direct displacement based design using inelastic design spectrum

28
Direct Displacement Direct Displacement - - Based Design Based Design Using Inelastic Design Spectrum Using Inelastic Design Spectrum Rakesh K. Goel California Polytechnic State University, San Luis Obispo Anil K. Chopra University of California, Berkeley March 27, 2002 1 R. K. Goel

Upload: pallukharabe

Post on 13-Nov-2014

246 views

Category:

Documents


2 download

TRANSCRIPT

Direct DisplacementDirect Displacement--Based DesignBased Design Using Inelastic Design SpectrumUsing Inelastic Design Spectrum

Rakesh K. Goel California Polytechnic State University, San Luis Obispo

Anil K. Chopra University of California, Berkeley

March 27, 2002 1 R. K. Goel

ObjectivesObjectives òDemonstrate application of inelastic

design spectra to direct displacement-based design (DDBD)

òDemonstrate potential limitations of current DDBD that use elastic design spectra and equivalent linear systems

March 27, 2002 2 R. K. Goel

Equivalent Linear System: PeriodEquivalent Linear System: Period

March 27, 2002 3 R. K. Goel

ò For bilinear systems

ò For elasto-plastic systems

µTT neq =

ααµ µ

−+ =

1TT neq

muyu

yf

Deformation

Forc

e

1 1

1

ksec

k ( )ααµ −+1f y

Equivalent Linear System: DampingEquivalent Linear System: Damping

March 27, 2002 4 R. K. Goel

ò For bilinear systems

ò For elasto-plastic systems

( ) ( ) ( )ααµµ

αµ π

ζ −+ −− =

1

112

eq

( ) µ

µ π

ζ 12 − = eq

DE

SE

Deformation

Forc

e

f y

( )ααµ −+1f y

umuy

Equivalent Linear SystemEquivalent Linear System

March 27, 2002 5 R. K. Goel

Substitute DampingSubstitute Damping

DE

SE

Deformation

Forc

e

f y

umuy

k

k

µ0.5

Gulkan & Sozen, Shibata & Sozen

(Takeda model for R/C structures) R. K. Goel March 27, 2002 6

March 27, 2002 7 R. K. Goel

Elastic Design SpectrumElastic Design Spectrum

Elastic Design SpectrumElastic Design Spectrum

Pseudo-Acceleration Deformation R. K. Goel March 27, 2002 8

DDBD Using Elastic Spectra:DDBD Using Elastic Spectra: StepStep--byby--Step ProcedureStep Procedure

1. Estimate the yield deformation for the system

2. Establish acceptable plastic rotation, θp

3. Determine design displacement and ductility factor: um = uy + h θp and µ = um / uy

March 27, 2002 9 R. K. Goel

DDBD Using Elastic Spectra:DDBD Using Elastic Spectra: StepStep--byby--Step ProcedureStep Procedure

4. Estimate the total equivalent viscous damping:

( ) ( ) ( )ααµµ

αµ π

ζ −+ −− =

1

112

eq

ζζζ += eqeq

ˆ R. K. Goel March 27, 2002 10

DDBD Using Elastic Spectra:DDBD Using Elastic Spectra: StepStep--byby--Step ProcedureStep Procedure

5. Enter deformation design spectrum and read Teq. Í Determine the

secant stiffness

m T

k

eq

2

2

sec

2π =

R. K. Goel March 27, 2002 11

DDBD Using Elastic Spectra:DDBD Using Elastic Spectra: StepStep--byby--Step ProcedureStep Procedure

6. Determined the required yield strength:

muyu

yf

Deformation

Forc

e

1 1

1

ksec

k ( )ααµ −+1f y

ααµ −+ =

1

sec m

y

ukf

March 27, 2002 12 R. K. Goel

DDBD Using Elastic Spectra:DDBD Using Elastic Spectra: StepStep--byby--Step ProcedureStep Procedure

7. Estimate member size and detail (reinforcement in R/C structures, connections in steel structures) to provide fy. Í Calculate initial elastic stiffness k. Í Calculate yield deformation: uy = fy / k

8. Repeat steps 3 to 7 until a satisfactory solution is obtained.

March 27, 2002 13 R. K. Goel

March 27, 2002 14 R. K. Goel

ExampleExample

ò R/C viaduct ò Superstructure weight = 190 kN/m ò Bent spacing = 39.6 m

9 m 1.5 m

(a)

H k = 3EI H3

W = 7517 kN

(b)

March 27, 2002 15 R. K. Goel

Design Summary:Design Summary: DDBD Using Elastic SpectraDDBD Using Elastic Spectra

ò Starting yield displacement = 4.5 cm. ò Convergence achieved after three iterations ò The final design has:

