discrete convexity and polynomial solvability in...

42
. . . . . . . . Discrete Convexity and Polynomial Solvability in Minimum 0-Extension Problems Hiroshi HIRAI The University of Tokyo [email protected] http://www.misojiro.t.u-tokyo.ac.jp/hirai/ Combinatorial Geometries Marseille-Luminy, CIRM, April 5, 2013 1 / 24

Upload: others

Post on 18-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.

......

Discrete Convexity and Polynomial Solvabilityin Minimum 0-Extension Problems

Hiroshi HIRAI

The University of [email protected]

http://www.misojiro.t.u-tokyo.ac.jp/∼hirai/

Combinatorial GeometriesMarseille-Luminy, CIRM, April 5, 2013

1 / 24

Page 2: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Contents

1. Minimum 0-extension problem≃ Multifacility location problem

2. Known results on P/NP-hard classification

3. Main result (SODA’13)

4. Proof idea ∼Metric graph theory (Bandelt, Chepoi, Dress, Van de Vel, ...)Discrete convex analysis (Murota 1996 ∼)Valued CSP & fractional polymorphism (Thapper-Zivny 2012)

2 / 24

Page 3: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Multifacility location problem (70’s ∼)

Γ : undirected graphdΓ : path-metric on VΓ

y1, y2, . . . , yk : existing facilities on Γ.

......

Locate new facilities x1, x2, . . . , xn on Γ such thatthe mutual communication cost between facilities∑

i ,j

bijdΓ (xi , yj)︸ ︷︷ ︸cost between new and old

+∑i<j

cijdΓ (xi , xj)︸ ︷︷ ︸cost between new facilities

is minimum.

Recent applications: clustering, learning theory, computer vision, ...c.f. Metric Labeling (Kleinberg-Tardos 1998)

3 / 24

Page 4: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

VΓ = {v1, v2, . . . , vk}Input: number n of variables, bij , cij ≥ 0

.

......

MultiFac[Γ ] : Min.∑i ,j

bijdΓ (xi , vj) +∑i<j

cijdΓ (xi , xj)

s.t. (x1, x2, . . . , xn) ∈ VΓ × VΓ × · · · × VΓ

Ex. Γ = K2

4 / 24

Page 5: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

VΓ = {v1, v2, . . . , vk}Input: number n of variables, bij , cij ≥ 0

.

......

MultiFac[Γ ] : Min.∑i ,j

bijdΓ (xi , vj) +∑i<j

cijdΓ (xi , xj)

s.t. (x1, x2, . . . , xn) ∈ VΓ × VΓ × · · · × VΓ

Ex. Γ = K2v1

v2

Γ = K2

xi

xj

4 / 24

Page 6: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

VΓ = {v1, v2, . . . , vk}Input: number n of variables, bij , cij ≥ 0

.

......

MultiFac[Γ ] : Min.∑i ,j

bijdΓ (xi , vj) +∑i<j

cijdΓ (xi , xj)

s.t. (x1, x2, . . . , xn) ∈ VΓ × VΓ × · · · × VΓ

Ex. Γ = K2v1

v2

xi

xj

bi1

bj2

cij

MultiFac[K2] ≃ Minimum (v1, v2)-cut

4 / 24

Page 7: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Tractability Question (Chepoi 1996, Karzanov 1998, 2004)

Γ = K2 ⇔ minimum cut ⇒ P (Ford-Fulkerson 1956)

Γ = Kn≥3 ⇔ multi-termical cut ⇒ NP-hard(Dahlhaus, Johnson, Papadimitriou, Seymour, Yannakakis 1994)

.Question........What is Γ for which MultiFac[Γ ] is in P ?

Known tractable class:

Trees (Picard-Ratliff 1978)

Median graphs (Chepoi 1996)

Frames (Karzanov 1998)

5 / 24

Page 8: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Tractability Question (Chepoi 1996, Karzanov 1998, 2004)

Γ = K2 ⇔ minimum cut ⇒ P (Ford-Fulkerson 1956)

Γ = Kn≥3 ⇔ multi-termical cut ⇒ NP-hard(Dahlhaus, Johnson, Papadimitriou, Seymour, Yannakakis 1994)

.Question........What is Γ for which MultiFac[Γ ] is in P ?

