· disadvantages: complex target design outline motivation background examples exercise 8...

32
1 www.DRAFT.ugent.be Simulation of Metal TRAnport SIMTRA : a tool to predict and understand deposition K. Van Aeken, S. Mahieu, D. Depla 2 www.draft.ugent.be 1) Motivation : Why do we calculate ? 2) Scientific background : How do we calculate ? 3) Examples : What can we calculate ? 4) Some conclusions Outline K. Van Aeken, S. Mahieu, D. Depla J. Phys. D: Appl. Phys. 41 205307 (2008) Outline Motivation Background Examples Exercise

Upload: others

Post on 21-Sep-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

1

www.DRAFT.ugent.be

Simulation of

Metal

TRAnport

SIMTRA : a tool to predict and understand deposition

K. Van Aeken, S. Mahieu, D. Depla

2

www.draft.ugent.be

1) Motivation : Why do we calculate ?2) Scientific background : How do we calculate ?3) Examples : What can we calculate ?4) Some conclusions

Outline

K. Van Aeken, S. Mahieu, D. Depla J. Phys. D: Appl. Phys. 41 205307 (2008)

OutlineMotivationBackgroundExamplesExercise

Page 2:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

2

3

www.draft.ugent.be

Motivation

The results of each deposition technique is a thin film with given properties

A few relevant properties are thickness, crystallographic orientation, morphology, density, composition, …

All depend on : - the type of arriving species- the properties of the particles (charge, energy, …)- the number of arriving particles

The major players are of course the film forming particles

So SIMTRA is developed to predict the number and the properties of the particles leaving the source and arriving at the substrate.

The code is optimized for magnetron sputter deposition (see further)

OutlineMotivationBackgroundExamplesExercise

4

www.draft.ugent.be

Motivation

Why developing a new simulation code ?

-Most codes are research group specific.-Most codes are hard to access .-Most codes are not user-friendly. They miss a good interface to assist the user.

An easy to access program (www.draft.ugent.be )with a simple interface (three VB sheets)is the answer.

OutlineMotivationBackgroundExamplesExercise

Page 3:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

3

5

www.draft.ugent.be

Scientific background : magnetron sputter deposition

Magnetron sputter deposition is based on a magnetically assistedgas discharge

Source materials is the cathode, or targetDischarge voltage : order 400 VWorking pressure (argon gas) :1x10-3 tot 1x10-2 mbar

Behind the cathode magnetsare placed. In this way the gas discharge can bemaintained at lowerpressures.Reason : higher depositionrates

OutlineMotivationBackgroundExamplesExercise

6

www.draft.ugent.be

Scientific background : magnetron types

2 inch diameter cathodeCilindrical planar kathodeLab scale

2’’

15’’

4 1/3’’ Rectangular planar cathodeIndustrial scale

Intrinsic disadvantages : Formation of an erosion groove

Less stable in reactive mode

Advantages : simple target design

OutlineMotivationBackgroundExamplesExercise

Page 4:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

4

7

www.draft.ugent.be

Scientific background : magnetron types

Rotating cylindricalmagnetron

18 cm : but can be extended

5 cm

45 cm

14 cm

Advantages : Stable in reactive modeNo erosion groove (i.e. longer lifetime)

Disadvantages : Complex target design

OutlineMotivationBackgroundExamplesExercise

8

www.draft.ugent.be

Scientific background : Target erosion : starting points of the sputtered

particles

Cooperation with VITO

OutlineMotivationBackgroundExamplesExercise

Page 5:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

5

9

www.draft.ugent.be

Scientific background : sputtering

Magnetron sputter deposition is an PVD technique

Physical Vapour Deposition

The production of a vapour by a physical process. Thisprocess is sputtering.Ions from the plasma hit the target, and target atoms are ejected. These move towards the substrate to form the film.

