disclaimer - s-space.snu.ac.krs-space.snu.ac.kr/bitstream/10371/122992/1/000000012930.pdf ·...

51
저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다. 다음과 같은 조건을 따라야 합니다: l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다. l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다. 저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 이것은 이용허락규약 ( Legal Code) 을 이해하기 쉽게 요약한 것입니다. Disclaimer 저작자표시. 귀하는 원저작자를 표시하여야 합니다. 비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

Upload: doandung

Post on 01-Apr-2018

221 views

Category:

Documents


3 download

TRANSCRIPT

  • -- 2.0

    l , , , , .

    :

    l , , .

    l .

    .

    (Legal Code) .

    Disclaimer

    . .

    . .

    . , .

    http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcodehttp://creativecommons.org/licenses/by-nc-nd/2.0/kr/

  • W-band RF AlGaN/GaN HEMTs on Si

    fmax

    High fmax AlGaN/GaN HEMTs on Si-substrate for W-band Power

    Applications

    2013 8

  • W-band RF AlGaN/GaN HEMTs on Si

    fmax

    High fmax AlGaN/GaN HEMTs on Si-substrate for W-band Power

    Applications

    2013 8

    2013 8

    : ()

    : ()

    : ()

  • i

    RF power application AlGaN/GaN HEMTs W-

    band current collapse

    fmax .

    GaN electron mobility, saturation velocity, thermal conductivity

    , bandgap breakdown voltage ,

    Si GaAs transistor power density module size

    . Si GaAs RF power

    , high-resistivity Si(111)

    AlGaN/GaN HEMTs millimeter-wave

    .

    sub-micrometer AlGaN/GaN HEMTs current collapse

    RF power .

    RF T-gate current

    collapse field plate ,

    field plate bias

    . fmax

    , fmax .

    fmax , Si- GaN

    HEMTs W-band RF power .

    : AlGaN/GaN HEMTs, millimeter-wave, , current collapse,

    : 2011-23356

  • ii

    1 1

    1.1 1

    1.2 6

    2 Conventional AlGaN/GaN W-band Power HEMT 8

    2.1 Sub-micrometer AlGaN/GaN HEMT 8

    2.2 DC & Pulsed I-V Measurements 13

    2.3 RF Measurement 16

    3 AlGaN/GaN HEMT with Gate Field-plate Structure 18

    3.1 Overhang gate length split 18

    3.2 Current collapse gate leakage current 20

    3.3 RF Measurement & Optimization 23

  • iii

    4 Decrease of Gate Resistance by Double-head Gate 26

    4.1 PR Planarization & Double-head gate 26

    4.2 Pulsed I-V & RF Measurements 30

    4.3 W-band GaN MMICs(Monolithic Microwave Integrated Circuits) 33

    4.3.1 33

    4.3.2 MMIC 35

    5 40

    5.1 40

    5.2 40

    42

    Abstract 45

  • 1

    1

    1.1

    , 4G LTE

    . radar RF power

    , .

    Si FET ,

    Si FET

    GaAs pHEMTs(High Electron Mobility Transistor), mHEMTs ,

    GaN RF power ,

    . [1]

    1.1 RF .

    GaN band gap breakdown mobility saturation

    velocity application

    . band gap power density(GaAs 10 )

    device size , power capacitance

    . GaN polarization effect GaAs

    HEMT channel charge density , thermal conductivity

    RF loss . [2]

    GaN on , input, output matching , power supply

    efficiency . [2]

    1.3 GaN device

    0.25 , 0.1 .

    GaN HEMTs SiC, Sapphire, Si , thermal

    conductivity , RF loss semi-insulating SiC GaN

    epitaxial layer . , , GaN RF

    , self-heating , cooling

    module design compact . [3]

  • 2

    1.1 RF Power

    Parameter GaAs GaN

    Maximum Operating Voltage [V] 20 48

    Maximum Current [mA] 500 ~1000

    Maximum Breakdown Voltage [V] 40 >100

    Maximum Power Density [W/mm] 1.5 >8

    1.2 GaAs GaN RF power

  • 3

    1.3 GaN

    High-resistivity Si SiC

    , yield millimeter-

    wave . current gain cutoff frequency fT

    100GHz , device scaling epi design 100GHz

    . [4] [5]

    1.1 AlGaN/GaN HEMT on SiC

    Higher thermal

    conductivity

    Lower self heating

    Better reliability

    But, High Cost!

