digital integrated circuit design i ece 425/525 chapter...

27
Digital Integrated Circuit Design I ECE 425/525 Chapter 1 Professor R. Daasch Department of Electrical and Computer Engineering Portland State University Portland, OR 97207-0751 ([email protected]) http://ece.pdx.edu/~ecex25 ©R.Daasch, Portland State University 1 April 2016

Upload: truongnhi

Post on 02-Sep-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Digital Integrated Circuit Design IECE 425/525

Chapter 1

Professor R. Daasch

Depar tment of Electrical and Computer EngineeringPortland State UniversityPortland, OR 97207-0751([email protected])

http://ece .pdx.edu/ ~ecex25

©R.Daasch, Por tland State University 1 Apr il 2016

Chapter 1Dr ivers for bigger, better, faster integrated circuits

Computers - big iron mainframes to Palm Pilots

Data Communication - aka “The Internet”

Wireless - cell phones, wireless LAN, wireless WAN

Enter tainment

Lifestyle

©R.Daasch, Por tland State University 2 Apr il 2016

Chapter 1Logic Complexity

Complexity(gates / chip)Catch Phrase Date

Single Transistor 1958 <1Unit Logic 1960 1Multi-Function 1962 2-4Complex Function 1964 5-20Medium Scale Integration 1967 20-200Large Scale Integration 1972 200-2,000Very Large Scale Integration 1978 2,000-20,000Ultra Large Scale Integration 1989 20,000-System-on-Chip 2000 1,000,000-

©R.Daasch, Por tland State University 3 Apr il 2016

Chapter 1Logic Complexity

Size Number(µm) (x 1, 000)Catch Phrase Date

Single Transistor 1958Unit Logic 1960Multi-Function 1962Complex Function 1964 10Medium Scale Integration 1967Large Scale Integration 1972 4 5Very Large Scale Integration 1978 2 50Ultra Large Scale Integration 1989 1 500Change phrase to describe transistorItsy Bitsy 1993 0.600 1,000Teensy Weensy 1996 0.350 2,000Incredibly Small 2000 0.250 5,000Unbelievably Tiny 2003 0.130 10,000Rediculously Small 2006 0.090 20,000Damn This is Tiny 2009 0.045 40,000Smaller than tobacco smoke par ticles (STSMP)2010 0.022 80,000

©R.Daasch, Por tland State University 4 Apr il 2016

Chapter 1Tr ansistor count is for an average size die (≈ 100mm2)

Human hair has a thickness of about 100,000 nanometers(100 µm, 0.1 mm)

Year

Sal

es (

billi

ons)

1985 1990 1995 2000 2005 2010

100

200

300

• •• • • • •

••

•• •

••

• ••

••

• • ••

• • •

Worldwide Semiconductor Sales

Moore’s LawThe number of transistors per chip doubles every one and

©R.Daasch, Por tland State University 5 Apr il 2016

Chapter 1one-half years.

New mater ials are beginning to replace Silicon, SiO2 in thetransistor

Additional metals and other materials (e.g. carbon nanotubes)continue to be discussed

Research active in memor ies and logic

Prototypes only no products as of yet

©R.Daasch, Por tland State University 6 Apr il 2016

Chapter 1IBM Technology Summary Cu-32

Process generation 32nm Technology SOI HKMGSupply voltage (VDD) 0.9V/0.85V Wireable gates ≈ 400millionTotal levels of metal 11

Fast Trc eDRAM (SRAM alternative)Multi-banked eDRAM (bandwidth optimized)Pseudo two-por t eDRAM

eDRAM compilers

One- & two-por t SRAMsDual-por t SRAMTernar y CAMTw o- and four-por t RA latches, ROMOne-por t and dense two-por t register files

Other memory compilers

6G supporting PCI-Express Gen1 and Gen215G chip-to-chip core supporting low-power optical15G backplane core 16G Fibre Channel28G backplane core 32G Fibre ChannelPCI-Express PCI-Express Gen1, Gen2 and Gen3

HSS cores

©R.Daasch, Por tland State University 7 Apr il 2016

Chapter 1IBM Technology Summary Cu-32 (continued)