OutlineMotivationBackgroundExamplesExercise

10

www.draft.ugent.be

Scientific background : sputtering

0.001

0.01

0.1

1

10

sputter yield

10 100 1000 10000 100000

ion energy (eV)

The number of atoms sputtered per ion depends on the material and the discharge voltageFor metal : 0.5 to 2 (Al to Cu)For oxides : much lower 0.07 (Al)

OutlineMotivationBackgroundExamplesExercise

Page 6:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

6

11

www.draft.ugent.be

Scientific background : angular distribution of sputtered particles

Heart-like emissionDeviation from cosine

Propose differential yield :

∑=

5

12

2

cos)(i

i

ic

d

Ydθθ

Fit coefficients ci from thesimulated deposition profilesof an angular base set

Nascent angular distribution :

OutlineMotivationBackgroundExamplesExercise

12

www.draft.ugent.be

Scientific background : energy distribution1.0

0.8

0.6

0.4

0.2

0.0

relative number density

0.001 0.01 0.1 1 10 100

energy copper atoms (eV)

Copper evaporated at 1300 K

Copper sputtered by 300 eV Ar+

Thompson distribution SRIM energy distribution

Usb/2

average energy of sputtered particles

OutlineMotivationBackgroundExamplesExercise

Page 7:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

7

13

www.draft.ugent.be

Scientific background : sputter yield

To calculate a deposition rate, the sputter yield of the material must be known.

What yield to use ?Sputter yields Cu

0.5

1

1.5

2

2.5

200 300 400 500 600 700

Vd of Ei

Yield

exp

Yam model

Tridyn

srim

We decided to measure them.

OutlineMotivationBackgroundExamplesExercise

14

www.draft.ugent.be

Scientific background : reactive magnetron sputtering

Magnetron sputer deposition allows to deposit compounds.

Oxides, nitrides : generally no conductivetarget available

Solution : the reactive gas is added to the discharge

Reaction occurs mainly on the substate, but at sufficient high reactive gas flows also on the target.

-

reactive gas : O2

SN N

+

Target

Ar-ions

Consequences ?

OutlineMotivationBackgroundExamplesExercise

Page 8:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

8

15

www.draft.ugent.be

Scientific background : reactive magnetron sputtering

390

380

370

360

350

340

330

target voltage (V)

1.41.21.00.80.60.40.20.0

oxygen flow (sccm)

300

250

200

150

100

50

depositio

n ra

te (m

ass unit/s

)

/ target voltage / deposition rate

full symbols : additionopen symbols : removal

Reactive deposition of TiO2

OutlineMotivationBackgroundExamplesExercise

16

www.draft.ugent.be

Scientific background : SIMTRA

Calculate free path length

High energy

Near thermal energy

Thermal

Initialization Generate particles-planar : radial erosion profile-cylindrical : measured or simulated erosion profile

BoundaryImplements geometry

Does particles’ trajectory intersects surface before collision ?

NOYES

m lnXλ = −λ

m

g

1

nλ =

σs

m

g r

v

n vλ =

σ

m

sg

g

1

mn 1

m

λ =

σ +

OutlineMotivationBackgroundExamplesExercise

Page 9:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

9

17

www.draft.ugent.be

Scientific background : SIMTRA

NOBoundary

Implements geometryDoes particles’ trajectory

intersects surface before collision ?

Describe collision :Calculate scattering angle

Calculate new velocity

com com2

R 2

2

com

1(E ,p) 2p dr

V(r) pr 1

E r

θ = π −

− −∫

Go back to free path calculation

YES

Deposition

Generate new particle

OutlineMotivationBackgroundExamplesExercise

18

www.draft.ugent.be

Scientific background : SIMTRA

com com2

R 2

2

com

1(E ,p) 2p dr

pr 1

E r

V(r)

θ = π −

− −∫

OutlineMotivationBackgroundExamplesExercise

Page 10:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

10

19

www.draft.ugent.be

Scientific background : SIMTRA

Internuclear distance r (Å)Interatomicpotential (eV)

Internuclear distance r (Å)Interatomicpotential (eV)

Screened Coulomb potential :Only repulsive !

Quantum-mechanical potentialsAttractive and repulsive(only Cu-Ar and Al-Ar)

OutlineMotivationBackgroundExamplesExercise

20

www.draft.ugent.be

Examples : Verification of the code ?

The Metal Flux Monitor

C. Eisenmenger-SittnerM. Horkel

Angular distribution of metal flux Thickness Profile

Pinhole Camera : A particle that passes the orifice (diameter 1mm) at

a given angle x impinges the substrate a the position y

OutlineMotivationBackgroundExamplesExercise

Page 11:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

11

21

www.draft.ugent.be

Examples : Verification of the code ?

