1 chapter 1 complex numbers from schaum's complex

44
1 Chapter 1 Complex Numbers From Schaum's Complex Variables

Upload: khangminh22

Post on 02-Apr-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

1

Chapter 1 Complex Numbers

From Schaum's Complex Variables

2

3

4

Example 1-1: Roots of zn = 1 when n = 6.

Using nj

n e/2 and roots : 1,,0,

/2 nkenkjk

n K , then

since 3/6/2

6

jjee , roots are given by 5,,0,

3/6/2

6 K keejkkjk .

They are located on the unit circle separated by 60º (or /3).

Example 1-2: Find cube roots of -j8.

Since 2/3

28j

ej , roots 2,1,0,2

3/26/ keez

kjj

k

.

They can be given in terms of 3/2

3

je as follows:

2,1,0,30 kzzk

k .

5

Chapter 2 Functions, Limits and Continuity

6

7

8

9

Example 2-1: Let f(z) = z + z-1, z0 ( }0{\Cz ) then

222222;;

1)(

yx

yyv

yx

xxu

yx

jyxjyx

jyxjyxzf

.

Using polar coordinates z = rej yields

Example 2-2: Single-valued functions vs Multiple-valued functions

sin)(,cos)();sin(cos)sin(cos)()( 1111 rrvrrujrjrerrerefzfjjj

10

(a) w = f(z) = z2 is a single-valued function.

(b) zzfw )( is a multiple-valued function (two-value).

For example, 11 ; j1 ;

8/94/9)24/(

8/4/4/

222

2221

jjj

jjj

eee

eeej

If choosing 0 arg z < 2 to be "principal branch", then 8/2 j

e is a "principal value".

Note that the Riemann surface of zzfw )( has two sheets (0 arg z < 2and 2 arg z < 4), the origin is

the branch point and arg z = 0 is the branch cut.

(c) w = ln z = ln re j = ln r + j( +2k), k = 0,1,2,…

If define principal branch to be

),0(,ln rjrzLn ,

then the origin and = is the branch cut and the origin is the branch point.

Example 2-3: Show that )1ln(sin 21 zjzjz

jzzujuezuzuzu ju 221 1sincos;1cos;sinsin

zzjzjujzzju 122 sin)1ln(1ln

Example 2-4: Show that if f(z) = jz/2 in the open disk |z|<1, then 2/)(lim1

jzfz

Note that for z in the region |z|<1, 2

1

222)(

zjjzjzf .

Hence, for any z and any positive number ,

2

)(j

zf whenever 0 < |z-1| < 2≤

Example 2-5: Consider f(z) = z1/2 where z given by ej and ej(2

1lim)(lim 02/)(

00

jjeezf

; 1lim)(lim 2/)2(

00

jjeezf

Hence, the limit does not exist across the branch cut, which means “discontinuous”.

Example 2-6: Show that z

z

z 0lim

does not exist.

1limlimlim0

000

x

x

jyx

jyx

z

z

xyxz

; 1limlimlim0

000

jy

jy

jyx

jyx

z

z

yxyz

Example 2-7 (Transformation): Let w = f(z) = z2; u = x2-y2, v = 2xy.

(1,2) in z-plane is mapped to (-3,4) in w-plane. (1,0) is mapped to (1,0) and vice versa.

u = c1 in w-plane is mapped to c1 = x2-y2 in z-plane, and v = c2 in w-plane is mapped to c2 = 2xy in z-plane, as

shown below.

11

Likewise, x = c1, c1≠0 in z-plane is mapped to u = c12-y2,

v = 2c1y, i.e., u = c12-(v/2c1)

2 parabolic curve in w-plane,

and y = c2, c2≠0 in z-plane is mapped to u = x2- c22, v =

2c2x, i.e., u = (v/2c2)2 - c2

2 parabolic curve in w-plane.

If c1 = 0 or c2 = 0, then x = 0, y = 0 is mapped to (u = -

y2,v = 0) and (u = x2,v=0), respectively.

For example, x = 1 is mapped to u = 1-(v/2)2 and y = 1 is

mapped to u = (v/2)2-1.

