direct thermal to electric energy conversion device

Upload: pedro-penas

Post on 04-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Direct Thermal to electric energy conversion device

    1/13

    Direct Thermal Electric Conversion Device

    Direct Thermal Electric Conversion Device

    El Padre nos colma de bienes

    Demos gracias al Padre

    1 Introducing the device and objectives.

    This paper proposes a device aimed at thermal energy conversion (from any source) into electrical

    energy.

    It is expected that once developed device has a conversion efficiency greater than 30%.

    Furthermore would have other features.

    Reliable device. (Its working principle of isolation from the outside gives it an important

    capability not subject to wear and tear items).

    Device without moving parts. The device would require a complete developed compressor

    but this rotor can be of magnetic type to increase its reliability.

    Device with low maintenance requirements

    The device is aimed at working temperatures below 170 C. The development of this device would

    provide an important opportunity for people to have a quality of energy from a variety of sources.

    Currently the mechanisms of thermal energy conversion (exposed to temperature) are nonexistent or

    are very expensive there. The development of this device should provide people with a useful tool

    to solve many problems related to energy.

    This document sets out the principles of operation, construction technologies for their study and

    references to assist in their development.

    This document is intended for college students, specialists and those who are interested in

    developing a device of this kind.

    2 Introduction. Fuel Cells.

    To give background on the device we want to expose is necessary to talk about fuel cells, however

    this device is not a fuel cell.

    Is currently undertaking a major effort to develop the hydrogen economy.

    This economy is based on hydrogen as an energy carrier. Especially expected use in the

    transportation sector.

    The hydrogen economy has resulted in an important development in fuel cells.

    Pgina n 1 de 13

  • 7/30/2019 Direct Thermal to electric energy conversion device

    2/13

    Direct Thermal Electric Conversion Device

    Fuel cells are aimed to replace traditional combustion engine Otto cycle or Diesel cycle.

    In favor of fuel cells can exhibit achievable efficiences.

    The efficience of diesel engines around 35% for small engines and up to 50% for large motors.

    The efficience of fuel cells ranging from 40% to 60% depending on the type of technology

    However the technology of fuel cells is not yet mature to compete with internal combustion engines

    due to the half life of the fuel cells. Currently the average life of a fuel cell designed to fulfill the

    tasks of a diesel engine just reaches 20% on the average life of a diesel engine.

    The device that is exposed below is possible to build thanks to advances made in this field.

    3 Introduction

    This paper proposes to build a device that converts thermal energy from any source into electrical

    energy directly. This device would have the following characteristics:

    No moving parts. It is robust and compact.

    Work with temperatures below 200 C.

    It is a simple system that is easy to construct and has a light maintenance.This system allows has features like:

    It can be attached to the exhaust pipe of an internal combustion engine to recover energy from the

    flue gases.

    Can be coupled to any heat source such as a cogeneration system.

    You can build efficient systems for electrical energy conversion from natural gas burning in isolated

    systems for pipelines, oil pipelines, etc..

    This device is based on electrical production processes of a fuel cell.

    Pgina n 2 de 13

  • 7/30/2019 Direct Thermal to electric energy conversion device

    3/13

    Direct Thermal Electric Conversion Device

    4 Description of the thermal electric conversion:

    * Nickel porous elements. The central element, yellow, is a cation transport membrane "Nafion".

    El funcionamiento es el siguiente:

    1. Hydrogen (H2) enters into a heated chamber where temperature and pressure is acquired.

    2. The hot hydrogen in contact with nickel. Hydrogen is adhered to the wall of nickel in the

    form of H +. Hydrogen electrons are located in the electronic network of nickel.3. The pressure and temperature of the hot chamber to push the H + that are attached to the

    wall of the nickel to the Nafion membrane.

    4. The Nafion membrane only allows the passage of H +, the electrons have to go through an

    external circuit. (Here is where we get the electricity in the form of electrical current)

    5. Driven by the pressure and temperature of the hot reservoir H + reach the element nickel is

    in the cold.

    6. Due to the drop in temperature and the thrust of the H + coming from the hot the H + that

    has cooled recovers its electrons and becomes gaseous H2.

    7. The H2 gas is used again by a small compressor to start the cycle again.

    Pgina n 3 de 13

    Cold H2 * H+ * Cold H2

    H+

    Hot point Cold point

    e-

    Cold H2

    Internal Zone

    External Zone

    ElectricalEnergy

    out

    Thermal

    Energy

    into

    Thermal

    Energy

    out

  • 7/30/2019 Direct Thermal to electric energy conversion device

    4/13

    Direct Thermal Electric Conversion Device

    4.1 What is the expected performance of this device?

    The true performance of the device is expected maximum of 60%. However it is expected that at

    least one performance obtained at least 30% of the available heat.

