alimentício de la gineta, Genetta genetta L., en Galicia, Noroeste de la Península Ibérica. Boletín de la Estación Central de Ecologia, 13, 29-41.

Calzada, J. (2000). Impacto de depredación y selección de presa del lince ibérico y el zorro sobre el conejo. PhD thesis, León: Universidad de León.

Adaptation of Mesocarnivores… 25

Campos, C. B., Esteves, C. F., Ferraz, K. M. P. M. B., Crawshaw Jr, P. G. and Verdade, L. M. (2007). Diet of free-ranging cats and dogs in a suburban and rural environment, south-eastern Brazil. Journal of Zoology, 273, 14-20.

Canova, L. and Rosa, P. (1993). Badger Meles meles and fox Vulpes vulpes food in agricultural land in the western Po plain (Italy). Hystrix, 5, 73-78.

Cantini, M. (1991). The diet of the fox (Vulpes vulpes) in woodlands of Orobie Alps (Lombardy region, Northern Italy). Hystrix, 3, 83-89.

Capitani, C., Bertelli, I., Varuzza, P., Scandura, M. and Apollonio, M. (2004). A comparative analysis of wolf (Canis lupus) diet in three different Italian ecosystems. Mammalian Biology, 69, 1-10.

Carreira, R. S. and Petrucci-Fonseca, F. (2000). Lobo na região oeste de Trás-os-Montes (Portugal). Galemys, 12, 124-134.

Cartes, J. L. and Yanosky, A. (2003). Dynamics of biodiversity loss in the Paraguayan Atlantic Forest: an introduction. In: C. Galindo-Leal and I. G. Câmara (Eds.), The Atlantic Forest of South America: Biodiversity Status, Threats, and Outlook. (pp. 267–268). Washington: CABS and Island Press.

Carvalho, J. C. and Gomes, P. (2001). Food habits and trophic niche overlap of the red fox, European wildcat and common genet in the Peneda-Gerês National Park. Galemys, 13, 39-48.

Carvalho, J. C. and Gomes, P. (2004). Feeding resource partitioning among four sympatric carnivores in the Peneda-Gerês National Park (Portugal). Journal of Zoology, 263, 275-283.

Castro, L. R. and Palma, L. (1996). The current status, distribution and conservation of Iberian-lynx in Portugal. The Journal of Wildlife Research, 1, 179-181.

Caughley, G. (1977). Analysis of vertebrate Populations. Chichester: John Wiley and Sons. Caughley G. (1994). Directions in conservation biology. Journal of Animal Ecology, 63, 215-

44. Ceña, A., Ceña, J. C. and Lobo, L. (200)3). Sustitución del visón europeo (Mustela lutreola)

por el visón americano (Mustela vison) en el municipio de Vitoria-Gasteiz. Galemys, 15, 131-143.

Ceña, J. C. and Ceña, A. (2000). Segunda cita de armiño (Mustela erminea) para La Rioja. Galemys, 17, 69-70.

Chardonnet, P. (2002). International Foundation for the Conservation of Wildlife. Paris: Conservation of African Lion.

Chiarello, A. G. (1999). Effects of fragmentation of the Atlântic forest on mammal communities in south-eastern Brazil. Biological Conservation, 89, 71-82.

Chinchila, F. A. (1997). La dieta del jaguar (Panthera onca), el puma (Felis concolor) y el manigordo (Felis pardalis) en el Parque Nacional Corcovado, Costa Rica. Revista de Biologia Tropical, 45, 1223-1229.

Ciampalini, B. and Lovari, S. (1985). Food habits and trophic niche overlap of the badger (Meles meles L.) and the red fox (Vulpes vulpes L.) in a Mediterranean coastal area. Zeitschrift für Säugetierkunde, 50, 226-234.

Clavero, M., Prenda J. and Delibes, M. (2004). Influence of spatial heterogeneity on coastal otter (Lutra lutra) prey consumption. Annales Zoologici Fennici, 41, 1-11.

Luciano M. Verdade, Luis Miguel Rosalino, Carla Gheler-Costa et al. 26

Clavero, M., Prenda, J. and Delibes, M. (2005). Amphibian and reptile consumption by otters (Lutra lutra) in a coastal area in Southern Iberian peninsula. Herpetological Journal, 15, 125-131.

Clavero, M., Prenda, J. and Delibes, M. (2006). Seasonal use of coastal resources by otters: comparing sandy and rocky stretches. Estuarine, Coastal and Shelf Science, 66, 387-394.

Clevenger, A. P. (1995). Seasonality and relationships of food resources use of Martes martes, Genetta genetta and Felis catus in the Balearic Islands. Revue d’Ecologie (Terre Vie), 50, 109-131.

Conforti, V. A. and Azevedo, F. C. C. (2003). Local perceptions of jaguars and pumas in the Iguaçu National Park area, south Brazil. Biological Conservation, 111, 215-221.

Conservation International (2008a). Available at: http://www.conservation.org. br/onde/mata_atlantica/index.php?id=43. Accessed in August 2008.

Conservation International (2008b). Available at: http://www.conservation.org.br/ onde/cerrado/. Accessed in August 2008

Coutinho, L. M. (2002). O Bioma Cerrado. In: Klein, A.L. (Org), Eugen Warming e o cerrado brasileiro: um século depois. São Paulo: Editora UNESP.

Crawshaw Jr., P. G..(2007). Jaguars in Pantanal of Brazil. Available at: www.cougarnet.org. Accessed inJuly 2007.

Crooks, K. R. (2002). Relative sensitivities of mammalian carnivores to habitat fragmentation. Conservation Biology, 16, 488-502.

Crooks, K. R. and Soulé, M. E. (1999). Mesopredator release and avifaunal extinctions in a fragmented system. Nature, 400, 563-566.

Cugnasse, J. -M. and Riols, C. (1984). Contribution a la connaissance de l’écologie de la genette (Genetta genetta L.) dans quelques départements du Sud de la France. Gibier Faune Sauvage, 1, 25-55.

Dalponte, J. (1997). Diet of the hoary fox, Lycalopex vetulus in Mato Grasso, Central Brazil. Mammalia, 61, 537-546.

de Marinis, A. M. and Massetti, M. (1995). Feeding habits of the pine marten Martes martes L., 1758, in Europe: a review. Hystrix, 7, 143-150.

Dean, W. (1995). A ferro e a fogo. A história da devastação da mata atlântica brasileira. São Paulo: Editora UNESP.

Debernardi, P., Durio, P. and Perrone, A. (1991). Winter food of the fox Vulpes vulpes in the Province of Cuneo (North-Western Italy). Hystrix, 3, 99-104.

del Bove, E. and Isotti, R. (2001). The European badger (Meles meles) diet in a Mediterranean area. Hystrix, 12, 19-25.