Exercise 2-1 Repeat example 2-7 for f(z) =

(a) z-1 (b) (z+1)-1 (c) (z-1)(z+1)-1

(d) (z+1)(z-1)-1 (e) (2z-1)(z+1)-1

Exercise 2-2 Let f(z) = ln z, then draw the image of |z|=c1,

and = c2 in w-plane. (HINT: use polar form of z.)

-6 -4 -2 0 2 4 6-5

-4

-3

-2

-1

0

1

2

3

4

5

u

v

x=1 x=1.5 x=2

y=2 y=1.5 y=1

12

Chapter 3 Complex Differentiation

13

14

15

Theorem function f is an analytic function Cauchy-Riemann equations hold

Proof (from Churchill's book)

Necessity ():

16

Sufficiency ():

17

Re z ≤ |Re z| ≤ |z|; Im z ≤ |Im z| ≤ |z|

18

Example 3-1: Let f(z) = z2, z, then

zzzz

zzzzz

z

zfzzf

zzz22lim

)(2lim

)()(lim

0

222

00

Example 3-2: Let w = f(z) = |z|2, z, then

z

zzzz

z

zzzzzz

z

zzz

z

w

22

.

Now, consider z = x+jy,

Let

zzz

wyx

zzz

wxy

then,0,0

;then,0,0

;

which are not equal in general except when z = 0. Thus, f(z) is not analytic.

Example 3-3: Let f(z) = z2 = x2 – y2 + j2xy, then

xyyxyyxx vuvuxvyuyvxu ;2,2,2,2 AND zyjxjvuzf xx 222)(' .

Example 3-4: Let w = f(z) = |z|2 = x2 + y2, then

0at except ;0,2,0,2 zvuvuvyuvxu xyyxyyxx . (differentiable but not analytic)

Example 3-5: Let w = f(z) = (1+z)/(1-z), (a) find dw/dz (b) determine when f(z) is non-analytic.

(a) Method 1: using the definition of derivative yields

200

000

)1(

2

)1)(1(

2lim

)1)(1(

)1()1)(1()1()1)(1(lim

)1)(1(

)1)(1()1)(1(lim1

1

1

1

lim)()(

lim

zzzzzzzz

zzzzzzzz

zzzz

zzzzzz

z

z

z

zz

zz

z

zfzzf

dz

dw

zz

zzz

Method 2: using the differentiation rule yields

22 )1(

2

)1(

1

1

1

1

1

zz

z

zz

z

dz

d

dz

dw

.

(b) Since f'(z) exists everywhere except at z=1, f(z) is analytic except at z = 1, which is a "singular point" called "pole".

Example 3-6: Prove that (sin z)' = cos z.

(Method 1) zz

zz

z

zzzzz

z

zzzz

dz

d

zzzcos

sincoslim

sinsincoscossinlim

sin)sin(limsin

000

.

(Method 2) Note that sin z = sin (x+jy) = sin x cosh y + jcos x sinh y, then

xyyx vyxuvyxu sinhsin;coshcos , and

zjyxyxjyxjvuzf xx cos)cos(sinhsincoshcos)(' .

Example 3-7: Find f'(z) when w=f(z) = z tan-1(ln z).

Let s = ln z, then z = es and w=f(z) = estan-1s, thus,

2

1

2

1

)(ln1

1)(lntan

1

1tan)('

zz

zs

ese

dz

ds

ds

dw

dz

dwzf

ss

.

Example 3-8: In polar coordinates, C-R equations are given by rr vur

vr

u 1

;1

.

Now, consider )sin(cos1111 jrerrez jj ;

22

sin1;

cos1

rvu

rrv

ru rr

Using rr

jjvuezf )(' yields

22

2

22

1sincos)('

zr

e

rj

rezf

jj

.

Note also that z = 0 is a simple pole.

Example 3-9: Consider w = sin-1z. Since z = sin w, dz = cos w dw, and dw/dz = 1/cos w.

Note that 2122 1)(sinsin1sin1cos zzww , thus 21 1/1)'(sin zz

.

19

Chapter 4 Complex Integration

20

21

22

23

Proof of Cauchy-Goursat theorem

Example 4-1: Evaluate C dzz from z=0 to z=4+j2 along the curve C given by (a) z = t2+jt, (b) the line from z=0 to z=j2 and

then the line from z=j2 to z=4+j2.

