dimensionamento de sistema de microdrenagem

30
 UNIVERSIDADE REGIONAL DE BLUMENAU CENTRO DE CIÊNCIAS TECNOLÓGICA S CURSO DE ENGENHARIA CIVIL DIMENSIONAMENTO DE REDE DE MICRODRENAGEM URBANA  ANDRÉ FILIPE MAFRA DE SOUZA EDUARDO FIGUEIREDO ESSIG BLUMENAU 2014

Upload: ricardo-junio

Post on 06-Jul-2018

233 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 1/30

 

UNIVERSIDADE REGIONAL DE BLUMENAUCENTRO DE CIÊNCIAS TECNOLÓGICAS

CURSO DE ENGENHARIA CIVIL

DIMENSIONAMENTO DE REDE DE MICRODRENAGEM URBANA 

ANDRÉ FILIPE MAFRA DE SOUZA

EDUARDO FIGUEIREDO ESSIG

BLUMENAU

2014

Page 2: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 2/30

 

ANDRÉ FILIPE MAFRA DE SOUZA

EDUARDO FIGUEIREDO ESSIG

DIMENSIONAMENTO DE REDE DE MICRODRENAGEM URBANA 

Trabalho apresentado à disciplina deDrenagem Urbana do Curso deEngenharia Civil do Centro de CiênciasTecnológicas da Universidade Regionalde Blumenau – FURB.

Prof.: Adilson Pinheiro

BLUMENAU2014

Page 3: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 3/30

 

SUMÁRIO

1 INTRODUÇÃO .........................................................................................................4

1.1 ETAPAS DO DIMENSIONAMENTO ................................................................... 41.1.1 Subdivisão da área e traçado ........................................................................ 4

1.1.2 Determinação das vazões afluentes ........................................................... 5

1.1.3 Dimensionamento de galerias ...................................................................... 5

2 APRESENTAÇÃO DA REGIÃO ESTUDADA .......................................................6

2.1 SELEÇÃO DAS RUAS ........................................................................................... 6

2.2 ELEMENTOS PRELIMINARES AO ESTUDO ...................................................... 6

3 MEMORIAL DE CÁLCULOS ...................................................................................7

3.1 DETERMINAÇÃO DAS ÁREAS DE CONTRIBUIÇÃO ..................................... 7

3.2 COEFICIENTE DE ESCOAMENTO SUPERFICIAL ............................................ 8

3.3 TEMPO DE CONCENTRAÇÃO INICIAL E PERÍODO DE RETORNO ............ 9

3.4 INTENSIDADE DAS CHUVAS CONTRIBUINTES .......................................... 10

3.5 DETERMINAÇÃO DAS VAZÕES ...................................................................... 11

3.6 DIMENSIONAMENTO DA REDE DE MICRODRENAGEM ............................ 12

3.6.1 Determinação das cotas, das declividades e do recobrimento

(profundidades) ......................................................................................................... 123.6.2 Determinação dos diâmetros e dos tempos de escoamento .............. 14

3.6.3 Cotas das valas, dos fundos dos poços de visita e volumes deescavação .................................................................................................................... 17

3.7 SARJETAS E BOCAS DE LOBO ......................................................................... 19

3.7.1 Sarjetas ............................................................................................................ 20

3.7.2 Bocas de lobo ................................................................................................. 25

3.8 DISSIPADORES DE ENERGIA ........................................................................... 27

4 CONCLUSÃO ......................................................................................................... 28REFERÊNCIAS .............................................................................................................. 29

ANEXOS......................................................................................................................... 30

Page 4: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 4/30

4

1  INTRODUÇÃO

A equipe autora deste trabalho ficou incubida de realizar um trabalho

para dimensionamento de uma rede de microdrenagem urbana.

O professor orientador da disciplina Adilson Pinheiro distribuiu à turma

da matéria diferentes ruas presentes no município de Blumenau. A rua

designiada à equipe foi a rua Alfredo Demm, localizada no bairro da Itoupava

Central.

A proposta inicial do trabalho é realizar o dimensionamento de uma

rede de microdrenagem urbana, incluindo todos os seus parâmetros e itens

estudados durante a jornada da disciplina, cuja extensão deve abranger um

somatório de trechos a partir da rua designada. A extensão mínima da rede

determinada pelo professor é de 1000 metros, porém a rua Alfredo Demm

possui um comprimento menor que este. Para que se pudesse estender a rede

a 1000 metros de comprimento ou mais, trechos de outras ruas próximas

tiveram de ser adicionadas aos quesitos de dimensinamento, com está

explicitado nos próximos itens deste trabalho.

A partir dos critérios mencionados acima e baseando-se nos

aprendizados obtidos em sala de aula e em estudos externos, a equipe

desenvolveu o dimensionamento da rede de microdrenagem, apresentada no

presente memorial de cálculo.

1.1 

ETAPAS DO DIMENSIONAMENTO

1.1.1 

Subdivisão da área e traçado

Inicialmente, o traçado da rede foi desenhado sobre a rua solicitada e

outros trechos próximos, para que se pudesse superar o mínimo de 1000

metros de comprimento.

Em seguida, ao longo do traçado, os poços de visita – ou PVs – foram

inseridos no desenho, com distância máxima entre eles de 100 metros, sendonecessários também nas mudanças de direção de ruas. Com essa etapa

Page 5: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 5/30

5

concluída, pôde-se determinar o número total dos PVs e dar início à próxima

fase.

Com os PVs locados, foi necessário lançar e calcular as áreas deinfluência de contribuição das águas urbanas aos arredores das ruas, levando-

se em conta a topografia do terreno.

1.1.2  Determinação das vazões afluentes

Através de análise de imagens da localização dos trechos estudados,

pôde-se determinar o nível de urbanização e calcular o índice C. A partir da

média ponderada do mesmo, o C médio pôde ser obtido.

Em seguida, deve-se seguir os passos especificados na apostila de

microdrenagem quanto ao cálculo do tempo de concentração (tc).

Foi utilizada a fórmula usual para o cálculo da intensidade das chuvas

(i), a partir dos dados obtidos através da estação mais próxima da rua

analisada.

Com os valores acima mencinados em mãos, pôde-se calcular as vazões

afluentes através do método racional.