Delibes, M. (1974). Sobre alimentacíon y biologia de la gineta (Genetta genetta) en España. Doñana, Acta Vertebrata, 1, 143-199.

Delibes, M. (1976). Datos sobre la alimentación del meloncillo, Herpestes ichneumon widdringtoni Gray, 1842, en España. Säugetierkundliche Mitteilungen, 40, 38-42.

Delibes, M. (1977). Sobre las ginetas de la Isla de Ibiza (Genetta genetta isabelae n. spp.). Doñana, Acta Vertebrata, 4, 139-160.

Delibes, M. (1982). Notas sobre la distribución pasada y actual del meloncillo Herpestes ichneumon (L.) en la Península Ibérica. Doñana Acta Vertebrata, 8, 341-352.

Delibes, M., Aymerich, M. and Cuesta, L. (1984). Feeding habits of the Herpestes ichneumon or Egyptian mongoose. Acta Theriologica, 29, 205-218.

Adaptation of Mesocarnivores… 27

Delibes, M., Rodríguez, A. and Ferreras, P. (2000). Action Plan for the conservation of the Iberian lynx in Europe (Lynx pardinus). Nature and environment, 111. Council of Europe Publishing.

Descola, P. (1986). La nature domestique: Symbolisme et praxis dans l'ecologie des Achuar. Paris: Fondation Singer-Pognac/La Mason de science de l´homme.

Diamond, J.( 1997). Armas, germes e aço: os destinos das sociedades humanas. Rio de Janeiro: Record.

Diamond, J. (2005). Colapso: como as sociedades escolhem o fracasso ou o sucesso. Rio de Janeiro: Record.

Diáz, M., Campos, P. and Pulido, F. J. (1997). The Spanish dehesas: a diversity in land use and wildlife. Chapter 7. In D. J. Painand M. W. Pienkowski (Eds.), Farming and birds in Europe: the common agricultural policy and its implications for bird conservation. (pp. 178-209). London: Academic Press.

Dobzhansky, T. (1970). Genetics of the evolutionary process. New York: Columbia University Press..

Dotta, G. (2005). Diversidade de mamíferos de médio e grande porte em relação à paisagem da bacia do rio Passa-Cinco, SP. Master thesis. Piracicaba: Escola Superior de Agricultura Luiz de Queiroz, Universiade de São Paulo.

Dotta, G. and Verdade, L. M. (2007). Trophic categories in a mammal assemblage: diversity in an agricultural landscape. Biota Neotropica, 7, 287-292.

Durigan, G. Siqueira, M. F. and Franco, G. A. D. C. (2007). Threats to the Cerrado remnants of the state of São Paulo, Brazil. Scientia Agricola, 64, 355-363.

Elliot, K. M. (1983). The otter (Lutra lutra L.) in Spain. Mammal Review, 13, 25-34. Fais, I., Costanzo, M. and Massa, B. (1991). First data on the feeding habits of the red fox

(Vulpes vulpes L.) in Sicily. Hystrix, 3, 105-112. Faria, D., Laps, R. R., Baumgarten, J. and Cetra, M. (2006). Bat and bird assemblages from

forests and shade cacao plantations in two contrasting landscapes in the Atlantic forest of southern Bahia, Brazil. Biodiversity and Conservation, 15, 587-612.

Fedriani, J. M. (1996). Dieta annual del zorro Vulpes vulpes, en dos habitats del Parque Nacional de Doñana, Doñana, Acta Vertebrata, 23, 143-152.

Fedriani, J. M., Ferreras, P. and Delibes, M. (1998). Dietary response of the Eurasian badger, Meles meles, to a decline of its main prey in the Doñana National Park. Journal of Zoology, 245, 214-218.

Fedriani, J. M., Palomares, F. and Delibes, M. (1999). Niche relations among three sympatric Mediterranean Carnivores. Oecologia, 121, 138-148.

Fernández, N., Delibes, M. and Palomares, F. (2006). Landscape evaluation. in conservation: molecular sampling and habitat modelling for the Iberian Lynx. Ecological Applications, 16, 1037–1049.

Fernández, N. and Palomares, F. (2000). The selection of breeding dens by the endangered Iberian lynx (Lynx pardinus): implications for its conservation. Biological Conservation, 94, 51-61.

Ferrer, M. and Negro, J. J. (2004). The Near extinction of two large European predators: super specialists pay a price. Conservation Biology, 18, 344-349

Forman, R. T. T. (1995). Land mosaics: the ecology of landscapes and regions. Cambridge: Cambridge University Press.

Luciano M. Verdade, Luis Miguel Rosalino, Carla Gheler-Costa et al. 28

Fournier, A., Maizaret, C., Jimenez, D., Chusseau, J., Aulagnier, S. and Spitz, F. (2007). Habitat utilization by sympatric European mink Mustela lutreola and polecats Mustela putorius in south-western France. Acta Theriologica, 52, 1–12.

Fragoso, S. and Santos-Reis, M. (2000) Utilização dos recursos tróficos pela doninha no Parque Natural das Serras de Aire e Candeeiros. Revista de Biologia, 18, 23-32.

Freitas, D., Gomes, J., Sales-Luís, T., Madruga, L., Marques, C., Baptista, G., Rosalino, L. M., Antunes, P., Santos, R. and Santos-Reis, M. (2007). Otters and fish farms in the Sado estuary: ecological and socio-economic basis of a conflict. Hydrobiologia, 587, 51-62.

Galetti, M., Bovendorp, R. S. , Fadini, R., Gussoni, C. A., Rodrigues, M., Alavarez, A. D., Guimarães Jr, P. and Alves, K.(2009). Hyper abundant mesopredators and non-random bird extinction in an Atlantic forest island. Revista Brasileira de Zoologia,, 26, 288-298.

García-Perea, R. (1996).Evolución y filogenia de los Carnívoros. In R. García-Perea, R. A. Baquero, R. Fernández-Salvador and J. Gisber (Eds.), Carnívoros: evolución, ecologia y conservación (pp.103-115). Madrid: SECEM/ Museo Nacional de Ciencias Naturales (MNCN) / Sociedad de Amigos del MNCN.

Gargaglioni, L. H., Batalhão, M. E., Lapenta, M. J., Carvalho, M. F., Rossi, R. V. and Veruli, V. P. (1998). Mamíferos da Estação Ecológica de Jataí, Luiz Antônio, SP. Papéis Avulsos de Zooogia, 40, 267-287.