Known tractable class:

Trees (Picard-Ratliff 1978)

Median graphs (Chepoi 1996)

Frames (Karzanov 1998)

5 / 24

Page 9: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.Theorem (Picard-Ratliff 1978)........If Γ is a tree, then MultiFac[Γ ] is in P.

.

......Obs. Γ ∈ P and Γ ′ ∈ P ⇒ Γ × Γ ′ ∈ P

∵ dΓ×Γ ′((x , x ′), (y , y ′)) = dΓ (x , y) + dΓ ′(x ′, y ′)

→ MultiFac[Γ × Γ ′] = MultiFac[Γ ] +MultiFac[Γ ′]

ΓΓ

Γ × Γ′

.

......Cor. cube, grid graph, product of trees ∈ P

6 / 24

Page 10: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.Theorem (Picard-Ratliff 1978)........If Γ is a tree, then MultiFac[Γ ] is in P.

.

......Obs. Γ ∈ P and Γ ′ ∈ P ⇒ Γ × Γ ′ ∈ P

∵ dΓ×Γ ′((x , x ′), (y , y ′)) = dΓ (x , y) + dΓ ′(x ′, y ′)

→ MultiFac[Γ × Γ ′] = MultiFac[Γ ] +MultiFac[Γ ′]

ΓΓ

Γ × Γ′

.

......Cor. cube, grid graph, product of trees ∈ P

6 / 24

Page 11: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Median graph

.

......

Median of x1, x2, x3 ⇔ y ∈ VΓ satisfying

dΓ (xi , xj) = dΓ (xi , y) + dΓ (y , xj) (1 ≤ i < j ≤ 3)

Median graph ⇔ ∀ triple has a unique median.

x1x3

x2

median of x1, x2, x3

dΓ (x1, x3)

dΓ (x1, x2)

dΓ (x2, x3)

7 / 24

Page 12: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Median graph

.

......

Median of x1, x2, x3 ⇔ y ∈ VΓ satisfying

dΓ (xi , xj) = dΓ (xi , y) + dΓ (y , xj) (1 ≤ i < j ≤ 3)

Median graph ⇔ ∀ triple has a unique median.

x y z

u

v

w

x

y

z

7 / 24

Page 13: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Median graph

.

......

Median of x1, x2, x3 ⇔ y ∈ VΓ satisfying

dΓ (xi , xj) = dΓ (xi , y) + dΓ (y , xj) (1 ≤ i < j ≤ 3)

Median graph ⇔ ∀ triple has a unique median.

c.f. median graph ≃ graph of CAT(0) cube complex (Chepoi 2000)

7 / 24

Page 14: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Median graph

.

......

Median of x1, x2, x3 ⇔ y ∈ VΓ satisfying

dΓ (xi , xj) = dΓ (xi , y) + dΓ (y , xj) (1 ≤ i < j ≤ 3)

Median graph ⇔ ∀ triple has a unique median.

.Theorem (Chepoi 1996)........If Γ is a median graph, then MultiFac[Γ ] is in P.

∵ use of minimum cut

7 / 24

Page 15: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. 0-extension formulation (Karzanov 1998)

(V , µ): finite metric space

Def: extension of (V , µ)⇔ metric space (X , d) s.t. X ⊇ V and d |V = µ

Def: 0-extension of (V , µ)⇔ extension (X , d) s.t. ∀x ∈ X , ∃s ∈ V : d(x , s) = 0.⇔ d = µ ◦ ρ for some retraction ρ : X → V .

.

......

Obs. MultfiFac[Γ ] ≃

0-Ext[Γ ]: Min.∑x ,y

cxyd(x , y)

s.t. (X , d) is a 0-extension of (VΓ , dΓ )

∵ ({v1, v2, . . . , vk}, dΓ ) → ({v1, v2, . . . , vk , x1, x2, . . . , xn}, d)

8 / 24

Page 16: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. 0-extension formulation (Karzanov 1998)

(V , µ): finite metric space

Def: extension of (V , µ)⇔ metric space (X , d) s.t. X ⊇ V and d |V = µ

Def: 0-extension of (V , µ)⇔ extension (X , d) s.t. ∀x ∈ X , ∃s ∈ V : d(x , s) = 0.⇔ d = µ ◦ ρ for some retraction ρ : X → V ..