24

Example 4-2: Let f(z)=y-x-j3x2, evaluate C dzzf )( from z=0 to z=1+j along the curve C given by (a) the line from z=0 to

z=j and then the line from z=j to z=1+j, (b) z = t+jt

(a) Ca = Ca1 (0->j) +Ca2(j->1+j); On Ca1 : x=0, dx = 0, dz = jdy, y : 0-> 1, 2

)(

1

0

jjdyydzzf

C ;

On Ca2 : y=1, dy = 0, dz = dx, x : 0-> 1, jdxxjxdzzfC

2

11)31()(

1

0

2;

22

1

2

1

2)(

jj

jdzzf

C

(b) On Cb, z = t+jt -> dz = (1+j)dt, t: 0->1, x=y=t, jdtjtjdzzfC

1)1(3)(

1

0

2

Example 4-3: Let f(z)=z2, evaluate C dzzf )( from z=-j to z=j along the curve C given by (a) half circle of radius 1, (b) the

line from z=-j to z=1-j, then from z=1-j to z=1+j and from z=1+j to z=j.

Example 4-4: Evaluate C az

dzwhere C is any closed curve C and z = a is (a) outside C, (b) inside C.

(a) Since f(z) = (z-a)-1 is analytic everywhere except z = a, f(z) is analytic inside and on Ca. Hence, the integral becomes 0.

(b) Deform the contour Cb to be a small circle centered at z = a and radius , then let z-a = ej with 0≤≤2,

22

0j

e

dej

az

dzj

j

C

Example 4-5: Evaluate

,...4,3,2, n

az

dz

C nwhere C is any closed curve C enclosing z=a.

Using the same approach used in example 4-4 yields

2

0

)1(12

00dej

e

dej

az

dz njn

jnn

j

C n

Example 4-6: Show that for C: z=3ej (0 ),

8

33

12

C dzz

z.

25

Chapter 5 Cauchy's Integral Formulas

Proof

26

For proof of (5.2), see Churchill’s Complex Variables and Applications, Chapter 4, Section 51.

Example 5-1: Let C: |z|=3, evaluate

(a) ,23

cossin2

22

Cdz

zz

zz (b)

C

z

dzz

e4

2

1.

(a) Since z2-3z+2 = (z-2)(z-1), (z2-3z+2)-1 = (z-2)-1 – (z-1)-1. Then use (5.1) with f(z) = sin z2+ cos z2:

4))1(1(21

cossin

2

cossin

23

cossin 2222

2

22

jjdzz

zzdz

z

zzdz

zz

zz

CCC

(b) Use (5.2) with n = 3, a = -1, f(z) = e2z, f’(z) = 2e2z, f’’(z) = 4e2z, f(3)(z) = 8e2z

22

4

2

3

88

!3

2

1

e

je

jdz

z

e

C

z

Example 5-2: Use Cauchy's integral formula to show that for C: |z-a| = r (r is a constant),

C nn

njdz

az 10

121

Use (5.1), (5.2) with f(z) = 1, then

C

jdzaz

21

AND

C nndz

az1,0

1(since f(n-1)(z) = 0, n>1)

Example 5-3: Suppose f(z) is given in terms of the following power series:

0

2

210 )()()()(n

n

n

n

n azaazaazaazaazf LL

Show that !

)()(

n

afa

n

n .

27

Chapter 6 Infinite Series

28

29

30

Proof of Taylor's Theorem

31

Proof of Laurent's Theorem

32

33

Convergence of power series -> Cauchy-Hadamard Formula

Theorem (Radius of Convergence) Consider a power series given by

0n

n

n za . Suppose that the sequence |an+1/an|,

n=1,2,… converges with limit L*. If L*=0, then, R=∞, which means power series converges for all z. If L*≠0, then

1

lim*

1

n

n

n a

a

LR .

EX Consider

0

23

)!(

)!2(

n

njz

n

n,

4

1

)22)(12(

)1(lim

)!22(

)!1(

)!(

)!2(lim

)!1(

)!22()!(

)!2(

lim22

2

2

2

nn

n

n

n

n

n

n

nn

n

Rnnn

.

Thus, region of convergence (ROC) : |z-j3|<1/4 (centered at z = j3).

EX Consider

0

!

n

n

nz

n

n,

enn

n

n

n

nn

n

n

nR

n

nn

n

nn

n

n

n

nn

11lim

)1(lim

)1(

1

1lim

)!1(

)1(!lim

11

.