Gascón, C., Lovejoy, T. E., Bieregaard, R. O., Malcom, J. R., Stouffer, P. C., Vasconcelos, H., Laurance, W., Zimmerman, B., Tocher, M., Borges, S. (1999). Matrix habitat and species richness in tropical forest remnants. Biological Conservation, 91, 223-229.

Gatti, A., Bianchi, R., Rosa, C.R.X. and Mendes, S.L. (2006). Diet of two sympatric carnivores, Cerdocyon thous and Procyon cancrivorus, in a restinga area of Espirito Santo state, Brazil. Mammalia, 70, 153-155.

Gazzola, A., Bertelli, I., Avanzinelli, E., Tolosano, A., Bertotto, P. and Apollonio, M. (2005). Predation by wolves (Canis lupus) on wild and domestic ungulates of the western Alps, Italy. Journal of Zoology, 266, 205–213.

Gehring, T. M. and Swihart, R.K. (2003). Body size, niche breath, and ecologically scaled responses to habitat fragmentation: mammalian predators in an agricultural landscape. Biological Conservation, 109, 283-295.

Gheler-Costa C. (2006). Distribuição e abundancia de pequenos mamíferos não-voadores, na bacia hidrográfica do rio Passa Cinco. PhD thesis, Piracicaba: Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo.,

Gheler-Costa, C., Verdade, L. M. and Almeida, A. F. (2002). Mamíferos não- voadores do campus “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, Brasil. Revista Brasileira de Zoologia, 19, 203-214.

Ghert, S. D. and Clark, W. R. (2003). Raccons, coyotes and reflections on the mesopredator release hypothesis. Wildlife Society Bulletin, 31(3), 836-842.

Gil-Sánchez, J. M. (1996). Dieta de la garduña (Martes foina Erxleben, 1977) en una localidad de las Sierras Subbeticas de Granada (Sureste de España). Doñana, Acta Vertebrata, 23, 83-90.

Gil-Sánchez, J. M. (1998). Dieta comparada del gato montés (Felis silvestris) y la jineta (Genetta genetta) en un área de simpatría de las Sierras Subbéticas (SE España). Miscellania Zoologica, 21, 57-64.

Adaptation of Mesocarnivores… 29

Gil-Sánchez, J. M., Ballesteros-Duperón, E. and Bueno-Segura, J. F. (2006). Feeding ecology of the Iberian lynx Lynx pardinus in eastern Sierra Morena (Southern Spain). Acta Theriologica, 51, 85-90.

Gil-Sánchez, J. M., Valenzuela, G. and Sánchez, J. F. (1999). Iberian wild cat Felis silvestris tartessia predation on rabbit Oryctolagus cuniculus: functional response and age selection. Acta Theriologica, 44, 421–428.

Giraudo, A. R. (2003). Dynamics of biodiversity loss in the Argentinean Atlantic Forest: an introduction. In C. Galindo-Leal and I. G. Câmara, (Eds.), The atlantic forest of South America: biodiversity status, threats, and outlook (pp. 139–140). Washington: CABS and Island Press.

Gisbert, J. and García-Perea, R. (2002). Mustela erminea Linnaeus, 1758. In L. J. Palomo and J. Gisbert (Eds.), Atlas de los mamíferos terrestres de España (pp. 246-249). Madrid: Dirección General de Conservación de la Naturaleza – SECEM – SECEMU.

González-Esteban, J., Villate, I. and Irizar I. (2004). Assessing camera traps for surveying the European mink, Mustela lutreola (Linnaeus, 1761), distribution. European Journal of Wildlife Research, 50, 33–36.

Gremillet, X. (1995). Proposals for the conservation of otters Lutra lutra L. on Corfu island (Ionian Sea, Greece). Hystrix, 7(1-2), 219-222.

Hass, C. C. and Valenzuela, D. (2002). Anti-predator benefits of group living in white-nosed coatis (Nasua narica). Behavioral Ecology and Sociobiology, 51, 570-578.

Hoogesteijn, R. and Mondolfi, E. (1992). El Jaguar, tigre Americano. Caracas: Armitano Editores.

Huang, C., Kim, S., Altstatt, A., Townshend, J. R. G., Davis, P., Song, K., Tucker, C. J., Rodas, O., Yanosky, A., Clay, R. and Musinsky, J. (2007). Rapid loss of Paraguay´s Atlantic forest and the status of protected areas – a landsat assessment, Remote Sensing of Environment, 106, 460–466.

Huber, O. (1987). Neotropical savannas: Their Flora and Vegetation. Tree, 2, 67-71. Huber, T., Laass, J. and Engleder, T. (2001). Present knowledge on the distribution of the

lynx (Lynx lynx) in Austria. Hystrix, 12, 31-37. Hulle, N. L. (2006). Mamíferos de médio e grande porte num remanescente de cerrado no

sudeste do Brasil (Itirapina, SP). Master thesis. São Paulo: Universidade de São Paulo. ICN (2003). Plano de Acção para a Conservação do Lince-ibérico em Portugal. Lisboa:

Instituto da Conservação da Natureza, Ministério das Cidades, do Ordenamento do Território e do Ambiente.

Jaksić, F. M. and Delibes, M. (1987). A comparative analysis of food-niche relationships and trophic guild structure in two assemblages of vertebrate predators differing in species richness: causes, correlations, and consequences. Oecologia, 71, 461-472.

Jeanneret, P., Schüpbach, B. and Luka, H. (2003). Quantifying the impact of landscape and habitat features on biodiversity in cultivated landscapes. Agriculture, Ecosystems & Environment, 98(3), 311-320.

Jobin, A., Molinari, P. and Breitenmoser, U. (2000). Prey spectrum, prey preference and consumption rates of Eurasian lynx in the Swiss Jura Mountains. Acta Theriologica, 45, 243–252.

Joly, A. C., Leitão-Filho, H. E. and Silva, S. M. (1991). O Património floristico. In A. C. Joly, H. E. Leitão-Filho and S. M. Silva (Eds.), Mata Atlantica. (pp. 97-107). São Paulo: Editora Index e Fundação Mata Atlantica, Brazil.

Luciano M. Verdade, Luis Miguel Rosalino, Carla Gheler-Costa et al. 30

Kruuk, H. and de Kock, L. (1981). Food and habitat of badgers (Meles meles L.) on Monte Baldo, northern Italy. Zeitschrift für Säugetierkunde, 46, 295-301.

Lagalisse, Y., Quenette, P. -Y., Rech, J. and Lignereux, Y. (2003). Étude coproscopique du régime alimentaire d’une population d’ours bruns (Ursus arctos) réintroduite dans les Pyrénées (1996-1999). Revue de Médecine Vétérinaire, 154, 639-644.