......

Obs. MultfiFac[Γ ] ≃

0-Ext[Γ ]: Min.∑x ,y

cxyd(x , y)

s.t. (X , d) is a 0-extension of (VΓ , dΓ )

∵ ({v1, v2, . . . , vk}, dΓ ) → ({v1, v2, . . . , vk , x1, x2, . . . , xn}, d)

8 / 24

Page 17: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Metric-LP relaxation (Karzanov 98)

.

......

0-Ext[Γ ] : Min.∑xy

cxyd(x , y)

s.t. (X , d): 0-extension of (VΓ , dΓ )

Rem: Ext[Γ ] is polysize LP → P

Q. What is Γ for which Ext[Γ ] is exact ?

c.f. LP-dual of multicommodity flow (Karzanov 1998, H. 2009 ∼)

9 / 24

Page 18: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Metric-LP relaxation (Karzanov 98)

.

......

Ext[Γ ] : Min.∑xy

cxyd(x , y)

s.t. (X , d): extension of (VΓ , dΓ )

Rem: Ext[Γ ] is polysize LP → P

Q. What is Γ for which Ext[Γ ] is exact ?

c.f. LP-dual of multicommodity flow (Karzanov 1998, H. 2009 ∼)

9 / 24

Page 19: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Metric-LP relaxation (Karzanov 98)

.

......

Ext[Γ ] : Min.∑xy

cxyd(x , y)

s.t. d(x , x) = 0

d(x , y) = d(y , x) ≥ 0

d(x , y) + d(y , z) ≥ d(x , z)

d |VΓ= dΓ

Rem: Ext[Γ ] is polysize LP → P

Q. What is Γ for which Ext[Γ ] is exact ?

c.f. LP-dual of multicommodity flow (Karzanov 1998, H. 2009 ∼)

9 / 24

Page 20: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Metric-LP relaxation (Karzanov 98)

.

......

Ext[Γ ] : Min.∑xy

cxyd(x , y)

s.t. d(x , x) = 0

d(x , y) = d(y , x) ≥ 0

d(x , y) + d(y , z) ≥ d(x , z)

d |VΓ= dΓ

Rem: Ext[Γ ] is polysize LP → P

Q. What is Γ for which Ext[Γ ] is exact ?

c.f. LP-dual of multicommodity flow (Karzanov 1998, H. 2009 ∼)

9 / 24

Page 21: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Frame = graph for which Ext[Γ ] is exact

.Γ : frame ⇔..

......

bipartite

no isometric cycle of length > 4

orientable ⇔ ∃ orientation: ∀ 4-cycle

Rem: frame is obtained by gluing K2,m and K2 (in a certain way)10 / 24

Page 22: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Frame = graph for which Ext[Γ ] is exact

.Γ : frame ⇔..

......

bipartite

no isometric cycle of length > 4

orientable ⇔ ∃ orientation: ∀ 4-cycle

Rem: frame is obtained by gluing K2,m and K210 / 24

Page 23: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Frame = graph for which Ext[Γ ] is exact

.Γ : frame ⇔..

......

bipartite

no isometric cycle of length > 4

orientable ⇔ ∃ orientation: ∀ 4-cycle

c.f. frame ≃ CAT(0)-complex of folders (Chepoi 2000)

10 / 24

Page 24: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Frame = graph for which Ext[Γ ] is exact

.Γ : frame ⇔..

......

bipartite

no isometric cycle of length > 4

orientable ⇔ ∃ orientation: ∀ 4-cycle

.Theorem (Karzanov 1998)........Γ is a frame if and only if Ext[Γ ] = 0-Ext[Γ ].

.Corollary (Karzanov 1998)........If Γ is a frame, then MultiFac[Γ ] (= 0-Ext[Γ ]) is in P.

10 / 24

Page 25: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

Rem. {frames} is not closed under productRem. frame = median graph

∈ {median graphs}, ∈ {frames}

∈ {median graphs}, ∈ {frames}

.

......

Γ : modular ⇔ ∀ triple has a median.

Γ : orientable ⇔ ∃ orientation: ∀ 4-cycle

Rem. frame = orientable hereditary modular graph (c.f. Bandelt 85)

Ex. Hasse diagram of modular lattice

11 / 24

Page 26: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

Rem. {frames} is not closed under productRem. frame = median graph

∈ {median graphs}, ∈ {frames}

∈ {median graphs}, ∈ {frames}.