    4.2 Considerations on the development of this device:

    1. The technology needed to build the device is available.

    2. It is a compact and robust. The inner zone is differentiated from the outside so that no wear

    or aging.

    3. It is a simple device so the budget for development is low.

    4. It is a modular device with great capacity to adapt to different industrial requirements.

    5 Study of the thermal irreversibilities

    This chapter attempts to assess the potential of studying device efficiency heat losses and thermal

    irreversibilities are responsible for the downturn in the performance of any heat engine.

    Suppose we start from hydrogen gas with the following conditions:

    Presin 1 bar

    Temperatura 25C

    Volumen: It can take any reference volume since this first study to estimate the start and endcameras have the same volume.

    Assumption important for the study: It is assumed that the heat input by the camera is hot and the

    heat output by the cold. The rest of the system is assumed to be isolated and therefore suffers no

    heat loss through radiation, convention or conduction.

    Caractersticas del Hidrgeno. (H2)

    Propiedades del gasPeso Molecular

    Peso Molecular: 2.016 g/mol

    Fase Slida

    Punto de fusin: -259 C

    Calor latente de fusin (1,013 bar, en el punto triple) : 58.158 kJ/kg

    Fase lquida

    Densidad del lquido (1.013 bar en el punto de ebullicin) : 70.973 kg/m3

    Equivalente Lquido/Gas (1.013 bar y 15 C (59 F)) : 844 vol/vol

    Punto de ebullicin (1.013 bar) : -252.8 C

    Calor latente de vaporizacin (1.013 bar en el punto de ebullicin) : 454.3 kJ/kg

    Punto Crtico

    Temperatura Crtica : -240 C

    Pgina n 4 de 13

  • 7/30/2019 Direct Thermal to electric energy conversion device

    5/13

    Direct Thermal Electric Conversion Device

    Presin Crtica: 12.98 bar

    Densidad Crtica : 30.09 kg/m3

    Punto triple

    Temperatura del punto triple: -259.3 C

    Presin del punto triple : 0.072 bar

    Fase gaseosa

    Densidad del gas (1.013 bar en el punto de ebullicin) : 1.312 kg/m3

    Densidad del Gas (1.013 bar y 15 C (59 F)) : 0.085 kg/m3

    Factor de Compresibilidad (Z) (1.013 bar y 15 C (59 F)) : 1.001

    Gravedad especfica (aire = 1) (1.013 bar y 21 C (70 F)) : 0.0696

    Volumen Especfico (1.013 bar y 21 C (70 F)) : 11.986 m3/kg

    Capacidad calorfica a presin constante (Cp) (1 bar y 25 C (77 F)) : 0.029 kJ/(mol.K)

    Capacidad calorfica a volumen constante (Cv) (1 bar y 25 C (77 F)) : 0.021 kJ/(mol.K)

    Razn de calores especficos (Gama:Cp/Cv) (1 bar y 25 C (77 F)) : 1.384259

    Viscosidad (1.013 bar y 15 C (59 F)) : 0.0000865 Poise

    Conductividad Trmica (1.013 bar y 0 C (32 F)) : 168.35 mW/(m.K)

    5.1 Hot Chamber

    When gas enters the camera begins to warm. As the gas begins to make contact with the walls of the

    anode (nickel compound) begins desorption reactions occur. This causes the entry of hydrogen into

    the crystal lattice of the nickel compound.

    The desorption reaction is exothermic. Therefore this reaction releases heat and causes the

    temperature increase of the chamber.

    At this point the heat in the chamber will be heated due to the heat input from the outside plus heat

    from the exothermic reaction of desorption. (Aprox. 30 kJulios/mol)

    Pgina n 5 de 13

  • 7/30/2019 Direct Thermal to electric energy conversion device

    6/13

    Direct Thermal Electric Conversion Device

    figu. 2 Diagram of Vant Hoff for some nickel metal compounds[Zttel et al. 2005]

    Pgina n 6 de 13

  • 7/30/2019 Direct Thermal to electric energy conversion device

    7/13

    Direct Thermal Electric Conversion Device

    This table shows at the same temperature as the absorption requires a higher pressure than the

    desorption.Thus in the device that raises the hot chamber pressure must be greater than the pressure in the cold.

    This was already indicated by the statement and the proposed device.

    Thermal irreversibilities in the hot chamber.

    In the hot chamber is supposed to be a heat inflow is not expected to have much heat losses

    estimated in this study than in the hot chamber no energy losses.