Comparison Cu at variable pressures

Comparison Al at variable pressures

OutlineMotivationBackgroundExamplesExercise

22

www.draft.ugent.be

Examples : Deposition rate distribution for a rotating magnetron

Measure deposition rate with a

quartz crystal microbalance for :

Cu, Ti, Al target

Ar pressure : 0.3, 0.6 and 1 Pa

as function of θ at : 3 radial distances : r1,r2,r3 3 z-positions : z1,z2,z3

⇒Outward radial metal flux (r,θ,z)

Compare to simulation

Al, 0.3Pa Ar

r = r2, θ = -30°, z = z2Vd = 357 V, I = 0.45 A

Example :

OutlineMotivationBackgroundExamplesExercise

Page 12:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

12

23

www.draft.ugent.be

Examples : Deposition rate distribution for a rotating magnetron

P = 0.3 Pa

r = r1

Spatial dependence Pressure dependence :

r = r1z = z2

OutlineMotivationBackgroundExamplesExercise

24

www.draft.ugent.be

Examples : A simple thing to start

We can expect that the deposition rate decreases as a function of the target-substrate distance.What is the relationship ? We expect a 1/d2 relationship at sufficient high pressure. Well, let us test this idea with SiMTRA

A planar circular

magnetron (2inch)

mounted in a cubic

vacuum chamber

(1x1x1 m). The

substrate was a circular

plate of 1x1 cm placed

under the target centre

at several distances.

The target material was

aluminum.

Using an output file of SIMTRA and MatLab one can check the configuration

OutlineMotivationBackgroundExamplesExercise

Page 13:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

13

25

www.draft.ugent.be

Examples : A simple thing to start

60000

50000

40000

30000

20000

10000

0

5.568101520100

0.0001 0.005 0.01 0.015 0.02 0.025 0.03 0.033

0.1 Pa

0.3 Pa

0.6 Pa

0.9 Pa

d-2 (cm

-2 )

target-substrate distance d (cm)

number of arriving particles

Seems to fit quite well.

OutlineMotivationBackgroundExamplesExercise

26

www.draft.ugent.be

Examples : Prediction of the composition for dual planar magnetrons

Experimental set-up

Thanks to M. Saraiva

OutlineMotivationBackgroundExamplesExercise

Page 14:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

14

27

www.draft.ugent.be

Examples : Prediction of the composition for dual planar magnetrons

•Discharge current

Mg, Cr = 0.5 A

•Source-sample distance

•Oxygen flow

Mg-Cr-O

20

18

16

14

12

10

8

09121316192125273241

20

18

16

14

12

10

850403020100

7

6

5

4

3

2

4952525254545758605959

20

18

16

14

12

10

8

1008175736558504133220

target position Mg

target position Cr

oxygen flow

Mg concentration (%)

Cr concentration (%)

O concentration (%)

target-sample distance (cm)

oxygen flo

w (sccm)

Mg metal ratio (%)

composition

OutlineMotivationBackgroundExamplesExercise

28

www.draft.ugent.be

Examples : Prediction of the composition for dual planar magnetrons

100

80

60

40

20

0100806040200

100

80

60

40

20

0100806040200

100

80

60

40

20

0100806040200

100

80

60

40

20

0100806040200

100

80

60

40

20

0100806040200

M/(M+Mg) %

(R'/(R'+1))x100

Mg(Al)O Mg(Cr)O Mg(Ti)O

Mg(Y)O Mg(Zr)O

open symbols : experimental

closed symbols : SiMTRA

: fitted line through the experimental points

OutlineMotivationBackgroundExamplesExercise

Page 15:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

15

29

www.draft.ugent.be

Examples : Prediction of the composition for dual rotating

magnetrons

Setup:

Cu - target Al - targetshield in order

to minimize

re-deposition

discharge

OutlineMotivationBackgroundExamplesExercise

30

www.draft.ugent.be

Examples : Prediction of the composition for dual rotating magnetrons

Simulation : Separate calculation for both magnetronsUsing correct sputter yields for Al and CuCalculate the composition