1.1.3 

Dimensionamento de galerias

Com as vazões calculadas e os parâmetros das galerias, pôde-se

determinar o diâmetro da tubulação. Assim, por sua vez, encontrou-se os

valores de área molhada, tempo de escoamento e os demais itens necessários

em cada trecho, para que se pudesse dimensionar corretamente os elementos

de projeto. Os cálculos e representações gráficas utilizados para o

dimensionamento de tais elementos se encontram a partir dos próximos itens

deste trabalho.

Page 6: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 6/30

6

2  APRESENTAÇÃO DA REGIÃO ESTUDADA

2.1  SELEÇÃO DAS RUAS

Figura 1 – Localização da rua solicitada e seleção de ruas próximas.

Fonte: Google Maps.

A rua especificada pelo professor não possui o comprimento mínimo de

1000 metros para a rede de microdrenagem. Logo, foi necessária a seleção de

outros trechos de ruas próximas para suprir o comprimento faltante. As ruas

selecionadas foram: rua Carlos Krueger e rua Ricardo Georg.

2.2  ELEMENTOS PRELIMINARES AO ESTUDO

Para facilitar entendimento da determinação dos elementos essenciais

ao dimensionamento demonstrado posteriormente, nas páginas de anexo

encontram-se plantas com informações individuais ao seu escopo: locação da

rua, localização dos PVs, delimitação e determinação das áreas de contribuição

para os PV’s e delimitação e determinação das áreas de contribuição para as

galerias.

Page 7: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 7/30

7

3  MEMORIAL DE CÁLCULOS

3.1  DETERMINAÇÃO DAS ÁREAS DE CONTRIBUIÇÃO

As áreas de contribuição de cada trecho entre poços de visita foramtraçadas conforme comportamento da água em relação às curvas de nível

analisadas. Estas áreas contribuintes apenas representam as áreas as quais as

águas oriundas do escoamento superficial teriam seu deságue nos elementos

de microdrenagem. Logo, foram descartas do cálculo áreas cujo deságue se

daria diretamente em rios, ribeirões e outros elementos naturais.

Tabela 1 – PVs, trechos e suas áreas de contribuição

TRECHO L (m)ÁREA (m²)

Trecho AcumuladaPV01 - 1597,89 1597,89

PV01 - PV02 52,52 1500,4 3098,29PV02 - PV03 69,51 2142,84 5241,13PV03 - PV04 26,83 680,74 5921,87PV04 - PV05 68,09 2898,96 8820,83PV05 - PV06 47,97 746,41 9567,24PV06 - PV07 33,62 1059,99 10627,23PV07 - PV08 46,21 1601,88 12229,11

PV08 - PV09 52,81 1819,59 14048,7PV09 - Deságue - - 14048,7

TRECHO L (m)ÁREA (m²)

Trecho AcumuladaPV10 - 804,93 804,93

PV10 - PV11 12,08 846,14 1651,07PV11 - PV12 24,59 3745,58 5396,65PV12 - PV13 24,51 8151,49 13548,14PV13 - PV14 36,31 3154,42 16702,56PV14 - PV15 49,82 6307,75 23010,31

PV15 - PV16 46,22 5599,62 28609,93PV16 - PV17 55,60 5854,32 34464,25PV17 - Deságue - - 34464,25

TRECHO L (m)ÁREA (m²)

Trecho AcumuladaPV18 - - -

PV18 - PV19 67,7 11798 11798,03PV19 - PV20 71,64 14005,3 25803,35PV20 - PV21 41,93 2802,6 28605,95PV21 - PV22 42,36 1509,48 30115,43

PV22 - Deságue - - 30115,43Fonte: autor.

Page 8: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 8/30

8

As áreas contribuintes de cada trecho interferem no dimensionamento

de seus elementos da rede. Porém, deve-se levar em conta também as áreas

contribuintes que despejam águas oriundas de pontos mais elevados que o

ponto estudado. Logo, deve-se realizar uma soma acumulativa conforme os

pontos vão ficando mais baixos e o volume da água vai ficando mais alto.

Como observado na tabela anterior e nas plantas anexas, existem pontos

de “deságue” ao fim de três determinados trechos. Isto ocorre pois estes

pontos são mais baixos que seus dois poços de visita vizinhos, sendo

necessário que toda a água coletada ao longo dos trechos e áreas contribuintes

seja despejada neste ponto baixo, geralmente representado por um rio ouribeirão. Para efeitos acadêmicos, neste trabalho, cada trecho que segue desde

seu primeiro PV até seu ponto de deságue será chamado de seção. Ou seja,

temos no total três seções da rede de microdrenagem.

3.2 

COEFICIENTE DE ESCOAMENTO SUPERFICIAL

Conforme visualização virtual via o dispositivo informatizado “Google

Maps” e também a partir da análise das plantas estudadas, foram

determinadas as proporções entre áreas impermeabilizadas e permeáveis de

cada área contribuinte, para que se tornasse possível a composição correta do

coeficiente de impermeabilização “AI”. Foram utilizados dois coeficientes de

impermeabilização para a ponderação, numerados como 1 e 2,

respectivamente: 0,6 (áreas residenciais urbanas de baixa densidade) e 0,4

(áreas rurais).

Tendo em mãos os dois AIs citados acima e a proporcionalidade entre

suas aplicações nas áreas contribuintes de cada trecho, pôde-se efetuar o

cálculo do coeficiente de escoamento superficial ponderado em cada poço de

visita, seguindo a fórmula de “C” inserida na tabela abaixo.