Thus, region of convergence : |z| < e (centered at the origin).

Exercise Find the radius of convergence of

0

2

)!2(

)2(

n

n

n

z(=cosh z).

Example 6-1: Let 32

2j

nzn , check the convergence.

3lim jznn

; Need 0220 ,2

32

3;,,0 nn

jn

jnnzz n

00 ,

2nnn

34

Example 6-2: Find Taylor's series of the following functions about the origin.

(a) z

zf

1

1)( (b)

21

1)(

zzf

(c)

zzf

3

1)( (d)

21

1)(

zzf

(a)

,...1

6)(;

1

2)('';

1

1)('

4

)3(

32z

zfz

zfz

zf

Thus, f(n)(0) = n!, and

0

21)(n

nzzzzf L .

Example 6-3: Find a series representation of e z, cos z, sin z (about z=0)

Let f(z) = ez, then f(n)(z) = ez. Thus, f(n)(0) = 1, and

0

2

!21

n

nz

n

zzze L .

Now, using cos z = (ejz + e-jz)/2, then

0

22

00 !

)1(

21

!!2

1

2cos

n

nn

n

n

n

njzjz

n

zz

n

jz

n

jzeez L .

Likewise, using sin z = (ejz – e-jz)/j2,

0

123

00 !

)1(

6!!2

1

2sin

n

nn

n

n

n

njzjz

n

zzz

n

jz

n

jz

jj

eez L .

Example 6-4: Find a series representation of f(z) = sinh-1z (about z=0)

Use 21

1)('

zzf

, then find Taylor series of

u1

1and find indefinite integral of the Taylor series.

Example 6-5: Find Laurent's series of the following functions.

(a) z

ezf

z

)( about z=0 (b) 3

1)(

z

ezf

z

about z=1 (c) zz

zf

2

1)( about z=0 and z=1

(d) 21

1)(

zzf

about z=j (e)

22 3

1)(

zzzf

about z=0, z=-3

(a) Since

0 !n

nz

n

ze ,

{ 44 344 21L

Analytic

2

Principal

0

1

621

1

!)(

zz

zn

z

z

ezf

n

nz

(b) Let u = z-1, then

00

1

!

1

! n

n

n

nuz

n

ze

n

ueee ,

4444 34444 21L

4444 34444 21Analytic

2

Principal

230

3

3 !5

)1(

!4

1

6

1

)1(2

1

)1(

1

)1(

1

!

)1(

)1()(

zz

zzze

n

ze

z

ezf

n

nz

.

Example 6-6: Find Laurent's series of the following functions. (Essential singularity)

(a) 2

1cos)1()(

zzzf about z=-2 (b)

zezzf

/12)( about z=0

35

Chapter 7 Residue Theorem

36

Alternative formula for residue calculations at simple poles

Suppose z = a is a simple pole of f(z) = p(z)/q(z), where q(z) = (z-a)r(z), then

)(

)(

)(

)(

)(

)()()()()(Res

ar

ap

zr

zp

zq

zpazzfazzf

azaz

azaz

But q’(z) = r(z) + (z-a)r’(z) and q’(a) = r(a), thus

)('

)(

)('

)()()()(Res

aq

ap

zq

zpzfazzf

az

azaz

Example 7-1: Evaluate the residue at the poles of the following functions:

(a) z

ezf

z

)( (b) 3

1)(

z

ezf

z

(c) zz

zf

2

1)(

(d) 21

1)(

zzf

(e)

22 3

1)(

zzzf

(Compare results with example 6-5!)

Example 7-2: Evaluate the contour integral C dzzf )( when

(a) z

ezf

z

)( , C: unit circle about the origin (b) 3

1)(

z

ezf

z

, C: unit circle about z=1

(c) zz

zf

2

1)( , C: circle of radius 2 about the origin (d)

21

1)(

zzf

, C: unit circle about z=j.

(e) 22 3

1)(

zzzf

, C: unit circle about z = -3

37

Evaluation of Improper Real Integrals

(i) Integral of the form

)(

)()(;)(

xq

xpxfdxxf , where both p(x) and q(x) are polynomial functions with the

degree of q(x) greater than that of p(x). Also, q(x) does not have zeroes on the real axis.