    In the hot chamber will establish a balance on the surface of the nickel compound and the

    temperature of the hot chamber of hydrogen desorption and absorption. This balance will be clearly

    absorption since there is a flow of hydrogen through the crystal lattice of the nickel compound to

    Pgina n 7 de 13

  • 7/30/2019 Direct Thermal to electric energy conversion device

    8/13

    Direct Thermal Electric Conversion Device

    the proton conducting membrane (for example Nafion membrane).

    To that hydrogen will move through the crystal structure is necessary energy consumption.

    Thermal Irreversibility 1: Here is the first planned energy loss. This energy loss should be

    minimized by this layer of material as thin as possible.

    When the hydrogen reaches the metal-hydrogen membrane energy consumption need to switch to

    metal ion H + to ion H + free (stabilized in the polymer network).

    This process is not spontaneous energy required since there is a separation between the proton H

    + and electrons. But this energy is useful because it is at this point that we get the pressure

    energy conversion to electricity.

    Once the ion H + is within the polymeric network has to move to the new interface membrane -

    metal.

    Thermal Irreversibility 2: Here is the second planned energy irreversibility. The ion energy need to

    advance to the next stage. This is called membrane resistance. This resistance must be minimized

    using a thin membrane or thin as possible.

    Pgina n 8 de 13

  • 7/30/2019 Direct Thermal to electric energy conversion device

    9/13

    Direct Thermal Electric Conversion Device

    Once the H + ion reaches the interface membrane - metal ion passes into the crystalline structure of

    the metal spontaneously because at this point is again proton with electrons and thus is part of the

    electrical circuit. Therefore not expected to have an irreversibility temperature here.

    Hydrogen once again reached the nickel compound must advance by the crystal structure to the new

    metal-gas interface.

    Irreversibility Like 3 (same as 1): Here is the third planned energy loss. This energy loss should be

    minimized by this campaign material as thin as possible.

    Once the gas is in the gas-metal interface will cause an absorption-desorption equilibrium which is

    distinctly surface desorption pressure as this chamber is maintained at a lower pressure than the hotchamber.

    Hydrogen gas that passes will phase at a high temperature (for the whole membrane metal + Nickel

    + nickel metal will be at a high temperature). However desorption reaction is endothermic, and this

    will help cool the metal-gas interface of the cold chamber.

    However even the released gas will be very hot and must be cooled by contact with a heat

    exchanger at room temperature.

    Thermal irreversibility # 4. The hot gas must be cooled to lower blood pressure and reuse it in the

    Pgina n 9 de 13

  • 7/30/2019 Direct Thermal to electric energy conversion device

    10/13

    Direct Thermal Electric Conversion Device

    cycle. This heat loss can not be minimized but is linked to the mass of hydrogen is used during the

    process.

    In the hot chamber there is a separation between the nickel element is hot and the cold block of

    stainless steel. This separation is to minimize or eliminate heat loss by conduction. However apart

    from the heat irreversibility number 4 there is a small energy loss by another convention and

    radiation.

    Thermal irreversibility No. 5. Energy losses in the hot chamber between the nickel element and the

    heat exchanger by convection and radiation. These losses can be minimized or eliminated making

    sure that there is a laminar flow of hydrogen gas from nickel element and heat exchanger.

    5.2 Estimation in watts * hours of energy losses, and efficiences usefulwork.

    The calculations will be done by assuming that the hydrogen mass flow rate is 1 kg / hour.

    Thermal irreversibilities 1 associated to friction of hydrogen atoms by the crystal structure. As we

    know the friction converts kinetic energy into heat. The heat generated by the friction returns to the

    system (the system is isolated). Consequently no energy losses occur because the heat returned to

    the system. Obviously this will depend on the constructive solution. And while the above statement

    is not perfect if that applies to these estimates.

    Thermal irreversibility, = 0 (watios hora).

    The thermal irreversibilities 2 and 3 is associated with the friction of the hydrogen atoms in the

    crystal structure. As we know the friction converts kinetic energy into heat. In this case the heat

    generated to the system returns but is directed to the cold. The heat generated in these locations

    does not reverse at the point at which the electric energy is generated by heat. It is passed in the

    metal-membrane.

    Thermal Irreversibility 2 = 0,1 ohmios * 0,5 Amperios = 0,025 watios (for each cm). It means1340 watios hour in losses.

    Thermal irreversibility 3 = 1340 watios (It is not known this energy losses but it sure is less than

    the thermal irreversibility # 2.)

    The heat lost by cooling hydrogen (1 kg) of 150 C to 25 C is 500 watts * hours (approximately).