Page 9: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 9/30

9

Tabela 2 – Cálculo dos coeficientes de escoamento superficial (C)

AI (1) C= 0,047+0,9*AI AI (2) C= 0,047+0,9*AI % AI (1) % AI (2) C Ponderado

PV01 0,6 0,587 0,4 0,407 50% 50% 0,497

PV02 0,6 0,587 0,4 0,407 50% 50% 0,497PV03 0,6 0,587 0,4 0,407 70% 30% 0,533

PV04 0,6 0,587 0,4 0,407 70% 30% 0,533

PV05 0,6 0,587 0,4 0,407 60% 40% 0,515

PV06 0,6 0,587 0,4 0,407 70% 30% 0,533

PV07 0,6 0,587 0,4 0,407 100% 0% 0,587

PV08 0,6 0,587 0,4 0,407 100% 0% 0,587

PV09 0,6 0,587 0,4 0,407 100% 0% 0,587

PV10 0,6 0,587 0,4 0,407 100% 0% 0,587

PV11 0,6 0,587 0,4 0,407 70% 30% 0,533

PV12 0,6 0,587 0,4 0,407 70% 30% 0,533

PV13 0,6 0,587 0,4 0,407 50% 50% 0,497

PV14 0,6 0,587 0,4 0,407 20% 80% 0,443

PV15 0,6 0,587 0,4 0,407 20% 80% 0,443

PV16 0,6 0,587 0,4 0,407 20% 80% 0,443

PV17 0,6 0,587 0,4 0,407 20% 80% 0,443

PV18 0,6 0,587 0,4 0,407 10% 90% 0,425

PV19 0,6 0,587 0,4 0,407 20% 80% 0,443

PV20 0,6 0,587 0,4 0,407 70% 30% 0,533

PV21 0,6 0,587 0,4 0,407 70% 30% 0,533PV22 0,6 0,587 0,4 0,407 70% 30% 0,533

Fonte: autor.

3.3 

TEMPO DE CONCENTRAÇÃO INICIAL E PERÍODO DE RETORNO

Foi necessário o cálculo do tempo de concentração no trecho inicial de

cada uma das três seções da rede de microdrenagem, de modo que, a partir do

valor encontrado, pôde-se dar procedência aos cálculos. A fórmula abaixo

(método de California Culverts Practice) aplica um exemplo do cálculo

mencionado à primeira seção das três que compõem a rede de microdrenagem.

 = 57 × ,

,8 

 = 57 × 0,067,

3,7,8  

 = 1,5179  

Page 10: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 10/30

10

Onde:

  L = distância entre o ponto mais distante do PV inicial dentro da

área de contribuição (km);  H = diferença de cotas entre os pontos distados pelo

comprimento L.

O tempo de concentração inicial encontrado foi de aproximadamente 1,5

minutos. Porém, por via de regra, deve-se adotar o valor mínimo de 5 minutos

para o tempo de concentração. As duas seções remanescentes também

obtiveram tempos de concentração iniciais abaixo de 5 minutos, tendo esteúltimo adotado por ser o mínimo, como demonstrado nos itens seugintes.

O período de retorno adotado foi de 2 anos, por a região estudada ser

uma área residencial com baixa probabilidade de um crescimento ocupacional

muito elevado nos próximos anos. Isto se aplica a todas as três seções.

3.4 

INTENSIDADE DAS CHUVAS CONTRIBUINTES

Os parâmetros demonstrados na tabela 3 são utilizados para se calcular

a intensidade das chuvas das áreas contribuintes de cada trecho.

Tabela 3 – Parâmetros utilizados para o cálculo da intensidade das chuvas contribuintes.

Estação: ITOUPAVA CENTRALCódigo: 2649010

Município: BLUMENAU - SCLatitude: -26º47'35.16Longitude: -49º04'59.88

p/ t ≤ 120 minutos 

K m d n660,0 0,1764 8,1 0,6648

Fonte: adaptado de SNIRH (acesso em: 29 de maio de 2014) e BACK (2002).

Page 11: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 11/30

11

Para o cálculo da intensidade da chuva utilizada na fórmula do método

racional, utiliza-se a seguinte equação IDF:

=   . +  

Onde:

  i = intensidade da chuva (mm/h);

  T = período de retorno (anos);

  t = tempo de concentração acumulado (min);

  K, m, d, n = parâmetros da equação determinados para o local.

3.5  DETERMINAÇÃO DAS VAZÕES

A partir da intensidade calculada no primeiro trecho de cada uma das

três seções, pôde-se determinar a vazão fórmula do método racional,

apresentada abaixo.

=  × × 3600  

Onde:

  Q = vazão no trecho analisado (l/s);

  C = coeficiente de escoamento superficial ponderado na área

contribuinte do trecho;

  i = intensidade de chuvas na área contribuinte do trecho (mm/h);

  A = área contribuinte (m²).

Os tempos de concentração acumulados apenas puderam ser calculados

após o método iterativo utilizado para cálculo dos diâmetros e os demais itens,

como demonstrado nos tópicos posteriores a este. Porém, os valores corretos

 já estão apresentados na tabela 4 a seguir.

Page 12: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 12/30

12

Tabela 4 – Cálculo das vazões a partir do método racional.

TRECHOL

(m)

ÁREA (m²) C tc(min)

i(mm/h)

Q (l/s)Trecho Acumulada Trecho Médio

PV01 - 1597,89 1597,89 0,497 0,497 - - -PV01 - PV02 52,52 1500,4 3098,29 0,497 0,497 5,00 134,86 57,68

PV02 - PV03 69,51 2142,84 5241,13 0,533 0,512 5,39 132,27 98,54

PV03 - PV04 26,83 680,74 5921,87 0,533 0,514 5,86 129,28 109,34

PV04 - PV05 68,09 2898,96 8820,83 0,515 0,514 6,07 128,02 161,37

PV05 - PV06 47,97 746,41 9567,24 0,533 0,516 6,58 125,05 171,44

PV06 - PV07 33,62 1059,99 10627,23 0,587 0,523 7,11 122,11 188,52

PV07 - PV08 46,21 1601,88 12229,11 0,587 0,531 7,47 120,25 217,05

PV08 - PV09 52,81 1819,59 14048,7 0,587 0,539 7,95 117,84 247,66

TRECHOL

(m)

ÁREA (m²) C tc(min)

i(mm/h)

Q (l/s)Trecho Acumulada Trecho Médio

PV10 - 804,93 804,93 0,587 0,587 - - -

PV10 - PV11 12,08 846,14 1651,07 0,533 0,559 5,00 134,86 34,59

PV11 - PV12 24,59 3745,58 5396,65 0,533 0,541 5,16 133,78 108,51

PV12 - PV13 24,51 8151,49 13548,14 0,497 0,515 5,40 132,21 256,01

PV13 - PV14 36,31 3154,42 16702,56 0,443 0,501 5,59 130,97 304,46

PV14 - PV15 49,82 6307,75 23010,31 0,443 0,485 6,00 128,40 398,16

PV15 - PV16 46,22 5599,62 28609,93 0,443 0,477 6,47 125,67 476,26

PV16 - PV17 55,60 5854,32 34464,25 0,443 0,471 6,91 123,20 555,65

TRECHOL

(m)