Lane, S. J., Alonso, J. C., and Martín, C. A. (2001). Habitat preferences of great bustard Otis tarda flocks in the arable steppes of central Spain: are potentially suitable areas unoccupied? Journal of Applied Ecology, 38, 193–203.

Laurance, W. F. (1994). Rainforest fragmentation and the structure of small mammal communities in tropical Queensland. Biological Conservation, 69, 23-32.

Leite, M. R. P. and Galvão, F. (2002). El jaguar, el puma y el hombre en tres áreas protegidas de los bosques costeros de Parana, Brasil. In R. A. Medellin, C. Chetkiewicz, A. Rabinowitz, K. H. Redford, J. G. Robinson, E.Sanderson and A. Taber (Eds.), El Jaguar en el nuevo milenio. Una evaluación de su estado, deteccion de prioridades y recomendaciones para la conservacion de los jaguares en America (pp. 237-250). Mexico City: Universidad Nacional Autónoma de Mexico/Wildlife Conservation Society.

Lepczyk, C. A., Mertig, A. G. and Liu. J. (2003). Landowners and cat predation across rural-to-urban landscapes. Biological Conservation, 115, 191–201.

Levins, R. (1968). Evolution in Changing Environments. Princeton, NJ: Princeton University Press.

Litvaitis, J. A. and Villafuerte, R. (1996). Intraguild predation, mesopredator release, and prey stability. Conservation Biology, 10, 676-677.

Llaneza, L., Iglesias, J. and Rico, M. (2000). Hábitos alimenticios del lobo en el antiguo Parque Nacional de la Montaña de Covadonga. Galemys, 12, 93-102.

Lodé, T. (1993). Diet composition and habitat use of sympatric polecat and American mink in western France. Acta Theriologica, 38, 161-166.

Lodé, T. (1999). Time budget as related to feeding tactics of European polecat Mustela putorius. Behavioural Processes, 47, 11–18.

Lodé, T. (2000). Functional response and area-restricted search in a predator: seasonal exploitation of anurans by the European polecat, Mustela putorius. Austral Ecology, 25, 223–231.

Lodé, T. (2001). Genetic divergence without spatial isolation in polecat Mustela putorius populations. Journal of Evolutionary Biology, 14, 228-236.

Lodé, T., Guiral, G. and Peltier, D. (2005). European Mink-Polecat hybridization events: hazards from natural process? Journal of Heredity, 96, 1-8.

Lopes, A. L. B. and Mantovani, J. E. (2005). Determinação da área de vida e uso de habitats pela jaguatirica na região nordeste do estado de São Paulo. Anais XII Simpósio Brasileiro de Sensoriamento remoto (pp. 3129-3135). Goiânia: INPE.

Lozano, J., Virgós, E., Malo, A. F., Huertas, D. L. and Casanovas, J. C. (2003). Importance of scrub-pastureland mosaics for wild-living cats occurrence in a Mediterranean area: implications for the conservation of the wildcat (Felis silvestris). Biodiversity and Conservation, 12, 921-935.

Lucherini, M. and Crema, G. (1995). Seasonal variation in the food habits of badgers in an alpine Valley. Hystrix, 7, 165-171.

Adaptation of Mesocarnivores… 31

Lyra-Jorge, M. C., Ciocheti, G. and Pivello, V. R. (2008). Carnivore mammals in a fragmented landscape in northeast of São Paulo State, Brazil. Biodiversity and Conservation, 17, 1573-1580.

Macdonald, D. W. (2001). The new encyclopedia of mammals. Oxford: Oxford University Press.

Malo, A. F., Lozano, J., Huertas, D. L. and Virgos, E. (2004). A change of diet from rodents to rabbits (Oryctolagus cuniculus). Is the wildcat (Felis silvestris) a specialist predator? Journal of Zoology, 263, 401-407.

Mantovani, J. E. (2001). Telemetria convencional e via satélite na determinação da área de vida de três espécies de carnívoros da região nordeste do estado de São Paulo. PhD thesis. São Carlos: Universidade Federal de São Carlos.

Marassi, M. and Biancardi, C.M. (2002). Diet of the Eurasian badger (Meles meles) in an area of the Italian Prealps. Hystrix, 13, 19-28.

Marcelli, M., Fusillo, R. and Boitani, L. (2003). Sexual segregation in the activity patterns of European polecats (Mustela putorius). Journal of Zoology, 261, 249–255.

Marino, J. (2003). Threatened Ethiopian wolves persist in small isolated Afroalpine enclaves Oryx, 37, 62-71.

Martín, R., Rodríguez, A. and Delibes, M. (1995). Local feeding specialization by badgers (Meles meles) in a mediterranean environment. Oecologia, 101, 45-50.

Martinoli, A. and Preatoni, D. G. (1995). Food habits of the stone marten (Martes foina) in the Upper Aveto valley (Northern Appennines, Italy). Hystrix, 7, 137-142.

Martinoli, A., Preatoni, D. G., Chiarenzi, B., Wauters, L. A. and Tosi, G. (2001). Diet of stoats (Mustela erminea) in an Alpine habitat: The importance of fruit consumption in summer. Acta Oecologica, 22, 45−53.

Masseti, M. (1995). Presence and distribution of the stone marten, Martes foina Erxleben, 1777, on the island of Crete (Greece). Hystrix, 7, 73-78.

Matos, H. M., Santos, M. J., Palomares, F. and Santos-Reis, M. (2009). Does riparian habitat condition influence mammalian carnivore abundance in Mediterranean ecosystems? Biodiversity and. Conservation, 18, 373–386

Mattioli, L., Capitani, C., Avanzinelli, E., Bertelli, I., Gazzola, A. and Apollonio, M. (2004). Predation by wolves (Canis lupus) on roe deer (Capreolus capreolus) in north-eastern Apennine, Italy. Journal of Zoology, 264, 249–258.

Mazzolli, M. (2000). A comparasion of habitat use by mountain lion and kodkod in the southern neotropics with implications for the assessment of their vulneraqbility status. Master thesis. Durham: University of Durham.

Mazzolli, M., Graipel, M. E. and Dunstone, N. (2002). Mountain lion depredation in southern Brazil. Biological Conservation, 105, 43-51.

McDdonald, R. A., O'hara, K. and Morrish, D. J. (2007). Decline of invasive alien mink (Mustela vison) is concurrent with recovery of native otters (Lutra lutra). Diversity and Distributions, 13, 92-98.

McDougal, P. T., Réale, D., Sol, D. and Reader, S. M. (2006) Wildlife conservation and animal temperament: causes and consequences of evolutionary change for captive reintroduced and wild populations. Animal Conservation, 9, 39–48.