  • 4

    RF power maximum

    oscillation frequency fmax , output

    power current collapse . [6]

    Current collapse epitaxial layer

    GaN , . Current collapse

    , 1.2

    , GaN epi dislocation density( 109 -2)

    . dislocation trap

    , surface trapping buffer trapping drain bias

    dynamic on , output current . bias

    RF output power .

    1.2 GaN current collapse

    (Fujitsu, Nov., 2010)

    (Y. Koh, MDCL, SNU, 2012)

  • 5

    dielectric passivation , , epi design, field-plate

    current collapse ,

    . gate length ,

    parasitic capacitance current collapse

    field-plate current collapse

    .

    GaN RF power , GaN-on-SiC [7] (source-

    drain 1.1 , gate length 60 ) 300GHz fmax , GaN-on-Si [8]

    (source-drain 2.3 , gate length 100 ) 190GHz fmax . SiC

    GaN-on-Si current collapse, buffer leakage, gate

    leakage loss epitaxial layer design

    .

    1.3 GaN-on-Si(High-resistivity) epi

    RF gate leakage current, ohmic

    contact . Gate leakage current RF loss , metal

    bandgap adhesion metal contact .

    Short gate adhesion Ni bottom metal ,

    . gate recess

    leakage current . sheet ohmic contact

    on , Rs, Rd . Epi

    (F. Medjdoub, IEMN, 2012)

  • 6

    ohmic metal stack , ohmic recess ohmic

    .

    1.4 GaN-on-Si RF

    1.2

    millimeter-wave current collapse

    gate fmax , gate resistance

    fmax .

    77GHz MMIC PA output power 1.3W/mm

    .

    Issues

    Current collapse

    Gate leakage current

    Ohmic contact

    Scaling down

    & Process stability

  • 7

    5 . 2 parasitic capacitance

    T-gate 0.11um AlGaN/GaN HEMT ,

    3 sub-micrometer AlGaN/GaN HEMTs power current

    collapse gate , .

    4 parasitic effect gate resistance

    fmax double-head gate .

    5

    .

  • 8

    2 Conventional AlGaN/GaN W-band Power HEMT

    2.1 Sub-micrometer AlGaN/GaN HEMT

    2.1 high-resistivity Si(111)

    AlGaN/GaN epitaxial layer . Transconductance

    gate channel 10 AlGaN barrier layer ,

    polarization effect sheet carrier density

    30% Al contents . 2.5 GaN cap layer 1.3 GaN buffer

    layer , sheet resistance 290/sq .

    2.5 nm GaN cap

    10 nm AlGaN (30%)

    1 m i-GaN

    300 nm Buffer layer

    HR - Si(111) substrate

    2.1 AlGaN/GaN HEMT Epitaxial layer

    2.2 . cleaning ,

    SPM diluted HF NH3/SiH4 SiNx 30nm 350 ICP-CVD

    chamber . SiNx pre-passivation [9] nitrogen

    vacancy . cleaning

    //IPA solvent cleaning 10 ,

    : (4:1) SPM 120 5 . SiNx

    oxide D.I water:HF (10:1) 5

    .

  • 9

    2.2 Multi-finger AlGaN/GaN HEMT

    source-drain 2 ohmic patterning SF6 gas 30

    SiNx etching BCl3/Cl2 low damage GaN etching capping layer recess .

    diluted HCl(3:1) wet , Si/Ti/Al/Mo/Au (5/20/80/35/50 ) ohmic metal [10]

    , N2 780 1 RTA ohmic contact .

    ohmic epi device isolation BCl3/Cl2

    ICP-Etcher MESA etching . MESA etching ohmic process

    ohmic etching

  • 10

    . source-drain ohmic contact 0.37mm , 2

    source-drain 1200mA/mm .

    Gate passivation layer

    SiNx passivation layer dry etching passivation layer 30 .

    SiNx dielectric N2/SiH4/Ar , dry etching

    gas SF6. SF6 plasma treatment [11] fluorine leakage , [12]

    gate leakage current . SiNx passivation layer

    ICP-CVD , in-situ N2 plasma treatment [13] [14]

    current collapse .

    gate [15] 2.3 .

    passivation layer 30nm ZEP:thinner / PMGI / ZEP:thinner (270/500/200 ) PR 3

    coating 190 hard baking , e-beam lithography T-gate

    patterning . Source-gate 0.6 , 2.4 patterning gate

    SEM . layout 0.3 gate head

    patterning e-beam dose selectivity MIBK:MEK(3:2) developer

    top PR patterning , AZ300 PMGI layer develop .