Experiment : Measuring Cu/Al using EPMA and EDX

OutlineMotivationBackgroundExamplesExercise

Page 16:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

16

31

www.draft.ugent.be

Examples : Prediction of the composition for dual rotating magnetrons

100

80

60

40

20

0

at. %

Cu

50403020100

distance from chamber wall (cm)

0.3 A exp

0.3 A SiMTRA 0.6 A exp

0.6 A SiMTRA 0.9 A exp

0.9 A SiMTRA

1.0

0.8

0.6

0.4

0.2

relative # of atoms arriving at substrate

50403020100

distance from chamber wall (cm)

Al exp

Al SiMTRA Cu exp

Cu SiMTRA

Deposition of Cu-Al: SiMTRA vs.

experiments

• discharge current

Cu = 0.3 A, Al = 0.3 - 0.9 A

• source-sample distance = 9.5 cm

• SiMTRA can be used to predict

composition in a dual magnetron

setup

Thanks to F. Boydens

OutlineMotivationBackgroundExamplesExercise

32

www.draft.ugent.be

Examples : Reactive magnetron sputtering : condition of the substrate

t1 θ−

c1 θ−

F

F1

F2

F4F3

The composition at the substrate is defined by the deposition rate on the substrate, and the reactive gas pressure

( ) ( ) ( )c

c

t

tMc

c

t

tNccA

A1Y

e

J1

A

AY

e

J1F20 θθ−

−θ−θ

+θ−α=

Homogeneous deposition and steady state conditions:

OutlineMotivationBackgroundExamplesExercise

Page 17:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

17

33

www.draft.ugent.be

Examples : Reactive magnetron sputtering : condition of the substrate

( ) ( ) ( )c c,i N t t c,i M t td c, ,i ,i d i

J J0 2 F 1 Y A 1 Y 1 A

e ef f

= α − θ + θ − θ − − θ θ

Subdivide the substrate in several cells and the condition of cell i can be calculated by

The fraction fd,i of sputtered atoms arriving at each cell i can be calculated with SiMTRA. So, we included the output of SiMTRA in another simulation tool (also available at www.draft.ugent.be) RSD2009.

OutlineMotivationBackgroundExamplesExercise

34

www.draft.ugent.be

Examples : Reactive magnetron sputtering : condition of the substrate

0.37

0.35

0.33

0.31

0.29

Total pressure (Pa)

3.02.01.00.0

Oxygen flow (sccm)

Blue : metalRed : oxide

Thanks to Wouter Leroy

OutlineMotivationBackgroundExamplesExercise

Page 18:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

18

35

www.draft.ugent.be

Examples : Negative oxygen emission

M+

O-

Masspec

Y or Al

P(Ar) 0.4 PaP(O ) 0.04 Pa2

8 cm

Measurement of negative oxygen emission during reactive magnetron sputtering

OutlineMotivationBackgroundExamplesExercise

36

www.draft.ugent.be

Examples : Negative oxygen emission

100

101

102

103

104

Cps (a.u.)

25020015010050E (eV)

exp O SiMTRA O2 SiMTRA

YO SiMTRA YO2 SiMTRA O-

O2

- =>

O + O-YO

- =>

Y + O-

YO2

- =>

YO + O-

100

101

102

103

104

Cps (a.u.)

30025020015010050 E (eV)

exp O SiMTRA O2 SiMTRA

AlO SiMTRA AlO2 SiMTRAO

-

O2

- =>

O + O-

AlO- =>

Al + O-

AlO2

- =>

AlO + O-

VYOM

OMxV

VYOM

OMxV

VOM

OMxV

VOM

OMxV

d

d

d

d

5.24)(

)(

28)(

)(

5.92)(

)(

185)(

)(

2

2

=

=

=

=

VAlOM

OMxV

VAlOM

OMxV

VOM

OMxV

VOM

OMxV

d

d

d

d

78)(

)(

108)(

)(

145)(

)(

290)(

)(

2

2

=

=

=

=

Simulation of the energy distribution

OutlineMotivationBackgroundExamplesExercise

Page 19:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

19

37

www.draft.ugent.be

Examples : Negative oxygen emission

0°10°

20°

-30° 30°

-20°

-10°

Massp

ec

Masspec

Masspec

Masspec

Masspec

Masspec

Massp

ec

Direction of the negative ions.

