discretization and solution of convection -diffusion problemspft3/days/lecture1.pdfconvection...

47
Discretization Discretization and Solution of and Solution of Convection Convection - - Diffusion Problems Diffusion Problems Howard Elman University of Maryland

Upload: others

Post on 25-Jan-2021

27 views

Category:

Documents


1 download

TRANSCRIPT

  • DiscretizationDiscretizationand Solution of and Solution of ConvectionConvection--Diffusion ProblemsDiffusion Problems

    Howard ElmanUniversity of Maryland

  • 1

    Overview

    1. The convection-diffusion equationIntroduction and examples

    2. Discretization strategiesFinite element methodsInadequacy of Galerkin methodsStabilization: streamline diffusion methods

    3. Iterative solution algorithmsKrylov subspace methodsSplitting methodsMultigrid

  • 2

    The Convection-Diffusion Equation

    3,2,1 ,in 2 =⊂Ω=∇⋅+∇− dfuwu dRε

    Boundary conditions:

    NN

    DD

    gnu

    gu

    Ω∂=∂∂

    Ω∂=

    on

    on

    D

    N

    Ω∂Ω∂Ω

    Inflow boundary: ∂Ω+ = {x∈∂Ω | w· n > 0}

    Characteristic boundary:∂Ω0 = {x∈∂Ω | w· n = 0}

    Outflow boundary:∂Ω- = {x∈∂Ω | w· n < 0}

  • 3

    The Convection-Diffusion Equationfuwu =∇⋅+∇− 2ε

    Challenging / interesting case: ε 0

    Reduced problem: w·∇ u = f , hyperbolic

    Streamlines: parameterized curves c(s) in Ω s.t. c(s)has tangent vector w(c(s)) on c

    fscudsdwu ==⋅∇⇒ ))(()(

    Solutionu to reduced problem = solution to ODE

    If u(s0)∈ inflow boundary ∂Ω+, and u(s1)∈∂Ω, say outflow ∂Ω− ,then boundary values are determined by ODE

  • 4

    Consequence 2 fuwu =∇⋅+∇−ε

    For small ε, solution to convection-diffusion equation often hasboundary layers, steep gradients near parts of ∂Ω.

    Αlso: discontinuities at inflow propagate into Ω along streamlines

    Simple (1D) example of first phenomenon:

    1near except 11

    )(

    /1

    /)1)(/1(

    =≈

    −−−

    =−

    −−

    xxeee

    xxux

    εε

    Solution

    0)1( ,0)0(

    ,)1,0(on 1'''

    ===+−

    uu

    uuε

    Solution to reduced equation

  • 5

    Additional Consequence

    These layers (steep gradients) are difficultto resolve with discretization

  • 6

    Conventions of Notation

    fLuwWLu

    =∇⋅

    +∇− εε

    2

    ***2

    In normalized variables:

    ,εWLP ≡ Peclet number, characterizes relative contributions

    of convection and diffusion

    L = characteristic length scale in boundarye.g. length of inflow boundary

    = x/L in normalized domain

    W = normalization for velocity (wind) w,e.g. w = W w*, where ||w*||=1

  • 7

    Reference Problems

    −= −−−

    ε

    ε

    /2

    /)1(

    11),(

    eexyxu

    y

    2 fuwu =∇⋅+∇−ε

    1. w=(0,1)Dirichlet b.c.analytic solution

    2. w=(0,(1+(x+1)2/4)Neumann b.c. at outflowcharacteristic boundary layers

  • 8

    Reference Problems 2 fuwu =∇⋅+∇−ε

    3. w: 30o left of verticalinterior layer from

    discontinuous b.c.downstream boundary layer

    4. w=recirculating(2y(1-x2),-2x(1-y2)characteristic boundary layersdiscontinuous b.c.