    0.07 gate foot patterning dose selectivity MIBK:IPA(1:1)

    developer develop .

    2.3 0.11 T-gate

    ZEP:thinner(1:1)

    PMGI

    ZEP:thinner(1:1) SiNx

    SiNx 30nm

    Lift-off

    Ni/Au

    (40/360nm)

    Air( = 1)

  • 11

    Patterning , 140 PR reflow gate neck head

    ZEP PR SiNx dry etching selectivity dry etching gate

    stem . [16]

    2.4 0.11 T-gate pattern SEM view 2.5 PR reflow hard baking SEM view

    SF6 100sccm 20W 0.1Torr plasma dry etching 115 gate length

    , profile 2.6 . oxide B.O.E

    1:30 , Ni/Au(40/360 ) gate metal lift-off . M1 metal

    (Ni/Au 40/460 ) 250 SiNx 30 2nd passivation Air bridge, M2 metal

    (Ti/Au 50/1500 ) .

    2.6 Etching 0.11 gate foot SEM view

    Under etching

    1.6um 490nm

    395nm

  • 12

    2.7 SF6 dry etching PR SiNx selectivity

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0.1Torr, 20W 0.07Torr, 20W 0.1Torr, 40W

    ZEP Etch rate(/min)

    SiNx Etch rate(/min)

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0.1Torr, 20W 0.07Torr, 20W 0.1Torr, 40W

    ZEP Etch rate(/min)

    SiNx Etch rate(/min)

    After 140 5min bake

  • 13

    2.8 0.11 AlGaN/GaN HEMTs multi-finger (), 4x37

    2.2 DC & Pulsed I-V Measurements

    DC 4155A . 2.9

    gate schottky reverse leakage current . Gate forward turn-on

    1.1V , off-state gate reverse breakdown 1mA/mm

    20V . 0.11 target 15V

    , bias

    RF loss . gate leakage

    short length gate , epi barrier layer

    , Al mole fraction , buffer leakage current

    [17]. gate field

    , gate

    .

  • 14

    2.9 Gate schottky () reverse leakage current()

    transfer curve output 2.10 . Transconductance

    VDS = 5V , threshold IDS = 1mA/mm -2.8V .

    Gm.max VGS = -2.3V 420mS/mm , output VDS 3V

    knee VGS = 0V 900mA/mm drain .

    -6 -5 -4 -3 -2 -1 0 1 21E-12

    1E-11

    1E-10

    1E-9

    1E-8

    1E-7

    1E-6

    1E-5

    1E-4

    1E-3

    0.01

    I G[A

    /mm

    ]

    VG[V]

    -100 -80 -60 -40 -20 0-1.0

    -0.9

    -0.8

    -0.7

    -0.6

    -0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0.0

    I G[m

    A/m

    m]

    VG[V]

  • 15

    2.10 Transfer curve() output ()

    power pulsed I-V 2.11

    passivation layer gate current

    collapse . bias point Vgs = 0V , gate lag Vgs = -5V,

    drain lag Vds = 10V, 20V , drain pulse 10V on 50%

    drain . drain output

    output power .

    Gate gate head air(=1) bias electric

    field , current collapse . RF

    passivation layer 30 current collapse

    [18].

    -7 -6 -5 -4 -3 -2 -1 00

    200

    400

    600

    800

    1000

    1200

    VGS[V]

    I DS[m

    A/m

    m]

    0

    100

    200

    300

    400

    500

    Gm[m

    S/m

    m]

    0 2 4 6 8 10 12 14 16 18 200

    200

    400

    600

    800

    1000

    VGS = -4V to 0V

    I DS

    [mA

    /mm

    ]

    VDS[V]

    VDS

    = 5V

  • 16

    2.11 2x50 Pulsed I-V

    2.3 RF Measurement

    0.11 RF Network Analyzer S-parameter

    . S-parameter ,

    , RF/microwave

    .

    2.12 S-parameter Smith chart

    freq (1.000GHz to 50.00GHz)

    S(1

    ,1)

    S(1

    ,2)

    S(2

    ,1)

    S(2

    ,2)

    0 2 4 6 8 10 12 14 16 18 200.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Vgs = 0V, Vds = 0V (bias)

    Vgs =-5V, Vds = 0V

    Vgs =-5V, Vds = 10V

    Vgs =-5V, Vds = 20V

    I ds[A

    /mm

    ]

    Vds

    [V]

    Pulse width = 500ns, Separation = 1ms

  • 17

    2.13 T-gate AlGaN/GaN HEMT gain (2x50 )

    Small-signal parameters gain plot

    2.13 . MAG, U small-signal parameters

    small-signal , large-signal RF power

    FOM(Figure of Merit) .