Mech, L. D. (1970). The wolf: the ecology and behavior of an endangered species. New York: Natural History Press, Doubleday Publishing Co.

Luciano M. Verdade, Luis Miguel Rosalino, Carla Gheler-Costa et al. 32

Mestre, F. M., Ferreira, J. P. and Mira, A. (2007). Modelling the distributionof the European polecat Mustela putorius in a Mediterranean agricultural landscape. Revue d’ Écologie (Terre Vie), 62, 35-47.

Metzger, J. P., Lewinsohn, T. M., Joly, C. A., Verdade, L. M., Martinelli, L. A. and Rodrigues, R. R. (2010). Brazilian Law: Full speed in reverse? Science, 329, 276-277.

Meza, A. D., Meyer, E. M. and Gonzalez, C. A. L. (2002). Ocelot (Leopardus pardalis) food habits in a tropical deciduous forest of Jalisco, Mexico. American Midland Naturalist, 148, 146-154.

Miranda, J. M. D., Bernardi, I. P., Abreu, K. C. and Passos, F. C. (2005). Predation on Alouatta guariba clamitans Cabrera (Primates, Atelidae) by Leopardus pardalis (Linnaeus) (Carnívora, Felidae). Revista Brasileira de Zoologia, 22, 793-795.

Moguel, P. and Toledo, V. M. (1999). Biodiversity conservation in traditional coffee systems of Mexico. Conservation Biology, 13(1), 11-21.

Moleón, M. and Gil-Sánchez, J. M. (2003). Food habits of the wildcat (Felis silvestris) in a particular habitat: the Mediterranean high mountain. Journal of Zoology, 260, 17-22.

Molinari, P., Rotelli, L., Atello, M. and Bassano, B. (2001). Present status and distribution of the Eurasian lynx (Lynx lynx) in the Italian Alps. Hystrix, 12, 3-9.

Monzón, A., Fernandes, P. and Rodrigues, N. (2004). Vegetation structure descriptors regulating the presence of wild rabbit in the National Park of Peneda-Gerês, Portugal. European Journal Wildlife Research, 50, 1–6.

Morán-López, R., Guzman, J. M., Borrego, E. C. and Sánchez, A. V. (2006). Nest-site selection of endangered cinereous vulture populations affect by anthropogenic disturbance: present and future conservation implications. Animal Conservation , 9, 29-37.

Motta-Júnior, J. C., Talamoni, S., Lombardi, J. A. and Simokomaki, K. (1996). Diet of the maned wolf in central Brazil. Journal of Zoology of London, 240, 277-284.

Murray, J. L. and Gardner, G. L. (1997). Leopardus pardalis. Mammalian Species, 548, 1-10. Myers, N., Mittermeier, R. A., Mittermeier, C.G., Fonseca, G. A. B. and Kent, J. (2000).

Biodiversity hotspots for conservation priorities. Nature, 403, 853-858. Naiman, R. J., Décamps, H. and McClain, M. E. (2005) Riparia. ecology, conservation, and

management of streamside communities. Burlington: Elsevier Academic Press. Nowak, R. M. (2005). Walker's carnivores of the world. Baltimore, Maryland: The John

Hopkins University Press. Oehler, J. D. (1995). Multi-scaled responses of mammalian carnivores to forest

fragmentation. Master thesis. Durham: University of New Hampshire. Oehler, J. and Litvaitis, J. (1996). The role of spatial scale in understanding responses of

medium-sized carnivores to forest fragmentation.. Canadian Journal of Zoology, 74, 2017-2079.

Oliveira, V. B., Linares, A. M., Corrêa, G. L. C. and Chiarello, A. G. (2008). Predation on the black capuchin monkey Cebus nigritus (Primates: Cebidae) by domestic dogs Canis lupus familiaris (Carnivora: Canidae), in the Parque Estadual Serra do Brigadeiro, Minas Gerais, Brazil. Revista Brasileira de Zoologia, 25, 376–378.

Padial, J. M., Ávila, E. and Gil-Sánchez, J. M. (2002). Feeding habits and overlap among red fox (Vulpes vulpes) and stone marten (Martes foina) in two Mediterranean mountain habitats. Mammalian Biology, 67, 137-146.

Adaptation of Mesocarnivores… 33

Palazón, S. and Ruiz-Olmo, J. (1997). Situació del visó americà (Mustela vison Schreber, 1777) en el Montseny i el Montnegre. I Trobada d’estudiosos del Montnegre i el Corredor, 97-98.

Palma, L. (1980). Sobre distribuição, ecologia e conservação do lince ibérico em Portugal. I Reunión Iberoamericana de Zoólogos de Vertebrados, 1, 569-586.

Palomares, F. (1993). Opportunistic feeding of the Egyptin mongoose Herpestes ichneumon, (L.) in southwestern Spain. Revue d’Ecologie (Terre Vie), 48, 295-304.

Palomares, F. and Delibes, M. (1991a). Ecología comparada de la gineta Genetta genetta (L.) y el meloncillo Herpestes ichneumon (L.) (Mammalia, Viverridae) en Doñana (SO de la Península Ibérica. Boletin de la Real Sociedad Española de Historia Natural, 87, 257-266.

Palomares, F. and Delibes, M. (1991b). Alimentación del meloncillo Herpestes ichneumon y de la gineta Genetta genetta en la Reserva Biologica de Doñana, S.O. de la Península Ibérica. Doñana, Acta Vertebrata, 18, 5-20.

Palomares, F., Ferreras, P., Fedriani, J. M. and Delibes, M. (1996). Spatial relationships between iberian lynx and other carnivores in an area of south-Western Spain. Journal of Applied Ecology, 33, 5-13.

Palomares, F., Gaona, P., Ferreras, P. and Delibes, M. (1995). Positive effects on game species of top predators by controlling smaller predator populations: an example with lynx, mongooses, and rabbits. Conservation Biology, 9, 295-305.

Palomares, F., Rodríguez, A., Laffitte, R. AND Palomares, M. (1991). The status and distribution of the Iberian lynx, Felix pardina (Temminck) in Coto Doñana area, SW Spain. Biological Conservation, 57, 159-169.

Palomero, G., Blanco, J. C. and Garcia, P. (1997). Ecology and behavior of 3 wild orphaned brown bear cubs in Spain. International Conference on Bear. Research and Management, 9, 85-90.

Pandolfi, M. and Bonacoscia, M. (1991). The diet of the fox (Vulpes vulpes) in the northern Marches (Central Italy). Hystrix, 3, 77-81.

Pandolfi, M., De Marinis, A. M. and Petrov, I. (1996). Fruit as a winter feeding resource in the diet of stone marten (Martes foina) in east-central Italy. Zeitschrift für Säugetierkunde, 61, 215-220.

