difrancesco dissertation 03 28 2014 - campanastan · 2014-10-18 ·...

130
AN ABSTRACT OF THE DISSERTATION OF Kara N. DiFrancesco for the degree of Doctor of Philosophy in Water Resources Engineering presented on March 13, 2014. Title: Development and Application of Climate Risk Assessment Methods for Flood Management Systems – A Study of Flexibility, Adaptive Capacity, and Robustness Abstract approved: ______________________________________________________________ Desiree D. Tullos Discussions around adapting water management systems to climate change often express the need to increase the flexibility and adaptive capacity of current systems, and to implement robust strategies going forth. While these topics lie at the center of many climate change discussions, transforming adaptation recommendations into tangible tools and information used in decisionmaking has proven difficult. The climate adaptation literature lacks sufficient concrete examples of how water managers can assess the ability of current systems to perform under climate change and make decisions regarding potential adaptation strategies. In this dissertation, I outline a set of complimentary methods for water managers to assess the climate risk of current systems and potential management strategies. Throughout this process, I attempt to clarify and redefine climate terminology in terms of water resources management, with a particular emphasis on the term, flexibility. The developed climate assessment methods place emphasis on addressing the nonstationary, uncertain nature of

Upload: others

Post on 27-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

AN  ABSTRACT  OF  THE  DISSERTATION  OF  

 

Kara  N.  DiFrancesco  for  the  degree  of  Doctor  of  Philosophy  in  Water  Resources  Engineering  

presented  on  March  13,  2014.  

 

Title:    Development  and  Application  of  Climate  Risk  Assessment  Methods  for  Flood  

Management  Systems  –  A  Study  of  Flexibility,  Adaptive  Capacity,  and  Robustness  

 

   

 

Abstract  approved:    

______________________________________________________________  

Desiree  D.  Tullos  

 

Discussions  around  adapting  water  management  systems  to  climate  change  often  

express  the  need  to  increase  the  flexibility  and  adaptive  capacity  of  current  systems,  and  to  

implement  robust  strategies  going  forth.  While  these  topics  lie  at  the  center  of  many  climate  

change  discussions,  transforming  adaptation  recommendations  into  tangible  tools  and  

information  used  in  decision-­‐making  has  proven  difficult.  The  climate  adaptation  literature  

lacks  sufficient  concrete  examples  of  how  water  managers  can  assess  the  ability  of  current  

systems  to  perform  under  climate  change  and  make  decisions  regarding  potential  adaptation  

strategies.  In  this  dissertation,  I  outline  a  set  of  complimentary  methods  for  water  managers  to  

assess  the  climate  risk  of  current  systems  and  potential  management  strategies.  Throughout  

this  process,  I  attempt  to  clarify  and  redefine  climate  terminology  in  terms  of  water  resources  

management,  with  a  particular  emphasis  on  the  term,  flexibility.  The  developed  climate  

assessment  methods  place  emphasis  on  addressing  the  nonstationary,  uncertain  nature  of  

Page 2: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

climate  change  and  how  this  conflicts  with  traditional  water  management  decision-­‐making  

methods  that  assume  stationarity.  

Within  the  climate  adaptation  literature,  flexibility  is  one  of  the  least  rigorously  explored  

terms.  Very  little  work  has  examined  what  exactly  it  means  to  have  a  flexible  water  

management  system,  what  makes  one  system  more  flexible  than  another,  or  the  extent  to  

which  flexibility  increases  adaptive  capacity.  In  Chapter  2,  I  review  flexibility  literature  and  apply  

relevant  flexibility  concepts  from  other  sectors  to  flood  management  systems.  Based  on  this  

work,  I  present  a  methodology  for  assessing  the  flexibility  of  the  structural  and  non-­‐structural  

components  of  water  systems  using  original  indicators  developed  in  the  categories  of:    slack,  

redundancy,  connectivity,  adjustability,  and  compatibility/  coordination.  I  then  apply  this  

methodology  to  assess  the  ability  of  four  proposed  flood  management  strategies  to  increase  

the  flexibility  of  the  Sacramento  River,  CA  flood  management  system  (Chapter  3).    

  In  the  second  portion  of  this  dissertation,  I  demonstrate  a  bottom-­‐up  climate  risk  

assessment  that  tailors  available  climate  information  to  a  decision  regarding  flood  management  

in  the  American  River  basin,  CA  (Chapter  4).  Using  historic  data  and  available  models,  I  begin  by  

evaluating  the  sensitivity  and  vulnerability  of  the  flood  management  system  to  changes  in  

climate.  In  order  to  incorporate  some  of  the  uncertainty  associated  with  General  Circulation  

Model  (GCM)  projections  in  the  impact  assessment,  I  use  Bayesian  methods  to  stochastically  

generate  thousands  of  flood  frequency  parameters  representing  a  plausible  range  of  future  

flood  conditions.  Lastly,  I  assess  the  robustness  of  proposed  management  strategies  in  terms  of  

their  ability  to  meet  flood  risk  and  cost-­‐effectiveness  thresholds  under  a  large  portion  of  the  

plausible  future  conditions.  

  The  studies  presented  in  this  dissertation  provide  water  managers  with  examples  of  

how  to  apply  climate  adaptation  terms  to  on-­‐the-­‐ground  water  systems.  I  outline  example  

evaluation  techniques  for  a  collection  of  related  adaptation  terms,  in  particular:    flexibility,  

adaptive  capacity,  sensitivity,  vulnerability,  and  robustness.  While  the  example  case  studies  are  

located  in  California,  USA,  the  methodological  basis  used  to  assess  climate  risk,  has  broad  

applicability  and  can  be  adapted  and  applied  to  other  water  systems  around  the  world.    

 

Page 3: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

                               

 

 

 

©Copyright  by  Kara  N.  DiFrancesco  

March  13,  2014  

All  Rights  Reserved    

Page 4: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

Development  and  Application  of  Climate  Risk  Assessment  Methods  for  Flood  Management  

Systems  –  A  Study  of  Flexibility,  Adaptive  Capacity,  and  Robustness  

 

by  

Kara  N.  DiFrancesco  

 

 

A  DISSERTATION  

submitted  to  

Oregon  State  University  

 

 

 

in  partial  fulfillment  of  

the  requirements  for  the  

degree  of  

 

 

Doctor  of  Philosophy  

 

 

 

 

 

Presented  March  13,  2014  

Commencement  June  2014  

 

 

Page 5: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

Doctor  of  Philosophy  dissertation  of  Kara  N.  DiFrancesco  presented  on  March  13,  2014  

 

 

 

APPROVED:  

 

__________________________________________________________________  

Major  Professor,  representing  Water  Resources  Engineering  

 

__________________________________________________________________  

Director  of  the  Water  Resources  Graduate  Program  

 

__________________________________________________________________  

Dean  of  the  Graduate  School  

 

 

 

 

 

 

 

I  understand  that  my  dissertation  will  become  part  of  the  permanent  collection  of  Oregon  State  

University  libraries.  My  signature  below  authorizes  release  of  my  dissertation  to  any  reader  

upon  request.  

 

__________________________________________________________________  

Kara  N.  DiFrancesco,  Author  

   

Page 6: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

ACKNOWLEDGEMENTS  

The  author  expresses  sincere  gratitude  to  the  many  people  who  have  directly  or  

indirectly  contributed  to  this  work.  First  and  foremost,  my  advisor  Desiree  Tullos  provided  

indispensable  support  throughout  my  time  at  Oregon  State  University.  Thank  you  for  

continually  asking  questions  that  challenge  me  to  think  deeper  and  identify  the  broader  

implications  of  my  work.  To  my  committee  members,  Alix  Gitelman,  Michael  Campana,  and  

David  Purkey,  I  admire  your  ability  to  not  only  understanding  complex  technical  issues,  but  also  

to  communicate  these  issues  in  a  meaningful  way  to  a  broad  audience.  You  inspire  me  to  seek  

fulfilling  work,  which  contributes  positively  to  the  challenges  facing  the  world.  In  the  last  four-­‐

plus  years,  the  rotating  members  of  the  Rivers  Lab  Group  have  helped  shape  and  refine  my  

research  from  a  disjointed  list  of  pre-­‐proposal  notions  to  the  current  state  of  this  document.  

Thank  you  for  your  most  helpful  comments  and  suggestions  on  several  paper  and  presentation  

drafts.  In  particular,  without  the  company  of  fellow  PhD  student  Cristina  Mateus  during  

countless  hours  spent  in  our  office,  libraries,  and  coffee  shops,  I’m  not  sure  I  would  have  

endured  the  last  four  years.  Without  a  doubt,  they  would  not  have  been  nearly  as  fun  –  thank  

you.  Much  of  the  what  is  presented  in  this  document  relies  on  models  and  data  produced  by  

others  who  kindly  allowed  me  to  use  their  work,  and  for  that,  I  am  grateful  to:    MWH  Global,  

Inc.  (Yung-­‐Hsin  Sun,  Rebecca  Guo,  and  Eric  Clyde);  US  Army  Corps  of  Engineers  (Kurt  Keilman,  

Scott  Stonestreet,  and  John  High);  California  Department  of  Water  Resources  (Marill  Jacobson);  

and  Ed  Maurer  (Santa  Clara  University).  Lastly,  words  cannot  express  my  appreciation  for  the  

vital  role  my  amazingly  supportive  friends  and  family  played  in  shaping  who  I  am  and  all  that  

I’ve  accomplished.  Thank  for  always  reminding  me  of  what  is  truly  important  in  life.    

 

   

Page 7: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

TABLE  OF  CONTENTS  

  Page  

Chapter  1.   Introduction  .............................................................................................................  1  1.1.   Challenges  incorporating  climate  change  into  water  resources  management  ................  1  1.2.   California  flood  management  case  studies  ......................................................................  2  

Chapter  2.   Flexibility  in  water  resources  management:  review  of  concepts  and  development  of  assessment  measures  for  flood  management  systems  ..............................................................  5  Abstract  ......................................................................................................................................  5  2.1.   Introduction  ......................................................................................................................  6  2.2.   Flexibility  in  water  resources  systems  ..............................................................................  8  2.2.1.   Definition  and  features  of  flexibility  in  water  resources  systems  ..............................  8  2.2.2.   Characteristics  of  flexible  water  resources  systems  ...................................................  9  

2.3.   Valuing  the  costs  and  benefits  of  flexibility  ....................................................................  18  2.4.   Conclusions  .....................................................................................................................  20  References  ................................................................................................................................  27  

Chapter  3.   Assessment  of  flood  management  systems'  flexibility  with  application  to  the  Sacramento  River  basin,  California,  USA  ......................................................................................  35  Abstract  ....................................................................................................................................  35  3.1.   Introduction  ....................................................................................................................  36  3.2.   Operationalization  of  the  term  flexibility  .......................................................................  39  3.3.   Data  and  methods  ..........................................................................................................  41  3.3.1.   Study  area  ................................................................................................................  41  3.3.2.   Methods  to  analyze  flexibility  in  the  Central  Valley  Flood  Protection  Plan  (CVFPP)  42  

3.4.   Results  ............................................................................................................................  45  3.4.1.   Management  action  contribution  to  flexibility  characteristics  ................................  45  3.4.2.   Flexibility  of  structural  and  non-­‐structural  management  actions  ............................  45  3.4.3.   Flexibility  of  management  strategies  proposed  in  the  CVFPP  ..................................  46  3.4.4.   Relationship  between  flexibility  and  cost-­‐  and  time-­‐  effectiveness  .........................  47  

3.5.   Discussion  .......................................................................................................................  48  3.6.   Conclusions  .....................................................................................................................  51  References  ................................................................................................................................  63  

Chapter  4.   Bottom-­‐up  assessment  of  climate  risk  and  the  robustness  of  proposed  flood  management  strategies  in  the  American  River,  CA  ......................................................................  66  Abstract  ....................................................................................................................................  66  4.1.   Introduction  ....................................................................................................................  68  4.2.   Study  area:  American  River  Basin,  CA  ............................................................................  71  4.3.   Data  and  Methods:  Developing  the  bottom-­‐up  flood  risk  assessment  ..........................  73  4.3.1.   Establishment  of  the  decision  context  .....................................................................  73  4.3.2.   Sensitivity  of  current  system  to  flood  regime  changes  ............................................  74  4.3.3.   Vulnerability  of  system  to  flood  regime  changes  .....................................................  77  

Page 8: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

TABLE  OF  CONTENTS  (continued)  

  Page  4.3.4.   Plausible  range  of  future  flood  regimes  ...................................................................  77  4.3.5.   Robustness  of  current  systems  and  management  strategies  ..................................  80  

4.4.   Results  ............................................................................................................................  81  4.4.1.   Sensitivity  of  flood  risk  (EAD)  to  changes  in  flood  frequency  regimes  .....................  82  4.4.2.   Plausible  range  of  future  flood  impacts  ...................................................................  82  4.4.3.   Robustness  of  current  system  and  management  strategies  ....................................  84  

4.5.   Discussion  .......................................................................................................................  86  4.6.   Conclusions  .....................................................................................................................  90  References  ..............................................................................................................................  102  

Chapter  5.   Conclusions  ..........................................................................................................  106  

Bibliography  ................................................................................................................................  109              

Page 9: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

LIST  OF  FIGURES  Figure     Page  Figure  2.1.  Timeline  illustrating  shift  from  optimality  to  flexibility  and  robustness  .....................  23  

Figure  2.2.  Flexibility  characteristic  from  domains  outside  water  resources  used  to  develop  the  characteristics  for  water  resources.  .............................................................................................  24  

Figure  3.1.  Location  map  of  the  Central  Valley,  CA.  .....................................................................  54  

Figure  3.2.  Percentage  of  flexibility  characteristics  enhanced  by  each  management  strategy  in  terms  of:    a)  number  of  actions  and  b)  total  mid-­‐range  cost.  ......................................................  55  

Figure  4.1.  Map  of  the  American  River  Basin,  CA  showing  major  SPFC  project  works  .................  92  

Figure  4.2.  Daily  hydrograph  at  Fair  Oaks  USGS  gauge  on  the  American  River,  CA.  ....................  92  

Figure  4.3.  Basis  of  the  EAD  computation  used  in  CVFPP  HEC-­‐FDA  model  (modified  from  CA-­‐DWR,  2012)..  .................................................................................................................................  93  

Figure  4.4.  Gridded  FDA  model  runs  (open  circles)  used  in  the  regression  model  to  develop  the  flood  risk  response  surface,  LN(EAD)  =  ƒ(µ,  σ),  under  Without  Project  conditions  (shaded  background).    ................................................................................................................................  94  

Figure  4.5.  Observed  and  modeled  daily  streamflow  used  for  historic  and  future  flood  frequency  analysis  on  the  American  River  at  Folsom.  ...................................................................................  94  

Figure  4.6.  Expected  value  of  30-­‐year  a)  average  (μ)  and  standard  deviation  (σ)  of  LN-­‐historic  observed  3-­‐day  average  peak  annual  flows.  ................................................................................  95  

Figure  4.7.  Posterior  interval  boxplots  of:    a)  mean  peak  annual  flow,  μ,  and  b)  standard  deviation,  σ,  of  peak  annual  flow  for  observed  streamflow  data  (dark  gray)  and  GCMs  forced  with  observed  parameters  (light  gray)  from  1950  –  1999..  ..........................................................  95  

Figure  4.8.  Expected  posterior  flood  frequency  curves  derived  from  observed  streamflow  data  and  GCMs  forced  with  observed  parameters  from  1950  –  1999.  ................................................  96  

Figure  4.9.  Winbugs  MCMC  parameter  output  for  the  historic  data  (1905-­‐2012,  light  grey  circles)  and  each  of  the  GCMs  (2000-­‐2099,  dark  grey  circles).    ....................................................  97  

Figure  4.10.  Posterior  interval  boxplots  of:    a)  mean  peak  annual  flow,  μ,  and  b)  standard  deviation,  σ,  of  peak  annual  flow  for  observed  streamflow  data  from  1905  -­‐  2012  (dark  gray  box)  and  GCMs  forced  with  future  emissions  scenarios  (light  gray)  from  2000  –  2099.  ..............  98  

Figure  4.11.  Benefit-­‐cost  ratio  response  surfaces  for  each  of  the  management  strategies:    a)  Design  Capacity,  b)  Protect  Communities,  c)  Enhance  System,  d)  Combined.  .............................  99  

Page 10: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

LIST  OF  TABLES  

Table   Page  

Table  2.1.  Definitions  of  flexibility  and  inflexibility  ......................................................................  25  

Table  2.2.  Example  metrics  to  assess  flexibility  in  flood  management  systems.  Unless  otherwise  noted,  larger  metric  values  indicate  greater  flexibility.  ................................................................  26  

Table  3.1.  Example  metrics  to  assess  flexibility  in  flood  management  systems.  Unless  noted,  larger  metric  values  indicate  greater  flexibility  (DiFrancesco  and  Tullos  In  review).  ...................  56  

Table  3.3.  Inflexibilities  in  the  SPFC  identified  in  the  CVFPP  and  categorized  based  on  whether  the  inflexibility  relates  to  structural  (S)  or  non-­‐structural  (NS)  components.  ..............................  58  

Table  3.4.  Impact  of  management  actions  on  flexibility  characteristics,  organized  by  broad  flood  management  elements.  Negative  numbers  indicate  actions  that  reduce  system  flexibility.  .......  59  

Table  3.5.  Structural  versus  non-­‐structural  diversity  in  terms  of  number  of  projects  and  expenditure.  .................................................................................................................................  60  

Table  3.6.  Number  of  structural  versus  non-­‐structural  components  that  impact  each  flexibility  characteristic.  ...............................................................................................................................  60  

Table  3.7.  Comparison  of  flood  management  strategies  in  the  CVFPP  based  on  estimated  cost  expenditures  ($M)  for  each  major  flood  management  element.  .................................................  60  

Table  3.8.  Number  of  actions  in  each  CVFPP  strategy,  which  increase  or  decrease  the  flexibility  metrics.  .........................................................................................................................................  61  

Table  3.9.  Comparison  of  strategies  by  costs,  benefits,  and  implementation  time.  ....................  62  

Table  4.1.  Overview  of  CVFPP  management  strategies  ..............................................................  100  

Table  4.2.  Low  and  high  cost  upfront  estimates  ($M)  for  each  of  the  CVFPP  management  strategies  [CA-­‐DWR,  2012]  .........................................................................................................  100  

Table  4.3.  Summary  statistics  for  the  linear  response  function  fit  to  the  EAD,  mean,  and  standard  deviation,  ln𝐸𝐴𝐷 = 𝛽0+  𝛽1µμ+ 𝛽21𝜎.  ...................................................................  101  

Table  4.4.  EAD  robustness  indicator,  percent  of  posterior  draws  of  flood  frequency  parameters  that  yield  an  EAD  below  the  threshold.  ......................................................................................  101  

Table  4.5.  BCR  robustness  indicator,  percent  of  posterior  draws  of  flood  frequency  parameters  that  yield  a  BCR  above  the  threshold.  ........................................................................................  101  

Page 11: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

Chapter  1. Introduction  

 

1.1. Challenges  incorporating  climate  change  into  water  resources  management  

  Water  is  the  primary  medium  through  which  climate  change  will  impact  human  societies  

and  ecosystems.  Extensive  global  efforts  have  been  put  forth  to  study:    climate  impacts  on  

water  resources;  the  vulnerability  of  human  systems  to  those  impacts;  and  strategies  to  reduce  

vulnerability  and  adapt  to  changes.  Yet,  most  water  management  systems  remain  ill  suited  to  

meet  current  water  resources’  challenges,  let  alone  those  lying  ahead.  As  such,  incorporating  

climate  change  into  water  resources  management  plans  often  remains  a  paper  based,  elusive  

goal.  Many  factors  contribute  to  the  lack  of  inclusion  of  climate  change  into  on-­‐the-­‐ground  

water  resources  management  and  planning  (Langsdale  et  al.  2009;  Jantarasami,  Lawler,  and  

Thomas  2010).  This  dissertation  focus  on  addressing  two  of  those  factors  in  particular,  namely:    

1)  difficulty  in  translating  adaptation  recommendations  into  management  and  planning  

strategies  and  2)  incongruities  between  traditional  decision-­‐making  techniques  that  assume  

stationarity  and  the  nonstationarity  and  uncertainty  associated  with  climate  change.  

  The  literature  on  adapting  water  resources  systems  to  climate  change  contains  a  wide  

range  of  recommendations  filled  with  vague  adaptation  terminology,  which  can  often  be  

difficult  to  decipher.  For  example,  recommendations  include  the  need  to  increase  system’s  

flexibility  (Pahl-­‐Wostl  et  al.  2007;  Gersonius  et  al.  2013)  and  adaptive  capacity  (Folke  et  al.  

2002;  Smit  and  Wandel  2006)  and  to  implement  robust  strategies  (Wilby  and  Dessai  2010;  

Sayers,  Galloway,  and  Hall  2012).  While  a  solid  theoretical  basis  exists  to  support  these  

recommendations,  it  remains  difficult  to  translate  the  climate  adaptation  literature  into  water  

resources  planning  and  decision-­‐making.  In  an  effort  to  clarify  and  operationalize  some  of  the  

climate  terminology,  in  this  dissertation  I  present  a  definition  of  the  term  flexibility  (Ch.  2)  and  

develop  and  apply  methods  to  assess  a  flood  management  system’s:    flexibility  (Ch.  3),  climate  

sensitivity  and  vulnerability  (Ch.  4),  and  the  robustness  of  management  actions  (Ch.  4).  