    Gm.max Vgs fmax Vds bias point , -

    20dB/decade extrapolation 135GHz fmax .

    de-embedding probe .

    Vgs

    = -2.3V, Vds

    = 15V

    2x50um

    FT = 67GHz

    Fmax(MAG)

    = 135GHz

    Fmax

    x BV = 3.4THz-V

    Pre-de-embedded

  • 18

    3 AlGaN/GaN HEMT with Gate Field-plate Structure

    3.1 Overhang gate length split

    0.11 T-gate , gate leakage current current collapse

    RF loss , output power MMICs

    PA . gate

    . current collapse gate

    parasitic capacitance

    , parasitic current collapse

    gate leakage current .

    3.1 overhang gate .

    3.1 Overhang gate

  • 19

    T-gate , SiNx

    passivation layer 60 . SiNx parasitic

    field plate [18]. Passivation layer

    gate ZEP coating dose selectivity

    MIBK:IPA(1:1) developer 40 patterning . 60 SiNx

    dry etching 30 gate length

    . one step etching 30W 10W two step etching

    . 3.2 patterning two step etching .

    3.2 Gate foot patterning etching profile SEM view

    SF6 100sccm 0.1Torr 30W vertical etching , SiNx

    10W etching overetching damage etching profile slope .

    Gate foot patterning PMGI/ZEP:thinner 2 coating lift-off

    Under etching

    110nm

    140nm

  • 20

    . etching SiNx top opening length , gate

    head length source 0.05, drain 0.05/0.1/0.15/0.2/0.25

    split. parasitic gate drain field

    , gate metal T-gate Ni/Au(40/360) .

    3.2 Current collapse gate leakage current

    4155A pulse .

    3.3 gate schottky reverse leakage current .

    3.3 Gate schottky () reverse leakage current()

  • 21

    Forward turn-on T-gate 1.1V , reverse breakdown

    1mA/mm 60V . 0.11

    , 20V leakage current T-gate 1/4 .

    Overhang gate head length bias 40V

    bias overhang gate head length leakage current

    . gate leakage current MS contact

    T-gate field-plate gate leakage current

    [19].

    transfer curve output 3.4 .

    transconductance VDS = 5V , threshold -3V. Gm.max

    VGS = -2.8V 435mS/mm T-gate channel control . Output

    3V knee , VGS = 0V 900mA/mm drain

    . T-gate kink [20]

    . drain bias off-state current

    . off-state current gate

    .

    VDS

    = 5V

  • 22

    3.4 Transfer curve() output ()

    Output power current collapse field-plate

    gate , 3.5 pulsed I-V .

    3.5 Gate head length pulsed I-V (2x50 )

    bias point Vgs = 0V, gate lag Vgs = -5V, drain lag Vds = 10V, 20V , gate

    head length drain 0.05/0.1/0.2 plot . T-gate

    gate-drain field drain pulse 20V

    Pulse width = 500ns, Separation = 1ms

  • 23

    30% drain . gate head length

    current collapse , length

    . current collapse bias RF

    output power [21].

    3.3 RF Measurement & Optimization

    RF S-parameter .

    3.6 S-parameter Smith chart

    Small-signal parameters gain plot

    3.17 .

    Gate head length 0.05 , Gm.max Vgs

    fmax Vds bias point , -20dB/decade extrapolation

    151GHz fmax . RF power

    cut-off breakdown voltage T-gate 3

    9THz-V .

  • 24

    3.7 Overhang gate gain (2x50 )

    T-gate parasitic

    fmax . gate resistance 3.4 3.2

    , RF transconduuctance 588mS/mm 683mS/mm

    , finger parasitic

    . current collapse

    gate leakage current bias point

    fmax

    .

    parasitic capacitance current gain cut-off

    fT . drain bias Gm.max point 5V

    .

    gate head length current collapse

    fmax, fT, Cgs, Cgd length

    3.8 .