ÁREA (m²) C tc(min)

i(mm/h)

Q (l/s)Trecho Acumulada Trecho Médio

PV18 - PV19 67,7 11798 11798,03 0,443 0,443 5,00 134,86 195,79

PV19 - PV20 71,64 14005,3 25803,35 0,533 0,492 5,35 132,52 467,19

PV20 - PV21 41,93 2802,6 28605,95 0,533 0,496 5,74 130,00 512,23

PV21 - PV22 42,36 1509,48 30115,43 0,533 0,498 5,99 128,46 534,89

Fonte: autor.

3.6  DIMENSIONAMENTO DA REDE DE MICRODRENAGEM

3.6.1  Determinação das cotas, das declividades e do recobrimento

(profundidades)

Primeiramente, foram determinadas as declividades dos greides, a partir

de análise do desenho em planta, o qual conta com curvas de nível que

permitem tal análise. A fórmula abaixo representa o cálculo necessário para

sua determinação.

Page 13: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 13/30

13

 =  −  

Onde:

  Igreide = declividade do greide no trecho analisado (m/m ou %);

  CTM = cota do terreno no ponto do poço de visita à montante (m);

  CTJ = cota do terreno no ponto do poço de visita à jusante (m);

  L = comprimento do trecho estudado (m).

Com todas as cotas e declividades do terreno em mãos, pode-seimplementar tais dados em um desenho de perfil dos trechos estudados.

As declividades da rede, em comparação às declividades dos greides,

implicam em diferenças mínimas ou desprezíveis de recobrimento ao longo

das galerias, como será demonstrado posteriormente.

Sob profundidade de pelo menos 1,10 m abaixo da cota do terreno,

foram alocados os poços de visita. Isto garantiu que as galerias dimensionadas

possuissem o mínimo recobrimento preconizado pela fórmula a seguir:

= 2 + 0,40  

Onde:

 

R = recobrimento (m);  D = diâmetro da tubulação (m)

Page 14: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 14/30

14

Tabela 5 – Cotas de terreno (CT), de galerias (CC) e profundidades de galerias (PC).

TRECHO L (m)CTM(m)

CTJ (m)PCM(m)

PCJ (m)CCM(m)

CCJ (m)

PV01 - - 38,1 - - - -PV01 - PV02 52,52 38,1 35,2 1,10 1,10 37,00 34,10

PV02 - PV03 69,51 35,2 32,3 1,10 1,10 34,10 31,20

PV03 - PV04 26,83 32,3 31,5 1,10 1,10 31,20 30,40

PV04 - PV05 68,09 31,5 29,8 1,10 1,10 30,40 28,70

PV05 - PV06 47,97 29,8 29,4 1,10 1,10 28,70 28,30

PV06 - PV07 33,62 29,4 29,1 1,10 1,10 28,30 28,00

PV07 - PV08 46,21 29,1 28,7 1,10 1,10 28,00 27,60

PV08 - PV09 52,81 28,7 28,3 1,10 1,10 27,60 27,20

TRECHO L (m)CTM(m)

CTJ (m)PCM(m)

PCJ (m)CCM(m)

CCJ (m)

PV10 - - 28,1 - - - -

PV10 - PV11 12,08 28,1 27,9 1,10 1,10 27,00 26,80

PV11 - PV12 24,59 27,9 27,5 1,10 1,10 26,80 26,40

PV12 - PV13 24,51 27,5 27,1 1,10 1,10 26,40 26,00

PV13 - PV14 36,31 27,1 26,9 1,10 1,10 26,00 25,80

PV14 - PV15 49,82 26,9 26,5 1,10 1,10 25,80 25,40

PV15 - PV16 46,22 26,5 26,4 1,10 1,30 25,40 25,10

PV16 - PV17 55,60 26,4 26,4 1,30 1,60 25,10 24,80

TRECHO L (m)CTM(m)

CTJ (m)PCM(m)

PCJ (m)CCM(m)

CCJ (m)

PV18 - PV19 67,7 33,5 29,5 1,10 1,10 32,40 28,40

PV19 - PV20 71,64 29,5 27,4 1,10 1,10 28,40 26,30

PV20 - PV21 41,93 27,4 26,5 1,10 1,10 26,30 25,40

PV21 - PV22 42,36 26,5 26,3 1,10 1,20 25,40 25,10

Fonte: autor.

3.6.2  Determinação dos diâmetros e dos tempos de escoamento

Com os recobrimentos determinados, têm-se automaticamente as cotas

das galerias e suas declividades, calculadas através da fórmula abaixo:

 =  −  

Page 15: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 15/30

15

Onde:

  Igaleria = declividade da galeria no trecho analisado (m/m ou %);

 

CCM = cota da galeria no ponto do poço de visita à montante (m);

  CCJ = cota da galeria no ponto do poço de visita à jusante (m);

  L = comprimento do trecho estudado (m).

Considerando que a lâmina da água deva atingir no máximo 80% do

diâmetro da galeria em estudo, foi imposto o valor 0,34066 a partir da tabela

de Cordero (2013):

× 8 ⁄   ×

⁄   = 0,34066 

Onde:

  Q = vazão no trecho analisado (m³/s);

 

n = coeficiente de rugosidade da galeria (adotado o do concreto:0,016);

  D = diâmetro da galeria no trecho (m);

  I = declividade do trecho da galeria (m/m).

Isolando o “D” da fórmula acima, encontra-se o valor do diâmetro

calculado. Porém, há valores da dimensão limitados para as tubulações no

mercado. Por isso, o diâmetro adotado de cada trecho de galeria foi o valor de

diâmetro comercial imediatamente superior ao valor do diâmetro calculado.

