discrete elastica model for shape design of gridshellsfor shape design of gridshells yusuke sakai...

13
Discrete elastica for shape design of gridshells Yusuke Sakai (Kyoto University) Makoto Ohsaki (Kyoto University) 1 Y. Sakai and M. Ohsaki, Discrete elastica for shape design of gridshells, Eng. Struct., Vol. 169, pp. 55-67, 2018.

Upload: others

Post on 28-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Discrete elasticafor shape design of gridshells

    Yusuke Sakai (Kyoto University)Makoto Ohsaki (Kyoto University)

    1

    Y. Sakai and M. Ohsaki, Discrete elastica for shape design of gridshells,Eng. Struct., Vol. 169, pp. 55-67, 2018.

  • Problem of the generating process

    2

    Desired shape

    Initial shape

    Generated shape

    Large deformation analysis

    Unknown:Forced disp., Load, External moment etcโ€ฆ

    Trial & Error

    Interaction forces Too large

    Inappropriate shape

    Engineer

    Designer

  • [1] Ohsaki M, Seki K, Miyazu Y. Optimization of locations of slot connections of gridshells modeled using elastica. Proc IASS Symposium 2016, Tokyo. Int Assoc Shell and Spatial Struct 2016;Paper No. CS5A-1012.

    Solution & BackgroundTarget shape of a curved beam

    Elastica: Shape of a buckled beam-column Reduce the interaction forces [1]

    3

    Continuous elastica

    min. ๐‘ˆ๐‘ˆ = ๏ฟฝ12๐ธ๐ธ๐ธ๐ธ๐œ…๐œ…2 + ๐›ฝ๐›ฝ ๐‘‘๐‘‘๐‘‘๐‘‘ ,

    ๐œ…๐œ… ๐‘‘๐‘‘ =๐œ•๐œ•ฮจ(๐‘‘๐‘‘)๐œ•๐œ•๐‘‘๐‘‘

    ๐‘‘๐‘‘: arc-length parameter, ๐ธ๐ธ๐ธ๐ธ: bending stiffness, ๐œ…๐œ… ๐‘‘๐‘‘ : curvature, ๐›ฝ๐›ฝ: penalty parameter for the total length

  • 1. Initial shape (straight) Equilibrium shape2. Span & Height of a support Only a few parameters3. Uniaxial bending Planar model

    4

    [2] A. M. Bruckstein, R. J. Holt and A. N. Netravali, Discrete elastica, Appl. Anal., Vol. 78, pp. 453-485, 2001.

    [3] Y. SAKAI and M. OHSAKI, Discrete elastica for shape design of gridshell, Eng. Struct., Vol. 169, pp. 55-67, 2018.

    ฮจ๐‘–๐‘–

    ๐‘™๐‘™: Length of each segment,๐šฟ๐šฟ = ฮจ0, โ€ฆ ,ฮจ๐‘๐‘ ๐‘‡๐‘‡:Deflection angles between

    each segment and ๐‘ฅ๐‘ฅ axis

    ๐‘™๐‘™

    ๐‘ฅ๐‘ฅ

    ๐‘ฅ๐‘ฅ

    Discrete elastica

    Rotationalspring

  • ๐‘ƒ๐‘ƒ๐‘–๐‘– ๐‘–๐‘– = 0, โ€ฆ ,๐‘๐‘ + 1 : Nodes๐‘™๐‘™: Length of each segment๐šฟ๐šฟ = ฮจ0, โ€ฆ ,ฮจ๐‘๐‘ : Deflection angle of a segment from ๐‘ฅ๐‘ฅ-axis