    Vgs

    = -2.5V, Vds

    = 15V

    2x50um

    FT= 61GHz

    Fmax(MAG)

    = 151GHz

    LF.GD = 0.05um Fmax

    x BV = 9THz-V

    Pre-de-embedded

  • 25

    3.8 Gate head length RF parameter (2x50 )

    Gate head length current collapse

    gate head drain 0.05 0.25 fmax

    30GHz, fT 20GHz . Cgs

    Cgd length parasitic capacitance .

    current collapse trade-off

    T-gate ,

    current collapse gate leakage current output power

    gate .

    Cgs

    = 120fF @ T-gate Cgd

    = 9.9fF @ T-gate

    fmax

    = 135GHz @ T-gate f

    T = 67GHz @ T-gate

  • 26

    4 Decrease of Gate Resistance by Double-head Gate

    4.1 PR Planarization & Double-head gate

    0.11 AlGaN/GaN HEMT RF power

    T-gate parasitic

    . gate

    fmax .

    Gate gate metal , gate length, gate width,

    gate pad . scale layout gate

    width, gate-pad gate metal top gate length

    . 4.1 double-head gate .

  • 27

    4.1 Double-head gate

    gate PR planar

    coating . PR coating

    [22] planar coating . PR

    planar coating O2 plasma ashing etch back gate metal

    . Planar coating gate PR etch back

    metal , parasitic

    .

    PMGI/ZEP:thinner 2 coating e-beam dose selectivity

    MIBK:MEK(3:2) developer patterning . Pattern

    gate metal e-beam scattering pattern gate

    head . Ni/Au(40/360 ) metal lift-off .

    planar coating PR . PR

    PR

    PR copolymer(MMA) 2000rpm 8000 . PR

    coating rpm 1500rpm rpm coating

    coating uniformity etch back .

    2000rpm coating

    PR . 4.2 PR

    rpm coating . Coating planar

    uniformity .

  • 28

    4.2 Non-planarized coating SEM view

    PR baking .

    coating PR 3 thermal budget

    . PMGI ZEP baking 190 baking

    PR . Baking ZEP patterning develop

    4.3 pattern edge crack .

    copolymer .

    4.3 Baking pattern crack (ZEP layer)

    PMGI develop stop layer PR

    . PMGI develop AZ300 bottom PR

    4.4 etch back planar PR develop

  • 29

    . copolymer AZ300

    planar .

    4.4 Without etch stop layer (), with etch stop layer () SEM view

    4.5 4.6 double-head gate SEM

    . 230 stem 380 gate head length .

    4.5 Double-head gate SEM view

    PMGI

    Copolymer

    ZEP:thinner

  • 30

    4.6 Double-head gate SEM view

    4.2 Pulsed I-V & RF Measurements

    DC double-head gate

    , current collapse .

    4.7 Double-head gate I-V

    385nm

    230nm

  • 31

    Vturn-on Breakdown voltage (@1mA/mm) Hard breakdown voltage Gm.max

    1.1V 40V ~90V 410mS/mm

    4.1 Double-head gate DC

    4.8 double-head gate pulsed I-V . bias

    point Vgs = 0V, gate lag drain lag . Single-head gate field-

    plate current collapse , air(=1) gap 2nd head

    T-gate electric field

    , .

    4.8 Double-head gate pulsed I-V (2x50 )

    4.9 4.10 fmax . MAG

    -20dB/decade extrapolation single-head 20GHz

    . bias point Gm.max Vgs = -2V, Vds fmax

    15V. 4.2 gate resistance .

    Pulse width = 500ns, Separation = 1ms

  • 32

    4.9 Single-head gate gain (4x37 )

    4.10 Double-head gate gain (4x37 )

    Single-head gate Double-head gate

    Gate resistance 3.2 0.8

    4.2 Double-head gate gate resistance

    Vgs

    = -2V, Vds

    = 15V

    4x37um

    Fmax(MAG)

    = 141GHz

    Pre-de-embedded

    Fmax

    x BV = 5.6THz-V

    Vgs

    = -2V, Vds

    = 15V

    4x37um

    Fmax(MAG)

    = 160GHz

    Pre-de-embedded

    Fmax

    x BV = 6.4THz-V

  • 33

    4.3 W-band GaN MMICs

    4.3.1

    0.11 AlGaN/GaN HEMT on Si fmax W-

    band MMICs . MMICs

    pinch-off current, threshold ,

    Gm, output current

    .

    transfer curve .

    2x2 AlGaN/GaN epi MMICs

    layout 4.11 .