Com o novo diâmetro adotado em mãos, deve-se aplicá-lo novamente na

fórmula citada acima. O valor encontrado deve ser encontrado na tabela de

Cordero (2013) e conferir os valores da altura da lâmina da água (h/D) e da

área molhada dividida pelo diâmetro ao quadrado (A/D²). Caso o valor não

exista na tabela, deve se encontrar os dois valores vizinhos e utilizar o sistema

Page 16: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 16/30

16

de interpolação para que se possa encontrar os valores acima mencionados

correspondentes.

Com o valor de “A/D²”, pode-se determinar a área molhada da galeria. Apartir da mesma, com o valor da vazão em mãos, determina-se a velocidade

do fluxo da água na tubulação, com a fórmula abaixo.

= ×  

Onde:

 

Q = vazão no trecho analisado (m³/s);

  v = velocidade da água no trecho (m/s);

  A = área molhada da galeria no trecho (m²).

Dividindo o comprimento do trecho pela velocidade encontrada, tem-se

o tempo que a uma partícula de água demora de sua montante à jusante, ou

seja, o tempo de escoamento da água no trecho. Este tempo é somado ao

tempo de concentração acumulado anterior e assim sucessivamente.

Esse processo foi repetido para todos os trechos estudados, como

verificado na tabela 6.

Os tempos de concentração acumulados adquiridos a partir dos tempos

de escoamento obtidos se encontram na tabela 4 apresentada anteriormente.

Page 17: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 17/30

17

Tabela 6 – Planilha utilizada para cálculo iterativo dos diâmetros as galerias e dos temposde escoamento.

TRECHOI

greideI

galeriaD (cm)

calculadoD (cm)

adotado(Q*n)/(D8/3*I1/2) h/D A/D²

A(m²)

v(m/s)

tesc (min)

PV01 - - - - - - - - - -

PV01 - PV02 5,52% 5,52% 19,56 40 0,04522 0,25732 0,15993 0,026 2,25 0,39

PV02 - PV03 4,17% 4,17% 25,20 40 0,08886 0,3654 0,25056 0,040 2,46 0,47

PV03 - PV04 2,98% 2,98% 27,91 40 0,11664 0,42377 0,31677 0,051 2,16 0,21

PV04 - PV05 2,50% 2,50% 33,38 40 0,18812 0,56035 0,4529 0,072 2,23 0,51

PV05 - PV06 0,83% 0,83% 41,95 50 0,19074 0,56522 0,45773 0,114 1,50 0,53

PV06 - PV07 0,89% 0,89% 42,92 50 0,20275 0,58758 0,47983 0,120 1,57 0,36

PV07 - PV08 0,87% 0,87% 45,51 50 0,23701 0,65242 0,54272 0,136 1,60 0,48

PV08 - PV09 0,76% 0,76% 49,03 50 0,28910 0,76128 0,64154 0,160 1,54 0,57

TRECHOI

greideI

galeriaD (cm)

calculadoD (cm)

adotado(Q*n)/(D8/3*I1/2) h/D A/D²

A(m²)

v(m/s)

tesc (min)

PV10 - - - - - - - - - -

PV10 - PV11 1,66% 1,66% 20,24 40 0,04952 0,26951 0,17066 0,027 1,27 0,16

PV11 - PV12 1,63% 1,63% 31,17 40 0,15671 0,50165 0,39435 0,063 1,72 0,24

PV12 - PV13 1,63% 1,63% 42,99 50 0,20360 0,58915 0,48138 0,120 2,13 0,19

PV13 - PV14 0,55% 0,55% 56,23 60 0,25630 0,69052 0,5785 0,208 1,46 0,41

PV14 - PV15 0,80% 0,80% 57,94 60 0,27761 0,7353 0,61898 0,223 1,79 0,46

PV15 - PV16 0,22% 0,65% 64,49 70 0,24484 0,66769 0,55718 0,273 1,74 0,44

PV16 - PV17 0,00% 0,54% 70,74 80 0,21944 0,618878142 0,510447311 0,327 1,70 0,54

TRECHOI

greideI

galeriaD (cm)

calculadoD (cm)

adotado(Q*n)/(D8/3*I1/2) h/D A/D²

A(m²)

v(m/s)

tesc (min)

PV18 - PV19 5,91% 5,91% 30,54 40 0,14837 0,48581 0,37851 0,061 3,23 0,35

PV19 - PV20 2,93% 2,93% 48,26 50 0,27723 0,73444 0,61823 0,155 3,02 0,39

PV20 - PV21 2,15% 2,15% 52,96 60 0,21844 0,61698 0,5086 0,183 2,80 0,25

PV21 - PV22 0,47% 0,71% 66,27 70 0,26325 0,70476 0,59157 0,290 1,85 0,38

Fonte: autor.

3.6.3  Cotas das valas, dos fundos dos poços de visita e volumes de escavação

As valas tiveram suas cotas calculadas conforme a fórmula abaixo.

= − − − 0,2 

Page 18: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 18/30

18

Onde:

  CV = cota da vala à montante ou jusante (m);

  CT = cota do terreno à montante ou jusante (m);

  PC = profundidade da galeria à montante ou jusante (m);

  D = diâmetro da galeria (m);

As cotas dos fundos dos poços de visita foram calculados pela fórmula:

= −  

Onde:

  CPV = cota do fundo do poço de visita (m);

  CCM = cota da galeria à montante (m);

 

D = diâmetro da galeria (m);

O volume de escavação se dá como visto na fórmula abaixo.

 = + 2 × 0,2 × × ( + 2   ) + 0,2 

Onde:

 

Vesc = volume escavado (m³);

  D = diâmetro da galeria (m);

  L = comprimento do trecho (m);

  PCJ = profundidade da galeria à justante (m);

  PCM = profundidade da galeria à montante (m);

Os valores obtidos se encontram na tabela 7.

Page 19: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 19/30

19

Tabela 7 – Cotas das valas (CV), dos fundos dos poços de visita (CPV) e volumes deescavação.