Can be found as

R

RRdxxf )(lim . If the limit exists,

dxxfdxxf

R

RR)(P.V.)(lim ,

where P.V. denotes “Cauchy’s Principal Value” of the integral. This

can be evaluated using Residue theorem as

0)(lim if )(lim

)( Res2)()()(lim)(

R

kR

CR

R

RR

kzzCC

R

RR

dzzfdxxf

zfjdzzfdzzfdzzfdxxf

Note that only Residues of poles in the top (upper) half plane contribute to this integral as shown in the figure.

Example 7-3: Evaluate the following integrals:

(a)

21 x

dx (b)

0 24

2

45

12dx

xx

x

(a) Since

jz

C jz zj

zj

z

dz

2

12

1

1Res2

1 22, and 0

1||1lim

22

RCR R

R

z

dz

R

,

21 x

dx

(b) Since f(x) is even,

dxxfdxxf )(

2

1)(

0.

Also, z4+5z2+4 = (z2+1)(z2+4) = (z-j)(z+j)(z-j2)(z+j2). Thus

24

3

22

)1)(2(

12

)4)((

122)( Res )( Res2

45

12

45

12

2

2

2

2

2

224

2

24

2

jjj

zjz

z

zjz

zjzfzfjdz

zz

z

xx

x

jzjzjzjzC

Note also that 04||5||

)1||2(

45

12lim

24

2

24

2

RCR RR

RRdz

zz

z

R

.

Therefore, 445

12

0 24

2

dxxx

x.

(ii) Integral of the form

)(

)()(;

sin

cos)(

xq

xpxfdx

ax

axxf ,where both p(x) and q(x) are rational functions with

the degree of q(x) greater than that of p(x). Also, q(x) does not have zeroes on the real axis.

Since

R

R

jaxR

R

R

Rdxexfaxdxxfjaxdxxf )(sin)(cos)( and ejaz=eja(x+jy)≤e-ay is bounded in the upper half

plane y≥0, the approach mentioned above can be used. (See more details in Churchill’s book)

Example 7-4: Evaluate the following integrals:

(a)

221

3cos

x

xdx (b)

dx

xx

xx

22

sin2

(a)

33

3

3

2

3

2

3

22

3

22

3

2223

221

Res21

ejej

jz

e

jz

ejj

jz

e

dz

dj

z

ej

z

dze

jz

zjzj

jz

zjzj

C jz

zj

.

38

Thus,

C

zj

edzezf

x

xdx3

3

22

2)(Re

1

3cos .

(b) jj

jz

jzjz

jzC

jz

ejejj

ejj

jz

zej

zz

zej

zz

dzze

)1(

11

)1(2

12

22Res2

22

1

1

21

2

.

Thus, 1cos1sin22

Im22

sin22

ezz

dzzedx

xx

xx

C

jz .

(iii) Definite Integrals involving Sines and Cosines

39

Inverse Laplace Transform

which is called a “Bromwich Integral”, where P.V. denotes the Cauchy’s principal

value.

40

Jordan’s inequality : RdeR /

0

sin

41

Examples

(a) F(s) = 1/s ; 0)(1/Res)(0

ttuzetfzt

zQ .

(b) F(s) = 1/(s+1) ; tzt

zezetf

)1/(Res)(

1(s-shift)

(c) F(s) = 12/(s3+8), z3+8 = (z+2)(z2-2z+4), thus, poles at 31,2,31 jj

23

12

3

12

8

12Res)(Res

223

tz

k

zzk

k

zt

zz

ztzt

zz

zt

zz

k

kk

kk

ez

z

z

z

e

z

e

z

ezFe

.

tteetfj

ezFeezFetttjzt

jz

tzt

z3sin33cos)(;

2

31)(Res;)(Res

2)31(

31

2

2

m

(d) F(s) = e-s/s ; )1()(2

1

2

1

2

1)(

1

)1(

tuudzz

e

jdz

z

e

jdz

z

ee

jtf

C

z

tC

tz

C

zzt

(delay 1)