    4.11 W-band MMICs 2x2 layout

    , transfer curve

    4.12 . Double-head gate metal 2nd

    2cm

    2cm

  • 34

    passivation layer SiNx 15 final passivation gate width

    100 DC (1 finger) 35 .

    4.12 35 double-head gate final passivation (), () transfer curve

    final passivation 90% double-

    head gate 0.11 AlGaN/GaN HEMT on Si

    .

    final passivation parasitic capacitance

    trade-off . MMICs

    Gm.max

    = 410 mS/mm

    (average)

    Vth

    = -3V (250mV)

    VDS

    = 5V

  • 35

    uniformity final passivation

    .

    4.3.2 MMIC

    MMICs

    . 4.13 MMICs .

    2. SiNx Pre-passivation

    3. Ohmic contact

    5. Ohmic alloy &MESA Etching

    6. SiNx Removal

    1. Surface cleaning

    Source Drain Source

    7. SiNx Passivation

    8. Gate process (foot, 1st

    head, 2nd

    head)

    4. E-beam marker

  • 36

    4.13 AlGaN/GaN HEMT MMICs

    , M1

    metal layer . MMICs M1 metal M1

    metal layer. inactive , inactive

    SiNx passivation layer . buffer leakage path

    . Buffer leakage path , RF loss , MIM

    10. SiNx 2nd

    passivation

    11. NiCr TFR

    12. Passive & Circuit M1 metal

    13. MIM dielectric deposition & etching

    14. Air bridge & M2 metal

    9. Active M1 metal

  • 37

    capacitor NiCr TFR . MIM capacitor SRF

    . 4.14 M1 metal buffer leakage current

    . inactive carbon

    doping epi buffer leakage path . GaN

    epi SiNx layer M1 metal , MESA etching ion

    implant buffer carrier . SiNx layer insulating

    pad-to-pad leakage current .

    SiNx layer , ion implant

    buffer carrier pad-to-pad leakage current .

    epi buffer , high-

    resistivity Si GaN-on-Si .

    4.14 Buffer leakage path metal pad-to-pad leakage current

    M1 metal M1 layer MMICs signal line MIM

    capacitors bottom metal roughness cleanliness .

    post-gate annealing 400

    annealing metal .

    MIM capacitor breakdown voltage .

    M1 metal MIM dielectric M1

  • 38

    metal cleanliness MIM

    capacitor breakdown .

    Au metal source splitting M1 metal

    rough , MIM capacitor breakdown metal

    source cleaning [23]. 4.15 Au metal roughness

    .

    4.15 Au metal roughness AFM (), SEM view()

    NiCr TFR . MMICs

    TFR 20/sq , NiCr 1000 .

    M1 metal (Ni/Au 40/460) , N2/NH3 SiNx 1000 MIM

    dielectric 250 ICP-CVD chamber .

    MIM capacitor NiCr TFR B.O.E

    1:7 wet etching . passivation layer SiNx MIM

    dielectric SiNx wet etch rate MIM dielectric wet etching

    passivation layer SiNx etch stop .

    air-bridge M2 metal (Ti/Au 50/1500)

    .

    Roughness Average = 1.6 nm

  • 39

    4.15 W-band MMICs Micro-depth Image

  • 40

    5

    5.1

    RF power AlGaN/GaN HEMT

    current collapse MMICs

    . GaN-on-Si , gate

    length current collapse RF power

    output power .

    current collapse gate-drain

    electric field field-plate .

    parasitic

    . current collapse RF

    power output power , field-

    plate parasitic 0.11 gate .

    gate double-head gate parasitic

    maximum oscillation frequency . 90%

    , W-band MMICs .

    5.2

    0.11 AlGaN/GaN HEMT on Si current collapse ,

    fmax , millimeter-wave power .

    GaN-on-Si epitaxial

    layer design. SiC RF epi

    growth design dislocation , buffer loss

    current collapse, leakage current .

  • 41

    current collapse

    passivation layer .

    PEALD passivation , .

    gate leakage current SF6 plasma

    fluorine trap current collapse , kink [24]

    .

    double-head gate 1st gate metal , 2nd gate metal

    . 2nd gate head stem double-head

    parasitic capacitance , gate resistance

    .

  • 42

    [1] U. K. Mishra, L. Shen, T. E. Kazior, Y. F. Wu, GaN-Based RF Power Devices and Amplifiers,

    Proceedings of the IEEE, Vol. 96(2), pp. 287-305, Feb. 2008.

    [2] S. Azam, Q. Wahab, The present and future trends in High Power Microwave and Millimeter

    Wave Technologies, InTechOpen, Mar, 2010.