    Equivalence of strain energyStiffness of rotational spring

    ฮจ๐‘–๐‘–

    ฮจ๐‘–๐‘–โˆ’1๐œƒ๐œƒ๐‘–๐‘– = ฮจ๐‘–๐‘–โˆ’1 โˆ’ ฮจ๐‘–๐‘–

    Curvature: ๐œ…๐œ… = ๐œƒ๐œƒ๐‘–๐‘–๐‘™๐‘™

    Strain energy: ๐‘†๐‘† = 12๐ธ๐ธ๐ธ๐ธ๐œ…๐œ…2๐‘™๐‘™ = 1

    2๐ธ๐ธ๐ธ๐ธ ๐œƒ๐œƒ๐‘–๐‘–

    ๐‘™๐‘™

    2๐‘™๐‘™ = ๐ธ๐ธ๐ธ๐ธ

    2๐‘™๐‘™๐œƒ๐œƒ๐‘–๐‘–2

    ๐ธ๐ธ๐ธ๐ธ/๐‘™๐‘™

    ๐‘ฅ๐‘ฅ

    ๐‘™๐‘™

    5

  • External workDiscretized form of ๐‘ˆ๐‘ˆ = โˆซ 12 ๐ธ๐ธ๐ธ๐ธ๐œ…๐œ…

    2 + ๐›ฝ๐›ฝ ๐‘‘๐‘‘๐‘‘๐‘‘

    ๐›ฝ๐›ฝ = 1000

    Optimization problem (Minimize total potential energy)

    ( ) ( )21, , 10 0 1

    0

    0

    min. ,2

    subject to cos ,

    sin

    N

    i il i

    N NN

    iiN

    ii

    EIl ll

    M M

    l L

    l H

    ฮฒโˆ’=

    +

    =

    =

    ฮ  = ฮจ โˆ’ฮจ + โˆ’ ฮจ โˆ’ ฮจ

    ฮจ =

    ฮจ =

    โˆ‘

    โˆ‘

    โˆ‘

    ฮจ ฮฆฮจ

    : Span length

    : Height of a support

    6

    Stationary conditions = Equilibrium of segments Lagrange multipliers = Reaction forces

  • Lagrangian (๐œ†๐œ†1 and ๐œ†๐œ†2 are Lagrange multipliers)

    โ„’ ๐šฟ๐šฟ, ๐‘™๐‘™, ๐œ†๐œ†1, ๐œ†๐œ†2 = ฮ  + ๐œ†๐œ†1 ๏ฟฝ๐‘–๐‘–=1

    ๐‘๐‘

    ๐‘™๐‘™ cosฮจ๐‘–๐‘– โˆ’ ๐ฟ๐ฟ + ๐œ†๐œ†2 ๏ฟฝ๐‘–๐‘–=1

    ๐‘๐‘

    ๐‘™๐‘™ sinฮจ๐‘–๐‘– โˆ’ ๐ป๐ป

    Stationary conditions: Derivatives with respect to ๐šฟ๐šฟ = ฮจ0, โ€ฆ ,ฮจ๐‘๐‘ ๐‘‡๐‘‡