(e) F(s) = e-2s[(s+1)2+25]-1

)2(5

)2(5sin)(

5

5sin

225

5151515125)1(Res

25)1(Res

25)1(2

1

25)1(2

1

25)1(2

1

25)1(

)2(55

)51()51(

251

251

2

2

2

2

2

2

2

21

tute

ue

j

e

j

ee

jj

e

jj

e

z

e

z

e

dzz

e

jdz

z

ee

jds

s

ee

js

e

tjj

jjz

jz

z

jz

C C

ztzztj

j

ssts-

LLLL

Partial Fraction Expansion

(a) Distinct Roots (Simple poles)

Consider f(z) = P(z)/Q(z) where Q(z) is a polynomial of degree n given by anzn+ an-1z

n-1 +…+a0 having distinct

roots 1, 2, … n. Want to express f(z) as follows:

n

k k

k

n

n

n

k

kn

z

c

z

c

z

c

z

c

za

zP

zQ

zPzf

12

2

1

1

1

)(

)(

)()(

L ; ck : constant

Evaluating contour integral 1

)(2

1

Cdzzf

j where the contour C1 encloses only one pole, 1, of f(z) yields

1)(Res)(2

1

11

czfdzzfj zC

.

It follows that )(Res zfckz

k

.

Example Consider

21

3

121

3

13

1

29103

1)( 321

2

23

2

z

c

z

c

z

c

zzz

z

zzz

zzf

3

1

9/30

9/10

)3/5)(3/2(3

19/1

)2)(1(3

1)(Res

3/1

2

3/11

zz zz

zzfc

12

2

)1)(3/2(3

11

)2)(3/1(3

1)(Res

1

2

12

zz zz

zzfc

15

5

)1)(3/5(3

14

)1)(3/1(3

1)(Res

2

2

23

z

z zz

zzfc

42

(b) Repeated Roots (Higher order poles)

Consider f(z) = P(z)/Q(z) where Q(z) = (z-)mR(z), i.e., is a pole of order m. Want to express f(z) as

rest The

)(

)(

)(

)()(

2

21

m

m

mz

d

z

d

z

d

zRz

zP

zQ

zPzf

L ,

where “the rest” represents the group of other terms associated with other roots of Q(z) (poles of f(z)).

Evaluating contour integral C

dzzfj

)(2

1where the contour C encloses only one pole, , of f(z) yields

11

1

)()!1(

1)(Res)(

2

1dzfz

dz

d

mzfdzzf

jz

m

m

m

zC

.

Likewise, taking

C

dzzfzj

)(2

1 yields

22

2

)()!2(

1)(

2

1dzfz

dz

d

mdzzfz

jz

m

m

m

C

Following the same approach, one obtains

z

m

km

km

k zfzdz

d

kmd )(

)!(

1

Example Consider 1)1(

1)( 1

3

3

2

21

3

2

z

c

z

d

z

d

z

d

zz

zzf

11

10

1

1

0

2

3

z

z

zd ; 1

1

10

)1(

1

1

2

1

1

)!23(

1

0

2

2

0

2

2

zzz

z

z

z

z

z

dz

dd

21

2

1

2

2

1

)1(

)1(2

)1(

2

)1(

2

1

2

2

1

1

1

)!13(

1)(Res

0

3

2

22

0

2

2

2

01

zzz z

z

z

z

z

z

zz

z

dz

dzfd

21

111)(Res

1

3

2

11

z

z z

zzfc

Exercise

1.1 Represent the following complex numbers in polar form:

(a) 2,2 jj (b) 86 j (c) j

j

1

1 (d)

3/22

223

j

j

1.2 Represent the followings in x+jy form:

(a) )3

sin3

(cos4

j (b) cos(-1.8)+jsin(1.8)

1.3 Find the roots of (a) z4+j=0 (b) z8-1=0 (c) z6+8=0 (d) z8-9=0

2.1 Regarding the following functions:

(A) z-1 (B) (z+1)-1 (C) (z-1)(z+1)-1

(D) (z+1)(z-1)-1 (E) (2z-1)(z+1)-1

(i) Sketch the images of the following lines in w-plane

(a) x = 1 (b) x = 1/2 (c) x = 3 (d) y = 1 (e) y = 1/2 (f) y = 3

(ii) Sketch the images of the following lines in z-plane

(a) u = -1 (b) u = 1/2 (c) u = 3 (d) v = -1 (e) v = 1/2 (f) v = 3

2.2 Show that

z

zz

1

1ln

2

1tanh 1

.