    [3] T. Kikkawa, K. Joshin, M. Kanamura, GaN Device for Highly Efficient Power Amplifiers,

    FUJITSU Sci. Tech. J., Vol. 48, No. 1, pp. 40-46, Jan. 2012.

    [4] H. Sun, D. Marti, S, Tirelli, A. R. Alt, H. Benedickter, C. R. Bolognesi, Millimeter-wave GaN-

    based HEMT development at ETH-Zurich, International Journal of Microwave and Wireless

    Technologies, 2(1), 33-38, Apr. 2010.

    [5] S, Tirelli, D. Marti, H. Sun, A. R. Alt, H. Benedickter, E. L. Piner, C. R. Bolognesi, 107-GHz

    (Al,Ga)N/GaN HEMTs in Silicon With Improved Maximum Oscillation Frequencies, IEEE

    Electron Device Letters, Vol. 31, No. 4, Apr. 2010.

    [6] R. Vetury, N. Q. Zhang, U. K. Mishra, The Impact of Surface States on the DC and RF

    Characteristics of AlGaN/GaN HFETs, IEEE Transactions on Electron Devices, Vol. 48, No. 3,

    Mar. 2001.

    [7] J. W. Chung, W. E. Hoke, E. M. Chumbes, T. Palacios AlGaN/GaN HEMT With 300-GHz fmax,

    IEEE Electron Device Letters, Vol. 31, No. 3, Mar. 2010.

    [8] F. Medjdoub, M. Zegaoui, B. Grimbert, D. Ducatteau, N. Rolland, and P. A. Rolland, First

    Demonstration of High-Power GaN-on-Silicon Transistors at 40 GHz, IEEE Electron Device

    Letters, Vol. 33, No. 8, Aug. 2012.

  • 43

    [9] J. C. Her, H. J. Cho, C. S. Yoo, H. Y. Cha, J. E. Oh. K. S. Seo, " SiNx prepassivation of

    AlGaN/GaN high-electron-mobility transistors using remote-mode plasma-enhanced chemical

    vapor deposition, Japanese Journal of Applied Physics, Vol. 49, pp. 041002, Apr. 2010.

    [10] L. Wang, F. M. Mohammed, & I. Adesida, Differences in the reaction kinetics and contact

    formation mechanisms of annealed Ti/Al/Mo/Au Ohmic contacts on n-GaN and AlGaN/GaN

    epilayers, Journal of Applied Physics, 101, 013702, Jan. 2007.

    [11] G. Vanko, T. Lalinsky, S. Hascik, I. Ryger, Z. Mozolova, J. Skriniarova, M. Tomaska, I. Kostic,

    A. Vincze, Impact of SF6 plasma treatment on performance of AlGaN/GaN HEMT, Vacuum 84,

    235-237, 2010.

    [12] M. Wang & K. J. Chen, Improvement of the Off-State Breakdown Voltage With Flourine Ion

    Implantation in AlGaN/GaN HEMTs, IEEE Transactions on Electron Devices, Vol. 58, No. 2,

    Feb. 2011.

    [13] J. H. Kim, H. G. Choi, M. W. Ha, H. J. Song, C. H. Roh, J. H. Lee, J. H. Park & C. K. Hahn,

    Effects of nitride-based pretreatment prior to SiNx passivation in AlGaN/GaN high-electron

    mobility transistors on silicon substrates, Japanese Journal of Applied Physics, Vol. 49, No. 4,

    pp. 04DF05-1, Apr. 2010.

    [14] S. Han, Y. H. Oh, M. S. Lee, D. H. Kim, K. S. Seo Influence of in situ N2 Plasma Pretreatment

    on the SiN Prepassivation of AlGaN/GaN HEMT, International Conference on Solid State

    Devices and Materials, pp. 212-213. 2012.

    [15] A. S. Wakita., et al., Novel high yield tri-layer resist process for 0.1 T-gate fabrication,

    Journal of Vacuum Science & Technology B, Vol. 13, (6), pp. 2725-2728, Nov. 1995.

    [16] D. J. Meyer, B. P. Downey, R. Bass, D. S. Katzer, S. C. Binari, 40nm T-Gate Process

    Development using ZEP Reflow, CS MANTECH Conference, Apr. 2012.

    [17] S. Sudharsanan & Shreepad Karmalkar, Modeling of reverse gate leakage in AlGaN/GaN high

  • 44

    electron mobility transistors, Journal of Applied Physics, 107, 064501, Mar. 2010.