Pandolfi, M., Gabucci, L. and Gubellini, L. (1991). Invertebrates in the diet of foxes (Vulpes vulpes) in central Italy. Hystrix, 3, 95-98.

Papageorgiou, N. K., Sepougaris, A., Christopoulou, O. G., Vlachos, C. G. and Petamidis, J. S. (1988). Food habits of the red fox in Greece. Acta Theriologica, 33, 313-324.

Pardini, R. (1998). Feeding ecology of the neotropical river otter, lontra longicaudis in an atlantic forest stream, south-eastern Brazil. Journal of Zoology of London, 245, 385-391.

Pedroso, N. M. and Santos-Reis, M. (2006). Summer diet of Eurasian otters in large dams of South Portugal. Hystrix, 17, 117-128.

Pedroso, N. M., Santos-Reis, M. and Vasconcelos, L. (2004). O uso de grandes barragens pela lontra no Alentejo. Revista de Biologia, 22, 211-224.

Peixoto, A. L. and Gentry A. (1990). Diversidade e composição florística da mata de tabuleiro na Reserva Florestal de Linhares (Espírito Santo, Brasil). Revista Brasileira de Botânica, 13, 19-25.

Pigozzi, G. (1991). The diet of the European badger in a Mediterranean coastal area. Acta Theriologica, 36, 293-306.

Luciano M. Verdade, Luis Miguel Rosalino, Carla Gheler-Costa et al. 34

Pinto-Correia, T. (2000). Future development in Portuguese rural areas: how to manage agricultural support for landscape conservation. Landscape and Urban Planning, 50, 95–106.

Pinto-Correia, T. and Vos, W. (2004). Multifunctionality in Mediterranean landscapes – past and future. In R. Jongman (Ed.), The new dimensions of the European landscape (pp. 135-164). Dordrecht: Springer-Verlag.

Posillico, M., Meriggi, A., Pagnin, E., Lovari, S. and Russo, L. (2004). A habitat model for brown bear conservation and land use planning in the central Apennines. Biological Conservation, 118, 141–150

Prenda, J., Lopez-Nieves, P. and Bravo, R. (2001). Otter, Lutra lutra, conservation in a Mediterranean area: the importance of habitat typology and temporal variation in water availability. Aquatic Conservation: Marine and Freshwater Ecosystems, 11, 343-355.

Prigioni, C, Balestrieri, A., Remonti, L., Gargaro, A. and Priore, G. (2006b). Diet of the Eurasian otter (Lutra lutra) in relation to freshwater habitats and alien fish species in southern Italy. Ethology Ecology and Evolution, 18, 307-320.

Prigioni, C. and de Marinis, A. (1995). Diet of the polecat Mustela putorius L. in riverine habitats (Northern Italy). Hystrix, 7, 69-72.

Prigioni, C., Pandolfi, M., Grimod, I., Fumagalli, R., Santolini, R., Arcá, G., Montemurro, F., Bonacoscia, M. and Racana, A. (1991). The otter in five Italian rivers – first report. In: C. Reuther and R. Rochert (Eds.), Proceedings V International Otter Colloquium, Hankensbuttel: Habitat, 6, 143–145.

Prigioni, C., Remonti, L. and Balestrieri, A. (2006a). Otter Lutra lutra movements assessed by genotyped spraints in Southern Italy. Hystrix, 17(1), 91-96.

Prigioni, C. and Tacchi, F. (1991). Trophic niche of the fox Vulpes vulpes in the Ticino Valley (Northern Italy). Hystrix, 3, 65-75.

Projeto Cactáceas do Brasil. (2010). Available at: http://www.brcactaceae.org/p_index.html. Accessed inJanuary 2010.

Prugh, L. R., Hodges, K. E., Sinclair, R. E. and Brashares, J. S. (2008). Effect of habitat area and isolation on fragmented animal populations. Proceedings of the National Academy of Sciences, 105, 20770–20775.

Ragni, B. (1981). Gatto selvatico Felis silvestris Schreber, 1777. In: M. Pavan (Ed.), Distribuzione e Biologia di 22 specie di mamiferi in Italia (pp. 105–113). Roma: Consiglio nazionale delle Ricerche.

Relyea, R. A. (2004). Fine-tuned phenotypes: tadpole plasticity under 16 combinations of predators and competitors. Ecology, 85, 172–179.

Remonti, L., Balestrieri, A. and Prigioni, C. (2006). Role of fruits in the diet of small mustelids (Mustela sp.) from the western Italian Alps. European Journal of Wildlife Research, 53, 35-39.

Revilla, E. and Palomares F. (2002). Does local feeding specialization exist in Eurasian badgers? Canadian Journal Zoology, 80, 83-93.

Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J. and Hirota, M. M. (2009). The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 142, 1141-1153.

Rivera, J. G. and Rey, A. C. (1983). Structure d'une communauté de carnivores dans la Cordillere Cantabrique Occidentale. Revue d’Ecologie (Terre et Vie), 37, 145-160.

Adaptation of Mesocarnivores… 35

Rocha, V. J., Reis, N. R. and Sekiama, M. L. (2004). Dieta e dispersão de sementes por Cerdocyon thous (Linnaeus) (Carnivora, Canidae) em um fragmento florestal no Paraná, Brasil. Revista Brasileira de Zoologia, 21, 871-876.

Rodríguez, A. and Delibes, M. (1990). El lince ibérico (Lynx pardina) en España: Distribución y problemas de conservación. Madrid: ICONA - Ministerio de Agricultura Pesca y Alimentación.

Rodríguez, A. and Delibes, M. (1992). Food habits of badgers (Meles meles) in an arid habitat. Journal of Zoology, 227, 347-350.

Rondinini, C. and Boitani, L. (2002). Habitat use by beech martens in a fragmented landscape. Ecography, 25, 257-264.

Rondinini, C., Ercoli, V. and Boitani, L. (2006). Habitat use and preference by polecats (Mustela putorius L.) in a Mediterranean agricultural landscape. Journal of Zoology, 269, 213–219.

Roque, S., Alvares, F. and Petrucci-Fonseca, F. (2001). Utilización espacio-temporal y hábitos alimenticios de un grupo reproductor de lobos en el noroeste de Portugal. Galemys, 13, 179-198.

Rosa, P., Brangi, A. and Gola, L. (1991). Food of the fox (Vulpes vulpes) in a mountain area of Northern Apennines. Hystrix, 3, 91-94.

Rosalino, L. M., Loureiro, F., Macdonald, D. W. and Santos-Reis, M. (2005). Dietary shifts of the badger Meles meles in Mediterranean woodlands: an opportunistic forager with seasonal specialisms. Mammalian Biology, 70, 12-23.