In  terms  of  the  second  barrier  to  including  climate  considerations  in  water  planning,  

traditional  methods  of  flood  frequency  analysis  in  combination  with  top-­‐down  climate  impact  

Page 12: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

2  

assessments  provide  limited  opportunities  to  address  the  deep  uncertainty  and  nonstationarity  

associated  with  GCM  projections.  While  uncertainty  has  plagued  managers  for  as  long  as  water  

resources  have  been  developed  (Hall  and  Solomatine  2008),  the  uncertainty  associated  with  

climate  change  far  exceeds  anything  experienced  in  the  past.  Historically,  uncertainty  

associated  with  estimation  errors  in  probability  density  functions  and  acknowledged  faults  in  

the  stationarity  assumption  were  addressed  using  the  ‘precautionary  principle.’  For  example,  

planners  oversized  dams  and  added  extra  height  or  freeboard  to  levees  above  the  size  

analytically  deemed  necessary  (Stakhiv  2010).  However,  the  current  and  projected  future  

hydrologic  and  socio-­‐economic  conditions  challenge  the  theory  that  design  conservatism  can  

adequately  address  the  magnitude  and  unknowns  of  climate  uncertainties.  Also,  due  to  budget  

constraints  and  growing  demands  for  water,  energy,  and  environmental  protection,  there  is  no  

longer  room  in  many  water  or  economic  budgets  to  allow  for  operational  and  economic  

inefficiencies  associated  with  the  historical  conservative  approach  to  designing  water  resources  

systems  (Frederick,  Major,  and  Stakhiv  1997).    

  To  date,  top-­‐down  approaches  with  heavy  reliance  on  Global  Circulation  Models  (GCMs)  

have  dominated  the  field  of  climate  risk  assessments;  however,  top-­‐down  approaches  often  fail  

to  provide  water  resources  managers  with  information  useful  for  planning.  Generally  speaking,  

top-­‐down  approaches  tend  to  force  GCM  output  into  a  form  compatible  with  more  traditional  

hydrologic  and  decision-­‐making  models  based  on  assessing  impacts  under  a  small  number  of  

future  scenarios.  In  Chapter  4,  I  detail  the  issues  with  taking  such  an  approach,  most  

prominently  the  inability  to  capture  the  full  range  of  uncertainty  of  future  conditions  using  a  

limited  number  of  scenarios.  As  an  alternative  to  top-­‐down  climate  assessment,  I  present  a  

bottom-­‐up  approach  for  conducting  an  assessment  of  climate  risk  and  the  robustness  of  

management  strategies  that  intentionally  addresses  the  limitations  in  using  GCM  output  for  

decision-­‐making  in  water  resources  management.    

 1.2. California  flood  management  case  studies  

  The  topics  addressed  in  the  subsequent  chapters  have  broad  applicability  to  water  

resources  management  and  climate  adaptation  more  generally.  However,  the  included  case  

Page 13: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

3  

studies  all  apply  to  flood  risk  management  in  California,  USA,  which  provides  a  unique  set  of  

challenges  and  advantages.  While  the  impacts  of  climate  change  will  vary  across  the  globe,  

changes  in  hydrologic  extremes,  e.g.  droughts  and  floods,  present  one  of  the  most  pressing  

concerns  for  water  resources  managers.  Climate  change  will  result  in  changes  in  the  frequency,  

intensity,  spatial  extent,  duration,  and  timing  of  extreme  weather  and  climate  events,  

potentially  resulting  in  unprecedented  events  (Field  et  al.  2012).    With  these  extreme  events  

comes  the  potential  for  large  loss  of  human  life  and  exponentially  increasing  costs  associated  

with  these  events  (Karl  and  Easterling  1999).  

  California  is  at  risk  for  catastrophic  flooding  (CA-­‐DWR  2013),  which  has  resulted  in  

numerous  efforts  to  study  floods  from  a  hydrologic,  socio-­‐economic,  and  environmental  

perspective.  The  work  present  in  this  dissertation  builds  upon  this  long  line  of  prior  research,  

while  introducing  a  novel  approach  to  include  climate  risk  assessment  and  adaptation  into  

California’s  flood  management  systems.  Although  I  tailor  the  subsequent  study  methodologies  

to  the  regional  context,  they  are  broadly  applicable  outside  of  California  and  outside  the  field  of  

flood  risk  management.    

 

Page 14: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

4  

 

 

FLEXIBILITY  IN  WATER  RESOURCES  MANAGEMENT:  REVIEW  OF  CONCEPTS  AND  DEVELOPMENT  

OF  ASSESSMENT  MEASURES  FOR  FLOOD  MANAGEMENT  SYSTEMS  

 

 

 

 

Kara  N.  DiFrancesco,  PhD  candidate,  Water  Resources  Engineering,  Oregon  State  University,  Corvallis,  Oregon    Desiree  D.  Tullos,  Associate  Professor,  Biological  &  Ecological  Engineering,  Oregon  State  University,  Corvallis,  Oregon    

 

 

 

 

 

 

 

 

 

 

 

Journal  of  the  American  Water  Resources  Association  (JAWRA)  350  Main  Street  Malden,  MA  02148    In  review        

Page 15: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

5  

Chapter  2. Flexibility  in  water  resources  management:  review  of  concepts  and  development  of  assessment  measures  for  flood  management  systems  

 

Abstract:      

Discussions  around  adapting  water  management  systems  to  climate  change  often  express  the  

need  to  increase  system  flexibility.  Yet  despite  the  frequent  use  of  the  term  flexibility,  very  little  

work  has  examined  what  exactly  it  means  to  have  a  flexible  water  management  system,  what  

features  of  a  system  make  it  more  flexible  than  another  system,  or  when  the  costs  to  

implement  flexible  options  outweigh  the  benefits  gained  from  increased  flexibility.  To  define  

and  operationalize  the  concept  of  flexibility  in  the  field  of  water  resources  management,  this  

article  reviews  and  analyzes  concepts  of  flexibility  from  the  fields  of  information  technology,  

manufacturing,  management,  and  adaptive  social-­‐ecological  systems.  We  identify  five  

characteristics  of  flexible  water  resources  systems,  namely:  slack,  redundancy,  connectivity,  

compatibility/coordination,  and  adjustability.  We  then  operationalize  the  assessment  of  

flexibility  for  flood  management  systems  by  proposing  original  flexibility  metrics  and  discussing  

their  application.  We  conclude  with  a  discussion  on  the  tradeoffs  of  increasing  flexibility.  

 

Keywords:    flexibility;  adaptive  capacity;  optimization;  climate  variability/change;  risk  

assessment;  flood  management;  water  resources  flexibility  

       

Page 16: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

6  

2.1. Introduction  

  Associated  with  a  need  to  increase  water  resources  systems’  capacity  to  cope  with  and  

adapt  to  climate  change,  recent  literature  regarding  water  resources  management  increasingly  

includes  recommendations  for  more  flexible  systems  (Huang  et  al.,  2010;  IPCC,  2007;  Johnson  

and  Lilly,  2009;  Pahl-­‐Wostl  et  al.,  2007;  Richter  et  al.,  2003)  Figure  2.1).  The  need  for  flexible  

systems  is  driven  by  uncertainty  and  changing  conditions  (Zhao  and  Tseng  2003),  which  

influence  water  resources  systems  in  a  number  of  critical  ways.  For  example,  standard  risk  

analysis  methods  applied  in  water  resources  planning,  design,  operation,  and  maintenance  

require  defining  probability  distributions  on  the  basis  of  assuming  hydrologic  stationarity  (U.S.  

Water  Resources  Council  1983).  This  assumption  has  been  heavily  challenged  due  to  land  use  

and  climate  change  (Frederick,  Major,  and  Stakhiv  1997;  Milly  et  al.  2008),  leading  to  an  

increased  emphasis  on  flexibility,  robustness,  and  adaptive  capacity  (Lempert,  Bankes,  and  

Popper  2003)  in  water  resources  planning.  Furthermore,  the  utility  and  validity  of  optimization  

techniques,  used  in  water  resources  planning  studies  since  the  1960s  for  meeting  multiple  

objectives  (Wolman  and  National  Research  Council,  1962;  Wurbs,  1991),  declines  as  uncertainty  

increases  (Lempert,  Bankes,  and  Popper  2003)  and  the  future  is  not  constrained  to  the  limited  

scenarios  examined  by  optimization  (Bonder  1979).  With  water  resources  systems  facing  all  of  

requirements  for  conditions  of  deep  uncertainty  (Lempert,  Bankes,  and  Popper  2003),  planning  

and  analysis  of  water  resources  projects  are  shifting  towards  emphasis  on  adaptive  and  robust  

strategies  that  perform  reasonably  well  over  a  wide  range  of  uncertain,  yet  plausible  future  

scenarios  (Lempert,  Bankes,  and  Popper  2003;  Frederick,  Major,  and  Stakhiv  1997).    

  While  it  is  acknowledged  that  increased  emphasis  on  adaptive  water  resources  systems  

can  improve  their  robustness  in  the  future,  clarity  is  needed  regarding  how  adaptive  capacity  

can  be  integrated  into  water  resource  systems.  The  capacity  to  adapt  has  been  variously  

defined  in  the  literature  on  social-­‐ecological  systems  (SESs)  over  time  (Adger  et  al.,  2005;  Adger  

et  al.,  2004;  Engle,  2011;  Gallopín,  2006;  Smit  and  Wandel,  2006)  and  generally  converges  on  a  

definition  that  includes:    the  processes,  actions,  or  resources  of  a  SES  that  facilitate  adjusting  to,  

coping  with,  and/or  benefitting  from  a  change  or  hazard  (Adger  et  al.,  2005;  Carpenter  and  

Page 17: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

7  

Brock,  2008).  Adaptive  capacity  is  determined  by  several  system  features,  including:  financial,  

human,  and  social  assets,  governance  and  institutions,  knowledge  and  information,  and  

stakeholders  (Adger  et  al.  2004;  Jones,  Ludi,  and  Levine  2011;  Smit  and  Wandel  2006).  Yet,  the  

mere  existence  of  these  features  does  not  lead  to  adaptive  systems.  Rather,  certain  traits  

exhibited  by  the  features,  such  as  the  flexibility  of  governance  and  institutions  (Folke  et  al.,  

2002;  Pahl-­‐Wostl,  2009;  Dietz  et  al.,  2003;  Folke  et  al.  2005;  Huitema  et  al.,  2009)  and  the  

engagement  of  stakeholders  (Pettengell  2010),  increase  adaptive  capacity.  As  such,  flexibility  

and  adaptive  capacity  are  positively  related  (Engle,  2011).    

  However,  despite  the  importance  and  frequency  of  recommendations  for  flexibility  in  

adaptive  water  resources  systems,  very  little  work  has  examined  what  exactly  it  means  to  have  

a  flexible  water  management  system  and  what  makes  one  system  more  flexible  than  another.  

From  the  management  perspective,  the  term  lacks  utility  because  it  is  unclear  how  to  assess  

and  compare  the  flexibility  of  proposed  management  actions.  Furthermore,  to  our  knowledge,  

no  analysis  has  considered  whether  the  costs  to  implement  flexible  options  outweigh  the  

benefits  gained  from  increased  flexibility.  However,  analysis  of  flexibility  from  the  fields  of  

Information  Technology  (IT)  (Byrd  and  Turner  2000;  Duncan  1995;  Golden  and  Powell  2000;  D.  

E.  Turner  and  Lankford  2005);  management  (Fayol  1916);  manufacturing  (Pyoun  and  Choi  

1994);  planning  (Pye  1978);  and  adaptive  social-­‐ecological  systems  (SESs)  (Adger,  et  al.,  2005;  

Smit  and  Wandel,  2006)  can  offer  insight  on  applying  the  concept  of  flexibility  to  the  

management  of  water  resources  systems.  

  Thus,  the  overarching  goals  of  this  study  are  to  define  the  concept  of  flexibility  in  water  

management  systems  generally  and  then  to  operationalize  the  concept  in  the  field  of  flood  

management  more  specifically.  We  review  literature  on  flexibility  in  water  management  by  first  

conducting  a  Google  Scholar  keyword  search  on  “flexibility  water  management”  and  then  

expand  our  search  to  “flexible  systems”  to  review  the  use  of  the  term  in  other  domains.  We  

apply  and  modify  the  flexibility  topology  in  the  literature  to  define  flexibility  in  water  resources  

systems.  We  identify  different  characteristics  of  flexible  systems  and  propose  a  set  of  metrics  

under  each  characteristic  to  assess  the  flexibility  of  flood  management  systems.  We  conclude  

Page 18: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

8  

with  a  discussion  on  the  costs  and  unintended  consequences  of  incorporating  additional  

flexibility  into  water  resources  systems.    

 

2.2. Flexibility  in  water  resources  systems  

2.2.1. Definition  and  features  of  flexibility  in  water  resources  systems  

  Despite  the  proliferation  of  flexibility  recommendations  in  water  resources  

management  and  other  sectors,  flexibility  remains  an  ambiguous  term  due  to  the  lack  of  a  

common,  operational  definition  (Golden  and  Powell  2000;  Duncan  1995).  Few  studies  have  

been  undertaken  to  directly  assess  the  flexibility  of  adaptive  systems  (Engle  2011).  This  

ambiguity  stems  from  the  term’s  multidimensional  and  varied  traits  (Golden  and  Powell  2000),  

making  flexibility  difficult  to  measure  and  integrate  into  the  planning  and  decision-­‐making  

processes  (Duncan  1995).  Definitions  of  flexibility  (or  inflexibility)  vary  between  sources  and  

often  depend  on  the  target  of  the  flexibility  or  the  system  being  assessed  (Table  2.1).  We  

synthesize  the  definitions  and  features  of  flexibility  from  other  domains  to  define  flexibility  in  

water  resources  as:      

the  inherent  ability  of  the  human  and  physical  elements  of  a  system  to  

cope  with,  or  adapt  to,  uncertain  and  changing  conditions,  in  a  timely  

and  cost-­‐effective  manner.    

 

This  definition  is  based  on  three  features  of  flexibility  derived  from  the  literature.  First,  

flexibility  supports  the  ability  to  cope  (Gallopín  2006)  and  adapt  (Gallopín  2006)  to  uncertain,  

changing  conditions.  The  IT,  management,  and  manufacturing  literature  on  flexibility  focus  on  

the  need  to  meet  new  and  growing  demands  (Duncan  1995;  Fayol  1916;  Golden  and  Powell  

2000;  Pyoun  and  Choi  1994;  D.  E.  Turner  and  Lankford  2005)  under  an  uncertain  future  (Golden  

and  Powell  2000).  Water  resources  flexibility  references  the  capability  to  adapt  to  new  or  

changes  in  both  demands  and  supply  (FAO,  1993;  Patel  Center,  2011;  Gunderson  and  Holling,  

2002;  IPCC,  2007).  For  example,  water  resources  managers  face  challenges  from  increasing  

demands  for  residential  water  supply  due  to  population  growth  (Falkenmark  and  Widstrand  

Page 19: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

9  

1992;  Holdren  and  Ehrlich  1974;  Vörösmarty  et  al.  2000),  new  demands  and  operational  

requirements  for  which  the  systems  were  not  designed,  such  as  providing  environmental  flow  

releases  (Arthington  et  al.  2006;  Richter  et  al.  2003;  Richter  and  Thomas  2007),  and  for  

protection  from  potentially  larger  and/or  more  frequent  future  floods  under  climate  change  

(IPCC,  2007).    

Second,  several  definitions  of  flexibility  (Table  2.1),  as  well  as  further  explanations  in  the  

IT  and  manufacturing  literature,  include  economic  and  time  benefits  of  flexibility  (Duncan  1995;  

Golden  and  Powell  2000;  Pyoun  and  Choi  1994).  Flexibility  involves  not  only  the  ability  to  cope  

or  adapt,  but  also  the  ability  to  do  so  in  a  timely  and  cost-­‐effective  manner.  For  example,  

flexible  IT  systems  provide  a  competitive  advantage  in  their  capability  to  quickly  respond  to  

customer  demands  and  keep  up  with  new  innovations  marketed  by  competitors  (Duncan  1995).    

Third,  the  assessment  of  flexibility  is  an  absolute  characteristic  of  a  system,  rather  than  

relative  to  a  particular  hazard  or  stressor  (IPCC,  2007),  presenting  a  snapshot  of  a  single,  

specific  system  at  a  point  in  time.  In  contrast,  adaptive  capacity,  vulnerability,  and  resilience  are  

measured  in  terms  of  some  specific  type  of  disturbance  or  perturbation,  requiring  an  answer  to  

the  question:  Adaptation,  vulnerability  or  resilience  of  what  to  what?  (Carpenter  et  al.  2001;  

Gallopín  2006).  Alternatively,  flexibility  is  an  inherent  system  characteristic  that  needs  no  

qualifier.  Thus  in  describing  the  flexibility  of  a  system,  we  need  not  answer  the  question:  

Flexible  to  what?  This  makes  it  possible  to  assess  the  flexibility  of  a  system  without  the  need  to  

fully  characterize  potential  future  conditions  and  uncertainties.  However,  although  

perturbation  and  uncertainty  parameters  do  not  enter  into  the  process  of  measuring  the  

flexibility  of  a  system,  they  do  influence  the  value  of  flexibility  (Huang,  Vairavamoorthy,  and  

Tsegaye  2010;  Zhao  and  Tseng  2003).  The  value  of  flexibility  increases  with  the  degree  of  

uncertainty  and  the  projected  magnitude  of  perturbations  in  future  conditions,  as  further  

discussed  later  in  this  manuscript.    

 2.2.2. Characteristics  of  flexible  water  resources  systems  

Following  a  comprehensive  review  of  literature  across  scholarly  databases  and  the  

references  found  therein,  we  find  that  in-­‐depth  assessments  of  flexibility  and  attempts  to  

Page 20: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

10  

operationalize  the  term  appear  primarily  in  the  field  of  IT,  which  maintains  similarities  with  

water  resources  management  regarding  uncertainty  and  growing  demands.  We  thus  apply  

concepts  from  the  IT  field  as  a  foundation  for  operationalizing  the  concept  of  flexibility  in  flood  

management,  along  with  relevant  contributions  from  other  fields.  Researchers  in  the  IT  field  

(e.g.  Golden  and  Powell,  2000;  Duncan,  1995;  Byrd  and  Turner,  2000;  Turner  and  Lankford  

2005)  propose  assessing  characteristics  of  flexible  systems  that  relate  to  1)  the  range  of  options  

that  an  organization  has  available  and  2)  how  long  it  takes  an  organization  to  adapt.  Along  

similar  lines,  we  find  that  the  characteristics  found  in  the  literature  (e.g.  efficiency,  

responsiveness,  versatility,  and  robustness;  Golden  and  Powell,  2000)  relate  to  water  system’s  

1)  the  ability  to  cope  and  2)  the  ability  to  adapt.  We  use  these  characteristics  as  the  foundation  

from  which  we  operationalize  the  concept  of  flexibility  in  water  resources  systems  (Figure  2.2).  

We  find  that  the  characteristics  of  slack,  redundancy,  connectivity,  and  compatibility/  

coordination,  increase  the  range  of  available  options,  providing  water  systems  with  the  

flexibility  to  cope  with  changes.  The  ease  of  adjusting  the  aforementioned  flexibility  

characteristics,  adjustability,  provides  water  systems  with  the  flexibility  to  adapt  to  changes.  

Individually,  each  of  the  flexibility  characteristics  may  be  insufficient  to  fully  represent  the  

concept  of  flexibility,  requiring  some  collective  combination  of  dimensions  to  adequately  

characterize  flexible  systems  (D.  E.  Turner  and  Lankford  2005).  

We  integrate  and  modify  the  measureable  characteristics  of  flexible  systems  provided  

by  the  IT  literature  to  develop  a  framework  for  characterizing  and  assessing  flexibility  in  water  

resources  management  (Figure  2.2).  As  a  starting  point  to  developing  a  full  methodology  to  

assess  the  flexibility  of  water  systems,  in  the  following  section,  we  1)  identify  and  define  five  

flexibility  characteristics  in  water  resources  systems,  namely:  slack,  redundancy,  connectivity,  

compatibility/coordination,  and  adjustability;  2)  propose  a  set  of  sample  metrics  within  each  of  

the  characteristics  for  evaluating  the  degree  of  flexibility  in  a  flood  management  systems  (Table  

3.);  3)  give  descriptive  examples  of  actions  that  may  increase  flexibility  for  that  characteristic;  

and  4)  explain  the  contribution  of  each  flexibility  characteristic  to  increasing  flexibility  and  

informing  management  decisions.  

Page 21: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

11  

 

2.2.2.1. Slack  

  Slack  provides  surplus  capacity  to  cope  with  uncertain  and  changing  conditions  (D.  E.  

Turner  and  Lankford  2005).  Intentionally  embedding  excess  capacity  into  a  system  provides  

increased  flexibility  for  future  expansion,  helping  to  ensure  it  can  meet  increased  demands  

and/or  changing  objectives  under  a  wider  variety  of  conditions  (Zhao  and  Tseng  2003;  Hall  and  

Murphy  2012).  For  example,  Zhao  and  Tseng  (2003)  apply  a  trinomial  lattice  model  to  identify  

an  appropriate  foundation  size  of  a  parking  garage.  This  analysis  balances  the  upfront  costs  to  

incorporate  the  slack  necessary  for  future  expansion  with  the  potential  profit  provided  by  the  

option  to  expand  the  garage  under  uncertain  future  parking  demand.  

From  a  flood  risk  management  perspective,  evaluating  and  appropriately  incorporating  

slack  into  the  design  of  water  resources  systems,  via  dam/bypass  sizing,  channel/spillway  

capacity,  etc.,  may  help  eliminate  the  need  for  costly,  retrofit  constructions.  Flood  managers  

may  evaluate  the  degree  of  slack  based  on  the  normalized  excess  capacity  of  reservoirs  to  store  

(Table  2.2,  S1)  and  release  (Table  2.2,  S3)  flood  flows,  the  downstream  channels  to  convey  flood  

flows  (Table  2.2,  S2),  and  bypasses’  ability  to  store  excess  channel  flows  (Table  2.2,  S4).  For  

example,  increasing  stream  conveyance  capacity  (Table  2.2,  S2)  has  been  identified  as  a  

promising  option  for  mitigating  climate  change  impacts  of  flooding  (Brekke  et  al.  2009).  

Managers  may  evaluate  the  magnitude  of  a  future  flood  of  interest  and  current  stream  

conveyance  capacity  (Table  2.2,  S4)  to  evaluate  the  excess  capacity  needed  for  a  flood  bypass.  

Alternately,  if  flood  magnitudes  are  projected  to  increase,  but  the  normalized  excess  reservoir  

capacity  (Table  2.2,  S1)  is  equal  to  or  less  than  1,  then  the  system  could  likely  benefit  from  

increases  in  slack  related  to  flood  storage.    