Multi-Vt, Regular Vt, mezzanine Vt, ultra-high VtClock gating (by design or through synthesis)Po wer supply, IP in voltage islands can usedifferent supply voltages)Selective voltage binningLow-power SRAMsSemi-custom

Base Pow er management

Voltage island power gating (turn off unusedareas of a chip)Dynamic voltage scaling (modify powersupply on-demand, with feedback)Full custom Dynamic frequency scaling (modify clock on-demand, with feedback)

But frequencies are stalling with scallingIEEE ⟨http://spectrum.ieee.org/computing/hardware/

why-cpu-frequency-stalled⟩Spectr um

©R.Daasch, Por tland State University 8 Apr il 2016

Chapter 1 ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

SEM of a Intel 90nm transistor ; from IEEE Spectrum, October2002

Single gate transistor controls channel from one side only

©R.Daasch, Por tland State University 9 Apr il 2016

Chapter 1

from Multigate Device, Wikipedia 2013

Tr ansistor “fin” extends above the plane of Silicon wafer

Double gate transistor controls channel from both sides

©R.Daasch, Por tland State University 10 Apr il 2016

Chapter 1

from Multigate Device, Wikipedia 2013

Intel Tri-gate transistor controls channel from both sides @22nm

Note all transistors are one size

All transistors have a single common gate electrode

On right SEM five transistor (sources) drains are shortedtogether

©R.Daasch, Por tland State University 11 Apr il 2016

Chapter 1 ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Mater ials are changing from pure Silicon to complexstr uctures that strain a lattice to engineer improvements to thefundamental electronic structure; from IEEE Spectrum,October 2002

©R.Daasch, Por tland State University 12 Apr il 2016

Chapter 1The enormous flexibility comes with several costs

Technology - \ billion or more for fabr ication plants withequipment and facilities

Talent - materials, devices, hardware designers, softwaredesigners, mechanical engineering, chemical engineering,business (marketing, sales)

Complexity - hardware design, software design, testdesign, tools for fabr ication and test

©R.Daasch, Por tland State University 13 Apr il 2016

Chapter 1The taxonomy of CMOS digital circuit technology

Digital Circuits

Clocked=No Clocked=Yes

Dynamic Circuits

Rail=1 Rail=2

Static Circuits

Rail=1 Rail=2

CVSL CMOS Classical CMOS Domino Logic SSD Logic

Classical CMOS

Tw o complementar y logic blocks, one of NFETs, the otherPFETs low static power, speed okay, signals are single rail

©R.Daasch, Por tland State University 14 Apr il 2016

Chapter 1Domino Logic

Single logic block of (generally) NFETs, low static powermore average power and faster than classical CMOS, twodistinct phases controlled by a global clock

Tr ansmission Gate Logic

Doesn’t fit into taxonomy ver y well; depending on the viewlooks static or dynamic

©R.Daasch, Por tland State University 15 Apr il 2016

Chapter 1Design Hierarchy

Design is an art, a discipline, a craft and a science

• Designs should be appealing to the eye (ar t and craft)

• Design is a rigorous study (discipline and a science)

Tr aditional top-down design flow

• System specification — project concept; exter nalrequirements

• High(First)-Level Model — behavior design(VHDL/Ver ilog); system blocks specification; behaviorverification; internal requirements; begin test plan

• Logic Synthesis — structure and logic design(VHDL/Ver ilog); subsystem interface requirements; area,power, timing resource specification; logic ver ification;refine and iterate test plan

©R.Daasch, Por tland State University 16 Apr il 2016

Chapter 1• Circuit Design — technology mapping; interface design;

area, power, timing allocation; circuit ver ification andsimulation; converge test plan

• Physical Design — area, power, timing closure; physicalsimulation; test plan ver ification

• Manufactur ing — packaging, engineering prototypes,test and validation; Product production, test andvalidation;

Top-down approach reflects an organizational approach forproducts but a poor way to study CMOS design

This course will use bottom-up approach that mixes circuitand physical design

©R.Daasch, Por tland State University 17 Apr il 2016

Chapter 1Full-Adder Design Example

Sum = ABC + ABC + ABC + ABC

Sum = A+B+C

Carry = AB + AC + BC

Physical Design; Area, power, timing

Propagation Delays (50%) 1.2nsTr ansition Delays (10%-90%) 1.2nsCircuit Area < 1500µm2