Rosalino, L. M., Santos, M. J., Pereira, I. and Santos-Reis, M. (2009) Sex-driven differences in Egyptian mongoose's (Herpestes ichneumon) diet in its northwestern European range, European Journal of Wildlife Research, 55, 293–299.

Rosalino, L. M. and Santos-Reis, M. (2002). Feeding habits of the common genet Genetta genetta in a man-made landscape of central Portugal. Mammalia, 66, 195-205.

Rosalino, L. M. and Santos-Reis, M., 2009. Fruit consumption by carnivores in MediterraneanEurope. Mammal Review, 39, 67-78.

Ruggiero, P. G. C. (2002). Relação entre solo, vegetação e topografia em área de cerrado (Parque Estadual de Vassununga, SP): como se expressa em mapeamentos? Acta Botanica Brasileira, 20, 383-394.

Ruiz-Olmo, J. (1987). El vison americano, Mustela vison Schreber, 1777 (Mammalia, Mustelidae) en Cataluña, NE de la Península Ibérica. Doñana, Acta Vertebrata, 14, 142-145.

Ruiz-Olmo, J. (2006). The Otter (Lutra lutra L.) on Corfu Island (Greece): Situation in 2006. IUCN Otter Specialist Group Bulletin, 23(1), 17 – 25.

Ruiz-Olmo, J., Jordán, G. and Gosálbez, J. (1989). Alimentación de la nutria (Lutra lutra L., 1758) en el Nordeste de la Península Ibérica. Doñana, Acta Vertebrata, 16, 227–237.

Ruiz-Olmo, J. and López-Martín, J. (1993). Note on the diet of the common genet (Genetta genetta L.) in Mediterranean riparian habitats of N.E. Spain. Mammalia, 57, 607-610.

Ruiz-Olmo, J. and Palazon, S. (1993). Diet of the stone marten (Martes foina Erxleben, 1777) in the northeastern Spain. Doñana, Acta Vertebrata, 20, 59-67.

Ruiz-Olmo, J., Palazón, S., Gisbert, J. and García-Perea, R. (1997). Distribución y ecologia del armiño en la península Ibérica. Quercus, 134, 12-18.

Luciano M. Verdade, Luis Miguel Rosalino, Carla Gheler-Costa et al. 36

Sales-Luís, T., Pedroso, N. M. and Santos-Reis, M. (2007). Prey availability and diet of the otter (Lutra lutra) on a large reservoir and associated tributaries. Canadian Journal of Zoology, 85, 1125-1135.

Sánchez-Hernandez, C., Romero-Almaraz, M. L., Colín-Martinez, H. and García-Estrada, C. (2001). Mamíferos de cuatro áreas com diferente grado de alteración em el sureste de México. Acta Zoológica del Mexico, 84, 35-48.

Santos, M. J., Pinto, B. M. and Santos-Reis, M. (2007). Trophic niche partitioning between two native and two exotic carnivores in SW Portugal. Web Ecology, 7, 53-62.

Santos-Reis, M., Rosalino, L. M. and Rodrigues, M. (1999). Lagomorfos, carnívoros e artiodáctilos. In M. Santos-Reis and A. I. Correia (Eds.), Caracterização da flora e da fauna do montado da Herdade da Ribeira Abaixo (Grândola- Baixo Alentejo) (pp. 249-262). Lisboa: Centro de Biologia Ambiental.

Sarmento, P. (1996). Feeding ecology of the European wildcat Felis silvestris in Portugal. Acta Theriologica, 41, 409-414.

Seidensticker, J., Christie, S. and Jackson, P. (1999). Preface. In J. Seidensticker, S. Christie and P. Jackson (Eds.), Riding the tiger: tiger conservation in Human-dominated landscapes. (pp. xv–xix), Cambridge: Cambridge University Press.

Serafini, P. and Lovari, S. (1993). Food habits and trophic niche overlap of the red fox and the stone marten in a Mediterranean rural area. Acta Theriologica, 38, 233-244.

Shepherd, C. R. and Nijman,V. (2008). The wild cat trade in Myanmar. Petaling Jaya: TRAFFIC Southeast Asia .

Silva, C.R. (2002). Riqueza e diversidade de mamíferos não-voadores em um mosaico formado por plantios de Eucaliptos signa e remanescentes de floresta atlântica em Pilar do Sul, SP. Master thesis. Piracicaba: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo.

Silva, P. M., Aguiar, C. A. S., Niemelä, J., Sousa, J. P., Serrano, A. R. M. (2008). Diversity patterns of ground-beetles (Coleoptera: Carabidae) along a gradient of land-use disturbance. Agriculture, Ecosystems and Environment, 124, 270–274.

Silva, A. F. and Leitão Filho, H. F. (1982). Composição florística e estrutura de um trecho de mata atlântica de encosta no município de Ubatuba (São Paulo, Brasil). Revista Brasileira de Botânica, 5, 55-94.

Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 163-688. Sinclair, A. R. E., Fryxell, J. M. and Caughley, G. (2006). Wildlife Ecology and Management

(2nd ed.). Malden, MA: Blackwell Scientific Publications. Sirami, C., Brotons, L., Burfield, I., Fonderflick, J. and Martin, J. L. (2008). Is land

abandonment having an impact on biodiversity? A meta-analytical approach to bird distribution changes in the north-western Mediterranean. Biological Conservation, 141, 450-459.

Soisalo, M. K. and Cavalcanti, S. M. C. (2006). Estimating the density of a jaguar population in the brazilian pantanal using camera traps and capture-recapture sampling in combination with GPS radio telemetry. Biological Conservation, 129, 487-496.

Soulé, M. E., Bolger, D. T., Alberts, A. C., Wright, J., Sorice, M. and Hill, S. (1988). Reconstructed dynamics of rapid extinctions of chaparral-requiring birds in urban habitat islands. Conservation Biology, 2, 75-92.

Adaptation of Mesocarnivores… 37

Stahl, P., Vandel, J.M., Herrenschmidt, V. and Migot, P. (2001a). Predation on livestock by an expanding reintroduced lynx population: long-term trend and spatial variability. Journal of Applied Ecology, 38, 674–687.

Stahl, P., Vandel, J. M., Herrenschmidt, V. and Migot, P. (2001b).The effect of removing lynx in reducing attacks on sheep in the French Jura Mountains. Biological Conservation, 101, 15–22.

Stahl, P., Vandel, J. M., Ruette, S., Coat, L., Coat, Y. and Balestra, L. (2002). Factors affecting lynx predation on sheep in the French Jura. Journal of Applied Ecology, 39, 204–216.