3.1 Are the following functions analytic? If so, state the region.

43

(a) f(z)=z3 (b) 2

)( jzzf (c) zzzf )( (d) f(z)=z+1/z

3.2 Find the derivative of (a) sinh z (b) cosh z (c) 1/z (d) ze (e)

2ze (f) (z-1)(z+1)-1

from the definition of and by using f'(z) = ux + jvx.

3.3 Let f(z) = u(r,) + jv(r,), z = rej show that the Cauchy-Riemann equations are given by

rr vur

vr

u 1

;1

. Then show that rr

jjvuezf

)(' and use it to find (ln z)'.

4.1 Find

jz

zdzz

1

3along

(a) z = ej, 0 . (b) C1: (1,0)->(0,0) and C2: (0,0)->(0,j) (c) C3: (1,0)->(1,j) and C4: (1,j)->(0,j)

4.2 Find

jz

zdzz

1

0Re along

(a) x = y (b) C1: (0,0)->(1,0) and C2: (1,0)->(1,j) (c) C3: (0,0)->(0,j) and C4: (0,j)->(1,j)

4.3 Evaluate C z

dz

42

, where C is the square contour of side 2 centered at the origin without using Cauchy-Goursat

theorem.

4.4 Use Cauchy-Goursat theorem and Cauchy’s integral formula to evaluate C zz

dz

22

, where C is given by

(a) |z|=4 (b) |z-3|=1 (c) |z+2| = 1 (d) |z+1|=5 (e) |z-3|=4 (f) |z+j|=2

4.5 Let C be the square contour of side 4 centered at the origin, evaluate

(a)

C

z

jz

dze

2/ (b) C z

zdz

12 (c) C z

zdz4

cosh (d) C zz

zdz22

)1)(1(

sinh

using Cauchy’s integral formula.

5.1 Find the center and radius of convergence of

(a)

0

4n

njz (b)

0

2!n

nn

jzn

n (c)

0

2

!2

2

n

n

n

z

5.2 Find the first 4 terms of Taylor's series of

(a) Ln(1+z), z=0 (b) cosh z, z = 1 (c) 1/z, z = 1 (d) sin(z2), z=0 (e) ez, z = 1

5.3 Find Laurent's series of

(a) 3

2

)1( z

e z

; z = 1 (b) 2

1sin)3(

zz ; z = -2 (c)

2)1(

cosh

z

z; z = 1 (d)

2

2sin

z

z; z = 0

6.1 Find residues at all poles of

(a) zz

z

9

9153

(b)

6116

42523

2

zzz

zz (c)

99

93523

2

zzz

zz(d)

1

3223

2

zzz

zz(e)

485

3223

2

zzz

zz

6.2 Find Laurent's series of zz

z

9

9153

, then find

C

dzzz

z

9

9153

, along (a) |z|=1 (b) |z-3|=2

6.3 Find residues of functions in 5.3 (a),(c),(d), then evaluate C dzzf )( , where C is given by |z| = 2.

6.4 Evaluate the contour integral of functions in 6.1 (b)-(e) along

(a) |z|=4 (b) |z-3|=1/2 (c) |z+1| = 1 (d) |z+1|=5 (e) |z-4|=4

6.5 Find

(a)

0 41 x

dx (b)

0 221 x

dx (c)

0 6

2

1 x

dxx(d)

1

sin2 xx

xdx(e)

0 24 34

cos

xx

xdx (f)

0 4 16

2sin

x

xdxx

(g)

2

0 cos2

d(h)

2

0 sin45

d(i)

2sin1

d(j)

0 2cos4

d

6.6 Find the inverse Laplace transforms of

(a) bs

eas

s

22(b)

22)(

as

as (c)

52

22 ss

s (d)

4

24

3

s

s (e)

22

sincos

as

babs

44

(f) 222

2

as

as

(g) 222

22

as

as

(h) 222

32

as

a

(i)

22

cossin

as

babs

(j) 222

22

as

as

using the Bromwich integral. Also verify the results using Laplace transform table.

6.7 Find the partial fraction of

(a) xx

x

9

9153

(b)

6116

42523

2

xxx

xx (c)

xxx

xx

44

93523

2

(d) 1

3223

2

xxx

xx(e)

485

3223

2

xxx

xx