TRECHO CVM (m) CVJ (m) CPV (m) Vesc (m³)

PV01 - - - -

PV01 - PV02 36,40 33,50 36,60 95,59

PV02 - PV03 33,50 30,60 33,70 126,51

PV03 - PV04 30,60 29,80 30,80 48,83

PV04 - PV05 29,80 28,10 30,00 123,92

PV05 - PV06 28,00 27,60 28,20 99,78

PV06 - PV07 27,60 27,30 27,80 69,93

PV07 - PV08 27,30 26,90 27,50 96,12

PV08 - PV09 26,90 26,50 27,10 109,84

TRECHO CVM (m) CVJ (m) CPV (m) Vesc (m³)

PV10 - - - -

PV10 - PV11 26,40 26,20 26,60 21,99

PV11 - PV12 26,20 25,80 26,40 44,75

PV12 - PV13 25,70 25,30 25,90 50,98

PV13 - PV14 25,20 25,00 25,40 84,97

PV14 - PV15 25,00 24,60 25,20 116,58

PV15 - PV16 24,50 24,20 24,70 129,42PV16 - PV17 24,10 23,80 24,30 201,83

TRECHO CVM (m) CVJ (m) CPV (m) Vesc (m³)

PV18 - PV19 31,80 27,80 32,00 123,21

PV19 - PV20 27,70 25,60 27,90 149,01

PV20 - PV21 25,50 24,60 25,70 98,12

PV21 - PV22 24,50 24,20 24,70 114,37

Fonte: autor.

3.7  SARJETAS E BOCAS DE LOBO

As sarjetas e bocas de lobo são dispositivos utilizados para a coleta das

águas urbanas oriundas do escoamento superficial. Seu objetivo é coletar e

transferir a água às galerias e, por consequência, à rede de microdrenagem,

através de subcoletores conectados aos poços de visita.

Page 20: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 20/30

20

3.7.1  Sarjetas

Primeiramente, as áreas de contribuição utilizadas para o

dimensionamento da rede de microdrenagem foram reaproveitadas, apenasdescartando a parte delas que ficam além de 30 metros das bordas da rua – 

onde ficarão locadas as sarjetas.

As áreas são divididas então em 2, uma de cada lado da rua. Os lados

direito e esquerdo foram adotados conforme sentido do fluxo das águas pelas

galerias.

Com as áreas determinadas, deve-se mais uma vez utilizar o método

racional (fórmula abaixo) para o cálculo das vazões contribuintes de cada

trecho entre os poços de visita – afinal, de cada lado do poço de visita serão

locadas bocas de lobo ao longo da sarjeta, como será mostrado

posteriormente.

Os tempos de concentração adotados foram de 5 minutos, pois os

trechos e suas áreas contribuintes foram relativamente pequenas. Através deanálise empírica da relação com o dimensionamento da rede de

microdrenagem, conclui-se que os tempos de concentração não passariam de

5 minutos. O período de retorno adotado é de 2 anos (para microdrenagem) e

os parâmetros da região foram os mesmos adotados para o dimensionamento

da rede de microdrenagem.

=  × × 3600  

Onde:

  Q = vazão no trecho analisado (l/s);

  C = coeficiente de escoamento superficial na área contribuinte do

trecho;

 

i = intensidade de chuvas na área contribuinte do trecho (mm/h);

  A = área contribuinte (m²).

Page 21: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 21/30

21

O coeficiente de escoamento superficial adotado foi de 0,60, por razões

de segurança aos cálculos. Assim, garante-se as capacidades de vazão

encontradas pelos dispositivos.

Tabela 8 – Vazões contribuintes às sarjetas.

TRECHO L (m) C Área Lado Esq.(m²)

Área Lado Dir.(m²)

Q esq (l/s)

Q dir (l/s)

PV01 - PV02 52,52 0,6 434,64 1065,76 9,77 23,95

PV02 - PV03 69,51 0,6 646,09 1496,75 14,52 33,64

PV03 - PV04 26,83 0,6 361,26 319,48 8,12 7,18

PV04 - PV05 68,09 0,6 986,13 1912,84 22,16 42,99

PV05 - PV06 47,97 0,6 387,56 358,85 8,71 8,07PV06 - PV07 33,62 0,6 391,84 668,14 8,81 15,02

PV07 - PV08 46,21 0,6 580,49 1021,39 13,05 22,96

PV08 - PV09 52,81 0,6 568,03 1251,57 12,77 28,13

TRECHO L (m) C Área Lado Esq.(m²)

Área Lado Dir.(m²)

Q esq (l/s)

Q dir (l/s)

PV10 - PV11 12,08 0,6 235,45 371,38 5,29 8,35

PV11 - PV12 24,59 0,6 385,87 894,06 8,67 20,10

PV12 - PV13 24,51 0,6 231,2 1038,03 5,20 23,33PV13 - PV14 36,31 0,6 215,84 1047,71 4,85 23,55

PV14 - PV15 49,82 0,6 384,09 1588,41 8,63 35,70

PV15 - PV16 46,22 0,6 526,76 1527,8 11,84 34,34

PV16 - PV17 55,60 0,6 571,87 2122,53 12,85 47,71

TRECHO L (m) C Área Lado Esq.(m²)

Área Lado Dir.(m²)

Q esq (l/s)

Q dir (l/s)

PV18 - PV19 67,7 0,6 693 2293,2 15,58 51,54

PV19 - PV20 71,64 0,6 984,69 2176,64 22,13 48,92PV20 - PV21 41,93 0,6 508,31 1323,6 11,43 29,75

PV21 - PV22 42,36 0,6 548,04 961,43 12,32 21,61

Fonte: autor.

O tipo de sarjeta adotado foi o de sarjeta composta, onde a faixa

inundada abrange anto a sarjeta quanto parte da pista.

Page 22: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 22/30

22

Figura 1 – Corte genérico de sarjeta composta.

Fonte: Pinheiro (2014).

As capacidades de vazão das sarjetas foram encontradas através da

fórmula abaixo. As variáveis presentes na fórmula estão representadas no

desenho da figura 2.

= 0,375 × 8 ⁄   × × √  

Onde:

  Q = vazão efetiva da sarjeta (m³/s);

  y = altura da lâmina da água (m);

  z = número de partes horizontais a cada parte vertical;

  n = coeficiente de rugosidade (0,016);

  I = declividade longitudinal da sarjeta (m/m).

Page 23: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 23/30

23

Figura 2 – Variáveis utilizadas no cálculo da vazão efetiva da sarjeta.