  • 9

    Weak Formulation 2 fuwu =∇⋅+∇−ε

    }on 0 | {)(

    }on | { )(

    )(

    ),( allfor s.t. )( Find

    1

    1

    11

    0

    0

    DE

    DDE

    N

    EE

    vvH

    gvvH

    vgfvvuwvu

    HvHu

    N

    Ω∂==Ω

    Ω∂==Ω

    +=∇⋅+∇⋅∇

    Ω∈Ω∈

    ∫∫∫Ω∂ΩΩ

    ε

    Shorthand notation: a(u,v) =l(v) for all v

    Can show:

    a(u,u) ≥ ε ||∇u||2 = ε∫Ω∇ u ·∇ u

    a(u,v) ≤ (ε+||w||∞ L) ||∇u|| ||∇v||

    l(v) ≤ C ||∇v||

    Lax-Milgram lemmaexistence and uniquenessof solution

  • 10

    Approximation by Finite Elements

    a(uh,vh) =l(vh) for all vh

    Typically: finite element spaces are defined by low-orderbasis functions, e.g. — linear or quadratic functions on triangles— bilinear or biquadratic functions on quadrilaterals

    ∫∫∫∫ Ω∂ΩΩΩ +=∇⋅+∇⋅∇∈∈

    ⊂⊂

    NNhhhhhh

    hh

    hEh

    Eh

    EhE

    gvvfvuwuu

    SvSu

    HSHS

    )(

    , allfor such that find

    , , ldimensiona finiteGiven

    0

    10

    1

    0

    ε

  • 11

    What happens in such cases?

    Problem 1, accurate

    Problem 2, accurate

    Problem 1, inaccurate

    Problem 2, inaccurate

  • 12

    Explanations

    small is if large ,1 1

    ,)(inf)(

    w

    h

    εε

    εPWL

    vuuu hSvw

    h hE

    +=+=Γ

    −∇Γ≤−∇∈

    1. Error analysis: discrete solution is quasi-optimal:

    2. Mesh Peclet number: 2

    2 εWh

    LPhPh ==

    If Ph>1, then — there are oscillations in the discrete solution— these become pronounced if mesh does not resolve layers— oscillations propagate into regions where solution is smooth— problem is most severe for exponential boundary layers

  • 13

    Revisit two examples

    Problem 1, exponential layer, width ~ ε

    Problem 2, characteristic layer, width ~ ε1/2

  • 14

    Fix: The Streamline Diffusion Method

    Petrov-Galerkin method: change the test functions

    Galerkin: a(uh,vh) =l(vh) for all vh

    Petrov-Galerkin: a(uh,vh+δ w·∇ vh) =l(vh+δ w·∇ vh) for all vhδ is a parameter

    Result: asd(uh,vh) =lsd(vh)

    )()()(

    )()(

    ))(()(),(

    2

    ∫∫∫

    ∑ ∫∫∫∫

    Ω∂ΩΩ

    ΩΩΩ

    ∇⋅++∇⋅+=

    ∇⋅∇−

    ∇⋅∇⋅+∇⋅+∇⋅∇=

    N

    k

    Nhhhhh

    hk h

    hhhhhhhhsd

    gvwvvwfvfvl

    vwu

    vwuwvuwuuvua

    δδ

    δε

    δε

    Streamline diffusion term

    0 for linear/bilinear

  • 15

    The Streamline Diffusion Method Explained

    Augment finite element space:

    Bh: bubble functions, with support local to element

    hBSS += hhˆ

    We could pose the problem on the augmented space:find uh in s.t. a(uh,vh) =l(vh) for all vh in

    Then: decouple unknowns associated with bubble functionsfrom system new problem on original grid

    Principle: augmented space places basis functions inlayers not resolved by the grid

    hŜ

    hŜ hŜ

  • 16

    The Streamline Diffusion Method Explained

    Under appropriate assumptions: this new problem is

    )()(

    ))((

    )(),(

    ∑ ∫∫

    ∑ ∫

    ∫∫

    ∇⋅+=

    ∇⋅∇⋅+

    ∇⋅+∇⋅∇=

    ∆Ω

    ∆ ∆

    ΩΩ

    k hkhh

    hhk

    hhhhhhsd

    vwfvfvl

    vwuw

    vuwuuvua

    k

    k k

    δ

    δ

    ε

    asd(uh,vh) =lsd(vh)

    k determined from elimination of bubble functionsStreamline diffusion

  • 17

    Compare Galerkin and Streamline Diffusion

    Middle: bilinear elements, Galerkin,32× 32 grid

    Top: accurate solution, ε=1/200

    Bottom: bilinear elements, streamline diffusion,32× 32 grid

  • 18

    Error Bounds

    )(inf)(h

    hSvw

    h vuuu hE

    −∇Γ≤−∇∈ε

    For Galerkin: as noted earlier, quasi-optimality:

    More careful analysis: for linear/bilinear elements,

    )( 2uDChuu h ≤−∇ Large in exponential boundary layers for small ε

    For streamline diffusion: use norm

    ( ) 1/222 vwvvsd

    ∇⋅+∇≡ δε

    22/3 uDChuusdh

    ≤−Then

  • 19

    These bounds do not tell the whole story

    4.98e-74.98e-72.392.3964×64

    (1)

    1.11e-55.30e-23.233.8132×32

    (2)

    1.64e-51.484.014.9116×16

    (4)

    8.16e-73.254.345.628×8(8)

    Str.Diff.Ω∗

    GalerkinΩ*

    Str.Diff.Ω

    GalerkinΩ

    Grid (Ph )

    For one example (Problem 1, ε=1/64), compareerrors ||∇(u-uh)|| on Ω and Ω* = (-1,1)×(-1,3/4) (to exclude boundary layer)

  • 20

    Choice of parameter δδδδ

    ∑ ∫

    ∫∫

    ∆ ∆

    ΩΩ

    ∇⋅∇⋅+

    ∇⋅+∇⋅∇=

    k khhk

    hhhhhhsd

    vwuw

    vuwuuvua

    ))((

    )(),(

    δ

    εMade element-wise:

    ( )

    >−=

    1 if 0

    1 if /11||2

    kh

    kh

    kh

    k

    k

    k

    P

    PPw

  • 21

    Matrix Properties

    nila

    u

    SS

    jjij

    j jjh

    hE

    nnnj

    hnjj

    ,...,2,1 ),(u),(

    such that }{u find : becomes

    problem , u isfunction element Finite

    for }by{ extended ,for }{ basis aGiven

    j

    j

    101

    ==

    =

    ∑∂+

    +=

    ϕϕϕ

    ϕϕϕ

    or asd

    Leads to matrix equation Fu=f,

    F=ε A + N (+ S)

  • 22

    Matrix Properties

    Matrix equation Fu=f, F=ε A + N (+ S)

    A=[aij], aij=∫Ω ∇φj·∇φi, , discrete Laplacian, symmetric positive-definite

    N=[nij], nij=∫Ω (w·∇φj)φi , discrete convection operator,skew-symmetric (N=-NT)

    S=[sij], sij=∫Ω (w·∇φj)(w·∇φi) , discrete streamlineupwinding operator, positive semi-definite

  • 23

    End of Part I

    Next: how to solve Fu=f ?

  • 24

    Iterative Solution Algorithms: Krylov Subspace Methods

    System Fu=f

    • F is a nonsymmetric matrix, so an appropriate Krylov subspacemethod is needed

    • Examples:• GMRES• GMRES(k) restarted• BiCGSTAB• BiCGSTAB(l)

    • Our choices: • Full GMRES for optimal algorithm, or • BiCGSTAB(2) for suboptimal

  • 25

    Properties of Krylov Subspace Methods

    Drawback of GMRES: work & storage requirements at step kare proportional to kN

    BiCGSTAB: Fixed cost per step, independent of k

    Drawback: No convergence analysis

    Variant: BiCGSTAB(l), more robust for complex eigenvalues,somewhat higher cost per step (l=2), but still fixed

  • 26

    Convergence of GMRES

    GMRES: Starting with u0, with residual r0=f-Fu0, computesuk ∈ span{ r0, Fr0, …,Fk-1r0}

    for which rk = f-Fuk satisfies

    ||rk|| = minpk(0)=1 || pk(F)r0||.

    Consequence:

    Theorem: For diagonalizable F=VΛV-1, ||rk|| ≤ ||V|| ||V-1|| minpk(0)=1 maxλ∈σ(F)|pk(λ)| ||r0||.(||rk||/||r0||)1/k ≤ (||V|| ||V-1||)1/k (minpk(0)=1}maxλ∈σ(F)|pk(λ)|)

    1/k

    ρ̂Loosely speaking: residual is reduced by factor of at each step

    Want eigenvalues to lie in compact setρ̂

  • 27

    Convergence of GMRES

    )(11

    ˆ 12

    22

    FF RQad

    daa −=≤−+−+≈ ρρ

    0 1

    .