Unfortunately,  the  need  for  additional  flexibility  in  water  resources  is  often  only  realized  

in  hindsight  when  meeting  objectives  is  made  difficult  by  the  inflexibility  of  the  current  system,  

as  can  be  the  case  when  a  system  lacks  slack.  For  example,  a  report  (CA-­‐DWR  2010)  on  the  

current  condition  of  the  California  flood  management  system  lists  a  variety  of  factors  

contributing  to  the  inability  of  the  system  to  meet  its  designed  flood  management  objectives.  

Page 22: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

12  

These  include  a  lack  of  slack  through  insufficient  flood  storage  capacity  to  regulate  flood  flows  

(Table  2.2,  S1  &  S4)  and  inadequate  capacity  to  convey  design  flows  (Table  2.2,  S2  &  S3)  in  

approximately  half  of  channels  evaluated  (CA-­‐DWR  2010a).  

 

2.2.2.2. Redundancy  

  Redundancy  generally  refers  to  multiple  options  performing  the  same  function  in  a  

system,  such  as  multiple  species  performing  a  same  role  (e.g.  nitrification)  in  ecosystems  (B.  H.  

Walker  1992).  Redundancy  and  the  substitution  or  interchangeability  of  components  are  critical  

to  adaptive  and  robust  SESs  (Ospina  and  Heeks  2010)  and  ecosystems  exposed  to  disturbances  

(De  Leo  and  Levin,  1997;  Naeem,  1998).  Similarly,  robust  IT  systems  are  defined  by  the  degree  

of  repetitiveness,  labeled  in  IT  analyses  as  intensity  (D.  E.  Turner  and  Lankford  2005).  In  flood  

management  systems,  repetitiveness  and  diversity  of  options  also  increase  a  water  resources  

system’s  ability  to  cope  or  adapt  to  uncertain,  future  conditions  (Gleick,  2003;  IWMI,  2009).  

Thus,  whereas  slack  ensures  the  existence  of  excess  capacity  in  the  system  to  cope  with  

changing  conditions  and  demands,  redundancy  ensures  that  this  capacity  is  spread  amongst  a  

variety  of  options.  We  can  then  measure  redundancy  by  the  number  of  storage  options  

available  (Table  2.2,  R1),  the  diversity  of  those  options  (Table  2.2,  R2),  and  the  number  of  

groups  with  vested  interests  and  responsibility  for  managing  the  water  resources  (Table  2.2,  

R3).    

  In  addition  to  a  larger  number  of  options  (e.g.  number  of  reservoirs  and  bypasses  in  

each  tributary  –  Table  2.2,  R1),  distributing  capacity  across  many  different  management  

strategies  can  also  reduce  flood  risk  over  the  long  term.  The  value  of  diversity  in  flood  

management  strategies  in  meeting  capacity  requirements  has  been  emphasized  by  scientists  

and  managers  (Gleick  2003;  Pearce  2004;  Brooks,  Brandes,  and  Gurman  2009;  Rijsberman  2006;  

Hall  and  Murphy  2012)  who  critique  twentieth-­‐century  water  policies  for  relying  too  heavily  on  

“hard  path”  approaches  to  meet  human  demands,  including  large  dams,  aqueducts,  and  levees,  

as  opposed  to  “soft  path”  approaches.  In  contrast  to  large,  centrally  managed  infrastructure,  

soft  path  approaches  emphasize  lower-­‐cost  community-­‐scale  systems,  decentralized  and  open  

Page 23: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

13  

decision-­‐making,  water  markets  and  equitable  pricing,  application  of  efficient  technology,  and  

environmental  protection.  Thus,  assessing  the  relative  number  of  structural  and  non-­‐structural  

options  for  managing  floods  (Table  2.2,  R2)  can  identify  the  balance  in  a  system’s  portfolio  of  

infrastructure  that  contributes  to  reducing  exposure  to  flood  risk.    

  Finally,  the  number  of  parties  invested  in  a  flood  management  system  (Table  2.2,  R3)  

can  contribute  to  its  flexibility,  though  generally  only  up  to  a  point.  Many  resources,  including  

water,  are  too  complex  to  be  governed  effectively  by  a  single  agency  (Berkes  2009).  Instead,  co-­‐

management  of  natural  resources,  defined  as  the  sharing  of  power  and  responsibility  between  

the  government  and  local  resource  users  (Adger  et  al.  2004;  Adger,  Brown,  and  Tompkins  2005;  

Armitage  et  al.  2008;  Huitema  et  al.  2009;  Wallace,  Acreman,  and  Sullivan  2003),  can  be  more  

effective  at  achieving  management  objectives.  Different  levels  of  organization,  from  local  to  

federal,  have  comparative  advantages  in  the  management  of  resources  (Berkes  2009).  In  the  

flood  management  context,  state  and  federal  agencies  may  provide  financial  support  and  

expertise  not  available  at  the  local  level,  while  local  institutions  have  a  better  understanding  of  

their  specific  needs  and  can  respond  more  quickly  to  flood  emergencies.  However,  the  number  

of  parties  involved  can  also  decrease  flexibility  of  a  system  and  the  mere  existence  of  multiple  

agencies  does  not  always  lead  to  effective  and  adaptive  co-­‐management.  In  some  cases  (Adger  

et  al.  2005),  individual  institutions  may  simply  promote  themselves  without  promoting  the  

flexibility  the  overall  management  structure  or  its  adaptability.    

 

2.2.2.3. Connectivity    

  Connectivity  ensures  that  a  system  is  capable  of  fully  utilizing  its  redundancy  by  

employing  the  options  available  to  meet  system  objectives.  Connectivity  is  generally  viewed  as  

a  positive  attribute  of  most  adaptive  systems  (but  see  Fraser  et  al.  (2005)  for  an  alternate  

perspective).  For  example,  hydrologic  connectivity  is  essential  to  functioning  ecosystems,  

where  hydrologic  connectivity  refers  to  the  water-­‐mediated  movement  of  materials,  energy,  

and  organisms  down  and  across  rivers  and  riparian  areas  (Kondolf  et  al.  2006).  With  respect  to  

water  resources  management,  the  term  applies  to  the  linkages  between  infrastructure  that  

Page 24: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

14  

promote  reliability  of  moving  water  across  networks  (Yang  et  al.  1996).  Increasing  connectivity  

of  water  supply  infrastructure  is  considered  a  mechanism  to  improve  the  resilience  of  existing  

resources  as  well  as  to  provide  security  from  extreme  events  in  the  face  of  climate  change  

(Wilby  and  Dessai  2010).    

  The  need  for  connectivity  in  a  water  resources  system  includes  both  natural  

infrastructure,  including  rivers,  aquifers,  and  floodplains,  and  man-­‐made  infrastructure,  such  as  

reservoirs,  constructed  bypasses,  and  irrigation  canals.  Since  a  variety  of  water  storage  options  

exist  for  flood  management,  each  with  strengths  and  weaknesses,  connectivity  between  these  

structures  and  flexibility  in  their  use  can  help  hedge  against  the  uncertainty  associated  with  

climate  change  (IWMI,  2009).  Connectivity  between  water  system  components  also  allows  for  

shared  utilization  between  flood  management  and  other  operating  objectives,  such  as  

ecosystem  restoration  or  agricultural  production,  resulting  in  overall  increased  system  

performance.    

Connectivity  and  collective  management  in  the  use  of  surface  and  groundwater  (Table  

2.2,  C1),  called  conjunctive  use,  can  increase  storage  capacity  by  utilizing  underground  aquifers  

while  avoiding  the  economic,  environmental  and  social  costs  of  dams.  A  study  (USACE,  2002)  

conducted  in  the  Central  Valley  of  California  found  that,  via  natural  replenishment  and  

anthropogenic  aquifer  storage  during  times  of  high  flow,  conjunctive  use  operations  generated  

between  92,000  and  322,000  acre-­‐feet  (AF)  of  newly  available  annual  yield  per  reservoir.  Thus,  

managers  may  evaluate  the  balance  of  conjunctive  use  options  relative  to  reservoirs  to  identify  

whether  additional  conjunctive  use  operations  can  contribute  to  expanding  storage  capacity  for  

flood  management.  

In  addition  to  leading  to  more  efficient  utilization  of  water  supplies,  increased  

connectivity,  particularly  between  the  main  river  channel  and  its  floodplains  (Table  2.2,  C2),  can  

generate  space  for  storing  and  attenuating  flood  events,  while  also  providing  increased  slack,  

redundancy,  and  ecological  benefits.  Restoring  river-­‐floodplain  connectivity  can  increase  the  

ability  of  the  system  to  cope  with  the  larger  and  more  frequent  floods  projected  under  climate  

change  (IPCC,  2007)  by  utilizing  the  natural  storage  capacity  of  floodplains,  subsurface  flow,  

Page 25: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

15  

aquifers,  in  addition  to  the  human-­‐managed  storage  reservoirs  included  in  the  slack  

characteristic.  For  example,  reconnection  of  8,000  hectares  (ha)  of  floodplain  along  the  Illinois  

River  to  allow  peak  flood  waters  to  inundate  strategically-­‐designated  farmland  could  halve  the  

probability  of  flooding  26,000  ha  of  downstream  farmland  (Akanbi,  Lian,  and  Soong  1999).  This  

same  study  found  that  an  alternate  management  option  of  raising  the  levee  height  (Table  2.2,  

S2)  could  achieve  the  similar  risk  reduction  goals,  but  at  a  significantly  lower  benefit  to  cost  

ratio  (Akanbi,  Lian,  and  Soong  1999).  In  heavily  leveed  rivers  (Table  2.2,  C2),  such  as  the  Illinois  

River,  it  may  be  more  cost-­‐effective  for  managers  to  reduce  flood  stage  by  increasing  river-­‐

floodplain  connections  over  implementing  other  management  options.  Restoring  connectivity  

of  floodplains  may  also  allow  upstream  reservoirs  to  remain  at  a  higher  elevation  during  the  

flood  season  by  increasing  downstream  flood  storage  capacity,  increasing  the  available  water  

supply  and  hedging  against  scarcity  concerns  (Opperman  et  al.  2009).    

 

2.2.2.4. Compatibility/  coordination  

  Duncan  (1995)  emphasizes  the  ability  to  share  information  across  any  technology  

component,  termed  compatibility,  as  an  important  determinant  of  IT  flexibility,  since  

information  sharing  provides  easy  access  to  relevant  data  and  lowers  the  cost  of  innovation.  In  

order  to  make  informed  decisions,  water  managers  need  access  to  hydrologic,  operations,  and  

regulatory  information  (Table  2.2,  CC1).  This  information  includes  antecedent,  current,  and  

projected  future  hydrologic  and  climate  data,  water  demands  and  usage,  reservoir  operations,  

and  forthcoming  policy  and  regulatory  changes.  The  information  is  needed  in  locations  and  

forms  that  are  accessible  and  compatible  for  use  by  other  entities.  In  addition,  compatibility  

and  coordination  are  needed  between  policy  makers  and  water  resource  planners  and  

managers  to  ensure  that  policy  and  regulations,  such  as  the  structure  or  priority  of  water  rights,  

both  inform  and  are  informed  by  water  resources  management.  

  In  most  cases,  a  variety  of  different  agencies  work  within  a  river  basin  on  different  

aspects  of  water  management,  and  each  agency  is  likely  to  have  access  to  data  that  may  be  

relevant  to  others.  Furthermore,  researchers,  water  users,  and  other  stakeholders  outside  of  

Page 26: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

16  

water  management  agencies  also  possess  data  (Table  2.2,  CC1)  and  analytical  tools  (Table  2.2,  

CC2)  relevant  to  water  managers,  and  vice  versa,  requiring  a  multi-­‐dimensional  flow  of  

information.  For  example,  the  peer-­‐reviewed  literature  contains  many  examples  of  the  

potential  for  ensemble  streamflow  prediction  (ESP)  forecasts  to  improve  water  system  

operations  (Faber  and  Stedinger  2001;  Hamlet  and  Lettenmaier  1999;  Hamlet,  Huppert,  and  

Lettenmaier  2002).  However,  many  water  agencies  lack  access  to  peer-­‐reviewed  literature  and  

to  the  modeling  techniques  and  decision  processes  to  fully  exploit  ESP  forecasts  (Faber  and  

Stedinger  2001).  Assessing  the  sharing  of  data  and  tools  in  a  basin  is  binary  (Table  2.2,  CC1  &  

CC2),  but  may  vary  across  user  groups.  

In  addition,  within-­‐basin  coordination  of  water  resources  management  and  operations  

(Table  2.2,  CC3)  can  significantly  contribute  to  system  flexibility  and  robustness.  In  their  

recommendations  for  a  sustainable  future,  the  Western  Governors’  Association  (2008)  

emphasized  that  ongoing  coordination  and  information  sharing  between  scientists  and  water  

managers,  along  with  the  various  levels  of  government  engaged  in  planning  efforts,  is  critically  

needed.  Similarly,  after  the  devastating  1997  flood  in  the  Yuba-­‐Feather  River  system  in  

California,  USA,  the  Yuba  County  Water  Agency  (2008)  found  that  sharing  weather,  water,  and  

management  information  and  the  coordination  of  operational  decisions  among  agencies  

provided  one  of  the  most  cost-­‐effective  measures  for  improved  flood  management  (Table  2.2,  

CC1  &  CC3).  The  implementation  of  Forecast-­‐Coordinated  Operations  in  these  basins  is  

expected  to  reduce  peak  flows  of  the  rivers  and  the  risk  of  exceeding  river  channel  capacity,  as  

well  as  improve  the  notification  processes  and  advance  flood  warning  and  preparation  times  

(Yuba  County  Water  Agency  2008).  Similarly,  the  National  Hydrologic  Warning  Council  reported  

in  2013  that  lives  were  saved  during  Colorado  floods  of  2013  by  the  coordinated  flood  warning  

and  management  systems  that  were  implemented  following  flash  floods  that  killed  over  140  

people  in  1976  (Curtis  2013).  Such  coordination,  both  of  information  and  agencies,  can  be  

assessed  by  the  number  of  coordinated  agreements  in  a  basin  (Table  2.2,  CC3),  normalized  for  

example,  relative  to  the  number  of  reservoirs.  The  normalized  metric  allows  managers  to  

Page 27: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

17  

evaluate  potential  operational  gains  by  determining  the  relative  number  of  reservoirs  operating  

in  isolation.  

 

2.2.2.5. Adjustability  

  Khosrowpour  (2006)  takes  a  broad  interpretation  of  Duncan's  (1995)  definition  of  

modularity  to  include  the:    ability  to  add,  modify,  and  remove  any  software,  hardware,  or  data  

components  of  the  infrastructure  with  ease  and  with  no  major  overall  effect.  Since  the  use  of  

the  term  modularity  in  the  IT  context  usually  takes  on  a  specific  meaning  associated  with  

isolating  and  standardizing  business  and  system  processes  (Duncan  1995),  we  modify  the  

definition  given  by  Khosrowpour  (2006)  and  rename  this  flexibility  characteristic  adjustability,  

or  the  ability  to  add,  modify,  and  remove  any  component  of  the  system  and/or  its  operations  

with  ease  and  with  no  major  overall  effect.  In  essence,  adjustability  describes  the  ease  with  

which  managers  can  modify  the  formally  described  flexibility  characteristics  –  slack,  

redundancy,  connectivity,  and  compatibility/  coordination  –  to  adapt  to  changing  conditions.  

Relative  to  adjustability,  one  of  the  most  widely-­‐cited  inflexibilities  in  water  

management  systems  refers  to  the  inability  to  modify  system  operations  in  a  timely  and  cost-­‐

effective  manner  due  to  legal  or  other  regulatory  constraints  (CA-­‐DWR,  2009;  Hamlet  and  

Lettenmaier,  1999;  Johnson  and  Lilly,  2009).  At  a  workshop  in  2009,  western  water  managers  

emphasized  the  need  to  “evaluate  and  revise  the  legal  framework  for  water  management  to  

the  extent  allowable  to  ensure  sufficient  flexibility  exists  to  anticipate  and  respond  to  climate  

change”  (A.  M.  A.  Johnson  and  Lilly  2009).  In  particular,  these  managers  stressed  the  

importance  of  the  ability  to  revise  dam  operations  (Table  2.2,  A1)  based  on  new  information  

without  going  through  costly  and  time  consuming  Congressional  re-­‐authorization  and/or  

completing  an  Environmental  Impact  Statement  (EIS)  every  time  a  change  is  needed  (A.  M.  A.  

Johnson  and  Lilly  2009).  

The  ability  to  modify  reservoir  operations  and  storage  allocations  (Table  2.2,  A1)  is  one  

key  characteristic  of  a  flexible  flood  management  system.  For  example,  in  response  to  much  

larger  floods  in  the  American  River  Basin  after  the  completion  of  Folsom  Dam,  the  initial  

Page 28: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

18  

operations  manual  and  rule  curves  have  been  changed  three  changed  times  (Ferreira  and  CA-­‐

DWR,  1982;  NRC,  1999;  Platt,  1995).  The  current  rule  curve  allows  for  annually  varying  flood  

storage  space  (Table  2.2,  A2),  based  on  an  allowance  to  utilize  upstream  reservoir  space  to  

store  flood  waters  (Table  2.2,  A1)  (Platt  1995).  However,  the  number  and  extent  of  changes  to  

Folsom’s  operations  serves  as  a  unique  case.  Adjusting  the  water  appropriation  policies  that  

evolved  over  the  past  100  years  in  the  Western  US  and  other  areas  of  the  western  world  (CBO,  

1997)  is  often  not  politically  or  socially  acceptable  and  presents  a  prohibitive  financial  and  time  

expense.  Thus,  an  assessment  of  the  ability  to  modify  reservoir  operations  (Table  2.2,  A1  &  A2)  

can  help  identify  potential  sources  of  flexibility  through  areas  lacking  adjustability.  

Alternately,  managers  can  assess  the  adjustability  of  the  existing  levee  footprints  by  

calculating  the  proportion  of  levees  sufficiently  distanced  from  infrastructure  (Table  2.2,  A3).  

High  values  for  metric  A3  indicate  a  greater  potential  and  lower  cost  to  adjust  the  system  and  

enhance  future  flexibility  characteristics,  through  efforts  to  set  back  levees  to  increase  

floodway  conveyance  capacity  (Table  2.2,  S2),  reconnect  the  floodplain  (Table  2.2,  C2),  and/or  

construct  a  bypass  to  increase  slack  (Table  2.2,  S1)  and  possibly  redundancy  (Table  2.2,  R1).  

 

2.3. Valuing  the  costs  and  benefits  of  flexibility  

  There  may  be  a  point  at  which  more  flexibility  is  no  longer  desirable  and/or  the  costs  

outweigh  the  benefits  (Byrd  and  Turner  2000;  Duimering,  Safayeni,  and  Purdy  1993;  Nemetz  

and  Fry  1988).  Too  much  flexibility  can  introduce  unintended,  negative  impacts  on  systems,  

particularly  if  individual  flexibility  characteristics  are  considered  in  isolation  from  others.  For  

example,  oversizing  reservoir  capacity  without  taking  precautions  to  preserve  slack  for  future  

times  of  need  may  lead  to  the  classic  overshoot  and  collapse  problem  (Meadows  et  al.  1972).  

Alternately,  a  large  number  of  agencies  involved  in  water  resources  management  and  funding,  

reflective  of  high  intensity  and  redundancy,  can  delay  and  complicate  decision-­‐making  if  there  

is  not  proper  collaboration  and  communication  between  the  agencies  and  a  formal  governance  

structure  in  place  (National  Research  Council,  2012).  Inconsistencies  between  federal  and  state  

flood  risk  policies  are  not  uncommon  (USACE,  2009)  and  can  complicate  project  permitting.  

Page 29: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

19  

Connectivity  can  introduce  negative  human  interventions  into  historically  and  genetically  

isolated  systems  through  inter-­‐basin  transfers  or  river  restoration  activities  (Fausch  et  al.  2009).  

Flexible  dam  operations  and  rule  curves,  reflecting  the  characteristic  of  adjustability,  provides  

planners  and  operators  with  discretion  that  could  lead  to  unintended  impacts  on  ecosystems  or  

water  supply.    

  Furthermore,  flexibility  comes  at  a  price,  and  flexible  technologies  tend  to  cost  more  

than  traditional,  less  flexible  equipment  and  products  (Nemetz  and  Fry  1988;  Duimering,  

Safayeni,  and  Purdy  1993;  Byrd  and  Turner  2000).  Retrofitting  flood  management  infrastructure  

to  incorporate  more  flexibility  can  require  considerable  financial  investments.  For  example,  

increasing  the  storage  capacity,  and  thus  slack,  in  the  American  River  Basin,  California  by  raising  

Folsom  Dam  will  cost  an  estimated  $314  million  (State  of  California  2010).  It  cost  $41-­‐55  million  

to  increase  adaptability  at  Cougar  Dam,  Oregon  by  installing  a  selective  withdrawal  structure  

for  managing  downstream  temperatures  (Learn  2011;  Palmer  2010)  and  $800M  to  modify  

Hoover  Dam  to  improve  operations  under  lower  flow  conditions  (Brean  2012).  Increased  

flexibility  may  also  come  with  increased  technological  complexity,  which  requires  advanced  

management  and  support  staff  at  additional  costs  (Byrd  and  Turner  2000).  

