discovery, biosynthesis and bioengineering of novel

22
Discovery, Biosynthesis and Bioengineering of Novel Antibiotics from Bacteria Dr. Matthew Jenner RSC Toxicology Group: Tackling Antimicrobial Resistance September 17 th 2018

Upload: others

Post on 01-Mar-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Discovery, Biosynthesis and Bioengineering of Novel

Discovery, Biosynthesis and Bioengineering of Novel Antibiotics

from Bacteria

Dr. Matthew Jenner

RSC Toxicology Group: Tackling Antimicrobial Resistance

September 17th 2018

Page 2: Discovery, Biosynthesis and Bioengineering of Novel

Traditional Approach for Bioactive Natural Product Discovery‘Grind and Find’ Methodology

Extraction

Extract

Bioactivity?

Metabolite

Separation &

Purification

Identify Bioactive Fraction → ANTIBIOTIC!

Selman Waksman

Alexander

Fleming

Howard

Florey

Ernst

Chain

Dorothy

Hodgkin

Page 3: Discovery, Biosynthesis and Bioengineering of Novel

Streptomyces coelicolor – A Prolific Producer of Specialised Metabolites‘Grind and Find’ Methodology

Page 4: Discovery, Biosynthesis and Bioengineering of Novel

Streptomyces coelicolor – A Prolific Producer of Specialised Metabolites‘Grind and Find’ Methodology

Nature 2002, 417, 141

Microbiology 2003, 149, 505

Mol. Microbiol. 2004, 51, 1615

Page 5: Discovery, Biosynthesis and Bioengineering of Novel

Streptomyces coelicolor – A Prolific Producer of Specialised Metabolites‘Grind and Find’ Methodology

0 1 2 3 4 5 6 7 8 8.7 Mb

Chromosome

0 100 200 300 356 Kb

SCP1

act

whiE

redcda

scb

mmy

SCP2 31 Kb

Nature 2002, 417, 141

Microbiology 2003, 149, 505

Mol. Microbiol. 2004, 51, 1615

Page 6: Discovery, Biosynthesis and Bioengineering of Novel

Streptomyces coelicolor – A Prolific Producer of Specialised Metabolites‘Grind and Find’ Methodology

0 1 2 3 4 5 6 7 8 8.7 Mb

Chromosome

0 100 200 300 356 Kb

SCP1

act

whiE

redcda

scb

polyketide synthase (PKS)terpene synthase

nonribosomal peptide synthetase (NRPS)

NRPS-independent siderophore synthetase

hybrid NRPS / PKS / a-oxamine synthase

hybrid PKS / butenolide synthase

mmy

SCP2 31 Kb

Nature 2002, 417, 141

Microbiology 2003, 149, 505

Mol. Microbiol. 2004, 51, 1615

Page 7: Discovery, Biosynthesis and Bioengineering of Novel

Streptomyces coelicolor – A Full Metabolic ProfileApplication of Genomics-Based Discovery

Page 8: Discovery, Biosynthesis and Bioengineering of Novel

Natural Products from BurkholderiaDiverse Metabolic Arsenal

Page 9: Discovery, Biosynthesis and Bioengineering of Novel

Exploiting Burkholderia for Novel Antimicrobial Compounds‘An untapped source of novel bioactive metabolites’

Acinetobacter baumannii (MIC 2 µg/mL)

Chem. Biol. 2011, 18, 665.

Page 10: Discovery, Biosynthesis and Bioengineering of Novel

Exploiting Burkholderia for Novel Antimicrobial Compounds‘An untapped source of novel bioactive metabolites’

Chem. Biol. 2011, 18, 665.

Page 11: Discovery, Biosynthesis and Bioengineering of Novel

Exploiting Burkholderia for Novel Antimicrobial Compounds‘An untapped source of novel bioactive metabolites’

Enacyloxin Biosynthetic Gene Cluster

Chem. Biol. 2011, 18, 665.

Page 12: Discovery, Biosynthesis and Bioengineering of Novel

Biosynthesis of Enacyloxin IIaHybrid cis/trans-AT Modular Polyketide Synthase

Chem. Biol. 2011, 18, 665.

Page 13: Discovery, Biosynthesis and Bioengineering of Novel

Screening Metabolites from Burkholderia gladioli BCC0238A Highly Bioactive Strain

J. Am. Chem. Soc. 2017, 139, 7974.

MRSA B. multivorans B. subtilis R. mannitolilytica E. faecium C. albicans

Cystic fibrosis patient

Minneapolis, USA.

1996

Burkholderia gladioli

BCC0238

Metabolite Screening

B. gladioli BCC0238 overlays

Page 14: Discovery, Biosynthesis and Bioengineering of Novel

Burkholderia gladioli

BCC0238

Genome Sequencing of Burkholderia gladioli BCC0238Biosynthetic Gene Cluster Analysis

J. Am. Chem. Soc. 2017, 139, 7974.

Page 15: Discovery, Biosynthesis and Bioengineering of Novel

EtnangienSorangium cellulosum

Mycobacterium smegmatis (MIC 1 μg/mL)

Inhibits E. coli RNA Polymerase

Discovery of Gladiolin: A Novel Macrolide AntibioticStructure Elucidation and Comparison to Etnangien

J. Am. Chem. Soc. 2017, 139, 7974.

Highly unstable!