    Therefore this would be heat irreversibility No. 4.

    irreversibilidad trmica n 4 = 500 watios hora

    thermal irreversibility No. 5 depends entirely on the constructive solution. So let's assume that the

    Pgina n 10 de 13

  • 7/30/2019 Direct Thermal to electric energy conversion device

    11/13

    Direct Thermal Electric Conversion Device

    constructive solution is perfect and for this study we assume that energy losses in this case are zero.

    Irreversibilidad trmica n 5 = 0 watios hora.

    5.3 Useful work:

    1 kg of hydrogen hour provides an intensity of about 26,800 amperes per second (during 3600

    seconds). But we do not know the potential that can be obtained with the proposed device.

    In the fuel cell is linked to the potential variation of enthalpy between the beginning of the chemical

    reaction and the end. (enthalpy variation between the reactants and products). However in our case

    is reverse conversion. What we are doing is converting thermal energy into electricity.

    To study this case we can rely on the science of membrane potentials in solutions.

    theory of Theorell, Meyer and Sievers (TMS theory) This theory can be found in the book

    explained: Y. Tanaka, Ion exchange membranes: Fundamentals and Applications, Elsevier Science,

    2007.

    In these cases the membranes are immersed in a solution where an all-enveloping liquid (water) and

    some ions which are in solution.

    This membrane system in solution is very similar to our case, because H + ions are involved in a

    solid matrix rather than liquid.

    If we do this extrapolation we can expect that potential obtained in each cell is 120 mV maximum.

    (When the ion enters the membrane has a potential saving of 60 mV, to make this happen is to

    absorb energy into potential energy converting system. After ion must leave the membrane into the

    crystal lattice. Spontaneous process is a potential of 60 mV. So for this case the total potential

    Pgina n 11 de 13

  • 7/30/2019 Direct Thermal to electric energy conversion device

    12/13

    Direct Thermal Electric Conversion Device

    available is 60 +60 = 120 mV).

    26800 amperios * 0,12 V = 3216 watios hora = useful work maximum (Hydrogen mass flow of 1

    kg/hour).

    The 120 mV is for the case where the ion mobility is maximized. In our case it is obvious that the

    ion mobility is limited. Due to the small size of the hydrogen proton is expected that the yield is

    high. So assuming a mobility of 0.5 on a scale of 0-1 is expected at least that useful work is 1500

    watt hours.

    Expected work = 1500 watios hora

    Calor total puesto en juego = 500 watios hora + 1500 watios hora. + 1340 + 1340 = 2180

    6 Efficiences

    Estimated efficiency as conservative criteria for the device. = 32%.

    Maximum theoretical Efficiency = 86% (if there were ohmic losses)

    Actual maximum efficiency = 63% (including ohmic losses and other technological limitations).

    6.1 Anotaciones importantes:

    This performance is an estimate as it depends on a value (mobility of H + ions) unknowns. We have

    evaluated compromise estimate = 0.5 (the higher the temperature increases the mobility).

    The yield can be increased if we reduce the ohmic losses in the membrane. This can be done by the

    larger device. Eventually you will reach a compromise between size and performance.

    The study was done following conservative criteria. It is therefore expected that the attainable

    efficiency is higher. The performance of low powered devices electrochemical processes often

    exceed 60%.

    7 Bibliographic references

    Although here are some references the reader can find all the information in books and scientific

    publications related to the following topics:

    Electrochemical processes associated with ion exchange membranes.

    Absorption and desorption processes of hydrogen gas in solid matrices. Metal hydrides.

    Construction and technology of fuel cells and low temperature polymer.

    1) Y. Tanaka, Ion exchange membranes: Fundamentals and Applications, Elsevier Science, 2007.

    2) Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: An overview

    A K SAHU, S PITCHUMANI, P SRIDHAR and A K SHUKLA*

    Pgina n 12 de 13

  • 7/30/2019 Direct Thermal to electric energy conversion device

    13/13

    Direct Thermal Electric Conversion Device

    Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India

    Central Electrochemical Research Institute, Karaikudi 630 006, India

    3 ) Ionic Conductivity of an Extruded Nafion 1100 EW Series of Membranes

    S. Slade,a,d S. A. Campbell,a T. R. Ralph,b,* and F. C. Walshc,*,z

    4 ) Universidad Carlos III de Madrid . Escuela Politcnica Superior . Departamento de Ingeniera

    Elctrica

    PROYECTO FIN DE CARRERA

    Descripcin y Modelado de una Pila de Combustible de Membrana de Intercambio Protnico

    Autor: Antonio Mayanda Aguirre

    Directora: Luca Gaucha Bab

    Pgina n 13 de 13