  The  value  of  flexibility  relates  to  the  uncertainties  and  changes  the  system  faces  (Huang  

et  al.  2010;  Zhao  and  Tseng  2003).  Thus,  qualitatively,  the  value  of  flexibility  is  lower  in  more  

stable,  predictable  conditions,  whereas  the  value  of  flexibility  increases  with  the  degree  of  

uncertainty  and  the  projected  magnitude  of  perturbations  in  future  conditions.  Furthermore,  

identifying  the  appropriate  level  of  flexibility  in  a  system  will  depend  upon  the  risk  tolerance  

level  of  decision-­‐makers,  planners,  and  other  stakeholders  and  the  extent  to  which  they  are  

willing  to  accept  the  inability  of  the  system  to  fully  meet  objectives  for  all  plausible  conditions  

(Galloway  2011).  Thus,  alternative  decision-­‐making  models,  such  as  Robust  Decision-­‐making  

(Lempert  et  al.  2013),  Real  Options  theory  (Hertzler  2007;  Leary  1999;  Heal  and  Kriström  2002),  

and  optimization  that  maximizes  robustness  and/or  adaptability,  may  be  needed  to  guide  

valuation  of  flexibility  in  uncertain  future  conditions.  For  example,  despite  the  limitations  of  

optimizing  to  an  uncertain  future,  a  manager  might  implement  actions  that  maximize  the  range  

Page 30: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

20  

of  plausible  futures  under  which  the  system  could  meet  a  performance  threshold  with  

secondary  objectives  or  constraints  associated  with  financial  costs,  creation  or  elimination  of  

real  options,  maintaining  a  balanced  portfolio  of  flexibility  characteristic,  etc.  Alternately,  

potential  management  actions  could  be  evaluated  based  on  the  extent  to  which  they  increase  

the  range  of  conditions  under  which  the  system  could  meet  a  performance  target  per  unit  cost  

for  the  action.  For  a  flood  management  scenario,  an  example  action  might  maintain  flood  risk  

below  a  target  Expected  Annual  Damage  (EAD)  for  a  10%  larger  range  of  plausible  futures  than  

the  baseline  system  at  a  cost  of  $1M.  This  is  equivalent  to  a  1%  increase  in  operational  range  

for  every  $100,000  invested.    

 

2.4. Conclusions  

  Given  the  contribution  of  flexibility  to  the  adaptive  capacity  of  water  resources  systems,  

and  the  increasing  uncertainty  in  future  hydrologic  conditions,  flexible  water  resources  

management  systems  are  likely  to  perform  well  over  a  wide  range  of  conditions.  However,  

flexibility  as  a  concept  requires  definition  and  characterization  within  the  context  of  water  

resources  systems.  We  define  flexibility  for  the  field  of  water  resources  management  as  the  

inherent  ability  of  the  human  and  physical  elements  of  a  system  to  cope  with,  or  adapt  to,  

uncertain  and  changing  conditions,  in  a  timely  and  cost-­‐effective  manner.  Given  that,  unlike  the  

related  characteristic  of  adaptive  capacity,  flexibility  of  a  system  is  determined  by  its  inherent  

characteristics  that  are  independent  of  future  conditions,  we  propose  metrics  that  are  

assessable  using  system  specifications,  plans,  and  management  structures,  rather  than  deeply  

uncertain  future  projections.  Lastly,  we  identify  some  potential  methods  for  comparing  

management  strategies  for  their  contribution  to  flexibility  and  for  making  decisions  of  how  to  

incorporate  flexibility  into  water  management  systems.    

  Water  resources  managers  have  a  wide  array  of  infrastructure,  operational,  and  

regulatory  options  for  meeting  objectives  of  water  resources  systems.  Each  option  has  different  

performance  characteristics,  including  its  contribution  to  the  system’s  ability  to  adapt  as  the  

severity  and  uncertainty  of  climate  change  materialize.  In  support  of  others’  recommendations  

Page 31: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

21  

for  increased  flexibility  in  water  resources  systems,  as  well  as  the  clear  benefit  of  flexibility  in  

other  domains,  this  work  contributes  to  incorporating  flexibility  in  the  performance  evaluation  

of  the  different  options  available  to  water  resources  managers.  However,  we  emphasize  that  

the  proposed  framework  and  metrics  do  not  provide  direct  guidance  regarding  how  much  more  

slack,  or  other  flexibility  characteristics,  are  needed.  The  manager  and  public  must  determine  

the  degree  of  flexibility  in  a  water  resources  system  based  on  their  acceptable  level  of  risk  and  

the  cost  of  achieving  reduced  risk.  Furthermore,  additional  investigation  of  flexibility  is  

warranted  to  fully  understand  its  role  in  the  planning,  design,  operations,  and  management  of  

adaptive  water  resources  systems.  In  particular,  further  studies  are  needed  to:  a)  apply  and  

evaluate  the  flexibility  metrics  in  existing  water  resources  management  systems  (DiFrancesco  et  

al.  in  review);  b)  conduct  case  studies  to  quantify  the  relationship  between  system  flexibility  

and  adaptive  capacity;  c)  demonstrate  valuation  of  flexibility;  and  d)  develop  flexibility  metrics  

for  other  operating  objectives  (e.g.  hydropower  generation,  water  supply,  environmental  

benefits,  recreation,  etc.).        

  The  conclusions  and  remaining  research  gaps  reported  herein  highlight  the  urgent  need  

for  synthesis,  dialogue,  and  comparative  analysis  to  progress  towards  implementation  of  

adaptive,  flexible  water  resources  systems.  For  example,  given  the  important  but  largely  

assumed  connection  between  flexibility  and  adaptive  capacity,  a  critical  next  step  is  to  assess  

the  value  of  flexibility  in  terms  of  its  relationship  with  climate  risk  reduction,  uncertainty,  and  

adaptive  capacity.  Comparing  the  flexibility  and  adaptive  capacity  of  case  study  systems  would  

allow  for  assessment  of  the  extent  to  which  overall  system  flexibility  contributes  to  adaptive  

capacity,  as  well  as  the  relative  contributions  of  each  of  the  flexibility  characteristics  to  adaptive  

capacity.  From  such  a  study,  one  may  synthesize  general  principles  regarding  flexibility  and  

adaptive  capacity.  For  example,  it  may  be  the  case  that  a  subset  of  the  proposed  flexibility  

metrics  or  characteristics  disproportionally  relates  to  a  system’s  adaptive  capacity.  

Alternatively,  such  study  may  identify  other  flexibility  metrics  not  included  in  this  manuscript.  

Further,  the  finding  of  a  weak  relationship  between  flexibility  and  adaptive  capacity  may  

indicate  that  other  factors  play  a  larger  role  in  determining  a  system’s  ability  to  adapt  and  

Page 32: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

22  

perform  under  uncertain,  changing  conditions.  It  is  through  these  types  of  multi-­‐disciplinary  

and  rigorous  analysis  that  we  will  understand  best  strategies  for  establishing  robust  water  

resources  systems  in  an  uncertain  future.    

 

   

Page 33: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

23  

Figure  2.1.  Timeline  illustrating  shift  from  optimality  to  flexibility  and  robustness      

1910   1920   1930   1940   1950   1960   1970   1980   1990   2000   2010  

First  flexibility  reference  in  literature  -­‐  Fayol  (1916)  advocates  for  flexible  management  principles  

 

Operations  research  becomes  a  recognized  activity  by  US  military,  1940-­‐45,  and  continues  to  be  used  today  (Bonder  1979)  

  Operations  research  in  water  resources  -­‐  NRC  first  notes  potential  application  to  water  resources  (Wolman  and  NRC  1962)  

  Bonder  (1979)  describes  the  limitations  of  operations  research  and  need  to  consider  more  scenarios  

 Modern  flexibility  -­‐  Slack  (1987)  describes  “Flexibility  as  a  manufacturing  objective”  

  Watkins  and  McKinney  (1995)  describe  robust  optimization  in  water  resources  

 RAND  publishes  2003  book  advocating  large  ensembles,  robust  &  adaptive  strategies  

 Shift  to  nonstationary  analysis  in  water  resources  -­‐  Milly  et  al.  (2008)  declare,  “Stationarity  is  Dead”  

 

Page 34: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

24  

Figure  2.2.  Flexibility  characteristic  from  domains  outside  water  resources  used  to  develop  the  characteristics  for  water  resources  in  the  bottom  row.  The  four  left  columns  of  characteristics  ease  the  system’s  ability  to  cope  with  uncertainty  and  change,  while  adjustability  on  the  bottom  right  eases  the  system’s  ability  to  adapt.        

Page 35: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

25  

Table  2.1.  Definitions  of  flexibility  and  inflexibility  Target  system/  

sector   Definition   References  Contribution  to  water  resources’  

flexibility  

General   Characterized  by  a  ready  capability  to  adapt  to  new,  different,  or  changing  requirements  

(Merriam-­‐Webster,  Inc  

2003)    

Relationship  to  adaptation  

Information  Technology  

Ability  of  a  resource  to  be  used  for  more  than  one  end  product;  Degree  to  which  [IT  infrastructure’s]  resources  are  sharable  and  

reusable  (Duncan  1995)    

Redundancy  and  connectivity  characteristics  

`The  capacity  to  adapt'  across  four  dimensions,  or  areas  within  which  flexibility  can  be  achieved:  temporal,  range,  intention  and  

focus  

(Golden  and  Powell  2000)    

Relationship  to  adaptation;  time  

component  Represented  by  three  dimensions  or  influences,  defined  as:  1)  

slack,  the  degree  of  excess  capacity,  underutilization  or  salability,  2)  adaptability,  the  degree  of  versatility,  openness,  robustness,  and  3)  intensity,  the  degree  of  repetitiveness  and  frequency  of  

changes  in  a  parameter  

(D.  E.  Turner  and  Lankford  

2005)    

Slack,  adjustability,  and  

redundancy  characteristics  

Management   Ability  to  be  adapted  to  changing  circumstances.   (Fayol  1916)     Relationship  to  adaptation  

Management  (inflexibility)  

Physical  resources  of  a  firm  are  characterized  by  fixed  capacity.  Also,  they  are  usually  useful  in  a  few  very  similar  industries  

(Chatterjee  and  

Wernerfelt  1991)    

Slack,  redundancy,  and  adjustability  characteristics  

Manufacturing      

Capability  of  a  manufacturing  system  to:    increase  or  decrease  its  capacity  when  needed;  produce  new  or  improved  parts;  support  interchange  between  stations  or  their  tooling  and  functions  when  needed;  and  handle  the  system  control  software  in  the  above  

cases  

(Pyoun  and  Choi  1994)  

Slack,  adjustability,  and  

redundancy  characteristics  

 

Planning  

The  amount  of  uncertainty  which  the  decision  maker  retains  concerning  the  future  choices  he  will  make...Unforeseeable  

uncertainty  can  only  be  dealt  with  if  the  decision-­‐maker's  response  to  nature's  moves  is  not  fixed  in  advance  but  is  itself  uncertain.  Flexibility  is  then  defined  as  the  entropy  of  that  uncertainty.  

(Pye  1978)     Emphasis  on  uncertainty  

Social-­‐ecological  systems  

Degree  to  which  a  system  is  pliable  or  compliant  (similar  to  adaptability,  but  more  absolute  than  relative).  

Adaptability  is  defined  as:    the  ability,  competency,  or  capacity  of  a  system  to  adapt  to  (to  alter  to  better  suit)  climatic  stimuli  

(essentially  synonymous  with  adaptive  capacity)  

(IPCC  2007)    

Relationship  to  adaptation;  adjustability  characteristic;  absoluteness;  

Social-­‐ecological  systems  

(inflexibility)  

Rigid  social-­‐ecological  systems  are  those  that  are  highly  connected  and  self-­‐  reinforcing,  with  low  potential  for  change  

(Gunderson  and  Holling  

2002)    

Adjustability  characteristic  

Water  management  

Allocations  between  users,  uses,  regions  and  sectors  can  be  changed  at  a  low  cost  in  relation  to  benefits;  changes  in  demand  are  accommodated  easily  by  reallocating  water  to  higher-­‐valued  uses  as  they  emerge;  Certainty  is  also  necessary:  water-­‐use  rules  

must  be  easy  to  discover  and  to  understand  

(FAO  1993)  

Compatibility  and  adjustability  

characteristics;  cost  component  

Limited  possibilities  to  introduce  change  based  on  new  insight   (Pahl-­‐Wostl  2007)    

Adjustability  characteristic  

Ability  to  cope  with  uncertainties  and  …  capability  to  adapt  to  new  or  changing  requirements  

(Patel  Center  2011)  

Relationship  to  adaptation  

Ability  to  respond  to  uncertainties  in  the  future   (Suttinon  and  Nasu  2010)  

Emphasis  on  uncertainty  

 

Page 36: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

26  

Table  2.2.  Example  metrics  to  assess  flexibility  in  flood  management  systems.  Unless  otherwise  noted,  larger  metric  values  indicate  greater  flexibility.  

         

                                                                                                               1  Structural  components:    dams  and  reservoirs,  levees,  walls,  diversion  channels,  bridge  modifications,  channel  alterations,  pumping,  and  land  treatment;  Nonstructural  measures:    flood  warning  and  preparedness;  temporary  or  permanent  evacuation  and  relocation;  land  use  regulations  including  floodway  delineation,  flood  plain  zoning,  subdivision  regulations  and  building  codes;  flood  proofing;  area  renewal  policies;  and  conversion  to  open  space  (USACE  1999).      2  Structural  components:    dams  and  reservoirs,  levees,  walls,  diversion  channels,  bridge  modifications,  channel  alterations,  

  ID   Metric  description  

Slack  

S1  Excess  reservoir  capacity:  calculated  as  a  dam’s  flood  storage  capacity  in  excess  of  the  amount  of  water  stored  in  the  reservoir  to  attenuate  an  x-­‐year  flood  event.    

S2  Excess  stream  capacity:  calculated  as  the  stream  conveyance  capacity  in  excess  of  the  expected  discharge  during  an  x-­‐year  flood  event.  

S3  Excess  capacity  to  release  and  convey  flood  waters:  calculated  as  the  stream  conveyance  capacity  in  excess  of  an  upstream  dam’s  outlet  and  spillway  capacity.  

S4  Excess  bypass  capacity:  calculated  as  the  capacity  of  the  bypass  to  store  water  in  an  x-­‐year  flood  event  that  exceed  the  stream  conveyance  capacity  

Redu

ndan

cy   R1   Surface  storage  options:  number  of  reservoirs  and  bypasses  per  major  tributary  

R2   Structural  vs.  non-­‐structural  diversity1  

R3   Delegation  of  management  responsibility:    number  of  agencies  committed  to  flood  management  

Conn

ectiv

ity  

C1  Ground-­‐  and  surface  water  connections:    percent  of  reservoirs  operated  conjunctively  with  groundwater  

C2   Potential  for  floodplain  connection:    percent  of  river  length  without  levees  

Adjustab

ility   A1  

Ability  to  revise  operations  plans:    level  of  governmental  approval  needed  to  adjust  reservoir  operations  plans  (rule  curves)  or  storage  allocation  (lower  level  is  more  flexible)  

A2  Opportunities  to  annually  vary  flood  storage  space:    calculated  as  the  percent  of  the  maximum  flood  storage  space  which  can  be  varied  

A3  Ability  to  expand  storage  and  conveyance  capacity  with  levee  setbacks:    calculated  as  the  percent  of  levees  with  greater  than  an  x  m.  buffer  to  infrastructure  the  length  of    

Compa

tibility/  

Coordina

tion   CC1  

Access  to  data:    water  managers  have  access  to  future  hydrologic  projections  at  relevant  temporal  and  spatial  scales  

CC2  Access  to  data  analysis  tools:    water  managers  have  tools  and  ability  to  analysis  and  use  hydrologic  projections  for  reservoir  planning  and  operations  

CC3  Intra  basin  coordination  of  operations:    percent  of  reservoirs  with  coordinated  operating  agreements  

Page 37: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

27  

References  

Adger,  W.  Neil,  Nigel  W.  Arnell,  and  Emma  L.  Tompkins.  2005.  “Successful  Adaptation  to  Climate  Change  across  Scales.”  Global  Environmental  Change  15  (2):  77–86.  

Adger,  W.  Neil,  Nick  Brooks,  Graham  Bentham,  Maureen  Agnew,  and  Siri  Eriksen.  2004.  New  Indicators  of  Vulnerability  and  Adaptive  Capacity.  Vol.  122.  Tyndall  Centre  for  Climate  Change  Research  Norwich.  http://www.tyndall.ac.uk/content/new-­‐indicators-­‐vulnerability-­‐and-­‐adaptive-­‐capacity.  

Adger,  W.  Neil,  Katrina  Brown,  and  Emma  L.  Tompkins.  2005.  “The  Political  Economy  of  Cross-­‐Scale  Networks  in  Resource  Co-­‐Management.”  Ecology  and  Society  10  (2):  9.  

Akanbi,  A.A.,  Y.  Lian,  and  T.W.  Soong.  1999.  “An  Analysis  on  Managed  Flood  Storage  Options  for  Selected  Levees  along  the  Lower  Illinois  River  for  Enhancing  Flood  Protection”.  Report  No.  4.  Flood  Storage  Reservoirs  and  Flooding  on  the  Lower  Illinios  River.  Prepared  for  the  Office  of  Water  Resources  Illinois  Department  of  Natural  Resources.  http://www.isws.uiuc.edu/pubdoc/CR/ISWSCR-­‐645.pdf.  

Armitage,  Derek  R.,  Ryan  Plummer,  Fikret  Berkes,  Robert  I.  Arthur,  Anthony  T.  Charles,  Iain  J.  Davidson-­‐Hunt,  Alan  P.  Diduck,  Nancy  C.  Doubleday,  Derek  S.  Johnson,  and  Melissa  Marschke.  2008.  “Adaptive  Co-­‐Management  for  Social-­‐Ecological  Complexity.”  Frontiers  in  Ecology  and  the  Environment  7  (2):  95–102.  

Arthington,  Angela  H.,  Stuart  E.  Bunn,  N.  LeRoy  Poff,  and  Robert  J.  Naiman.  2006.  “The  Challenge  of  Providing  Environmental  Flow  Rules  to  Sustain  River  Ecosystems.”  Ecological  Applications  16  (4):  1311–18.  

Berkes,  Fikret.  2009.  “Evolution  of  Co-­‐Management:  Role  of  Knowledge  Generation,  Bridging  Organizations  and  Social  Learning.”  Journal  of  Environmental  Management  90  (5):  1692–1702.  

Bonder,  Seth.  1979.  “Changing  the  Future  of  Operations  Research.”  Operations  Research  27  (2):  209–24.  

Brean,  Henry.  2012.  “Third  Intake  into  Lake  Mead  Hits  $5  Million  Snag.”  Las  Vegas  Review  Journal,  May  17.  http://www.reviewjournal.com/news/water-­‐environment/third-­‐intake-­‐lake-­‐mead-­‐hits-­‐5-­‐million-­‐snag.  

Brekke,  L.  D,  E.  P  Maurer,  J.  D  Anderson,  M.  D  Dettinger,  E.  S  Townsley,  A.  Harrison,  and  T.  Pruitt.  2009.  “Assessing  Reservoir  Operations  Risk  under  Climate  Change.”  Water  Resources  Research  45  (4):  W04411.  

Brooks,  D.  B,  O.  M  Brandes,  and  S.  Gurman.  2009.  Making  the  Most  of  the  Water  We  Have:  The  Soft  Path  Approach  to  Water  Management.  Earthscan/James  &  James.  

Byrd,  T.A.,  and  Douglas  E  Turner.  2000.  “Measuring  the  Flexibility  of  Information  Technology  Infrastructure:  Exploratory  Analysis  of  a  Construct.”  Journal  of  Management  Information  Systems  17  (1):  167–208.  

California  Department  of  Water  Resources  (CA-­‐DWR).  2009.  “California  Water  Plan  Update  2009:  Integrated  Water  Management.”  http://www.waterplan.water.ca.gov/cwpu2009/index.cfm.  

———.  2010.  “Central  Valley  Flood  Protection  Plan  Regional  Conditions  Report.”  http://www.water.ca.gov/cvfmp/docs/RegionalConditionsReportCVFPP201003.pdf.  

Page 38: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

28  

Carpenter,  Stephen  R.,  and  William  A.  Brock.  2008.  “Adaptive  Capacity  and  Traps.”  Ecology  and  Society  13  (2):  40.  

Carpenter,  Stephen  R.,  B.  Walker,  J.M.  Anderies,  and  N.  Abel.  2001.  “From  Metaphor  to  Measurement:  Resilience  of  What  to  What?”  Ecosystems  4  (8):  765–81.  

Chatterjee,  S.,  and  B.  Wernerfelt.  1991.  “The  Link  between  Resources  and  Type  of  Diversification:  Theory  and  Evidence.”  Strategic  Management  Journal  12  (1):  33–48.  

Congressional  Budget  Office  (CBO).  1997.  “Water  Use  Conflicts  in  the  West:    Implications  of  Reforming  the  Bureau  of  Reclamations  Water  Supply  Policies.”  http://www.cbo.gov/ftpdocs/0xx/doc46/wateruse.pdf.  

Curtis.  2013.  “Flood  Warning  Systems  Saved  Lives  During  Colorado  Flood.”  National  Hydrologic  Warning  Council  Press  Release,  October  16.  http://finance.yahoo.com/news/flood-­‐warning-­‐systems-­‐saved-­‐lives-­‐150000047.html.  

DeLeo,  Giulio  A.,  and  Simon  Levin.  1997.  “The  Multifaceted  Aspects  of  Ecosystem  Integrity.”  Conservation  Ecology  1  (1):  3.  

Duimering,  P.R.,  F.  Safayeni,  and  L.  Purdy.  1993.  “Integrated  Manufacturing:  Redesign  the  Organization  before  Implementing  Flexible  Technology.”  Sloan  Management  Review  34:  47–47.  

Duncan,  N.B.  1995.  “Capturing  Flexibility  of  Information  Technology  Infrastructure:  A  Study  of  Resource  Characteristics  and  Their  Measure.”  Journal  of  Management  Information  Systems,  37–57.  

Engle,  Nathan  L.  2011.  “Adaptive  Capacity  and  Its  Assessment.”  Global  Environmental  Change  21  (2):  647–56.  

Faber,  Beth  A.,  and  J.R.  Stedinger.  2001.  “Reservoir  Optimization  Using  Sampling  SDP  with  Ensemble  Streamflow  Prediction  (ESP)  Forecasts.”  Journal  of  Hydrology  249  (1–4):  113–33.  doi:10.1016/S0022-­‐1694(01)00419-­‐X.  

Falkenmark,  Malin,  and  Carl  Widstrand.  1992.  “Population  and  Water  Resources:  A  Delicate  Balance.”  Population  Bulletin  47  (3):  1.  