......

Γ : modular ⇔ ∀ triple has a median.

Γ : orientable ⇔ ∃ orientation: ∀ 4-cycle

Rem. frame = orientable hereditary modular graph (c.f. Bandelt 85)

Ex. Hasse diagram of modular lattice

11 / 24

Page 27: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Hardness result

.Theorem (Karzanov 1998)........If Γ is not modular or not orientable, MultiFac[Γ ] is NP-hard.

P

median graph frame

orientable modular

NP-hard

P

?

12 / 24

Page 28: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Partial result & conjectures (Karzanov 2004)

P

median graph frame

orientable modular

NP-hard

P

NP-hard?

P?P

13 / 24

Page 29: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Main result

.Theorem (H. 2012; SODA’13)........If Γ is orientable modular, then MultiFac[Γ ] is in P.

orientable modular

NP-hard

14 / 24

Page 30: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Proof idea and outline

.

......

MultiFac[Γ ] : Min.∑i ,j

bijdΓ (xi , vj) +∑i<j

cijdΓ (xi , vj)

s.t. (x1, x2, . . . , xn) ∈ VΓ × VΓ × · · · × VΓ

Basic idea ∼ formulate MultiFac as a ’convex’ optimization overa simplicial complex associtated with orientable modular graph,based on a philosophy of Discrete Convex Analysis.

15 / 24

Page 31: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Discrete Convex Analysis (Murota 1996 ∼)

A theory of ‘convex’ functions on Zn = Z× Z× · · · × Z forwell-solvable combinatorial optimization problems includingnetwork flows, matroids, and submodular functions..

......

Obs. If Γ = path, then Γ × Γ × · · · × Γ ≃ box B in Zn,

Min.∑i ,j

bijdΓ (xi , vj) +∑i<j

cijdΓ (xi , xj)

s.t. (x1, x2, . . . , xn) ∈ VΓ × VΓ × · · · × VΓ

16 / 24

Page 32: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Discrete Convex Analysis (Murota 1996 ∼)

A theory of ‘convex’ functions on Zn = Z× Z× · · · × Z forwell-solvable combinatorial optimization problems includingnetwork flows, matroids, and submodular functions..

......

Obs. If Γ = path, then Γ × Γ × · · · × Γ ≃ box B in Zn,

Min.∑i ,j

bij |xi − vj |+∑i<j

cij |xi − xj |

s.t. (x1, x2, . . . , xn) ∈ B ⊆ Zn

→This is an L-convex function minimization in DCA

16 / 24

Page 33: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. L-convex functions (for combinatorial geometers)

Triangluation ∆ of Zn diced by hyperplanes of normal ei , ei − ej

.

......

Def: A function g on Zn is L-convex⇔ piecewise-linear interpolation of g w.r.t. ∆︸ ︷︷ ︸

Lovasz extension of g

is convex in Rn.

• L-convex function is minimized by tracing the 1-skeleton of ∆• Descent direction is found by Submodular Function Minimizationf : {0, 1}n → R is submodular if f (x) + f (y) ≥ f (x ∨ y) + f (x ∧ y)

17 / 24

Page 34: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

We develop an analogous theory for orientable modular graph Γ(with orientation o).......Fact: o.m.graph is obtained by gluing geometric modular lattices

• Median graph ↔ Boolean lattices• Frame ↔ diamonds (geometric modular lattices of rank 2).

......

Def: Modular complex ∆(Γ ):= union of order complexes of these lattices

Γ, o

p p

∆(Γ, o)

q q

18 / 24

Page 35: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.

......g : VΓ → R =⇒ piecewise-linear interpolation g : ∆(Γ ) → R

.

......

Neighborhood L∗p of p ∈ VΓ in ∆(Γ )

≃ modular semilattice (Bandelt, Van de Vel, Verheul 1993)

p

q

L∗p

L∗q

• define submodular function on modular semilattice [Appendix 1]

• g : VΓ → R is L-convex if g is submodular on L∗p (∀p ∈ VΓ )

19 / 24

Page 36: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.

......

L-convex function is minimized by tracing 1-skeleton of ∆.