Fonte: Pinheiro (2014).

Como a sarjeta utilizada é composta, deve-se fazer o cálculo de vazão

de sarjeta mostrado anteriormente três vezes, conforme na figura acima. Após

isto, pôde-se determinar a vazão final pela fórmula:

 =  −  +  

Onde:

  Q 0 = vazão efetiva da sarjeta (l/s);

  Q 1 = vazão da primeira seção da sarjeta (l/s);

  Q 2 = vazão da segunda seção da sarjeta (l/s);

 

Q 3 = vazão da terceira seção da sarjeta (l/s).

Para a procedência dos cálculos, a sarjeta foi adotada com 60

centímetros de largura e 10% de declividade vertical. Também foram

considerados 60 centímetros da invasão da água sobre a pista, cuja declividade

vertical ficou em 2%.

Quanto à declividade longitudinal, deve-se adotar um fator de redução

que se multiplica à vazão efetiva calculada, obedecendo-se os critérios databela 9.

Page 24: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 24/30

24

Tabela 9 – Fatores de redução conforme declividade longitudinal da sarjeta.

Declividade longitudinal da sarjeta Fator de redução

até 5% 0,506% 0,408% 0,2710% 0,20

Fonte: Pinheiro (2014).

Com os dados gerados acima, pôde-se determinar os próximos itens

referentes ao dimensionamento das sarjetas, incluindo a altura da lâmina da

água, calculada a partir das declividades verticais da sarjeta e da rua, a largurada sarjeta e o comprimento de invasão da água sobre a pista.

Tabela 10 – Dimensionamento da sarjeta.

TRECHOI

sarjetay1 z1  y2  z2  Q 1  Q 2  Q 3  Q total  Fator de

reduçãoQ final 

(m) 10% (m) 2% (l/s) (l/s) (l/s) (l/s) (l/s)PV01 - PV02 5,52% 0,072 10 0,012 50 49,41 2,08 0,42 51,07 0,4 20,43PV02 - PV03 4,17% 0,072 10 0,012 50 42,95 1,81 0,36 44,40 0,5 22,20PV03 - PV04 2,98% 0,072 10 0,012 50 36,31 1,53 0,31 37,53 0,5 18,77

PV04 - PV05 2,50% 0,072 10 0,012 50 33,23 1,40 0,28 34,34 0,5 17,17PV05 - PV06 0,83% 0,072 10 0,012 50 19,20 0,81 0,16 19,85 0,5 9,92PV06 - PV07 0,89% 0,072 10 0,012 50 19,86 0,84 0,17 20,53 0,5 10,27PV07 - PV08 0,87% 0,072 10 0,012 50 19,56 0,82 0,16 20,22 0,5 10,11PV08 - PV09 0,76% 0,072 10 0,012 50 18,30 0,77 0,15 18,92 0,5 9,46

TRECHOI

sarjetay1 z1  y2  z2  Q 1  Q 2  Q 3  Q total  Fator de

reduçãoQ final 

(m) 10% (m) 2% (l/s) (l/s) (l/s) (l/s) (l/s)PV10 - PV11 1,66% 0,072 10 0,012 50 27,06 1,14 0,23 27,97 0,5 13,98PV11 - PV12 1,63% 0,072 10 0,012 50 26,82 1,13 0,23 27,72 0,5 13,86PV12 - PV13 1,63% 0,072 10 0,012 50 26,86 1,13 0,23 27,77 0,5 13,88PV13 - PV14 0,55% 0,072 10 0,012 50 15,61 0,66 0,13 16,13 0,5 8,07PV14 - PV15 0,80% 0,072 10 0,012 50 18,84 0,79 0,16 19,48 0,5 9,74PV15 - PV16 0,22% 0,072 10 0,012 50 9,78 0,41 0,08 10,11 0,5 5,06PV16 - PV17 0,50% 0,072 10 0,012 50 14,87 0,63 0,13 15,37 0,5 7,68

TRECHOI

sarjetay1 z1  y2  z2  Q 1  Q 2  Q 3  Q total  Fator de

reduçãoQ final 

(m) 10% (m) 2% (l/s) (l/s) (l/s) (l/s) (l/s)PV18 - PV19 5,91% 0,072 10 0,012 50 51,11 2,15 0,43 52,83 0,4 21,13PV19 - PV20 2,93% 0,072 10 0,012 50 36,00 1,51 0,30 37,21 0,5 18,61PV20 - PV21 2,15% 0,072 10 0,012 50 30,81 1,30 0,26 31,84 0,5 15,92PV21 - PV22 0,47% 0,072 10 0,012 50 14,45 0,61 0,12 14,94 0,5 7,47

Fonte: autor.

Page 25: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 25/30

25

O valor de declividade longitudinal da sarjeta grifado (0,5% do trecho

PV16 – PV17) difere da declividade do greide, pois foi ajustado. O greide neste

trecho não possui declividade, logo o dimensionamento da sarjeta seria

impossível.

3.7.2 

Bocas de lobo

As bocas de lobo são utilizadas para coletar a água excedente às sarjetas.

Cada lado da rua possui sarjeta e cada trecho da sarjeta deve possuir um

número específico de bocas de lobo. Este número é calculado pela fórmula

abaixo, sendo que o denominador da equação deve ser o valor mínimo entre

as duas vazões.

 =   í;  

Onde:

  Q a = vazão contribuinte à sarjeta (l/s);

  Q BL = vazão efetiva da boca de lobo (l/s);

  Q s = vazão efetiva da sarjeta (l/s).

Deduzindo-se da fórmula acima, o número de bocas de lobo aumenta

conforme a vazão escolhida ao denominador diminui. Isso se dá pois a vazão

no denominador da equação representa a capacidade do dispositivo. Para

efeitos acadêmicos, a tabela de cálculo do número de bocas de lobo deste

trabalho apresenta os dois números calculados – com a vazão efetiva da sarjeta

e com a vazão efetiva da boca de lobo. A partir dos dois números, escolhe-se

então o maior, respeitando a fórmula apresentada acima.