    .1+d

    1+a

    Size of convergence factor ρ̂

  • 28

    Key for Fast Convergence: PreconditioningSplitting operators

    SeekQF≈ F such that• the approximation is good, and• it is inexpensive to apply the action of Q-1 to a vector

    Splitting: F=QF-RF stationary iteration

    Error ek = u-uk satisfies

    )(11 fuRQu kFFk +=−

    +

    ( ) )()(/)(

    )(

    ))(()(

    1/11/1

    0

    01

    01

    111

    FQIFQIee

    eFQIe

    eFQIe

    uuFQIuuRQuu

    F

    kkF

    k

    k

    kFk

    kFk

    kFkFFk

    −−

    −−+

    −≈−≤

    −≤

    −=

    ⇒−−=−=−

    ρ

  • 29

    Preconditioning / Splitting operators

    Thus: want to be as small as possibleEquivalently: eigenvalues of

    = eigenvalues of

    )( 1FQI F−−ρ

    FQF1−

    1−FFQ

    as close to 1 as possible

    0 1

    )( 1 FF RQ−ρ

    This is similar to the requirement for rapid convergence of GMRES

    Solve uQufuFQfQFuQ FFFF ˆ ,ˆor 1111 −−−− ===

  • 30

    Examples of splitting operators

    =FQ lower triangle of AGauss-Seidel=FQ block lower triangle of ALine Gauss-Seidel

    FFF ULQ =Symmetric versionsIncomplete LU factorization

    FQLUF =≈

    Comments:

    • All depend on ordering of underlying grid

    • Symmetric versions (symmetric GS, ILU) take some account of underlying flow

    • Line/block versions can handle irregular grids

  • 31

    Convergence Analysis (Parter & Steuerwalt)

    Seek maximal eigenvalue of uuRQ FF λ=−1 or uRuQ FF = λ

    Subtract uRF λ from both sides

    uRhuRuRQ FFFFh

    )()( 2211

    =

    =− −−λ

    λλ

    λ

    uRhFu Fh )(2µ=

    Suggests relation to uu µ= LL uwuu ∇⋅+∇−= 2εR to be determined

    R

    For many examples of splittings:)( ),,(),(2 xrrvurvuRh hhF =≈operator"tion multiplicaweak " a is 2 FRh

    and (2) of eigenvalue minimal )0( =→ µµh

    (1)

    (2)

    (defines R)

  • 32

    are known:

    +

    +=⇒

    +

    ++=

    =

    222)0(

    22222

    2/2/),(

    222

    22)(

    )sin()sin( 21

    εεπεµ

    εεπεµ

    ππ

    yx

    yxjk

    ywxwkj

    wwr

    wwkj

    r

    ykexjeu

    Consequence: 2)0(1 1)( hRQ FF µρ −=−

    For model problems:(i) r is constant (will demonstrate in a moment)(ii) on square domains, eigenvalues, eigenvectors of

    uu µ= L R

  • To find r: consider centered finite differences

    +−2hwxε

    −−2hwxε

    −−

    2hwyε

    +−

    2hwyε

    ε4

    For horizontal line Jacobi splitting, = block tridiagonal:FQ

    )(222

    ][ 21,1, hOuuhw

    uhw

    uR ijjiy

    jiy

    ijF +=

    ++

    −= −+ εεε

    ,2ε=⇒ r

    Key point: convection terms lead to smaller convergence factors

    2

    222

    222

    211 h

    ww yx

    +

    +−= εεπρ

  • 34

    Comments / Extensions

    • Similar results obtained from matrix/Fourier analysis

    • Young:

    • “Multi-line” (k-line) splittings r =

    • Can extend to other splittings via matrix comparison theorems

    (Varga-Woźnicki):

    k/2ε

    2operator) Jacobi (lineoperator) Seidel-Gauss (line ρρ =

    )()( 1-112

    -12

    11

    12 RQRQQQ ρρ ≤⇒≥

    −−

  • 35

    x x x x x x

    x x x x x x

    x x x x x x

    x x x x x x

    x x x x x x

    x x x x x x

    6

    5

    4

    3

    2

    1

    Limitations of analysis above: It does not discriminateamong different orderings

    Natural ordering of gridLeft-to-right, bottom-to-topPlus resulting matrix structure:

    Horizontal line red-black Ordering and matrix structure:

    x x x x x x

    x x x x x x

    x x x x x x

    x x x x x x

    x x x x x x

    x x x x x x

    6

    3

    5

    2

    4

    1

    Young theory: spectral radii (Jacobi or Gauss-Seidel) independent of ordering

    Performance of GS: depends on ordering

  • 36

    Example: Problem 1 60Pelements,linear piecewise ,)1,0( 22 ==+∇− fuu yε

    Four solution strategies: line Gauss-Seidel iteration withnatural line ordering, following the flow (bottom-to-top)natural line ordering, against the flow (top-to-bottom)red-black line ordering, with the flowred-black line ordering, against the flow

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    101

    102

    0 10 20 30 40 50 60

    *o

    *o*o

    k

    ||e^(

    k)||

    Naturalwith flow

    Red-black

    Naturalagainst flow

    With

    Against

  • 37

    Ordering effects

    ⇒=−= − 01 )( satisfies Error eRQeuue kFFkkk

    01

    01 )()( eRQeRQe kFF

    kFFk

    −− ≤=⇒

    “Classical” analysis only provides insight in asymptotic sense: 1

    )(lim

    /11

    =−

    ∞→ ρ

    kkFF

    k

    RQ

    E. & Chernesky:bounds for for 1D problems

    kFF RQ )(

    1−

  • 38

    Practical consequencesFor nonconstant flows: inherent latencies if sweeps don't follow flowPossible fixes:• flow-directed orderings (Bey & Wittum, Kellogg, Hackbusch, Xu)• iterations based on multi-directional sweeps2D version:

    Speeds convergence when recirculations are present

    )(

    )(

    )(

    )(

    4/31

    44/31k

    2/11

    32/13/4k

    4/11

    24/11/2k

    111/4k

    +−

    ++

    +−

    ++

    +−

    ++

    −+

    −+=

    −+=

    −+=

    −+=

    kk

    kk

    kk

    kk

    FufQuu

    FufQuu

    FufQuu

    FufQuu

    Contours of stream function

  • 39

    Summarizing with an experiment:

    Eigenvalues of line-GSpreconditioned operator,vertical flow, P=40, h=1/32

    Asymptotic convergence rateis faster with Krylov acceleration

    However: does not overcome latencies

  • 40

    MultigridFlow-following methods are effective for convection-dominatedproblems:

    But: ultimately, solvers discussed above are mesh dependent

    GMRES performance for Problem 4

  • 41

    Multigrid

    V-cycle multigrid:

    end

    iteration)next for (update

    h)(postsmoot )( steps, for

    update) and correction (prolong ˆ

    ˆˆ problem coarse tosystem multigridapply

    residual)(restrict )(r̂

    )(presmooth )( steps, for

    econvergenc until 0for

    Choose

    1

    11

    2

    T

    11

    0

    ii

    FiFi

    ii

    h

    i

    FiFi

    uu

    fQuFQIum

    ePuu

    reF

    FufP

    fQuFQIuk

    i

    u

    ←+−←

    +←=

    −=

    +−←=

    +

    −−

    −−

  • 42

    Bottom Line: Performance

    43214321Grid

    23332533128× 128

    3333243364×64

    5433243332× 32

    6633333416× 16

    Example Example

    ε=1/25 ε=1/200

    Multigrid iterations for ||rk||/||r0||

  • 43

    For this to happen:

    )( :Smoothing 1. 11 fQuFQIu FiFi−− +−←

    Two things have to be done correctly

    reF h ˆˆ :solve grid Coarse 2. 2 =

    Smoother must take underlying flow into account

    For results above for Problem 4 (recirculating wind): smoother is 4-directional

    Coarse grid operator must be stable

    Even if fine grid is “fine enough,” coarse grid operators should include streamline diffusion

  • 44

    Example / effect of smoother

    After one four-directionalGauss-Seidel step

    After four one-directionalGauss-Seidel steps

  • 45

    Concluding Remarks

    • Discretization requires stabilization for convection-dominatedproblems

    • The best solution algorithms combine • general techniques of iterative methods • splitting strategies coupled to the underlying physics• stabilization when needed

  • 46

    References

    • J. J. H. Miller, E. O’Riordan and G. I. Shishkin,Fitted Numerical Methods for Singularly Perturbed Problems,World Scientific, 1995.

    • K. W. Morton, Numerical Solution of Convection-DiffusionProblems, Chapman & Hall, 1996.

    • H.-G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations, Springer,1996.

    • H. C. Elman, D. J. Silvester and A. J. Wathen, Finite Elementsand Fast Iterative Solvers, Oxford University Press, 2005.