Fausch,  Kurt  D.,  Bruce  E.  Rieman,  Jason  B.  Dunham,  Michael  K.  Young,  and  Douglas  P.  Peterson.  2009.  “Invasion  versus  Isolation:  Trade-­‐Offs  in  Managing  Native  Salmonids  with  Barriers  to  Upstream  Movement.”  Conservation  Biology  23  (4):  859–70.  

Fayol,  H.  1916.  Administration  générale  et  industrielle.  France:  Gauthiers-­‐Villars.  Ferreira,  Joseph,  and  California  Department  of  Water  Resources  (CA-­‐DWR).  1982.  A  Preliminary  

Study  of  Flood  Control  Alternatives  on  the  Lower  American  River.  Sacramento:  State  of  California,  the  Resources  Agency,  Department  of  Water  Resources,  Central  District.  

Folke,  Carl,  Stephen  R.  Carpenter,  Thomas  Elmqvist,  Lance  Gunderson,  Crawford  S.  Holling,  and  Brian  Walker.  2002.  “Resilience  and  Sustainable  Development:  Building  Adaptive  Capacity  in  a  World  of  Transformations.”  AMBIO:  A  Journal  of  the  Human  Environment  31  (5):  437–40.  

Food  and  Agriculture  Organization  (FAO).  1993.  “The  State  of  Food  and  Agriculture  1993”.  26.  FAO  Agriculture  Series.  Rome,  Italy.  http://www.fao.org/docrep/003/t0800e/t0800e00.htm.  

Page 39: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

29  

Fraser,  Evan  DG,  Warren  Mabee,  and  Frank  Figge.  2005.  “A  Framework  for  Assessing  the  Vulnerability  of  Food  Systems  to  Future  Shocks.”  Futures  37  (6):  465–79.  

Frederick,  K.  D,  D.  C  Major,  and  E.  Z  Stakhiv.  1997.  “Water  Resources  Planning  Principles  and  Evaluation  Criteria  for  Climate  Change:  Summary  and  Conclusions.”  Climatic  Change  37  (1):  291–313.  

Gallopín,  G.C.  2006.  “Linkages  between  Vulnerability,  Resilience,  and  Adaptive  Capacity.”  Global  Environmental  Change  16  (3):  293–303.  

Galloway,  Gerald  E.  2011.  “If  Stationarity  Is  Dead,  What  Do  We  Do  Now?”  Journal  of  the  American  Water  Resources  Association  47  (3):  563–70.  doi:10.1111/j.1752-­‐1688.2011.00550.x.  

Gleick,  Peter  H.  2003.  “Global  Freshwater  Resources:  Soft-­‐Path  Solutions  for  the  21st  Century.”  Science  302  (5650):  1524  –1528.  doi:10.1126/science.1089967.  

Golden,  W.,  and  P.  Powell.  2000.  “Towards  a  Definition  of  Flexibility:  In  Search  of  the  Holy  Grail?”  Omega  28  (4):  373–84.  

Gunderson,  Lance  H,  and  C.  S  Holling.  2002.  Panarchy:  Understanding  Transformations  in  Human  and  Natural  Systems.  Washington,  DC:  Island  Press.  

Hall,  J.,  and  C.  Murphy.  2012.  “Adapting  Water  Supply  Systems  in  a  Changing  Climate.”  In  Water  Supply  Systems,  Distribution  and  Environmental  Effects.  Hauppauge,  NY:  Nova  Science  Publishers,  Inc.  

Hamlet,  Alan  F.,  D.  Huppert,  and  D.  P  Lettenmaier.  2002.  “Economic  Value  of  Long-­‐Lead  Streamflow  Forecasts  for  Columbia  River  Hydropower.”  Journal  of  Water  Resources  Planning  and  Management  128:  91.  

Hamlet,  Alan  F.,  and  D.  P  Lettenmaier.  1999.  “Columbia  River  Streamflow  Forecasting  Based  on  ENSO  and  PDO  Climate  Signals.”  Journal  of  Water  Resources  Planning  and  Management  125  (6):  333–41.  

Heal,  Geoffrey,  and  Bengt  Kriström.  2002.  “Uncertainty  and  Climate  Change.”  Environmental  and  Resource  Economics  22  (1):  3–39.  doi:10.1023/A:1015556632097.  

Hertzler,  Greg.  2007.  “Adapting  to  Climate  Change  and  Managing  Climate  Risks  by  Using  Real  Options.”  In  Australian  Journal  of  Agricultural  Research,  58:985–92.  Commonwealth  Scientific  and  Industrial  Research  Organization.  http://cat.inist.fr/?aModele=afficheN&cpsidt=19907584.  

Holdren,  John  P.,  and  Paul  R.  Ehrlich.  1974.  “Human  Population  and  the  Global  Environment:  Population  Growth,  Rising  per  Capita  Material  Consumption,  and  Disruptive  Technologies  Have  Made  Civilization  a  Global  Ecological  Force.”  American  Scientist  62  (3):  282–92.  

Huang,  D.,  K.  Vairavamoorthy,  and  S.  Tsegaye.  2010.  “Flexible  Design  of  Urban  Water  Distribution  Networks.”  In  World  Environmental  and  Water  Resources  Congress  2010:  Challenges  of  Change,  4225–36.  

Huitema,  Dave,  Erik  Mostert,  Wouter  Egas,  Sabine  Moellenkamp,  Claudia  Pahl-­‐Wostl,  and  Resul  Yalcin.  2009.  “Adaptive  Water  Governance:  Assessing  the  Institutional  Prescriptions  of  Adaptive  (co-­‐)  Management  from  a  Governance  Perspective  and  Defining  a  Research  Agenda.”  Ecology  and  Society  14  (1):  26.  

Page 40: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

30  

Intergovernmental  Panel  on  Climate  Change  (IPCC).  2007.  Climate  Change  2007:  Impacts,  Adaptation  and  Vulnerability:  Contribution  of  Working  Group  II  to  the  Fourth  Assessment  Report  of  the  Intergovernmental  Panel  on  Climate  Change.  Edited  by  M  Parry.  Cambridge  U.K.;  New  York:  Cambridge  University  Press.  

International  Water  Management  Institute  (IWMI).  2009.  “Flexible  Water  Storage  Options  and  Adaptation  to  Climate  Change”.  Water  Policy  Brief  Issue  31.  http://www.iwmi.cgiar.org/Publications/Water_Policy_Briefs/PDF/WPB31.pdf.  

Johnson,  Alicia  M.  Austin,  and  Gene  Lilly.  2009.  “Western  States  Watershed  Study.”  http://www.westgov.org/wswc/wsws%20main%20report_jan09.pdf.  

Jones,  Lindsey,  Eva  Ludi,  and  Simon  Levine.  2011.  “Towards  a  Characterisation  of  Adaptive  Capacity:  A  Framework  for  Analysing  Adaptive  Capacity  at  the  Local  Level”.  London:  Overseas  Development  Agency.  http://www.odi.org.uk/publications/5177-­‐adaptive-­‐capacity-­‐framework-­‐local-­‐level-­‐climate.  

Khosrowpour,  Mehdi.  2006.  Advanced  Topics  in  Information  Resources  Management.  Hershey,  PA:  Idea  Group  Inc  (IGI).  

Kondolf,  G.  Mathias,  Andrew  J.  Boulton,  Scott  O’Daniel,  Geoffrey  C.  Poole,  Frank  J.  Rahel,  Emily  H.  Stanley,  Ellen  Wohl,  Asa  Baang,  Julia  Carlstrom,  and  Chiara  Cristoni.  2006.  “Process-­‐Based  Ecological  River  Restoration:  Visualizing  Three-­‐Dimensional  Connectivity  and  Dynamic  Vectors  to  Recover  Lost  Linkages.”  Ecology  and  Society  11  (2):  5.  

Learn,  Scott.  2011.  “Getting  Salmon  Past  Daunting  Willamette  Basin  Dams  Could  Have  a  Big  Price  Tag  -­‐-­‐  and  a  Big  Payoff.”  The  Oregonian  -­‐  OregonLive.com,  September  7.  http://www.oregonlive.com/environment/index.ssf/2011/09/detroit_dam_to_restore_wild_ru.html.  

Leary,  Neil  A.  1999.  “A  Framework  for  Benefit-­‐Cost  Analysis  of  Adaptation  to  Climate  Change  and  Climate  Variability.”  Mitigation  and  Adaptation  Strategies  for  Global  Change  4  (3):  307–18.  doi:10.1023/A:1009667706027.  

Lempert,  Robert  J.,  Steven  C.  Bankes,  and  Steven  W.  Popper.  2003.  Shaping  the  Next  One  Hundred  Years:  New  Methods  for  Quantitative,  Long-­‐Term  Policy  Analysis.  Santa  Monica,  CA:  RAND  Corporation.  http://www.rand.org/pubs/monograph_reports/MR1626.html.  

Meadows,  D.  H.,  D.  L.  Meadows,  J.  Randers,  and  W.  W.  Behrens  III.  1972.  The  Limits  to  Growth:  A  Report  to  The  Club  of  Rome  (1972).  Universe  Books,  New  York.  

Merriam-­‐Webster,  Inc.  2003.  Merriam-­‐Webster’s  Collegiate  Dictionary.  Merriam-­‐Webster.  Milly,  P.  C.  D.,  J.  Betancourt,  M.  Falkenmark,  R.  M  Hirsch,  Z.  W  Kundzewicz,  D.  P  Lettenmaier,  

and  R.  J  Stouffer.  2008.  “Stationarity  Is  Dead:  Whither  Water  Management?”  Earth  4:  20.  

Naeem,  Shahid.  1998.  “Species  Redundancy  and  Ecosystem  Reliability.”  Conservation  Biology  12  (1):  39–45.  

National  Research  Council  -­‐  Committee  on  Sustainable  Water  and  Environmental  Management  in  the  California  Bay-­‐Delta.  2012.  Sustainable  Water  and  Environmental  Management  in  the  California  Bay-­‐Delta.  Washington,  D.C.:  The  National  Academies  Press.  

Page 41: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

31  

National  Research  Council  (NRC).  Committee  on  American  River  Flood  Frequencies.  1999.  Improving  American  River  Flood  Frequency  Analysis.  National  Academies  Press.  

Nemetz,  P.L.,  and  L.W.  Fry.  1988.  “Flexible  Manufacturing  Organizations:  Implications  for  Strategy  Formulation  and  Organization  Design.”  Academy  of  Management  Review,  627–38.  

Opperman,  Jeffrey  J.,  Gerald  E.  Galloway,  Joseph  Fargione,  Jeffrey  F.  Mount,  Brian  D.  Richter,  and  Silvia  Secchi.  2009.  “Sustainable  Floodplains  Through  Large-­‐Scale  Reconnection  to  Rivers.”  Science  326  (5959):  1487  –1488.  doi:10.1126/science.1178256.  

Ospina,  Angelica  Valeria,  and  Richard  Heeks.  2010.  “Linking  ICTs  and  Climate  Change  Adaptation.”  Manchester:  University  of  Manchester.  http://africa-­‐adapt.net/media/resources/413/Linking%20ICTs%20and%20Climate%20Change%20Adaptation.pdf.  

Pahl-­‐Wostl,  Claudia.  2007.  “Transitions  towards  Adaptive  Management  of  Water  Facing  Climate  and  Global  Change.”  Integrated  Assessment  of  Water  Resources  and  Global  Change,  49–62.  

———.  2009.  “A  Conceptual  Framework  for  Analysing  Adaptive  Capacity  and  Multi-­‐Level  Learning  Processes  in  Resource  Governance  Regimes.”  Global  Environmental  Change  19  (3):  354–65.  doi:10.1016/j.gloenvcha.2009.06.001.  

Pahl-­‐Wostl,  Claudia,  J.  Sendzimir,  P.  Jeffrey,  J.  Aerts,  G.  Berkamp,  and  K.  Cross.  2007.  “Managing  Change  toward  Adaptive  Water  Management  through  Social  Learning.”  Ecology  and  Society  12  (2):  30.  

Palmer,  Susan.  2010.  “Helping  Fish  Find  Their  Way.”  The  Register  Guard,  August  20.  Patel  Center.  2011.  “Flexible  Design  of  Urban  Water  Management  Systems.”  Patel  School  of  

Global  Sustainability,  University  of  South  Florida.  http://psgs.usf.edu/patel-­‐center/flexible-­‐design/.  

Pearce,  Fred.  2004.  Keepers  of  the  Spring:  Reclaiming  Our  Water  in  an  Age  of  Globalization.  Washington,  D.C.:  Island  Press.  

Pettengell,  Catherine.  2010.  “Climate  Change  Adaptation:  Enabling  People  Living  in  Poverty  to  Adapt.”  Oxfam  Policy  and  Practice:  Climate  Change  and  Resilience  6  (2):  1–48.  

Platt,  Rutherford  H.  1995.  Flood  Risk  Management  and  the  American  River  Basin:  An  Evaluation.  National  Academies  Press.  

Pye,  Roger.  1978.  “A  Formal,  Decision-­‐Theoretic  Approach  to  Flexibility  and  Robustness.”  The  Journal  of  the  Operational  Research  Society  29  (3):  215–27.  doi:10.2307/3009448.  

Pyoun,  Y.  S,  and  B.  K  Choi.  1994.  “Quantifying  the  Flexibility  Value  in  Automated  Manufacturing  Systems.”  Journal  of  Manufacturing  Systems  13  (2):  108–18.  

Richter,  Brian  D.,  R.  Mathews,  D.L.  Harrison,  and  R.  Wigington.  2003.  “Ecologically  Sustainable  Water  Management:  Managing  River  Flows  for  Ecological  Integrity.”  Ecological  Applications  13  (1):  206–24.  

Richter,  Brian  D.,  and  Gregory  A.  Thomas.  2007.  “Restoring  Environmental  Flows  by  Modifying  Dam  Operations.”  Ecology  and  Society  12  (1):  12.  

Rijsberman,  F.  R.  2006.  “Water  Scarcity:  Fact  or  Fiction?”  Agricultural  Water  Management  80  (1):  5–22.  

Page 42: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

32  

Smit,  Barry,  and  Johanna  Wandel.  2006.  “Adaptation,  Adaptive  Capacity  and  Vulnerability.”  Global  Environmental  Change  16  (3):  282–92.  

State  of  California.  2010.  “California  Strategic  Growth  Plan  Bond  Accountability,  Folsom  Dam  Raise.”  http://bondaccountability.resources.ca.gov/Project.aspx?ProjectPK=3860-­‐P1E-­‐041&pid=5.  

Suttinon,  Pongsak,  and  Seigo  Nasu.  2010.  “Real  Options  for  Increasing  Value  in  Industrial  Water  Infrastructure.”  Water  Resources  Management  24  (12):  2881–92.  doi:10.1007/s11269-­‐010-­‐9585-­‐0.  

Turner,  Douglas  E,  and  William  M  Lankford.  2005.  “Information  Technology  Infrastructure:  A  Historical  Perspective  of  Flexibility.”  Journal  of  Information  Technology.  http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.94.6611.  

U.S.  Water  Resources  Council.  1983.  Economic  and  Environmental  Principles  and  Guidelines  for  Water  and  Related  Land  Resources  Implementation  Studies.  Water  Resources  Council.  

United  States  Army  Corps  of  Engineers  (USACE).  1999.  “Ch  13,  Flood  Damage  Reduction.”  In  Digest  of  Water  Resources  Policies  and  Authorities.  EP  1165-­‐2-­‐1.  http://140.194.76.129/publications/eng-­‐pamphlets/ep1165-­‐2-­‐1/c-­‐13.pdf.  

———.  2002.  “Sacramento  and  San  Joaquin  River  Basins  Comprehensive  Study.”  http://www.compstudy.net/reports.html.  

———.  2009.  “Flood  Risk  Management  -­‐  Value  to  the  Nation.”  http://www.poa.usace.army.mil/Portals/34/docs/engineering/USACEFloodRiskMgmtBrochure.pdf.  

Vörösmarty,  Charles  J.,  Pamela  Green,  Joseph  Salisbury,  and  Richard  B.  Lammers.  2000.  “Global  Water  Resources:  Vulnerability  from  Climate  Change  and  Population  Growth.”  Science  289  (5477):  284.  

Walker,  Brian  H.  1992.  “Biodiversity  and  Ecological  Redundancy.”  Conservation  Biology  6  (1):  18–23.  

Wallace,  Jim  S.,  Michael  C.  Acreman,  and  Caroline  A.  Sullivan.  2003.  “The  Sharing  of  Water  between  Society  and  Ecosystems:  From  Conflict  to  Catchment–based  Co–management.”  Philosophical  Transactions  of  the  Royal  Society  of  London.  Series  B:  Biological  Sciences  358  (1440):  2011–26.  

Western  Governors’  Association.  2008.  “Water  Needs  and  Strategies  for  a  Sustainable  Future:  Next  Steps.”  

Wilby,  Robert  L,  and  Suraje  Dessai.  2010.  “Robust  Adaptation  to  Climate  Change.”  Weather  65  (7):  180–85.  doi:10.1002/wea.543.  

Wolman,  Abel,  and  National  Research  Council  (U.S.).  Committee  on  Natural  Resources.  1962.  Water  Resources:  A  Report  to  the  Committee  on  Natural  Resources  of  the  National  Academy  of  Sciences-­‐National  Research  Council.  National  Academies.  

Wurbs,  R.A.  1991.  “Optimization  of  Multiple-­‐Purpose  Reservoir  Systems  Operations:  A  Review  of  Modeling  and  Analysis  Approaches”.  DTIC  Document.  

Yang,  Shu-­‐Li,  Nien-­‐Sheng  Hsu,  Peter  WF  Louie,  and  William  WG  Yeh.  1996.  “Water  Distribution  Network  Reliability:  Connectivity  Analysis.”  Journal  of  Infrastructure  Systems  2  (2):  54–64.  

Page 43: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

33  

Yuba  County  Water  Agency.  2008.  “Forecast-­‐Coordinated  Operations  of  Lake  Oroville  and  New  Bullards  Bar  Reservoir  for  Managing  Major  Flood  Events.”  http://www.water.ca.gov/floodmgmt/docs/fco_brochure_v9_jan2008_update.pdf.  

Zhao,  Tong,  and  Chung-­‐Li  Tseng.  2003.  “Valuing  Flexibility  in  Infrastructure  Expansion.”  Journal  of  Infrastructure  Systems  9  (3):  89–97.  doi:10.1061/(ASCE)1076-­‐0342(2003)9:3(89).  

 

 

 

 

   

Page 44: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

34  

 

ASSESSMENT  OF  FLOOD  MANAGEMENT  SYSTEMS'  FLEXIBILITY  WITH  APPLICATION  TO  THE  

SACRAMENTO  RIVER  BASIN,  CALIFORNIA,  USA  

 

 

 

 

Kara  N.  DiFrancesco,  PhD  candidate,  Water  Resources  Engineering,  Oregon  State  University,  Corvallis,  Oregon    Desiree  D.  Tullos,  Associate  Professor,  Biological  &  Ecological  Engineering,  Oregon  State  University,  Corvallis,  Oregon    

 

 

 

 

 

 

 

International  Journal  of  River  Basin  Management  (JRBM)  Taylor  &  Francis  4  Park  Square,  Milton  Park  Abingdon,  Oxfordshire  OX14  4RN,  UK    

In  review    

 

 

Page 45: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

35  

Chapter  3. Assessment  of  flood  management  systems'  flexibility  with  application  to  the  Sacramento  River  basin,  California,  USA  

 Abstract:  

Water  resources  managers  and  researchers  have  concluded  that  increasing  system  flexibility  

will  provide  flood  management  systems  advantages  in  meeting  objectives  under  uncertain  

future  hydrologic  conditions.  However,  despite  the  frequent  use  of  the  term  flexibility,  

demonstration  of  the  concept  to  analysis  and  design  of  flood  management  systems  has  yet  to  

be  conducted.  Building  upon  previous  studies  of  flexibility  in  other  fields,  we  outline  an  

approach  to  investigate  how  structural  and  non-­‐structural  flood  management  actions  relate  to  

system  flexibility.  We  assess  flexibility  using  metrics  within  five  characteristics:    slack,  

redundancy,  connectivity,  adjustability,  and  compatibility/  cooperation.  We  apply  this  flexibility  

assessment  to  four  proposed  flood  management  strategies,  each  with  a  unique  suite  of  

management  actions,  for  the  Sacramento  River  Basin  in  California,  USA.  The  foci  of  benefits  

differ  between  the  four  different  flood  management  strategies,  with  varying  emphasis  on  

protecting  urban  communities,  rural  and  agricultural  improvements,  and  ecosystem  

restoration.  The  flexibility  assessment  reveals  a  disproportionate  emphasis  in  all  strategies  on  

increasing  slack  in  the  current  system  as  well  as  a  concentration  of  expenditures  towards  

structural  versus  non-­‐structural  components.  Only  two  of  the  assessed  strategies  improve  all  

five  flexibility  characteristics,  and  these  two  strategies  also  include  the  greatest  number  of  

actions  that  provide  flexibility  benefits.  We  do  not  find  a  clear  link  between  more  flexibility  

strategies  and  their  time  and  cost-­‐effectiveness  in  terms  of  reduction  in  damages.  The  outlined  

method  provides  a  useful  tool  for  comparing  the  flexibility  of  potential  management  strategies,  

and  further  application  can  provide  more  insight  into  broader  thinking  on  flood  management  

under  uncertainty.  

 

Keywords:    Flexibility,  flood  risk  management,  adaptive  capacity,  climate  change,  robustness,  

uncertainty  

 

Page 46: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

36  

3.1. Introduction  

  With  water  resources  under  increasing  pressure  from  population  growth  and  climate  

change,  scientists  and  managers  frequently  assert  the  need  for  additional  flexibility  in  the  

systems  and  infrastructure  that  retain,  divert,  and  deliver  water.  The  need  for  flexibility  is  

fundamentally  driven  by  uncertainty  and  changing  conditions  (Zhao  and  Tseng  2003).  For  water  

resources  systems,  including  the  human  and  physical  components  that  contribute  to  managing  

water  within  a  river  basin,  the  recent  rise  in  flexibility  recommendations  relates  to  substantial  

changes  in  hydrologic  and  socio-­‐economic  conditions.  Although  uncertainty  has  plagued  

managers  for  as  long  as  water  resources  have  been  developed,  the  deep  uncertainty  in  

hydrology  under  climate  change  far  exceeds  any  uncertainty  flood  managers  confronted  in  the  

past  (Hall  and  Solomatine  2008).  Faced  with  a  wide  range  of  uncertain  and  changing  future  

hydrologic  conditions,  flexible  systems  that  can  adapt  to  change  quickly  and  effectively  are  

thought  to  provide  advantages  over  inflexible  systems  (Pahl-­‐Wostl  et  al.  2007;  Wilby  and  Dessai  

2010).    