O tipo de boca de lobo adotado foi a de guia. Tendo isso em vista, o fator

de redução que deve multiplicar a vazão efetiva da boca de lobo encontrada

deve ser igual a 0,80. A única dimensão utilizada para o cálculo é a abertura

da boca na guia, a qual foi adotado o valor de 70 centímetros. O cálculo da

vazão efetiva da boca de lobo de guia foi feito pela fórmula abaixo.

Page 26: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 26/30

26

= 1,703 × × ⁄  

Onde:

  Q = vazão efetiva da boca de lobo (m³/s)

  L = largura da abertura da boca na guia (m);

  y = altura da lâmina da água (m).

As informações utilizadas no cálculo da vazão efetiva da boca de lobo

se encontram na tabela 11, enquanto que a determinação do número de bocas

de lobo por trecho se encontra na tabela 12.Deve-se notar que, no lado direito dos trechos PV15 – PV16 e PV16 – 

PV17, o número mínimo de bocas de lobo em cada um seriam de 7,

arredondado-se os valores calculados. Porém, o número máximo de bocas de

lobo interligadas que desaguam em um poço de visita não pode ultrapassar 4.

Logo, o número adotado foi de 4 em ambos os trechos. Como não há

continuidade da rede de microdrenagem após o poço de visita 17 –  por as

águas urbanas desaguarem no ribeirão próximo –, não existe a necessidade dautilização de bocas de lobo a mais nos trechos subsequentes.

Tabela 11 – Determinação da vazão efetiva da boca de lobo.

Boca de Lobo

L (m) 0,7 Q final 

y (m) 0,072 (l/s)

Fator de redução 0,8 18,42

Fonte: autor.

Page 27: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 27/30

27

Tabela 12 – Determinação do número de bocas de lobo.

Nº de bocas de lobo calculado Nº de bocas de loboadotado

ESQUERDA DIREITATRECHO

Quant. Quant. Quant. Quant. LTRECHO

(m)

Quant. Quant.

Sarjeta BL Sarjeta BL Esq. Dir.

PV01 - PV02 0,48 0,53 1,17 1,30 52,52 2 2

PV02 - PV03 0,65 0,79 1,52 1,83 69,51 2 2

PV03 - PV04 0,43 0,44 0,38 0,39 26,83 1 1

PV04 - PV05 1,29 1,20 2,50 2,33 68,09 3 3

PV05 - PV06 0,88 0,47 0,81 0,44 47,97 2 2

PV06 - PV07 0,86 0,48 1,46 0,82 33,62 2 2

PV07 - PV08 1,29 0,71 2,27 1,25 46,21 3 3PV08 - PV09 1,35 0,69 2,97 1,53 52,81 3 3

TRECHOQuant. Quant. Quant. Quant. L

TRECHO(m)

Quant. Quant.

Sarjeta BL Sarjeta BL Esq. Dir.

PV10 - PV11 0,38 0,29 0,60 0,45 12,08 1 1

PV11 - PV12 0,63 0,47 1,45 1,09 24,59 2 2

PV12 - PV13 0,37 0,28 1,68 1,27 24,51 2 2

PV13 - PV14 0,60 0,26 2,92 1,28 36,31 3 3

PV14 - PV15 0,89 0,47 3,67 1,94 49,82 4 4PV15 - PV16 2,34 0,64 6,79 1,86 46,22 4 4

PV16 - PV17 1,67 0,70 6,21 2,59 55,60 4 4

TRECHOQuant. Quant. Quant. Quant. L

TRECHO(m)

Quant. Quant.

Sarjeta BL Sarjeta BL Esq. Dir.

PV18 - PV19 0,74 0,85 2,44 2,80 67,7 3 3

PV19 - PV20 1,19 1,20 2,63 2,66 71,64 3 3

PV20 - PV21 0,72 0,62 1,87 1,61 41,93 2 2

PV21 - PV22 1,65 0,67 2,89 1,17 42,36 3 3

Fonte: autor.

3.8  DISSIPADORES DE ENERGIA

Para que se evite o acúmulo de energia no deságue de cada seção da rede

de microdrenagem, foram preconizadas bacias de amortecimento como

dissipadores de energia em cada ponto de deságue, como está detalhado nos

anexos ao final do trabalho.

Page 28: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 28/30

28

4  CONCLUSÃO

Este trabalho foi desenvolvido a partir das lições teóricas fornecidas

pelo professor, observações práticas e estudos externos às bibliografias dogênero.

As redes de microdrenagem são indispensáveis ao desenvolvimento de

um centro urbano. A falta de estrutura para conter as águas urbanas pode

resultar em catástrofes que abrangem desde os danos materiais até

casualidades humanas.

O dimensionamento apresentado neste trabalho se deu à uma rede de

microdrenagem fictícia para a rua Alfredo Demm, no bairro Itoupava Central,

na cidade de Blumenau. Pelos estudos feitos relacionados à situação da rua, a

mesma foi considerada parte de uma zona que varia de rural a brandamente

urbanizada. Esta determinação foi essencial aos cálculos para o

dimensionamento da rede.

Pôde-se constatar a complexidade exigida num trabalho dedimensionamento como este. Por isso, é óbvia a necessidade de profissionais

comprometidos a este tipo de trabalho de engenharia.

Apesar de serem necessários engenheiros capacitados ao

dimensionamento e execução de uma rede de microdrenagem, existem outros

fatores – como o político – que interferem à aplicação do sistema. O estudo

minucioso das normas que preconizam o mínimo necessário para cada quesito

do trabalho não valem de nada quando os seus executores pecam por falta de

recursos.

Porém, há de se acreditar que a situação no Brasil está melhorando com

o aumento da fiscalização durante a execução de tais sistemas.

Page 29: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 29/30

29

REFERÊNCIAS

PINHEIRO, Adilson. Dissipadores de energia. Apostila. Disponível em:

<www.furb.br/ava>. Acesso em: 14 de junho de 2014.

_____. Microdrenagem. Apostila. Disponível em: <www.furb.br/ava>. Acesso

em: 29 de maio de 2014.

Page 30: Dimensionamento de Sistema de Microdrenagem

8/17/2019 Dimensionamento de Sistema de Microdrenagem

http://slidepdf.com/reader/full/dimensionamento-de-sistema-de-microdrenagem 30/30

30

ANEXOS