ÍLongitudinal column reinforcement = 1.3% ÍInitial stiffness = 95.17 kN/cm ÍLateral yield strength = 839.7 kN ÍYield displacement = 8.82 cm, Design

displacement = 26.8 cm ÍElastic period = 1.78 sec, Secant period = 3.14

sec

Inelastic Design SpectrumInelastic Design Spectrum

March 27, 2002 16 R. K. Goel

Conversion of Elastic to InelasticConversion of Elastic to Inelastic Design SpectrumDesign Spectrum

ò Use available Ry -µ-Tn relationships ÍNewmark and hall ÍKrawinkler et al ÍFajfar et al. ÍMiranda & Bertero

ò Relationships based on nonlinear analysis of SDF systems

R. K. Goel March 27, 2002 17

March 27, 2002 18 R. K. Goel

Constant Ductility Inelastic DesignConstant Ductility Inelastic Design SpectrumSpectrum

Newmark & Hall Krawinkler et al.

Inelastic Design SpectrumInelastic Design Spectrum

Pseudo-Acceleration Deformation

R. K. Goel March 27, 2002 19

DDBD Using Inelastic Spectra:DDBD Using Inelastic Spectra: StepStep--byby--Step ProcedureStep Procedure

1. Estimate the yield deformation for the system

2. Establish acceptable plastic rotation, θp

3. Determine design displacement and ductility factor: um = uy + h θp and µ = um / uy

March 27, 2002 20 R. K. Goel

DDBD Using Elastic Spectra:DDBD Using Elastic Spectra: StepStep--byby--Step ProcedureStep Procedure

4. Enter deformation design spectrum and read Tn. Í Determine the

elastic stiffness

m T

k

n

2

22π =

R. K. Goel March 27, 2002 21

March 27, 2002 22 R. K. Goel

DDBD Using Inelastic Spectra:DDBD Using Inelastic Spectra: StepStep--byby--Step ProcedureStep Procedure

5. Determine the required yield strength Í fy = kuy

6. Estimate member size and detail (reinforcement in R/C structures, connections in steel structures) to provide fy. Í Calculate initial elastic stiffness k. Í Calculate yield deformation: uy = fy / k

7. Repeat steps 3 to 6 until a satisfactory solution is obtained.

March 27, 2002 23 R. K. Goel

Design Summary:Design Summary: DDBD Using Inelastic SpectraDDBD Using Inelastic Spectra

ò Starting yield displacement = 4.5 cm. ò Convergence achieved after five iterations ò The final design has:

ÍLongitudinal column reinforcement = 5.5% ÍInitial stiffness = 238.6 kN/cm ÍLateral yield strength = 1907 kN ÍYield displacement = 7.99 cm, Design

displacement = 26.0 cm ÍElastic period = 1.16 sec

March 27, 2002 24 R. K. Goel

Evaluation of Design:Evaluation of Design: Inelastic AnalysisInelastic Analysis

1. Calculate initial elastic period from m and k 2. Determine A from elastic design spectrum

Í Elastic Design Force: fo = mA

3. From known fy, calculate: Ry = fo / fy

4. Determine ductility demand µ from Ry -µ-Tn relationships

5. Calculate displacement and plastic rotation Í um =(µ/ Ry)(Tn / 2π)2A Í θp = (um-uy)/h

March 27, 2002 25 R. K. Goel

Evaluation of Example Design:Evaluation of Example Design: DDBD Using Elastic SpectraDDBD Using Elastic Spectra

ò Demands from inelastic analysis of the design structure Íum = 39.7 cm. ͵ = 4.52 Íθp = 0.0343 rad.

ò Design using elastic design spectrum Íum = 26.8 cm (32.6%

underestimation) ͵ = 3.04 (32.6%

underestimation) Íθp = 0.02 rad

(Demand exceeds acceptable value by > 72%)

Evaluation of Example Design:Evaluation of Example Design: DDBD Using Inelastic SpectraDDBD Using Inelastic Spectra

ò Demands from inelastic analysis of the design structure Íum = 25.9 cm. ͵ = 3.25 Íθp = 0.0199 rad.

ò Design using elastic design spectrum Íum = 26.0 cm ͵ = 3.06 Íθp = 0.02 rad ÍPredictions are

nearly the same as the inelastic demands

March 27, 2002 26 R. K. Goel

ConclusionsConclusions ò A direct displacement-based design

procedure is presented ÍUses well-known inelastic design spectrum ÍProvides displacement estimates consistent with

those from inelastic analysis ÍProduces design that satisfies the design criteria

of acceptable plastic rotation ÍThe procedure is as simple as the current DDBD

procedure using elastic design spectra

March 27, 2002 27 R. K. Goel

March 27, 2002 28 R. K. Goel

ConclusionsConclusions ò DDBD procedure based on elastic design

spectra ÍUses equivalent linear systems

òSecant stiffness and equivalent damping ÍProvides displacement estimate which can be

significantly smaller than that from inelastic analysis

ÍPlastic rotation demand may exceed the acceptable value òLeaves an erroneous impression that the allowable

plastic rotation constraint has been satisfied