  Furthermore,  changes  in  attitudes  towards  risk  and  uncertainty  coincide  with  the  call  for  

more  flexibility  in  water  resources  management.  For  example,  through  the  present  day,  flood  

managers  primarily  use  risk  analysis  in  planning  and  evaluating  water  resources  systems  and  

projects.  Risk  is  most  commonly  analyzed  in  relation  to  the  ability  of  the  system  or  components  

to  withstand  a  probabilistic  flood  size  (NRC  2000).  However,  increased  uncertainty  due  to  

climate  change  and  other  future  changes  calls  into  question  our  ability  to  describe  performance  

outcomes  of  future  flood  managements  strategies  with  probability  distributions,  a  requisite  for  

risk-­‐based  analysis  (Frederick,  Major,  and  Stakhiv  1997;  Milly  et  al.  2008).  As  such,  addressing  

climate  change  in  water  resources  planning  has  led  to  an  increased  emphasis  on  uncertainty  

analysis,  utilization  of  large  ensembles  of  future  scenarios,  and  a  rise  in  recommendations  for  

flexibility,  resilience,  adaptive  capacity,  and  robustness  (Lempert,  Bankes,  and  Popper  2003).  In  

line  with  this  shift  in  the  framing  of  future  conditions  and  uncertainty,  the  overarching  goals  of  

the  water  resources  management  analyses  shift  from  seeking  an  optimal  strategy  for  a  limited  

set  of  future  expectations,  to  seeking  flexible,  robust,  and  adaptive  strategies  that  perform  

Page 47: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

37  

reasonably  well  over  a  wide  range  of  uncertain,  but  plausible  future  scenarios  (Lempert,  

Bankes,  and  Popper  2003;  Frederick,  Major,  and  Stakhiv  1997).  

  The  contribution  of  flexibility  to  the  performance  of  water  resources  systems  in  an  

uncertain  future  is  embedded  in  its  relation  to  concepts  of  resiliency  and  adaptive  capacity  

from  the  study  of  social-­‐ecological  systems.  For  example,  resilience  in  human  systems  has  been  

defined  (B.  Walker  et  al.  2004)  as,  “the  capacity  of  a  system  to  absorb  disturbance  and  

reorganize  while  undergoing  change  so  as  to  still  retain  essentially  the  same  function,  structure,  

identity,  and  feedbacks.”  We  (DiFrancesco  and  Tullos  In  review)  define  flexibility  of  water  

resources  systems  as  “the  inherent  ability  of  the  human  and  physical  elements  of  a  system  to  

cope  with,  or  adapt  to,  or  alter  to  better  suit  uncertain  and  changing  conditions,  in  a  timely  and  

cost-­‐effective  manner.”  A  key  distinction  in  these  concepts  is  the  reference  to  an  external  

disturbance.  Both  resilience  and  adaptive  capacity  are  defined  in  terms  of  a  stress  or  

disturbance  and  an  answer  to  the  question:  Adaptation  or  resilience  of  what  to  what?  

(Carpenter  et  al.  2001;  Gallopín  2006).  In  contrast,  a  system’s  flexibility  can  be  assessed  without  

classification  of  an  external  disturbance,  as  we  do  in  this  manuscript.  Yet,  flexibility  none-­‐the-­‐

less  provides  a  means  for  the  system  to  respond  to  the  changes  generated  by  a  disturbance.  

Flexibility  is  thus  thought  to  contribute  to  a  system’s  resiliency  and  capacity  to  adapt,  as  well  as  

to  the  system’s  robustness,  which  describes  the  capacity  to  perform  over  a  large  range  of  

uncertain,  but  plausible  future  scenarios  (Lempert  et  al.  2006).  

  However,  while  it  is  generally  agreed  that  flexibility  contributes  to  long-­‐term  resiliency  

and  robustness,  it  is  less  clear  how  the  broad  collection  of  management  actions  and  

infrastructure  available  to  water  resources  managers  contributes  to  a  system’s  flexibility.  In  

particular,  it  is  unclear  how  best  to  prioritize  maintenance  of,  and  improvements  to,  flood  risk  

management  systems,  which  can  be  achieved  though  actions  aimed  towards  both  structural,  

physical  components  (S)  of  the  system  as  well  as  the  non-­‐structural,  operations  and  

management  components  (NS)  (Byrd  and  Turner  2000;  Pyoun  and  Choi  1994;  Wang  and  De  

Neufville  2004).  Structural  flood  management  components  include  dams,  levees,  diversions,  

etc.,  whereas  non-­‐structural  components  refer  to  laws  and  regulations,  zoning,  flood  forecast-­‐

Page 48: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

38  

warning  systems,  and  awareness  raising.  For  a  variety  of  reasons,  recent  discussions  of  flood  

risk  management  have  shifted  away  from  a  reliance  on  a  few  large  structures  to  consideration  

of  the  complete  spectrum  of  both  structural  and  nonstructural  solutions  (Galloway  1997;  

Werritty  2006).  One  predominant  reason  for  this  shift  is  that  non-­‐structural  actions  generally  

provide  more  reversible  and  less  expensive  mechanisms  to  reduce  flood  risk  than  structural  

actions.  This  reversibility  represents  higher  flexibility  in  the  system,  ensuring  that  future  options  

remain  open  and  thus  supports  adaptive  management  strategies  (Kundzewicz  2002).  Along  

similar  lines,  (Sayers,  Galloway,  and  Hall  2012)  recommends  increasing  flexibility,  used  

interchangeably  with  adaptability,  by  implementing  solutions  that  can  be  modified  if  the  future  

should  turn  out  to  be  different  from  expectations.  Often  non-­‐structural  solutions  provide  more  

adaptability  and  real  options  than  non-­‐structural  actions  (Paul  B.  Sayers,  Galloway,  and  Hall  

2012).  However,  characteristics  of  flexible  systems  go  well  beyond  reversibility  and  adaptability  

(DiFrancesco  and  Tullos,  in  review),  and  it  is  currently  unclear  how  structural  and  nonstructural  

management  actions  contribute  to  the  broad  range  of  characteristics  that  comprise  a  flexible  

flood  management  system.    

  The  goal  of  this  study  is  thus  to  investigate  how  structural  and  non-­‐structural  flood  

management  actions  relate  to  system  flexibility  in  the  Sacramento  River  basin,  California.  More  

specifically,  we  ask  these  key  questions:    

• How  do  individual  management  actions  contribute  to  the  different  flexibility  

components?  

• How  are  structural  and  non-­‐structural  actions  different  in  their  impacts  on  flexibility?  

• How  do  different  management  objectives,  represented  in  the  four  CVFPP  management  

strategies,  lead  to  different  outcomes  for  flexibility  characteristics?  

• Is  there  a  relationship  between  flexibility  and  cost/time  effectiveness  of  management  

strategies?  

Following  (DiFrancesco  and  Tullos  In  review),  we  examine  five  characteristics  of  flexibility  –  

slack,  redundancy,  connectivity,  adjustability,  and  compatibility/  cooperation  –  to  identify  areas  

in  which  flood  management  systems  exhibit  inflexibilities  or  can  achieve  increased  flexibility.  

Page 49: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

39  

Using  the  Sacramento  River  Basin,  California,  USA  as  a  case  study,  we  apply  an  approach  to  

assess  the  impact  of  proposed  management  actions  on  system  flexibility.  For  this  analysis  we  

use  information  provided  in  the  2012  Central  Valley  Flood  Protection  Plan  (CVFPP)  regarding  

the  current  Sacramento  flood  management  system.  This  plan  includes  four  proposed  flood  

management  strategies,  each  comprised  of  more  specific  flood  management  actions  (CA-­‐DWR  

2012).  The  following  analysis  examines  the  number,  type,  and  cost  of  proposed  actions  that  

would  affect  each  of  the  five  flexibility  characteristics.  

 3.2. Operationalization  of  the  term  flexibility  

  The  few  in-­‐depth  examinations  of  flexibility  and  attempts  to  measure  flexibility,  

primarily  come  from  the  fields  of:    Information  Technology  (IT)  (Byrd  and  Turner  2000;  Duncan  

1995;  Golden  and  Powell  2000;  D.  E.  Turner  and  Lankford  2005);  adaptive  capacity  of  social-­‐

ecological  systems  (SESs)  (Adger,  Arnell,  and  Tompkins  2005;  Smit  and  Wandel  2006);  

management  (Fayol  1916);  manufacturing  (Pyoun  and  Choi  1994);  planning  (Pye  1978);  and  

water  resources  (Paul  B.  Sayers,  Galloway,  and  Hall  2012;  Gersonius  et  al.  2013).  Studies  from  IT  

fields  represent  the  first  and  most  thorough  attempts  to  assess  the  flexibility  of  a  system  (Byrd  

and  Turner  2000;  Duncan  1995;  Golden  and  Powell  2000;  D.  E.  Turner  and  Lankford  2005).  Each  

of  these  studies  in  the  IT  field  delineates  between  different  characteristics  of  flexible  systems  

that  represent  areas  in  which  flexibility  can  be  gained  or  lost.  (DiFrancesco  and  Tullos  In  review)  

adapt  these  delineations,  identifying  five  characteristics  of  flexible  water  management  systems:  

• Slack:  degree  of  excess  capacity  or  underutilization;  

− Example:    reservoir  flood  storage  capacity  in  excess  of  design  flood  volume  

• Redundancy:  degree  of  repetitiveness  and  diversity  of  options  available  to  meet  

objectives;  

− Example:    number  of  flood  storage  facilities  within  the  system        

• Connectivity:  ability  of  any  component  to  attach  to  any  of  the  other  components  inside  

and  outside  the  system;  

− Example:      number  of  conjunctive  use  operations  in  place  

Page 50: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

40  

• Adjustability:    ability  to  add,  modify,  and  remove  any  component  of  the  system  and/or  

its  operations;  

− Example:    level  of  governmental  approval  needed  to  adjust  reservoir  operations  

plans  (rule  curves)  or  storage  allocation;    

• Cooperation:    ability  to  utilize  and  share  available  information  across  components.  

− Example:    Use  of  Decision  Support  Tools  (DSS)  in  planning  and  operations  

 

  These  flexibility  characteristics  can  be  mapped  to  structural  and  nonstructural  

components  within  a  flood  management  system  or  actions  that  enhance  or  degrade  flexibility.  

We  summarize  the  relationships  between  flexibility  characteristics  and  flood  risk  management  

actions  using  a  set  of  metrics  (Table  3.1,  adapted  from  DiFrancesco  and  Tullos  (In  review)).  

Examining  these  relationships  highlights  a  few  key  points  related  to  assessing  flexibility.  First,  

while  the  assessment  of  system  flexibility  can  occur  in  isolation,  in  general,  more  meaning  can  

be  gained  if  flexibility  is  used  as  a  relative  assessment,  such  as  comparison  between  different  

systems  or  management  actions.  Second,  similar  to  adaptive  capacity  (O’Brien  and  Leichenko  

2000;  B.  L.  Turner  et  al.  2003;  Luers  2005),  flexibility  is  not  a  steady  feature  of  a  system  as  it  can  

change  over  time  in  response  to  changes  in  human  and  physical  system  components.  For  

example,  one  metrics  to  assess  system  slack  examines  reservoir  capacity  in  excess  of  a  

probabilistic  flood  (Table  3.1,  S1).  Larger  floods,  a  common  climate  projection  in  many  regions  

(Cameron,  Beven,  and  Naden  2000;  Milly  et  al.  2002;  IPCC  2007;  Das  et  al.  2011),  would  

consume  slack  in  the  system,  decreasing  flexibility  in  this  regard.  As  such,  the  assessment  of  

flexibility  at  any  given  time  is  a  snapshot  of  the  system  and  must  be  reassessed  when  internal  

or  external  physical  or  human  components  change.  Third,  some  actions  contribute  to  multiple  

flexibility  characteristics  and  may  impact  flexibility  characteristics  differently.  For  example,  new  

levees  can  increase  conveyance  capacity  and  thus  slack  (Table  3.1,  S3),  while  also  decreasing  

connectivity  (Table  3.1,  C2)  and  potentially  adjustability  (Table  3.1,  A3).  Finally,  all  of  the  

flexibility  metrics  can  be  assessed  for  individual  management  actions,  with  the  exception  of  the  

redundancy  metric  R2  a.  and  b.  (Table  3.1).  When  evaluating  redundancy  in  terms  of  the  

Page 51: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

41  

diversity  of  the  suite  of  structural  versus  non-­‐structural  options  or  management  actions  (Table  

1,  R2  a.  and  b.),  we  assess  the  combination  of  system  components  or  management  actions.  

Additional  discussion  on  the  derivation  of  the  flexibility  characteristics  and  metrics,  as  well  as  

the  features  of  flexible  water  resources  systems,  is  presented  by  (DiFrancesco  and  Tullos  In  

review).  

 

3.3. Data  and  methods  

3.3.1. Study  area  

  The  Central  Valley  of  California,  USA  contains  areas  with  some  of  the  highest  flood  risk  

in  the  country  (USACE  2002).  The  70,500  km2  Sacramento  River  system,  the  focus  of  this  study,  

drains  the  northern  portion  of  the  Central  Valley,  while  the  San  Joaquin  River  system  drains  the  

39,000  km2  southern  portion  (Figure  3.1).  These  two  river  systems  meet  in  the  Sacramento-­‐San  

Joaquin  Delta  (Delta),  the  largest  estuary  on  the  west  coast  of  the  United  States.  Prior  to  land  

reclamation  and  the  construction  of  upstream  dams,  the  low-­‐lying  valley  floor  flooded  regularly  

during  large,  seasonal  storms.  The  first  European  explorers  to  reach  the  valley  in  the  early  19th  

century  estimated  that  high  flows  north  of  the  Delta  covered  distances  greater  than  eight  km  

on  the  eastern  side  of  the  river  and  five  km  on  the  western  side  (Kelley  1989).  Researchers  

believe  that  these  events  are  related  to  the  influence  of  atmospheric  rivers  across  the  

Sacramento  basin,  narrow  corridors  of  concentrated  moisture  traveling  over  the  Pacific  Ocean  

from  near  Hawaii  (Dettinger  et  al.  2011).  These  atmospheric  river  storms  can  drop  most  of  the  

region’s  annual  precipitation  totals  over  the  course  of  a  few  days.  

  In  the  Sacramento  and  San  Joaquin  basins,  efforts  to  regulate  floods  began  

simultaneously  with  settlement  and  continue  to  this  day.  Currently,  the  State  Plan  of  Flood  

Control  (SPFC),  administered  by  the  California  Department  of  Water  Resources  (CA-­‐DWR),  

guides  flood  management  planning  in  the  basin,  in  coordination  with  many  other  state,  federal  

and  local  entities.  The  SPFC  includes:    facilities  (levees,  weirs,  dams,  pumping  plants,  bypass  

basins,  etc.);  lands  (fee  title,  easements,  and  land  use  agreements);  operations  and  

maintenance  requirements  of  SPFC  facilities,  conditions  (terms,  Memorandums  of  

Page 52: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

42  

Understanding,  regulations,  etc.);  and  programs  and  plans.  Although  the  SPFC  has  prevented  

billions  of  dollars  in  flood  damages  since  its  inception,  some  SPFC  facilities  currently  face  an  

unacceptably  high  chance  of  failure  (CA-­‐DWR)  2010b).  In  addition,  an  unintended  consequence  

of  the  long-­‐term  effort  to  reduce  flooding  is  that  development  and  population  growth  behind  

levee-­‐protected  areas  have  increased  flood  damages  over  time  (CA-­‐DWR  2012).  Thus,  although  

the  probability  of  flooding  has  decreased,  the  damages  generated  when  floods  do  occur  are  

much  greater,  resulting  in  a  net  long-­‐term  increase  in  flood  risk  (CA-­‐DWR)  2012).  

 

3.3.2. Methods  to  analyze  flexibility  in  the  Central  Valley  Flood  Protection  Plan  (CVFPP)    

  In  response  to  increasing  flood  damages,  highlighted  during  flooding  in  the  1990s,  the  

California  State  Legislature  directed  CA-­‐DWR  to  prepare  the  CVFPP  along  with  other  supporting  

documentation  (CA-­‐DWR  2012).  The  primary  goal  of  the  CVFPP  is  to  improve  flood  risk  

management,  but  the  plan  also  includes  supplemental  goals  to:    improve  operations  and  

maintenance;  promote  ecosystem  functions;  improve  institutional  support;  and  promote  multi-­‐

benefit  projects.  The  CVFPP  and  associated  documents  contain  information  regarding  the  

current  state  of  the  SPFC,  as  well  as  proposed  actions  for  addressing  the  primary  and  

supplemental  goals  now  and  into  the  future.  Several  factors  contribute  to  managers’  concerns  

about  the  SPFC,  including  some  factors  that  refer  to  specific  inflexibilities  in  system  components  

(CA-­‐DWR  2010a).    We  compile  and  categorize  the  deficiencies  in  system  flexibility  noted  in  the  

CVFPP  (Table  3.2)  based  on  their  relationship  to  the  flexibility  characteristics  and  metrics  in  

Table  3.1.  For  example,  managers’  noted  insufficient  storage  capacity  indicates  that  the  current  

system  lacks  sufficient  slack  in  terms  of  metric  S1  (reservoir  capacity)  and/  or  S4  (bypass  

capacity).  

  In  total,  the  CVFPP  analyzed  four  strategies  to  address  the  identified  inflexibilities  (Table  

3.2)  and  other  deficiencies  in  the  SPFC,  which  we  also  use  in  this  study.  The  CVFPP  began  its  

initial  analysis  by  outlining  three  preliminary  strategies.  Each  of  the  three  strategies  emphasizes  

different  overarching  goals.  The  first  strategy,  henceforth  referred  to  as  “Design  Capacity,”  aims  

to  re-­‐establish  the  original  Design  Capacity  of  the  SPFC  facilities,  primarily  through  levee  

Page 53: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

43  

improvements  throughout  the  system.  The  second  strategy  henceforth  referred  to  as  “Protect  

Communities,”  focuses  on  protecting  high-­‐risk  Protect  Communities  through  physical  

improvements  to  levees  around  urban  areas  and  small  communities.  The  third  strategy,  

henceforth  referred  to  as  the  “Enhance  System”  strategy,  aims  to  enhance  the  flood  

management  system  storage  and  conveyance  capacity  through  widening  floodways,  

reconnecting  floodplains,  and  increasing  floodwater  storage.  The  Enhance  System  strategy  

incorporates  all  of  the  management  actions  of  the  first  two  strategies,  along  with  other  multi-­‐

benefit  actions.  After  assessing  the  costs  and  benefits  of  these  three  strategies,  the  CA-­‐DWR  

developed  a  fourth  strategy  to  pursue,  which  combines  the  strengths  of  each  preliminary  

strategy,  termed  the  “Combined”  strategy.  It  includes  both  regional  actions  to  improve  levees  

and  reduce  flood  risk  in  urban  areas,  small  community  and  rural-­‐agricultural  areas,  as  well  as  

large  system  improvements,  such  as  bypass  expansion.  

  Each  of  the  strategies  developed  for  the  CVFPP  contains  a  suite  of  management  actions  

aimed  at  addressing  the  overarching  goals  of  the  strategy.  The  CVFPP  identified  eight  broad  

classes  of  flood  management  system  elements  that  address  the  key  types  of  improvements  

needed  to  meet  the  2012  CVFPP  plan’s  goals,  including:  1)  bypasses,  2)  ecosystem  restoration,  

3)  flood  structure  improvements,  4)  residual  risk,  5)  rural-­‐agriculture  improvements,  6)  small  

community  improvements,  7)  storage  and  operations,  and  8)  urban  improvements.  The  CVFPP  

further  divided  each  element  into  more  specific  flood  management  actions.  To  maintain  

consistency  with  the  CVFPP,  in  this  manuscript  we  retain  the  same  categorization  of  

management  actions  under  the  eight  classes  of  system  elements.  

We  assess  our  first  study  question  regarding  the  contribution  of  each  proposed  

management  action  towards  system  flexibility  by  determining  the  impact  of  each  of  the  29  

proposed  actions  listed  in  the  CVFPP  (CA-­‐DWR  2012)  on  the  flexibility  metrics  in  Table  3.1.  Due  

to  the  lack  of  specificity  regarding  the  outlined  actions,  we  could  not  calculate  the  absolute  

system  flexibility  under  each  management  strategy.  Rather,  for  each  management  action  we  

determine  whether  it  would:    increase  (1),  have  no  effect  (0),  or  decrease  (-­‐1)  each  flexibility  

metric.  Actions  can  impact  more  than  one  metric  and  characteristic.  For  example,  a  new  flood  

Page 54: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

44  

bypass  would  increase  storage  capacity,  a  component  of  the  slack  measurement  (Table  3.1,  S4),  

as  well  as  the  number  of  storage  facilities,  a  measure  of  redundancy  (Table  3.1,  R1).  Under  each  

of  the  eight  major  elements,  we  summed  the  number  of  actions  that  would  enhance  flexibility  

characteristics,  as  well  as  the  number  of  actions  that  may  reduce  flexibility.  Some  of  the  

included  actions  seem  to  have  little  relevance  for  flood  management  (e.g.  improved  fish  

passage),  but  they  still  address  at  least  one  of  the  supplemental  goals  in  the  CVFPP.  In  addition,  

actions  that  integrate  ecosystem  improvements  early  in  the  planning  stage  may  allow  for  a  

more  holistic  approach  to  restoration,  rather  than  traditional  project-­‐by-­‐project  compensatory  

mitigation  (CA-­‐DWR  2012).  