OutlineMotivationBackgroundExamplesExercise

38

www.draft.ugent.be

Examples : Negative oxygen emission

'O exp' 'O SiMTRA' 'O/Al SiMTRA (a.u.)' 'magnetron'

0°10°

20°

-30° 30°

-20°

-10°

Al Y

'O exp' 'O SiMTRA' 'O/Y SiMTRA (a.u.)' 'magnetron'

0°10°

20°

-30° 30°

-20°

-10°

Thanks to Stijn Mahieu

OutlineMotivationBackgroundExamplesExercise

Page 20:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

20

39

www.draft.ugent.be

Examples : momentum flux

Opening area ATorsion plate

Torsion wire

reflector

Front view Back view

Measure steady state rotation angle => know momentum flux

OutlineMotivationBackgroundExamplesExercise

40

www.draft.ugent.be

Examples : momentum flux

15

12

9

6

3

Hardness (GPa)

40x10-21

3020100

Measured Mtot (kgm/s)

Contribution of backscatter ions, sputtered neutrals to the total momentum flux can be calculated using SIMTRA

OutlineMotivationBackgroundExamplesExercise

Page 21:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

21

41

www.draft.ugent.be

Examples : Biaxial aligned thin films

Out-of-

planeGrain boundary

In-

plane

Only preferred out-of-planeorientation : uniaxialalignment

Out-of-

planegrain

boundary

In-

plane

Preferred in-plane and out-of-plane orientation: biaxialalignment

FWHM

XRD pole-

figures

OutlineMotivationBackgroundExamplesExercise

42

www.draft.ugent.be

Examples : Biaxial aligned thin films

Zone T growth: as seen in plan view

- growth rate anisotropy due to anisotropy in capture cross-section

of incoming adatoms

Direction of

incoming

material

Capture length

(111)

(111)

(111)

(111)

Sketch of plan view

OutlineMotivationBackgroundExamplesExercise

Page 22:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

22

43

www.draft.ugent.be

Examples : Biaxal aligned thin filmsOutlineMotivationBackgroundExamplesExercise

44

www.draft.ugent.be

Conclusion

The code can give an answer to quite some questions related to

Deposition rateCompositionEnergy of deposited sputtered particlesAnd probably you can invent a few more …

In that case, or if you wish to cooperate on this projectwe are ready to assist you …

Contact : [email protected]

Cost of SiMTRA : A scientific return in joint papers is a good alternative for money.

Page 23:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

23

45

www.draft.ugent.be

Exercise : vacuum chamber

The influence of a shutter on the deposition profile.

Set-up

Cylindrical vacuum chamber : diameter : 60 cmlength : 50 cm

60 cm

50 cm

OutlineMotivationBackgroundExamplesExercise

46

www.draft.ugent.be

Exercise : gas element, pressure, temperatureOutlineMotivationBackgroundExamplesExercise

Page 24:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

24

47

www.draft.ugent.be

Exercise : the source Lab magnetron 2”OutlineMotivationBackgroundExamplesExercise

48

www.draft.ugent.be

Exercise : the source : position

60 cm

50 cm

The centre of the axis is in the middle of the magnetron

So, in the middle of the vacuum chamber lidand z=0.035 m

OutlineMotivationBackgroundExamplesExercise

Page 25:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

25

49

www.draft.ugent.be

Exercise : let’s make a cylindrical substrate

1 cm

2 cmThis object consists of 3 surfaces !1) Plane piece : outer boundary circle2) Cylindrical piece3) Plane piece : outer boundary circle

This tells to SIMTRA where the surfaces are located in the reference system of the object (see manual, and next slide)

OutlineMotivationBackgroundExamplesExercise

50

www.draft.ugent.be

Exercise : the position vectors for the substrate

2 cm

x’

z’

y’

Reference system of the object

c

a

b-0.005-0.010

-0.00500.01

-0.00500

OutlineMotivationBackgroundExamplesExercise

Page 26:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

26

51

www.draft.ugent.be

Exercise : the position vectors for the substrate

2 cm

x’

z’

y’