Stanisa, C., Koren, I. and Adamic, M. (2001). Situation and distribution of the lynx (Lynx lynx) in Slovenia from 1995-1999. Hystrix, 12, 43-51.

Suc, J. P. (1984). Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature, 307, 429–432.

Such, A. and Calabuig, G. (2003). Dieta de la garduña (Martes foina Erxleben, 1777) en la Serra de la Solana (Sur del País Valencía). Galemys, 15, 167-180.

Sunquist, M. E., Sunquist, F. and Daneke, D. E. (1989). Ecological Separation in a Venezuelan Llanos carnivore community. In K. H. Redford and J. F. Eisenberg (Eds.), Advances in Neotropical Mammalogy (pp. 197-232). Leiden: Brill.

Tabeni, S. and Ojeda, R. A. (2005). Ecology of the Monte desert small mammals in disturbed and undisturbed habitats. Journal of Arid Environmental, 63(1), 244-255.

Taber, A. B., Novaro, A. J., Nris, N. and Colman, F. (1997). The food habits of sympatric jaguar and puma in the Paraguayan Chaco. Biotropica, 29, 204-213.

Talamoni, S. A., Motta-Júnior, J. C. and Dias, M. M. (2000). Fauna de mamíferos da Estação Ecológica de Jataí e Estação Experimental de Luiz Antônio. In J. E. Santos and J. S. R. Pires (Eds.), Estudos Integrados em Ecossistemas. Estação Ecológica de Jataí. (pp. 317-319). São Carlos: RiMa Editora.

Tattersall, F. H., Mcdonald, D. W., Hart, B. J., Johnson, P. and Manley, W. (2002). Is habitat linearty important for small mammal communities on farmland? Journal of Applied Ecology, 39, 643-652.

Terborgh, J. (2000). The fate of tropical forests: a matter of stewardship. Conservation Biology, 14(5), 1358-1361.

Tófoli, C. F., Rohe, F. and Setz, E. Z. F. (2009). Jaguarundi (Puma yagouaroundi) (Geoffroy, 1803) (Carnivora, Felidae) food habits in a mosaic of Atlantic Rainforest and eucalypt plantations of southeastern Brazil. Brazilian Journal of Biology, 69, 631-637.

Torre, I., Ballesteros, T. and Degollada, A. (2003). Cambios en la dieta de la gineta (Genetta genetta Linnaeus, 1758) con relación a la disponibilidad de micromamíferos: possible preferencia por el topillo rojo? Galemys, 15, 25-36.

Tozetti, A. M. (2002). Diversidade e padrões de atividade de mamíferos de médio e grande porte em diferentes fisionomias de cerrado na Estação Ecológica de Itirapina. Master thesis. São Paulo: Universidade de São Paulo.

Trolle, M. and Kéry, M. (2003). Estimation of ocelot density in the pantanal using capture-recapture analysis of camera trapping data. Journal of Mammalogy, 84, 607-614.

Tscharntke, T., Klein, A. M., Kruess, A. Steffan-Dewenter, I. and Thies, C. (2005). Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecology Letters, 8, 857–874.

Luciano M. Verdade, Luis Miguel Rosalino, Carla Gheler-Costa et al. 38

Tuyttens, F. A. M., Macdonald, D. W. (2000). Consequences of social perturbation for wildlife management and conservation. In M. L. Gosling and W. J. Sutherland (Eds.), Behaviour and Conservation (pp. 315-329). Cambridge: Cambridge University Press.

Verdú, J. R., Crespo, M. B. and Galante, E. (2000). Conservation strategy of a nature reserve in Mediterranean ecossystems: the effect of protection from grazing on biodiversity. Biodiversity and Conservation, 9, 1707-1721.

Vidal-Figueroa, T. and Delibes, M. (1987). Primeros datos sobre el visón americano (Mustela vison) en el suroeste de Galicia y noroeste de Portugal. Ecología, 1, 145-152.

Virgós, E. (2001). Relative value of riparian woodlands in landscapes with different forest cover for medium-sized Iberian carnivore. Biodiversity and Conservation, 10, 1039-1049.

Virgós, E. (2002). Mustela putorius Linnaeus, 1758. In L. J. Palomo and J. Gisbert (Eds.), Atlas de los mamíferos terrestres de España (pp. 262-265). Madrid: Dirección General de Conservación de la Naturaleza – SECEM – SECEMU.

Virgós, E., Casanovas, J. G. and Blázquez, T. (1996). Genet (Genetta genetta L., 1758) diet shift in mountains of Central Spain. Zeitschrift für Säugetierkunde, 61, 221-227.

Virgós, E., Llorente, M. and Cortés, Y. (1999). Geographic variation in genet (Genetta genetta) diet: a literature review. Mammal Review, 29, 119-128.

Vos, J. (2000). Food habits and livestock depredation in two iberian wolf packs (Canis lupus signatus) in the north of Portugal. Journal of Zoology, 251, 457-462.

Virgós, E., Tellería, J. L. and Santos, T. (2002). A comparison on the response to forest fragmentation by medium-sized Iberian carnivores in central Spain. Biodiversity and Conservation, 11, 1063–1079.

Wang, E. (2002). Diets of Ocelots (Leopardus pardalis), Margays (L. wiedii), and Oncillas (L. tigrinus) in the Atlantic rainforest in southeast Brazil. Studies on Neotropical Fauna and Environment, 37, 207-212.

Whiteman, C. W., Matushima, E. R., Confalonieri, U. E. C., Palha, M. D. C., Silva, A. S. L. and Monteiro, V. C. (2007). Human and domestic animal populations as a potential threat to wild carnivore conservation in a fragmented landscape from the Eastern Brazilian Amazon. Biological Conservation, 138, 290-296.

Wiens, J. A. (2000). Ecological heterogeneity: an ontogeny of concept and approaches. In M. J. Hutchings, E. A. John and A. J. A. Stewart (Eds.), The ecological consequences of environmental heterogeneity (pp. 9-31). Oxford: Blackwell Science.

Wright, S. J., Gompper, M. E. and DeLeon, B. (1994). Are large predators keysone species in neotropical forests? The evidence from barro Colorado Island. Oikos, 71, 279-294.

Yom-Tov, Y., Yom-Tov, S., Barreiro, J. and Blanco, J. C. (2007). Body size of the red fox Vulpes vulpes in Spain: the effect of agriculture. Biological Journal of the Linnean Society. 90, 729–734.

Zabala, J., Zuberogoitia, I. and Martínez-Climent, J.A. (2005). Site and landscape features ruling the habitat use and occupancy of the polecat (Mustela putorius) in a low density area: a multiscale approach. European Journal of Wildlife Research, 51, 157–162.