    ๐ธ๐ธ๐ธ๐ธ๐‘™๐‘™โˆ’ฮจ๐‘–๐‘–โˆ’1 โˆ’ ฮจ๐‘–๐‘–

    ๐‘™๐‘™+ฮจ๐‘–๐‘– โˆ’ ฮจ๐‘–๐‘–+1

    ๐‘™๐‘™โˆ’ ๐œ†๐œ†1 sinฮจ๐‘–๐‘– + ๐œ†๐œ†2 cosฮจ๐‘–๐‘– = 0

    ๐‘–๐‘– = 1, โ€ฆ ,๐‘๐‘ โˆ’ 11๐‘™๐‘™๐ธ๐ธ๐ธ๐ธ ฮจ1 โˆ’ ฮจ0

    ๐‘™๐‘™โˆ’ ๐‘€๐‘€0 โˆ’ ๐œ†๐œ†1 sinฮจ0 + ๐œ†๐œ†2 cosฮจ0 = 0

    1๐‘™๐‘™๐ธ๐ธ๐ธ๐ธ ฮจ๐‘๐‘ โˆ’ ฮจ๐‘๐‘โˆ’1

    ๐‘™๐‘™โˆ’ ๐‘€๐‘€๐‘๐‘+1 โˆ’ ๐œ†๐œ†1 sinฮจ๐‘๐‘ + ๐œ†๐œ†2 cosฮจ๐‘๐‘ = 0

    7

  • ๐ธ๐ธ๐ธ๐ธ๐‘™๐‘™

    โˆ’ฮจ๐‘–๐‘–โˆ’1 โˆ’ ฮจ๐‘–๐‘–

    ๐‘™๐‘™+ฮจ๐‘–๐‘– โˆ’ ฮจ๐‘–๐‘–+1

    ๐‘™๐‘™โˆ’ ๐œ†๐œ†1 sinฮจ๐‘–๐‘– + ๐œ†๐œ†2 cosฮจ๐‘–๐‘– = 0

    8

    ๐œ†๐œ†1 and ๐œ†๐œ†2: Support reaction forces

  • Curve 1 Curve 2

    9

    Comparisons of shapes and reaction forces

    Discrete elastica

    Continuous beam

    Curve 1 ๐œ†๐œ†1[kN] (x-dir.) 0.4342 0.4449๐œ†๐œ†2[kN] (z-dir.) 0.0000 0.0002

    Curve 2 ๐œ†๐œ†1[kN] (x-dir.) 0.8940 0.9140๐œ†๐œ†2[kN] (z-dir.) 0.8212 0.8171

    Reaction forces

    โ‰ƒโ‰ƒโ‰ƒโ‰ƒ

  • โ€ข Plan๏ผšSquare๏ผˆ10 mร—10 m๏ผ‰

    โ€ข Curve A Boundary

    (Height difference = 2m)โ€ข Curve B, C In the diagonal planeTarget surface composed of primary beams

    (Discrete elastica)

    Gridshell (Large deformation analysis)

    Material: Glass fiber reinforced polymer๏ผˆGFRP๏ผ‰

    Yield stress 200 MPaDiameter Thickness

    Primary 0.08 m 0.008 m

    Secondary 0.0475 m 0.003m

    Sectional area: Hollow cyrinder

    10

    2 m

  • ๐‘ก๐‘ก: Loading parameter 0.0 โ‰ค ๐‘ก๐‘ก โ‰ค 2.00.0 โ‰ค ๐‘ก๐‘ก โ‰ค 1.0: Upward virtual load (equivalent to self-weight)1.0 โ‰ค ๐‘ก๐‘ก โ‰ค 2.0: Forced displacement & external moments

    11

    Forced disp.

    External moments

    Motion of large-deformation analysis

    Virtual load

  • Curve A Curve B

    โ€ข All member stress < Yielding stress 200 MPaโ€ข Discrete & continuous beams close

    Target shape(Discrete elastica)

    Continuous beam(Large deformationanalysis)

    Curve C Plan

    12

    Comparison

  • Conclusion1.Discrete elastica Equilibrium curved beams

    derived from optimization Target shape of primary beams

    of gridshell2.Span, height of a support, and external moments

    Shape parameters3.Verification (Primary beams)

    Target shape vs Large-deformation analysisVery close

    13

    Other studies of gridshell Combinatorial optimization for arranging slot+hinge joints Spatial discrete elastica (extended from Discrete elastica) Development of 3D elastic beam model for large-deformation

    analysis

    Discrete elastica๏ฟฝfor shape design of gridshellsใ‚นใƒฉใ‚คใƒ‰็•ชๅท 2ใ‚นใƒฉใ‚คใƒ‰็•ชๅท 3ใ‚นใƒฉใ‚คใƒ‰็•ชๅท 4ใ‚นใƒฉใ‚คใƒ‰็•ชๅท 5ใ‚นใƒฉใ‚คใƒ‰็•ชๅท 6ใ‚นใƒฉใ‚คใƒ‰็•ชๅท 7ใ‚นใƒฉใ‚คใƒ‰็•ชๅท 8ใ‚นใƒฉใ‚คใƒ‰็•ชๅท 9ใ‚นใƒฉใ‚คใƒ‰็•ชๅท 10ใ‚นใƒฉใ‚คใƒ‰็•ชๅท 11ใ‚นใƒฉใ‚คใƒ‰็•ชๅท 12ใ‚นใƒฉใ‚คใƒ‰็•ชๅท 13