    [18] Yi Pei, S. Rajan, M. Higashiwaki, Z. Chen, S. P. DenBaars, U. K. Mishra, Effect of Dielectric

    Thickness on Power Performance of AlGaN/GaN HEMTs, IEEE Electron Device Letters, Vol.

    30, No. 4, Apr. 2009.

    [19] W. Saito, M. Kuraguchi, Y. Takada, K. Tsuda, I. Omura, T. Ogura, Influence of Surface Defect

    at AlGaN/GaN HEMT Upon Schottky Gate Leakage Current and Breakdown Voltage, IEEE

    Transactions on Electron Devices, Vol. 52, No. 2, Feb. 2005.

    [20] M. Wang & K. J. Chen, Kink Effect in AlGaN/GaN HEMTs Induced by Drain and Gate

    Pumping, IEEE Electron Device Letters, Vol. 32, No. 4, Apr. 2011.

    [21] S. C. Binari, K. Ikossi, J. A. Roussos, W. Kruppa, D. Park, H. B. Dietrich, D. D. Koleske, A. E.

    Wickenden, R. L. Henry, Trapping Effects and Microwave Power Performance in AlGaN/GaN

    HEMTs, IEEE Transaction on Electron Devices, Vol. 48, No. 3, Mar. 2001.

    [22] G. J. Burek, M. A. Wistey, U. Singnisetti, A. Nelson, B.J. Thibeault, S. R. Bank, M. J. W.

    Rodwell, A. C. Gossard, Height-selective etching for regrowth of self-aligned contacts using

    MBE, Journal of Crystal Growth, 311, Nov. 2008.

    [23] J. Maeng, Development of Embedded Capacitor in a Thin-film Multichip Module-Deposited

    Architecture, Seoul National University, Master Thesis, Feb. 2008.

    [24] R. Cuerdo, Y. Pei, Z. Chen, S. Keller, S. P. DenBarrs, F. Calle, and U. K. Mishra, The Kink

    Effect at Cryogenic Temperatures in Deep Submicron AlGaN/GaN HEMTs, IEEE Electron

    Device Letters, Vol. 30, No. 3, Mar. 2009.

  • 45

    Abstract

    In this thesis, improvement of fmax on AlGaN/GaN HEMTs by reducing current collapse effects

    and gate leakage current was studied for W-band power applications.

    In general, the advantages of GaN are the higher electron mobility, saturation velocity, and

    thermal conductivity than other semiconductor materials such as Si and GaAs. And one of the most

    superior characteristic is high breakdown voltage because of high energy band gap, so high power

    density makes possible that size of GaN module can be small. Through these features, GaN based

    HEMT has investigated for substituting Si, GaAs RF power device, and AlGaN/GaN on high

    resistivity Si(111)- substrate is a low cost solution for the lower microwave frequency bands.

    On the other hand, the problems of these sub-micrometer AlGaN/GaN HEMTs that have not

    been cleared yet are current collapse effects and gate leakage currents. To reduce these drawbacks,

    gate with field plate structure was adopted instead of T-gate structure which was used generally to

    reduce parasitic effects, and the applied gate structure was optimized by splitting the length of field

    plate. As a result, the degradation by parasitic effects was minimized, and possible bias range was

    increased. The gate resistance of optimized device was additionally required to be small to improve

    fmax. From this reason, double-head gate process was challenged and high fmax was obtained.

    The results in this research showed capacities of AlGaN/GaN HEMTs on Si-substrate that can be

    applied for power device at W-band.

    keywords : AlGaN/GaN HEMTs, millimeter-wave, gate structure, current collapse,

    gate resistance

    Student Number : 2011-23356

    1 1.1 1.2

    2 Conventional AlGaN/GaN W-band Power HEMT2.1 Sub-micrometer AlGaN/GaN HEMT 2.2 DC & Pulsed I-V Measurements2.3 RF Measurement

    3 AlGaN/GaN HEMT with Gate Field-plate Structure3.1 Overhang gate length split3.2 Current collapse gate leakage current 3.3 RF Measurement & Optimization

    4 Decrease of Gate Resistance by Double-head Gate4.1 PR Planarization & Double-head gate 4.2 Pulsed I-V & RF Measurements4.3 W-band GaN MMICs(Monolithic Microwave Integrated Circuits) 4.3.1 4.3.2 MMIC

    5 5.1 5.2

    Abstract