  Second,  we  assess  the  structural  and  non-­‐structural  diversity  of  the  suite  of  proposed  

actions  and  the  impact  of  structural  and  non-­‐structural  management  actions  on  flexibility.  We  

first  categorize  the  suite  of  proposed  actions  based  on  whether  they  apply  to  structural  or  non-­‐

structural  elements  in  the  flood  management  system.  We  then  assess  structural  diversity  (Table  

3.1,  R2  a.  and  b.),  based  on  number  of  projects  and  expenditures,  and  the  extent  to  which  

structural  and  non-­‐structural  actions  impact  each  of  the  five  flexibility  characteristics.  

  Thirdly,  we  assess  how  different  management  goals,  represented  in  the  four  CVFPP  

management  strategies,  lead  to  different  outcomes  for  flexibility  characteristics.  We  summarize  

the  expenditures  for  each  management  strategy  to  illustrate  the  relationship  between  

management  goals  and  actions.  We  also  compare  the  four  management  strategies  based  on  

the  number  of  included  actions  that  increase  each  of  the  flexibility  characteristics,  as  well  as  the  

expenditures  dedicated  towards  increasing  each  of  those  characteristics.  

  Lastly,  we  conduct  a  cursory  analysis  of  the  relationship  between  flexibility  and  cost-­‐  

and  time-­‐  effectiveness  of  each  management  strategy.  We  assess  cost-­‐effectiveness  using  the  

mid-­‐range  expected  cost  of  each  strategy  in  comparison  to  the  strategy’s  ability  to  improve  

flood  risk  management,  the  primary  goal  of  the  CVFPP.  We  use  the  CVFPP’s  estimate  of  each  

strategy’s  potential  to  reduce  expected  annual  damages  (EAD)  as  a  measure  of  the  its  ability  to  

meet  the  primary  flood  risk  reduction  goal  (CA-­‐DWR  2012).  Similarly  we  assess  time  

Page 55: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

45  

effectiveness  as  the  reduction  in  EAD  per  year  of  strategy  implementation.  We  compare  these  

simple  efficiency  measures  to  the  flexibility  of  each  strategy.  

 

3.4. Results  

3.4.1. Management  action  contribution  to  flexibility  characteristics    

  The  management  actions  proposed  in  the  CVFPP  have  significant  potential  to  address  

the  identified  inflexibilities  in  the  system.  All  but  two  of  the  29  proposed  actions  have  the  

potential  to  increase  one  or  more  of  the  flexibility  characteristics  (Table  3.3).  Four  of  the  actions  

increase  more  than  one  flexibility  characteristic.  The  actions  disproportionately  address  slack  in  

the  system,  with  55%  of  the  actions  contributing  to  increased  slack  and  only  21%,  21%,  and  17%  

of  the  actions  contributing  to  adjustability,  compatibility/  cooperation,  and  redundancy,  

respectively  (Table  3.3).  Only  one  action  increases  connectivity,  via  improvements  to  fish  

passage  structures  that  increase  the  movement  of  floodwaters  and  aquatic  species  into  and  out  

of  the  bypass  system,  i.e.  longitudinal  connectivity  (Table  3.1,  C3).  Furthermore,  another  21%  of  

the  actions  reduce  connectivity,  through  levee  improvements  that  further  limit  lateral  river-­‐

floodplain  connections  (Table  3.1,  C2).  Notably,  the  proposed  management  actions  also  focus  

more  frequently  on  modifying  the  existing  components  rather  than  introducing  new  

components,  as  evident  by  the  relatively  few  individual  actions  that  increase  the  redundancy,  

or  number  of  options  in  the  system.  Of  the  18  actions  that  increase  slack  in  the  system,  only  

three  also  increase  system  redundancy  through  introducing  new  components  to  the  system.  

The  remaining  15  actions  increase  slack  by  enlarging  the  capacity  of  components  in  the  existing  

system.  

 

3.4.2. Flexibility  of  structural  and  non-­‐structural  management  actions  

  Assessment  of  the  redundancy  of  the  suite  of  management  actions  in  terms  of  the  

diversity  of  the  number  of  structural  versus  non-­‐structural  actions  (Table  3.1,  R2a)  and  

redundancy  in  terms  of  expenditure  (Table  3.1,  R2b)  yields  different  results.  The  CVFPP  contains  

almost  an  even  split  in  the  number  of  proposed  structural  versus  non-­‐structural  actions  (Table  

Page 56: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

46  

3.4).  As  such,  calculating  diversity  in  the  number  of  proposed  actions  (Table  3.1,  R2a)  yields  a  

value  extremely  close  to  the  optimum  0.5,  with  1  indicating  no  diversity.  Despite  the  relatively  

balanced  number  of  structural  and  non-­‐structural  actions,  structural  actions  require  

significantly  greater  investment.  Implementing  the  structural  actions  would  cost  seven  times  

more  than  the  cost  of  the  non-­‐structural  actions  yielding  an  R2b  value  of  0.78  (Table  3.4).  

Structural  rural-­‐agricultural  levee  improvements  require  the  greatest  expenditure  of  all  

elements.  This  action  includes  repairs  and  improvements  to  21  km  of  levees  in  order  to  provide  

rural  communities  protection  from  a  100-­‐year  flood.  

The  structural  versus  non-­‐structural  elements  also  impact  the  flexibility  characteristics  

differently  (Table  3.5).  The  structural  actions  overwhelmingly  increase  slack  in  the  system,  with  

12  of  the  15  actions  contributing  to  flexibility  attributed  to  slack.  In  contrast,  only  one  structural  

action  increases  connectivity  and  only  two  increase  adjustability.  None  of  the  structural  actions  

increase  redundancy  or  compatibility/  cooperation.  Alternately,  the  contributions  of  non-­‐

structural  actions  to  flexibility  are  spread  across  the  range  of  characteristics,  with  four  or  more  

non-­‐structural  actions  increasing  slack,  redundancy,  adjustability,  and  compatibility/  

coordination.  Furthermore,  although  the  suite  of  actions  contains  less  non-­‐structural  than  

structural  actions,  the  number  of  non-­‐structural  actions  that  provide  positive  impacts  on  the  

flexibility  characteristics  is  greater  (Table  3.5,  row  totals).    

 

3.4.3. Flexibility  of  management  strategies  proposed  in  the  CVFPP  

  The  different  objectives  of  the  four  CVFPP  management  strategies,  represented  through  

the  suite  of  management  actions  and  elements  in  each  strategy,  leads  to  different  outcomes  for  

flexibility  characteristics.  In  all  strategies,  the  greatest  portion  of  expenditures  is  allocated  to  

either  rural-­‐agricultural  improvements  or  urban  improvements,  depending  on  the  strategy  

objective  (Table  3.6).  The  strategies  that  focus  on  Protect  Communities  and  Design  Capacity  

only  contain  management  actions  in  three  or  four  of  the  eight  flood  management  elements,  

respectively.  Alternatively,  the  Enhance  System  and  Combined  strategy  include  a  more  diverse  

array  of  management  actions  that  address  all  eight  of  the  broad  elements.  While  none  of  the  

Page 57: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

47  

metrics  in  Table  3.1  explicitly  consider  the  diversity  of  elements,  this  diversity  is  consistent  with  

increased  flexibility  in  terms  of  the  redundancy  characteristic.  

  To  further  compare  the  impact  of  the  different  strategies  on  flexibility,  we  assess  the  

number  of  actions  in  each  strategy  that  impact  each  flexibility  characteristics  (Table  3.7  and  

Figure  3.2a),  as  well  as  the  expenditure  on  strategy  actions  that  increase  each  of  the  flexibility  

characteristics  (Figure  3.2b).  In  every  strategy,  slack  represents  the  flexibility  characteristics  

impacted  by  the  largest  number  of  actions.  In  addition,  the  majority  of  costs  for  each  strategy  

address  slack  in  the  system,  ranging  from  82%  of  project  costs  in  the  Combined  strategy  to  94%  

for  the  costs  for  the  Design  Capacity  strategy  (Figure  3.2b).  While  the  Enhance  System  and  

Combined  strategies  include  actions  that  address  every  flexibility  characteristic  to  some  extent,  

the  Design  Capacity  and  Protect  Communities  strategy  do  not  include  any  investments  towards  

improving  the  connectivity  or  adjustability  of  the  system.  Further,  the  Enhance  System  and  

Combined  strategies  include  management  actions  that  increase  the  greatest  number  of  

flexibility  metrics  (Table  3.7).    

 

3.4.4. Relationship  between  flexibility  and  cost-­‐  and  time-­‐  effectiveness  

  We  also  compare  each  strategy  in  terms  of  absolute  and  relative  costs  and  benefits,  

based  on  financial  cost,  implementation  time,  and  reduction  in  EAD.  In  absolute  terms,  the  

Enhance  System  strategy  has  the  highest  reduction  in  EAD  at  $246M  but  also  costs  the  most  

and  takes  the  longest  time  to  implement  (Table  3.8).  In  contrast,  the  Protect  Communities  

strategy  provides  a  comparable  reduction  in  EAD  by  $202,504,000,  but  costs  considerably  less  

and  takes  the  least  amount  of  time  to  implement  (Table  3.8).  The  Protect  Communities  strategy  

also  reduces  EAD  most  efficiently  in  terms  of  reduction  in  EAD  per  dollar  spent  and  reduction  in  

EAD  per  implementation  time    (Table  8).  The  Combined  approach  ranks  second  to  Protect  

Communities  in  terms  of  implementation  time,  EAD  reduction  /  cost,  and  EAD  reduction/  time,  

while  providing  a  greater  absolute  reduction  in  EAD  (Table  3.8).  

The  flood  management  strategies  can  be  compared  based  on  the  cost-­‐effectiveness,  

time  effectiveness,  and  contribution  to  flexibility,  (Table  3.8).  The  relationship  between  these  

Page 58: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

48  

three  factors  that  may  contribute  to  selection  of  a  flood  management  strategy  is  not  clear  and  

it  is  not  immediately  evident  that  strategies  emphasizing  flexibility  lead  to  more  time  and  cost-­‐

effective  solutions  over  the  short  term.  Flexibility  and  implementation  time  appear  to  be  

inversely  related,  primarily  because  the  more  flexible  approaches  take  more  time  to  enact.  

There  also  appears  to  be  a  contrary  relationship  between  flexibility  and  cost-­‐effectiveness.  This  

is  due  to  the  high  cost  of  implementing  flexible  solutions.  Finally,  while  establishing  the  Protect  

Communities  is  the  most  effective  strategy  from  the  time  and  cost  perspective,  it  is  not  

effective  from  the  perspective  of  increasing  flexibility.  

 

3.5. Discussion  

  The  2012  CVFPP  and  associated  documents  identify  critical  inflexibilities  and  deficiencies  

in  the  current  Sacramento  Valley  flood  management  system  (Table  3.2).  The  CVFPP  outlines  

four  overarching  strategies,  each  containing  a  suite  of  structural  and  non-­‐structural  

management  actions  to  address  the  identified  deficiencies.  Each  strategy  emphasizes  different  

objectives  and  approaches  to  achieving  those  objectives,  yielding  different  impacts  on  system  

flexibility.    

Overwhelmingly,  the  actions  proposed  in  the  CVFPP  address  slack  in  the  system  over  

other  flexibility  characteristics.  This  emphasis  on  increasing  slack  may  be  of  concern,  since  

other  characteristics  can  be  important.  For  example,  while  slack  ensures  that  sufficient  excess  

capacity  exists  in  the  system,  redundancy  ensures  that  the  capacity  of  the  system  is  spread  

amongst  a  variety  of  options,  similar  to  the  resilience  that  diversity  offers  in  ecosystems  subject  

to  disturbance  (Elmqvist  et  al.  2003;  Folke  et  al.  2004).  The  CVFPP  management  actions  

emphasize  modifying  existing  infrastructure  over  introducing  new  components  to  the  flood  

management  system  that  would  increase  redundancy.  To  some  extent  this  may  reflect  the  

notion  that  all  of  the  best  storage  sites  are  already  taken  (Minton  2001).  However,  it  also  

reflects  a  lack  of  openness  to  implement  actions  that  may  deviate  from  how  floods  have  been  

managed  in  the  past.  Furthermore,  public  comments  at  the  Central  Valley  Flood  Protection  

Board  meeting  (24  February  2012,  Sacramento,  CA)  on  the  draft  2012  CVFPP  revealed  

Page 59: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

49  

opposition  by  the  agricultural  community  to  any  actions  that  increase  slack  and  redundancy  of  

flood  storage  capacity  at  the  perceived  expense  of  agricultural  lands.  Opposition  was  

particularly  focused  on  the  proposed  new  bypass  on  the  Feather  River  and  new  Sacramento  

River  easements.  

Examination  of  the  ratio  of  structural  to  non-­‐structural  actions,  a  measure  of  the  

system-­‐wide  redundancy,  leads  to  different  conclusions  depending  on  whether  we  examine  the  

relative  number  or  relative  cost  of  structural  and  non-­‐structural  actions.  The  legislation  guiding  

the  2012  CVFPP  requires  CA-­‐DWR  to  consider  both  structural  and  non-­‐structural  methods  for  

improving  flood  management  (CA-­‐DWR  2012).  This  mandate  is  in  line  with  the  shift  away  from  

a  reliance  on  large  flood  structures  to  more  of  an  integrated  flood  management  strategy  

(Galloway  1997;  Werritty  2006).  While  the  plan  meets  this  criterion  with  a  balanced  number  of  

structural  and  non-­‐structural  actions  under  consideration,  the  proposed  structural  actions  

would  cost  nearly  seven  times  more  than  the  non-­‐structural  actions.  It  may  be  the  case  that  

non  -­‐structural  actions  cost  less  than  structural  actions  to  achieve  the  same  level  of  flood  risk  

reduction.  Alternately,  the  higher  cost  of  structural  actions  may  indicate  that  the  plan  still  relies  

more  heavily  on  the  structural  system  over  non-­‐structural  actions.  Because  the  CVFPP  only  

provides  EAD  estimates  for  each  flood  management  strategy,  and  not  individual  actions,  we  are  

not  able  to  eliminate  either  of  the  explanations  as  possible  reasons  why  structural  actions  have  

such  higher  emphasis  from  the  investment  perspective.  

The  contribution  to  flexibility  varies  across  the  CVFPP  strategies.  Strategies  that  

emphasize  Protect  Communities  and  restoring  the  Design  Capacity  of  the  system  use  fewer  

elements  and  contribute  to  fewer  flexibility  characteristics  than  strategies  (e.g.  Enhance  System  

and  Combined)  that  have  broader  management  goals.  Based  on  our  analysis,  the  Enhance  

System  and  Combined  strategies  contribute  to  larger  increases  in  flexibility  in  the  Sacramento  

flood  management  system  than  do  the  Design  Capacity  or  Protect  Communities  strategies.  The  

former  two  strategies  include  a  more  diverse  portfolio  of  flood  management  actions  (Table  

3.6),  which  in  turn  leads  to  improvements  in  a  wider  range  of  flexibility  characteristics  (Table  

3.7  and  Figure  3.2).  Alternately,  by  focusing  almost  entirely  on  physical  levee  improvements  

Page 60: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

50  

and  residual  risk,  the  Design  Capacity  and  Population  Center  strategies  omit  actions  that  could  

increase  connectivity  and  adjustability  in  the  system  (Table  3.7).  

  As  noted  by  researchers  outside  of  the  water  resources  field  (Nemetz  and  Fry  1988;  

Duimering,  Safayeni,  and  Purdy  1993;  Byrd  and  Turner  2000),  flexibility  comes  at  a  price.  

Flexible  technologies  tend  to  cost  more  than  traditional,  less  flexible  equipment  and  products.  

The  Enhance  System  strategy  is  the  most  expensive  but  also  generates  the  greatest  reduction  in  

EAD.  Furthermore,  the  Enhance  System  strategy  represents  the  greatest  number  of  

opportunities  to  increase  system  flexibility  (Table  3.7),  as  well  as  a  more  diverse  number  of  

actions  (Figure  3.2a)  and  expenditures  (Figure  3.2b)  dedicated  to  increasing  the  five  flexibility  

characteristics.  Alternately,  the  Protect  Communities  strategy  is  the  least  expensive,  and  most  

cost  efficient  in  terms  of  EAD  reduction  (Table  3.8),  yet  also  one  of  the  least  flexible  strategies  

(Table  3.7).  The  Combined  strategy,  as  CA-­‐DWR  intended,  represents  a  middle  ground  in  terms  

of  cost,  increased  flexibility,  reduction  in  EAD,  and  time  to  implement  (Table  3.8).  

  Importantly,  this  simple  economic  analysis  neglects  to  consider  the  benefits  each  

strategy  provides  in  terms  of  the  supplemental  goals,  namely  to:    improve  operations  and  

maintenance;  promote  ecosystem  functions;  improve  institutional  support;  and  promote  multi-­‐

benefit  projects.  These  omissions  may  represent  significant  factors  that  influence  decision-­‐

making.  For  example,  the  explicit  inclusion  of  promoting  ecosystem  functions  as  a  goal  of  the  

CVFPP  represents  a  unique  and  controversial  element  of  the  plan.  The  legislation  guiding  the  

CVFPP  requires  that  ecosystem  restoration  be  included  as  a  goal  of  the  plan  in  response  to  the  

degradation  of  riverine  habitats  and  ecosystem  functions  through  changes  in  land  use,  

construction  of  dams  and  levees,  water  pollution,  and  other  causes  (CA-­‐DWR  2012).  However,  

ecosystem  enhancement  features  were  only  included  in  the  Enhance  System  and  Combined  

strategies  and  not  the  Design  Capacity  or  Protect  Communities  strategies.  The  actions  listed  

under  the  ecosystem  restoration  element,  as  well  as  ecosystem  enhancements  integrated  into  

other  flood  management  elements,  would  increase  lateral  and  longitudinal  connectivity  in  the  

system.  Interestingly,  connectivity  is  also  the  only  flexibility  characteristic  that  the  management  

actions  have  the  potential  to  decrease  by  improving  levees  and  thus  further  limiting  floodplain-­‐

Page 61: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

51  

river  connectivity.  By  omitting  ecosystem  enhancement  actions,  the  Design  Capacity  and  

Protect  Communities  strategies  only  include  actions  that  would  decrease  connectivity.  Broadly  

speaking,  it  appears  as  though  the  ecosystem  restoration  projects  included  in  the  Enhance  

System  and  Combined  strategies  have  the  potential  to  provide  connectivity  benefits  that  

counteract  the  negative  impact  on  connectivity  resulting  from  other  management  actions.    

 

3.6. Conclusions  

  Flexibility  is  often  given  as  a  critical  component  to  reliably  managing  water  resources  in  

an  uncertain  hydrologic  future.  Particularly  with  respect  to  flood  management,  when  a  wide  

range  of  future  conditions  is  anticipated,  flexible  water  resources  systems  are  expected  to  

outperform  fixed,  optimized  solutions,  based  on  stationary  conditions.  However,  limited  

examples  exist  for  how  to  assess  and  measure  the  flexibility  of  water  management  systems  and  

proposed  management  actions.  In  this  study  we  develop  and  apply  an  approach  to  assess  the  

inflexibilities  in  an  existing  flood  management  system,  as  well  as  the  flexibility  of  proposed  

management  actions  in  the  Sacramento  River  basin,  CA.  We  investigate  a  set  of  characteristics  

within  which  flood  management  systems  can  increase  flexibility  and  categorize  management  

actions  based  on  their  contribution  to  system  flexibility.    

Key  findings  of  this  analysis  include  those  related  to  the  CVFPP  specifically  and  more  

broadly  to  the  management  of  floods  and  floodplains.  Regarding  the  CVFPP,  we  find  a  

disproportionate  emphasis  on  increasing  system  slack  over  other  characteristics  of  flexibility.  

Slack  in  the  system  provides  surplus  capacity  to  cope  with  uncertain  and  changing  conditions.  

The  need  for  these  improvements  at  the  present  time  indicates  that  the  original  SPFC  did  not  

include  enough  slack  to  keep  up  with  changing  hydrological  and  socio-­‐economic  conditions  in  

the  region.  

We  find  that  very  few  individual  management  actions  increase  the  redundancy  of  the  

system  by  increasing  the  number  of  tools  available  to  managers.  This  indicates  that  managers  

are  choosing  to  emphasize  improvements  in  the  current  system,  particularly  related  to  

increasing  capacity,  over  introduction  of  new  system  actions.  In  terms  of  system-­‐wide  

Page 62: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

52  

redundancy,  we  find  evidence  of  a  general  relationship  between  the  diversity  of  major  

elements  represented  in  management  actions  and  the  number  of  flexibility  characteristics  

enhanced.  The  Enhance  System  and  Combined  strategies  include  a  diverse  array  of  actions  

representing  all  eight  of  the  broad  flood  management  system  elements,  and  also  contribute  to  

increasing  flexibility  under  all  five  characteristics.  On  the  contrary,  the  strategies  that  include  

fewer  broad  elements  address,  at  most,  three  of  the  five  flexibility  characteristics.  

The  CVFPP  strategies  appear  to  equally  emphasize  structural  and  non-­‐structural  

management  options  when  the  number  of  actions  is  considered.  However,  when  costs  of  the  

management  actions  are  considered,  the  emphasis  on  structural  options  is  far  greater  than  

non-­‐structural  options.  It  is  not  clear  whether  this  discrepancy  between  number  of  actions  and  

the  cost  of  actions  is  due  to  higher  costs  associated  with  structural  options  for  flood  

management  or  to  a  disproportionate  prominence  of  structural  options  in  the  CVFPP  portfolio  

based  on  projected  expenditures.  

Finally,  it  appears  that  tradeoffs  exist  between  cost-­‐effectiveness,  time  effectiveness,  

and  contribution  to  flexibility.  Focusing  on  Protect  Communities  results  in  the  cheapest  and  

quickest  solution  to  reducing  flood  damages,  but  contributes  little  to  the  flexibility  of  the  

system  and  excludes  benefits  to  some  areas  of  the  basin.  Strategies  that  increase  flexibility  

appear  to  cost  more  and  take  longer  to  implement,  but  also  provide  the  greatest  overall  

reduction  in  flood  damages  and  benefits  to  the  range  of  basin  residents  and  ecosystems.  Thus,  

management  strategies  that  balance  cost-­‐effectiveness,  time  effectiveness,  and  contribution  to  

flexibility  are  likely  to  have  the  greatest  benefits  over  the  long  term.  