Reference system of the object

c

a

b

0.0050.010

0.00500.01

0.00500

OutlineMotivationBackgroundExamplesExercise

52

www.draft.ugent.be

Exercise : the position vectors for the substrate

2 cm

x’

z’

y’

Reference system of the object

-0.0050.01

+0.00500

-0.00500

OutlineMotivationBackgroundExamplesExercise

Page 27:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

27

53

www.draft.ugent.be

Exercise : position the substrate

60 cm

50 cm

X : 0Y : 0Z : 0.175 m

10 cm

Magnetron length : 7 cmCentre of the substrate : 0.5 cmAnode-substrate top surface : 10 cm

OutlineMotivationBackgroundExamplesExercise

54

www.draft.ugent.be

Exercise : check the output : Matlab file : plotdepositie

This looks just great !

OutlineMotivationBackgroundExamplesExercise

Page 28:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

28

55

www.draft.ugent.be

Let us calculate : the deposition profile on the top surface

2.0

1.5

1.0

0.5

0.0

2.01.51.00.50.0

Yellow is zero.

What is the effect of the pressure ?

1 4 7

10

13

16

19

22

25

28

R1

R4

R7

R10

R13

R16

R19

R22

R25

R28

20-25

15-20

10-15

5-10

0-5

OutlineMotivationBackgroundExamplesExercise

56

www.draft.ugent.be

Repeat the simulations at different pressures

45x103

40

35

30

25

20

15

10

5

number of arriving atoms

86420

argon pressure (Pa)

OutlineMotivationBackgroundExamplesExercise

Page 29:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

29

57

www.draft.ugent.be

Including a shutter …

The shutter is built from a rod and a circular disk.

60 cm

50 cm

The rod is 38 cm long and has a diameter of 1 cm. Make it.

The position of the rod is 2 cm off centre, and connected to the back of the chamber

OutlineMotivationBackgroundExamplesExercise

58

www.draft.ugent.be

Including a shutter …(2)

The shutter is built from a rod and a circular disk.

60 cm

50 cm

The disk is 10 cm in diameter and 1 mm thick. Make it…

Its centre is at 7 cm in X and 2 cm in Y, and connected to the rod.

OutlineMotivationBackgroundExamplesExercise

Page 30:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

30

59

www.draft.ugent.be

Exercise : check the output : Matlab file : plotdepositie

This looks just great !

OutlineMotivationBackgroundExamplesExercise

60

www.draft.ugent.be

Repeat the simulations at different pressures

45x103

40

35

30

25

20

15

10

5

0

number of arriving atoms

86420

argon pressure (Pa)

no shutter

with shutter

The introduction of the shutter lowers the deposition rate as the shutter collects atoms which can not reach the substrate anymore.

But there is more …

OutlineMotivationBackgroundExamplesExercise

Page 31:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

31

61

www.draft.ugent.be

Let us look at the distributions

25

20

15

10

5

0

20100

0.25 Pa

25

20

15

10

5

0

20100

0.5 Pa

25

20

15

10

5

0

20100

1 Pa

25

20

15

10

5

0

20100

2 Pa

25

20

15

10

5

0

20100

3 Pa

25

20

15

10

5

0

20100

4 Pa

25

20

15

10

5

0

20100

5 Pa

25

20

15

10

5

0

20100

8 Pa

Distorted deposition profile …

OutlineMotivationBackgroundExamplesExercise

62

www.draft.ugent.be

Let us look at the distributions

25

20

15

10

5

0

20100

Weighted centre position

Error…

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

off centre position (a.u.)

86420

pressure (Pa)

with shutter

without shutter

25

20

15

10

5

2520151050

OutlineMotivationBackgroundExamplesExercise

Page 32:  · Disadvantages: Complex target design Outline Motivation Background Examples Exercise 8 Scientific background : Target erosion : starting points of the sputtered particles CooperationwithVITO

32

63

www.draft.ugent.be

And what about the energy ?

0.01

2

4

6

0.1

2

4

6

1

2

4

6

10

average energy (eV)

8 9

0.12 3 4 5 6 7 8 9

12 3 4 5 6 7 8

pressure (Pa)

without shutter

with shutter

Thermal energy