Page 16: Discovery, Biosynthesis and Bioengineering of Novel

675.4662693.4767

711.4873

725.5032

743.5139

761.5245

779.5349

801.5170

BCC0238_WT_Glycerol_RE2_01_2087.d: +MS, 19.6-19.8min #2351-2370

0.0

0.5

1.0

1.5

6x10

Intens.

650 675 700 725 750 775 800 825 850 875 m/z

761.5245

743.5139

761.5245

779.5349

801.5170

[M+H]+

[M+Na]+

Molecular Formula: C44H75O11-H2O

-H2O

-H2O

MRSA B. multivorans B. subtilis R. mannitolilytica E. faecium C. albicans

Screening Metabolites from Burkholderia gladioli BCC0238LC-MS Metabolite Screens of Crude Extracts

J. Am. Chem. Soc. 2017, 139, 7974.

Page 17: Discovery, Biosynthesis and Bioengineering of Novel

EIC: 801.51±0.02

EIC: 801.51±0.02

B. gladioli BCC0238

B. gladioli BCC0238

:: gbnD1

Genome Sequencing of Burkholderia gladioli BCC0238Insertional Mutation Abolishes Gladiolin Production

J. Am. Chem. Soc. 2017, 139, 7974.

Page 18: Discovery, Biosynthesis and Bioengineering of Novel

Gladiolin

Burkholderia gladioli

Etnangien

Sorangium cellulosum

Mycobacterium smegmatis (MIC 1 μg/mL)

Inhibits E. coli RNA Polymerase

Discovery of Gladiolin: A Novel Macrolide AntibioticStructure Elucidation and Comparison to Etnangien

J. Am. Chem. Soc. 2017, 139, 7974.

Page 19: Discovery, Biosynthesis and Bioengineering of Novel

Gladiolin

Burkholderia gladioli

Mycobacterium tuberculosis (MIC 0.3 μg/mL)

Inhibits Mycobacterium smegmatis RNA Polymerase (23 μM)

Etnangien

Sorangium cellulosum

Mycobacterium smegmatis (MIC 1 μg/mL)

Inhibits E. coli RNA Polymerase

(-) Gladiolin

(+) Gladiolin

Discovery of Gladiolin: A Novel Macrolide AntibioticGladiolin Inhibition of RNA Polymerase and Cytotoxicity

J. Am. Chem. Soc. 2017, 139, 7974.

Page 20: Discovery, Biosynthesis and Bioengineering of Novel

Gladiolin

Target: M. tuberculosis RNA Polymerase

Discovery of Gladiolin: A Novel Macrolide AntibioticCross-Resistance with Rifampicin and Isoniazid

MIC (μg/mL)

Strain Mutation Resistance Gladiolin Isoniazid Rifampicin

H37Rv None None 0.3 0.04 0.001

HUG.MB.6726 inhA Isoniazid 0.3 2.2 0.001

CHUV80037024 inhA/katG/rpoB Isoniazid/Rifampicin 1.7 >10 >10

Isoniazid

Target: M. tuberculosis Enoyl-ACP Reductase (InhA)

&

M. tuberculosis Catalase peroxidase (KatG)

Rifampicin

Target: M. tuberculosis RNA Polymerase β-subunit (RpoB)

J. Am. Chem. Soc. 2017, 139, 7974.

Page 21: Discovery, Biosynthesis and Bioengineering of Novel

Discovery of Gladiolin: A Novel Macrolide AntibioticA Bit of Press Attention…

J. Am. Chem. Soc. 2017, 139, 7974.

Nat. Prod. Rep. 2017, 37, 713.

Page 22: Discovery, Biosynthesis and Bioengineering of Novel

Prof. Greg Challis

Jozef Lewandowski, PhD

Lona Alkhalaf, PhD

Dani Zabala, PhD

Doug Roberts, PhD

Simone Kosol, PhD

Miriam Rodriguez, PhD

Joleen Masschelein, PhD

Yousef Dashti, PhD

Chuan Huang, PhD

Emzo de los Santos, PhD

Angelo Gallo, PhD

Chang-An Geng, PhD

Daniel Griffiths, PhD

Shanshan Zhou, PhD

Chris Fage, PhD

Hussain Bhukya, PhD

Ruby Awodi

Rebin Salih

Jade Ronan (nee Foster)

Gideon Idowu

Josh Cartwright

Richard Gibson

Rakesh Saroay

Maz Costa

Chris Perry

Xinyun Jian

Christian Hobson

Matt Beech

Alma Svatos

Patrick Capel

Acknowledgements

Prof. Esh Mahenthiralingam

Cerith Jones, PhD

Prof. Julian Parkhill

Simon Harris, PhD

Prof. Stewart Cole

Ruben Hartkoorn, PhD

Anthony Vocat, PhD