Descent direction is found by SFM on a modular semilattice.

dΓ is L-convex on Γ × Γ .

MultiFac[Γ ] is L-convex minimization on Γ × Γ × · · · × Γ .

I don’t know whether SFM in P. But ...

Thapper-Zivny fractional polymorphism criterion in Valued-CSP(FOCS’12) is applicable. [Appendix 2]

.

......Minimizing a sum of submodular functions of bounded arity in P

Our problem is minimizing a sum of arity-2 submodular functions.

→ MultiFac[Γ ] in P

20 / 24

Page 37: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.

......

L-convex function is minimized by tracing 1-skeleton of ∆.

Descent direction is found by SFM on a modular semilattice.

dΓ is L-convex on Γ × Γ .

MultiFac[Γ ] is L-convex minimization on Γ × Γ × · · · × Γ .

I don’t know whether SFM in P. But ...Thapper-Zivny fractional polymorphism criterion in Valued-CSP(FOCS’12) is applicable. [Appendix 2]

.

......Minimizing a sum of submodular functions of bounded arity in P

Our problem is minimizing a sum of arity-2 submodular functions.

→ MultiFac[Γ ] in P

20 / 24

Page 38: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Summary

.Question........What is Γ for which MultiFac[Γ ] is in P ?

.Answer..

......MultiFac[Γ ] ∈

{P if Γ is orientable modularNP-hard otherwise

Many interesting aspects:

Submodularity/L-convexity for multicommodity flows→ multiflow analogue of [Max-flow = Min-cut ∈ SFM]

Modular lattices, and modular semilattices

Dichotomy theorem in Valued-CSP

Optimization theory on CAT(0)-complex ??

Thank you for your attention !

21 / 24

Page 39: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Summary

.Question........What is Γ for which MultiFac[Γ ] is in P ?

.Answer..

......MultiFac[Γ ] ∈

{P if Γ is orientable modularNP-hard otherwise

Many interesting aspects:

Submodularity/L-convexity for multicommodity flows→ multiflow analogue of [Max-flow = Min-cut ∈ SFM]

Modular lattices, and modular semilattices

Dichotomy theorem in Valued-CSP

Optimization theory on CAT(0)-complex ??

Thank you for your attention !

21 / 24

Page 40: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Appendix 1: Modular semilattice & submodular function

.

......

Meet-semilattice L is modular ⇔every lower ideal is a modular lattice

u ∨ v , v ∨ w ,w ∨ u ∈ L ⇒ u ∨ v ∨ w ∈ L

• We can define a fractional join∑

{νuu | u ∈ Ep,q}.

p

q

p ∧ q

u

α β

νu :=sinα

sinα + cosα−

sin β

sin β + cos β

(p, q)-envelope Ep,q := the setof maximal extreme points

metric-interval

of p, q

.

......Def: f is submodular if f (p) + f (q) ≥ f (p ∧ q) +∑

u∈Ep,q νuf (u)

22 / 24

Page 41: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.. Appendix 2: Valued-CSP & fractional polymorphism

Λ: a set of functions f on D with arity K.

......

VCSP[Λ]: Min.∑

f ∈Λ;i1,i2,··· ,iK

c fi1,i2,...,iK f (xi1 , xi2 , . . . , xiK )

s.t. (x1, x2, . . . , xN) ∈ D × D × · · · × D

≃ Minimization of a sum of functions with bounded arity

• Input size = O(|Λ||D|K )

• VCSP has polysize IP formulation → Basic LP-relaxation

23 / 24

Page 42: Discrete Convexity and Polynomial Solvability in …misojiro.t.u-tokyo.ac.jp/~hirai/papers/CIRM2013.pdfMain result (SODA’13) 4. Proof idea ˘ Metric graph theory (Bandelt, Chepoi,

. . . . . .

.Theorem (Thapper-Zivny, FOCS’12)..

......

VCSP[Λ] = Basic LP ∈ Pif Λ has a fractional polymorphism ∋ semilattice operation

.

......

Def: fractional polymorphism for Λ⇔ probability ω on the space of operations {g : D × D → D}:

(f (p) + f (q))/2 ≥∑g

ω(g)f (g(p, q)) (∀f ∈ Λ, ∀(p, q)).

24 / 24