DynPow er (@ VDD = 5V fmax = 20MHz ) <1mW

Circuit Design; circuit topology, CMOS technology

• CMOS technology - static (classical) CMOS

• Circuit topology - two interconnected sub-blocks for sumand carry

©R.Daasch, Por tland State University 18 Apr il 2016

Chapter 1• Merge into a single, two output, complex-gate in

“transistor schematic”

• The var ious transistor-level alter natives permit physicaldesign tradeoffs

Circuit designers (versus a VHDL programmer) have theadded flexibility realizing the complex gates

More familiar gates such as INVERTER, NAND2 and NOR2can also be used

©R.Daasch, Por tland State University 19 Apr il 2016

Chapter 1

NFET and PFET symbols, respectively

MOSFET - Metal Oxide Semiconductor, Field EffectTr ansistor

Four terminal device; gate, source, drain and body

Three terminals used for signal paths in integrated circuits

Tw o types determined by the charge carrier

NFET — electron (e−) current from source to drain

PFET — hole (h+) current from source to drain

©R.Daasch, Por tland State University 20 Apr il 2016

Chapter 1

��������

��������

In Out0 11 0

Inverter

Po wer supply voltage (global)

Circuit design var iables

Independent adjustment of length (L) and width (W) ofeach transistor (local)

©R.Daasch, Por tland State University 21 Apr il 2016

Chapter 1

InA

InA

��������

��������

��������

InInB

B

InA InB Out0 0 10 1 11 0 11 1 0

NAND2

Circuit design var iables

Po wer supply voltage (global)

Adjust each transistor length and width independently(local)

Assign signals InA and InB to gate inputs independently(local)

©R.Daasch, Por tland State University 22 Apr il 2016

Chapter 1

��������

��������

��������

��������

InA

In BIn

In

A

B

InA InB Out0 0 10 1 01 0 01 1 0

NOR@

Circuit design var iables

Po wer supply voltage (global)

Independent adjustment of length and width of eachtransistor (local)

Independent assignment of InA and InB to inputs

Inter nal logic states are stored in registers and memories

Registers are assembled from latches or flip flops

Memor ies are assembled from specific memory cell designs(SRAM, DRAM, CAM...)

©R.Daasch, Por tland State University 23 Apr il 2016

Chapter 1

0

1Q

Qbar

CLKDATA

Prototype Latch

Latches clocked by one clock and clock (φ and φ ) or twoclocks (φ1 and φ2)

Mux above is simplified from traditional NAND-NAND by passtransistor logic

0

1Q

Qbar

CLKDATA

0

1

CLK

Prototype (positive-edge) Flip-Flop

©R.Daasch, Por tland State University 24 Apr il 2016

Chapter 1Latches are combined to provide simple flip-flop behavior

Physical design of the gates translates the ideal cartoons ofPFET and NFET into mask layers

Each mask layer has a minimum printing feature rangingfrom 2λ to 3λ

Top view of the design typically shows the 3D effects withstipple patterns, color or both

• Stick diagrams are a simplified top view to per mit a quickand easy estimate of the physical design complexity

Cross-section is rarely used in design and quite commonin the discussion of the fabr ication process and deviceoperating character istics

©R.Daasch, Por tland State University 25 Apr il 2016

Chapter 1Regular Design — Circuit blocks used like Lego blocks

Divide subsystem into similar circuit building blocks

Iterate in X direction, Y direction for one-dimensionalexpansion and X,Y directions for arrays

• A N-bit ripple, carr y full-adder is assembled from Ncopies of 1-bit full adder circuits

• A N-bit by W-word memory is assembled from N ⋅Wcopies of 1-bit register

At higher design hierarchy lev els entire processors may becopied

©R.Daasch, Por tland State University 26 Apr il 2016

Chapter 1Modular ity — well defined interfaces and function

Analogous software concepts are the C-function or For transubroutine

Block inputs control but are isolated from function andoutputs

Block outputs are valid inputs to other blocks

Temporal (time) and physical interfaces are equallyimpor tant

Locality — inputs and outputs are physically and temporallyclose

Inter nal details of circuit hidden from inputs and outputs

Modular and Regular circuits can be “wired” by placementalone

©R.Daasch, Por tland State University 27 Apr il 2016