direct numerical simulation of particle settling in model estuaries r. henniger (1), l. kleiser (1),...

28
Direct Numerical Simulation of Particle Settling in Model Estuaries R. Henniger (1) , L. Kleiser (1) , E. Meiburg (2) (1) Institute of Fluid Dynamics, ETH Zurich (2) Department of Mechanical Engineering, UCSB

Upload: christiana-long

Post on 03-Jan-2016

216 views

Category:

Documents


1 download

TRANSCRIPT

Direct Numerical Simulationof Particle Settling in Model Estuaries

R. Henniger(1), L. Kleiser(1), E. Meiburg(2)

(1) Institute of Fluid Dynamics, ETH Zurich

(2) Department of Mechanical Engineering, UCSB

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Outline Introduction / motivation

Computational setup flow configuration governing equations and physical parameters simulation code

Results freshwater / saltwater mixing particle settling

Conclusions and outlook

2

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Estuary mouth light fresh-water heavy salt-water

Suspended particles e.g. sediment or pollutants transport out to the ocean particles settle and deposit

Other influences temperature profile Coriolis effect, tide, …

Focus of the present study: basic investigation of freshwater / saltwater mixing particle transport, particle

settling and particle deposition

Introduction

3

Magdalena River (Colombia)

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Freshwater / saltwater mixing

Typically hypopycnal inflow

(Super-)critical?

Convective mixing, enhanced by turbulence in river Kelvin-Helmholtz or Holmboe waves

4

salty

freshwater

salt wedge

salty

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Particle load

hypopycnal:

hyperpycnal:

5

salty

salty

freshwater + particles

freshwater + particles

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Particle transport

(1) Surface plume

(2) (Enhanced) particle settling flocculation? turbulence enhanced settling?

(3) Bottom propagating turbidity

current

(1)

(2)

(3)

6

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Model estuary configuration

symmetry planes

inflow

convective outflow

salt sponge

9

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Governing equations, non-dimensional

Incompressible Navier-Stokes and concentration transport

equations (in Boussinesq regime)

Reynolds number:

Schmidt number:

Richardson number:

Particle settling velocity:

266664H100G10H20G200H3G3D1D2D30377775¢266664u1u2u3p377775=266664b1b2b30377775()·HGD0̧¢·up̧=·f0̧

10

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Physical parameters

reality laboratory simulation

Re 105-107 103-104 1500

Scsal500-3000 500-3000 1

Scpart > Scsal > Scsal2

Risal0.5-1 0.5-1 0.5

Ripart< 0.05 < 0.05 0.05

-us/U < 10-2 < 10-2 0.01-0.02 particle plume extent

extent

turbulence

turbulence

“sharpness” of interfaces

interfaces

11

particle load

loading

sub-/supercritical flow

inertial forces

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Newly developed simulation code (summary) Incompressible flows + active scalars

Discretization compact finite differences in space explicit or semi-implicit time integration

Massively parallel platform 3D domain decomposition (>95% parallel efficiency) sustained 16% peak performance on Cray XT scalability tested to up to 8000 cores and 17 billion grid points

Validation convergence orders in time and space convergence properties of iterative solvers temporal and spatial growth of eigenmodes

- channel flow- shear layer flows with passive scalar

transitional and turbulent channel flow (vs. P. Schlatter) particle-driven gravity current (vs. F. Necker) parallel scaling properties

12

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Results:

freshwater / saltwater mixing

13

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Freshwater currentsalt sponge

internal waves

Kelvin-Helmholtz waves

14

csal = 0.75

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Group velocity of internal waves(measured with potential energy at y = 0)

15

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Streamlines on water surface

16

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Sub-/supercritical flow kinetic vs. buoyant forces

measured with bulk Richardson number

17

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Interface stability

shear stress vs. density difference

measured with gradient Richardson number

18

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Results:

particle settling

19

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Particle settling

Three different settling velocities us/U = -0.02, -0.015, -0.01

Qualitative agreement with laboratory experiments? Maxworthy (JFM, 1999) Parsons et al. (Sedimentology, 2001) McCool & Parsons (Cont. Shelf Res., 2004)

Open questions extent of particle plume? particle settling modes (transient, steady state)? effective settling velocity? deposit profile?

20

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Particle plume

t = 300 t = 400

t = 450 t = 600

us/U = -0.02, cpart = 0.1

21

x1 x1

x1 x1

x2

x2

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Convective particle settling

t = 300

t = 350

t = 400

t = 600

us/U = -0.02

22

x1 = 26x2 = 5

x1

x1

x1

x1

x2

x2

x2

x2

x3

x3

x3

x3

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Particle mass

23

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Effective particle settling velocity

25

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Particle Deposit

us/U = -0.020, t = 710

26

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Particle Deposit

us/U = -0.015, t = 920

27

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Particle Deposit

us/U = -0.010, t = 1040

28

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Conclusions Definition of simulation setup

parameters inflow boundary conditions sponge zones, etc.

Results: Basic effects compare well with laboratory experiments freshwater-brine mixing finger convection enhanced convective particle settling

Results obtained at moderate Re and Sc, accessible to DNS

29

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Outlook Further increase of Re and Sc with LES in the future

Implemented LES models: ADM-RT model (filter model) (HPF) Smagorinsky (upwinding)

Validation of LES to be completed

Further option: more complex domains e.g. by orthogonal curvilinear grids immersed boundary method (immersed interface method)

30

05/05/2009 R. Henniger, L. Kleiser, E. Meiburg

Appendix

31