Future  work  should  investigate  several  systems  to  see  if  the  trends  found  in  our  

assessment  of  the  CVFPP  are  consistent  across  systems,  and  thus  representative  of  broader  

thinking  on  flood  management.  Additional  work  is  also  needed  to  a)  assess  the  magnitude  of  

management  actions  impact  on  flexibility;  b)  examine  the  relative  contributions  of  the  flexibility  

characteristics  to  adaptive  capacity;  and  c)  develop  flexibility  metrics  for  other  operating  

objectives  (e.g.  hydropower  generation,  water  supply,  environmental  benefits,  recreation,  etc.).  

Furthermore,  we  note  that  the  benefits  of  flexibility  may  not  be  fully  realized  under  present  

Page 63: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

53  

conditions,  as  it  is  primarily  advocated  as  a  tool  to  improve  system  performance  under  

uncertain,  changing  future  conditions.    

   

Page 64: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

54  

Figure  3.1.  Location  map  of  the  Central  Valley,  CA.      

Page 65: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

55  

Figure  3.2.  Percentage  of  flexibility  characteristics  enhanced  by  each  management  strategy  in  terms  of:    a)  number  of  actions  and  b)  total  mid-­‐range  cost.    

a)  

   b)  

     

Page 66: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

56  

Table  3.1.  Example  metrics  to  assess  flexibility  in  flood  management  systems.  Unless  noted,  larger  metric  values  indicate  greater  flexibility  (DiFrancesco  and  Tullos  In  review).        

  ID   Metric  description   Metric  evaluation   Units  

Slack  

S1  Excess  reservoir  capacity  in  a  100  year  flood  

  m3/  m3  

S2   Excess  stream  capacity  in  a  100  year  flood     cms/cms  

S3a  Dam  capacity  to  release  and  convey  flood  waters  

    cms/cms  

S3b  Weir  capacity  to  intake  flood  waters  into  bypass      

cms/cms  

S4  

Bypass  capacity  to  store  discharge  in  excess  of  stream  capacity  

  m3/  m3  

S5  Excess  funding  in  relation  to  expected  damages      

$/$  

Redu

ndan

cy  

R1  Surface  storage  options  (reservoirs  and  bypasses)  

  #  /  #  

R2a  Structural  vs.  non-­‐structural  diversity  (by  number,  R2a,  and  by  

cost  R2b)2    

 

Where  s  is  number/  cost  of  structural  components;  ns  is  number  /  cost  of  non-­‐structural  elements;  and  N  is  total  number/  cost  of  components  

(lower  value  is  more  flexible)  

#  /  #  

R2b   $/$  

R3  Delegation  of  management  responsibility  

Number  of  agencies  committed  to  flood  management   #  

Conn

ectiv

ity  

C1   Ground-­‐  and  surface  water  connections     #  /  #  

C2   Potential  for  floodplain  connection     km/km  

C3   Longitudinal  connectivity       #/#  

                                                                                                               2  Structural  components:    dams  and  reservoirs,  levees,  walls,  diversion  channels,  bridge  modifications,  channel  alterations,  pumping,  and  land  treatment;  Nonstructural  measures:    flood  warning  and  preparedness;  temporary  or  permanent  evacuation  and  relocation;  land  use  regulations  including  floodway  delineation,  flood  plain  zoning,  subdivision  regulations  and  building  codes;  flood  proofing;  area  renewal  policies;  and  conversion  to  open  space  (United  States  Army  Corps  of  Engineers  (USACE)  1999).      

maximum reservoir flood storage capacity

(3day 100 yr flood inflow volume - 3day objective release outflow volume)

stream conveyance capacity

100 yr flood discharge

stream conveyance capacity downstream of dam

outlet + spillway capacity

weir intake capacity

100 yr flood discharge

flood bypass storage capacity

(3day 100 yr flood volume - 3day stream conveyance capacity volume)

annual flood funding

Expected Annual Damages (EAD)

number of surface storage facilities (reservoirs and bypasses)

number of major tributaries

s

N( )2

+ns

N( )2

number of conjunctive use operations

number of reservoirs

total river length

leveed river length with ≥ 100 yr protection

number of dams/ weirs with safe fish passage

number of dams/ weirs

Page 67: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

57  

  ID   Metric  description   Metric  evaluation   Units  Ad

justab

ility  

A1   Ability  to  revise  operations  plans  

Level  of  governmental  approval  needed  to  adjust  reservoir  operations  plans  (rule  curves)  or  storage  allocation  (lower  level  is  more  flexible)  

Federal  /  state  /  local  

A2  Opportunities  to  annually  vary  flood  storage  space  

  m3/  m3  

A3  

Ability  to  expand  storage  and  conveyance  capacity  by  levee  set  backs  

  km/km  

Compa

tibility/  

Coordina

tion  

CC1   Access  to  data   Water  managers  have  access  to  future  hydrologic  projections  at  relevant  temporal  and  spatial  scales   Binary  

CC2   Access  to  data  analysis  tools  

Water  managers  have  tools  and  ability  to  analysis  and  utilize  essential  data  for  reservoir  planning  and  operations   Binary  

CC3  Intra  basin  coordination  of  operations  

  #/#  

 

   

(maximum flood storage space - minimum flood storage space)

maximum flood storage space

length of levees with > x m. buffer to infrastructure

total levee length

number of reservoirs with coordinated operating agreements

number of reservoirs

Page 68: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

58  

Table  3.2.  Inflexibilities  in  the  SPFC  identified  in  the  CVFPP  and  categorized  based  on  whether  the  inflexibility  relates  to  structural  (S)  or  non-­‐structural  (NS)  components  of  the  flood  system.    Characteristic   Example  inflexibilities   Metrics  

(Table  3.1)  

Slack   − Insufficient  flood  storage  capacity  to  regulate  flood  flows  (S)   S1,  S4  

− Inadequate  capacity  to  convey  design  flows  in  approximately  half  of  channels  evaluated  (S)  

S2  

− Accumulation  of  sediment  in  bypasses  (NS)   S4  

− Current  federal,  State,  and  local  funding  mechanisms  are  not  adequate  to  sustain  effective  flood  management  (NS)  

S5  

− Insufficient  funding  for:  • Maintenance  and  improvements  (NS)  • Flood  fight  (NS)  

S5  

Redundancy   − Flood  management  is  often  made  difficult  by  the  large  number  of  agencies  and  entities  involved  (NS)  (NOTE:  too  much  flexibility)    

R3  

Connectivity   − Loss  and  fragmentation  of  habitat  and  lack  of  connectivity  between  floodplains  and  river  systems  (S)  

C2,  C3  

Adjustability   − Water  control  manuals  based  on  a  limited  period  of  record  (NS)   A1  

− Existing  flood  management  system  does  not  provide  the  level  of  protection  desired  and/or  required  because  of  the  following:  • System  designed  for  different  uses  and  levels  of  protection,  and  • New  legislation  increased  protection  req.  for  urban  and  urbanizing  

areas.  

A1  

Compatibility  /  Coordination  

− Water  control  manuals  not  designed  to  accomplish  system  wide  coordinated  operations  (NS)  

CC3  (and  

A1)  

− Lack  of  coordination  (planning  and  implementation)  (NS)   CC3  

− Lack  of  comprehensive  mutual  aid  agreements  covering  flood  response  (NS)   CC*  

− Inconsistent  and/or  conflicting  federal,  State,  and  local  maintenance  standards,  practices  and  implementation  (NS)  

CC*  

− Limitations  of  emergency  response  capabilities  to  flood  threats  include  the  following:  • Institutional  capacity,  resources,  and  coordination  • Not  using  available  forecasting  technology  in  operations  decisions  (NS)  • Inadequate  snow  and  flow  sensor  data  (NS)  • Poor  or  outdated  flood  risk  information  and  maps  (NS)    • Conflicts  between  maintenance  practices  and  ecological  processes  (NS)  

CC1,  CC2,  

CC3  

*  There  is  currently  not  a  metric  specifically  dedicated  to  measuring  this  inflexibility,  but  it  fits  within  the  flexibility  characteristic’s  definition.        

Page 69: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

59  

Table  3.3.  Impact  of  management  actions  on  flexibility  characteristics,  organized  by  broad  flood  management  elements.  Negative  numbers  indicate  actions  that  reduce  system  flexibility.  

Major  elements  and  management  actions   Structural  (S

)/  Non

-­‐Structural  (N

S)  

Slack  

Redu

ndan

cy  

Conn

ectiv

ity  

Adjustab

ility  

Compa

tibility/  

Coordina

tion  

Bypasses     2   3   1   -­‐2   2  Agricultural  conservation  easements   NS   0   0   0   0   1  Land  acquisition  for  bypass  expansion   NS   0   1   1   0   1  Levee  improvements  for  new  and  expanded  bypasses   S   1   1   0   -­‐1   0  New  levee  construction   S   1   1   0   -­‐1   0  

Ecosystem  restoration     1   0   0   1   0  Ecosystem  restoration  and  enhancement  (habitat  development)   NS   0   0   0   0   0  Fish  passage  collaboration   NS   0   0   0   0   0  Fish  passage  structures   S   1   0   0   1   0  

Flood  system  structures     1   2   0   0   0  Improvements  to  weir,  bypass,  and  dam  outlet  structures   S   1   1   0   0   0  System  erosion  and  bypass  sediment  removal  projects   NS   0   1   0   0   0  

Residual  risk     4   1   2   0   2  Additional  flood  information  collection  and  sharing   NS   0   0   0   0   0  Additional  forecasting  and  notification   NS   0   0   0   0   0  Develop  enhanced  O&M  programs  and  regional  maintenance   NS   0   0   1   0   0  Identification  and  repair  of  after  event  erosion   S   1   0   0   0   0  Land  use  and  floodplain  management  integration   NS   0   0   0   0   0  Local  flood  emergency  response  planning   NS   0   0   1   0   0  Purchasing  and  relocating  homes  in  the  floodplain   S   1   0   0   0   1  Raising  and  waterproofing  structures  and  building  berms   S   1   0   0   0   1  Sacramento  channel  /  levee  management  and  bank  protection   S   1   1   0   0   0  

Rural-­‐agricultural  improvements     4   4   0   0   0  Achieve  SPFC  levee  design  capacity  in  non-­‐urban  areas   S   1   1   0   0   0  Non-­‐urban  levee  erosion  repair   S   1   1   0   0   0  Setback  levees   S   1   1   0   0   0  Site-­‐specific  rural/agricultural  levee  improvements   S   1   1   0   0   0  

Small  community  improvements     1   1   0   -­‐1   0  100-­‐year  protection  levee  improvements   S   1   1   0   -­‐1   0  

Storage  and  operations     0   2   2   -­‐1   2  Easements  for  flood  water  storage   NS   0   1   1   0   1  Forecast-­‐Coordinated  Operations/  Forecast-­‐Based  Operations     NS   0   0   0   0   0  Allocate  new  reservoir  flood  storage/enlarge  flood  pool   NS   0   1   1   -­‐1   1  

Urban  improvement     3   3   0   -­‐3   0  200-­‐year  protection  levee  improvement   S   1   1   0   -­‐1   0  Achieve  SPFC  levee  design  capacity  in  urban  areas   S   1   1   0   -­‐1   0  Non-­‐SPFC  urban  levee  improvements   S   1   1   0   -­‐1   0  

GRAND  TOTAL     16   16   1  (-­‐6)   -­‐6   6        

Page 70: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

60  

Table  3.4.  Structural  versus  non-­‐structural  diversity  in  terms  of  number  of  projects  and  expenditure.  

 

Number  of  actions  

Expenditure  for  actions  ($M)  

Structural   16   18,892  Non-­‐Structural   13   2,678  

Total   29   21,571  

Metric  R2   0.51   0.78    

 

Table  3.5.  Number  of  structural  versus  non-­‐structural  components  that  impact  each  flexibility  characteristic.  

 

Slack  

Redu

ndan

cy  

Conn

ectiv

ity  

Adjustab

ility  

Compa

tibility  /  

Coordina

tion  

Total  

Structural   12   0   1  (-­‐6)   2   0   15  (-­‐6)  Non-­‐Structural   4   5   0   4   6   19  

Total   16   5   1  (-­‐6)   6   6      

 Table  3.6.  Comparison  of  flood  management  strategies  in  the  CVFPP  based  on  estimated  cost  expenditures  ($M)  for  each  major  flood  management  element.  

Flood  management  element  Design  Capacity  

Protect  Communities  

Enhance  System  

Combined  

Bypasses   0   0   3,132   3,132  Ecosystem  Restoration   0   0   335   801  Flood  Storage  and  Operations   80   0   2,820   80  Flood  System  Structures   0   0   605   605  Residual  Risk   812   1,494   724   1,695  Rural-­‐Agricultural  Improvements   11,073   0   14,731   896  Small  Community  Improvements   0   1,003   345   555  Urban  Improvements   6,093   5,527   5,527   5,527  

GRAND  TOTAL   18,058   8,024   28,218   13,290  

 

Page 71: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

61  

Table  3.7.  Number  of  actions  in  each  CVFPP  strategy,  which  increase  or  decrease  the  flexibility  metrics.  

  ID   Metric  description  Design  Capacity  

Protect  Communities  

Enhance  System   Combined  

Slack  

S1  Excess  reservoir  capacity  in  a  100  year  flood   0   1   3   1  

S2  Excess  stream  capacity  in  a  100  year  flood   4   4   9   9  

S3a   Dam  capacity  to  release  and  convey  flood  waters  

0   1   2   2  

S3b   Weir  capacity  to  intake  flood  waters  into  bypass  

0   0   1   1  

S4   Bypass  capacity  to  store  discharge  in  excess  of  stream  capacity  

0   0   1   1  

S5  Excess  funding  in  relation  to  expected  damages   0   0   0   0  

Slack  Total   4   6   16   14   14  

Redu

ndan

cy  

R1     Surface  storage  options  (reservoirs  and  bypasses)   0   0   3   1  

R2a  Structural  vs.  non-­‐structural  diversity  (#  of  actions)   0   0   0   0  

R2b  Structural  vs.  non-­‐structural  diversity  (cost,  $,  of  actions)   0   0   0   0  

R3   Delegation  of  management  responsibility   2   2   2   2  

Redundancy  Total   6   2   2   5   3  

Conn

ectiv

ity   C1   Ground-­‐  and  surface  water  connections   0   0   -­‐1   0  

C2   Potential  for  floodplain  connection   -­‐2   -­‐3   -­‐5   -­‐5  

C3   Longitudinal  connectivity   0   0   1   1  

Connectivity  Total   -­‐2   -­‐2   -­‐3   1  (-­‐6)  

Adjustab

ility   A1   Ability  to  revise  operations  plans   0   0   0   0  

A2   Opportunities  to  annually  vary  flood  storage  space  

0   0   3   1  

A3   Ability  to  expand  capacity  by  levee  set  backs  

0   0   2   3  

Adjustability  Total       0   0   5  

Compa

tibility/  

Coordina

tion  

CC1   Access  to  data   2   3   3   4  

CC2  Access  to  technology  and  data  analysis  tools   1   1   2   2  

CC3   Intra  basin  coordination  of  operations   4   4   5   5  

Compatibility/  Coordination  Total   3   7   8   10  GRAND  TOTAL     18  (-­‐2)   22  (-­‐3)   13  (-­‐2)   16  (-­‐3)  

#  increase   #  increase    (#  decrease)  

#  decrease  

Page 72: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

62  

Table  3.8.  Comparison  of  strategies  by  costs,  benefits,  and  implementation  time.  

  Units   Design  Capacity  Protect  

Communities   Enhance  System   Combined  

Cost   $   $9,114,450,000   $6,727,850,000   $17,312,800,000   $10,037,600,000  EAD  reduction   $   $128,404,000   $202,504,000   $246,565,000   $213,144,000  

Implementation  time   yrs.   33   18   38   23  

EAD  reduction  /  cost   $/  $M   $14,000   $30,000   $14,000   $21,000  

EAD  reduction/  implementation  time   $  /  yr   $3,951,000   $11,572,000   $6,575,000   $9,473,000  

   

   

Page 73: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

63  

References  

Adger,  W.  Neil,  Nigel  W.  Arnell,  and  Emma  L.  Tompkins.  2005.  “Successful  Adaptation  to  Climate  Change  across  Scales.”  Global  Environmental  Change  15  (2):  77–86.  

Byrd,  T.A.,  and  Douglas  E  Turner.  2000.  “Measuring  the  Flexibility  of  Information  Technology  Infrastructure:  Exploratory  Analysis  of  a  Construct.”  Journal  of  Management  Information  Systems  17  (1):  167–208.  

California  Department  of  Water  Resources  (CA-­‐DWR).  2010a.  “Central  Valley  Flood  Protection  Plan  Regional  Conditions  Report.”  http://www.water.ca.gov/cvfmp/docs/RegionalConditionsReportCVFPP201003.pdf.  

———.  2010b.  “State  Plan  of  Flood  Control  Descriptive  Document.”  http://www.water.ca.gov/cvfmp/docs/SPFCDescriptiveDocNov2010GuideandTOC.pdf.  

———.  2012.  “2012  Central  Valley  Flood  Protection  Plan.”  http://www.water.ca.gov/cvfmp/docs/2012%20CVFPP_June.pdf.  

Cameron,  D.,  K.  Beven,  and  P.  Naden.  2000.  “Flood  Frequency  Estimation  by  Continuous  Simulation  under  Climate  Change  (with  Uncertainty).”  http://hal-­‐insu.archives-­‐ouvertes.fr/hal-­‐00304673/.  

Carpenter,  Stephen  R.,  B.  Walker,  J.M.  Anderies,  and  N.  Abel.  2001.  “From  Metaphor  to  Measurement:  Resilience  of  What  to  What?”  Ecosystems  4  (8):  765–81.  

Das,  Tapash,  Michael  Dettinger,  Daniel  Cayan,  and  Hugo  Hidalgo.  2011.  “Potential  Increase  in  Floods  in  California’s  Sierra  Nevada  under  Future  Climate  Projections.”  Climatic  Change  109:  71–94.  doi:10.1007/s10584-­‐011-­‐0298-­‐z.  

Dettinger,  Michael  D.,  Fred  Martin  Ralph,  Tapash  Das,  Paul  J.  Neiman,  and  Daniel  R.  Cayan.  2011.  “Atmospheric  Rivers,  Floods  and  the  Water  Resources  of  California.”  Water  3  (2):  445–78.  doi:10.3390/w3020445.  

DiFrancesco,  Kara,  and  Desiree  Tullos.  In  review.  “Flexibility  in  Water  Resources  Management:    Review  of  Concepts  and  Development  of  Assessment  Measures.”  JAWRA  Journal  of  the  American  Water  Resources  Association  

Duimering,  P.R.,  F.  Safayeni,  and  L.  Purdy.  1993.  “Integrated  Manufacturing:  Redesign  the  Organization  before  Implementing  Flexible  Technology.”  Sloan  Management  Review  34:  47–47.  

Duncan,  N.B.  1995.  “Capturing  Flexibility  of  Information  Technology  Infrastructure:  A  Study  of  Resource  Characteristics  and  Their  Measure.”  Journal  of  Management  Information  Systems,  37–57.  

Elmqvist,  Thomas,  Carl  Folke,  Magnus  Nyström,  Garry  Peterson,  Jan  Bengtsson,  Brian  Walker,  and  Jon  Norberg.  2003.  “Response  Diversity,  Ecosystem  Change,  and  Resilience.”  Frontiers  in  Ecology  and  the  Environment  1  (9):  488–94.  doi:10.1890/1540-­‐9295(2003)001[0488:RDECAR]2.0.CO;2.  

Fayol,  H.  1916.  Administration  générale  et  industrielle.  France:  Gauthiers-­‐Villars.  Folke,  Carl,  Stephen  R.  Carpenter,  Brian  Walker,  Marten  Scheffer,  Thomas  Elmqvist,  Lance  

Gunderson,  and  C.S.  Holling.  2004.  “Regime  Shifts,  Resilience,  and  Biodiversity  in  Ecosystem  Management.”  Annual  Review  of  Ecology,  Evolution,  and  Systematics  35  (1):  557–81.  doi:10.1146/annurev.ecolsys.35.021103.105711.  

Page 74: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

64  

Frederick,  K.  D,  D.  C  Major,  and  E.  Z  Stakhiv.  1997.  “Water  Resources  Planning  Principles  and  Evaluation  Criteria  for  Climate  Change:  Summary  and  Conclusions.”  Climatic  Change  37  (1):  291–313.  

Gallopín,  G.C.  2006.  “Linkages  between  Vulnerability,  Resilience,  and  Adaptive  Capacity.”  Global  Environmental  Change  16  (3):  293–303.  

Galloway,  Gerald  E.  1997.  “River  Basin  Management  in  the  21st  Century:  Blending  Development  with  Economic,  Ecologic,  and  Cultural  Sustainability.”  Water  International  22  (2):  82–89.  doi:10.1080/02508069708686675.  

Gersonius,  Berry,  Richard  Ashley,  Assela  Pathirana,  and  Chris  Zevenbergen.  2013.  “Climate  Change  Uncertainty:  Building  Flexibility  into  Water  and  Flood  Risk  Infrastructure.”  Climatic  Change  116  (2):  411–23.  

Golden,  W.,  and  P.  Powell.  2000.  “Towards  a  Definition  of  Flexibility:  In  Search  of  the  Holy  Grail?”  Omega  28  (4):  373–84.  

Hall,  J.,  and  D.  Solomatine.  2008.  “A  Framework  for  Uncertainty  Analysis  in  Flood  Risk  Management  Decisions.”  International  Journal  of  River  Basin  Management  6  (2):  85–98.  

Intergovernmental  Panel  on  Climate  Change  (IPCC).  2007.  Climate  Change  2007:  Impacts,  Adaptation  and  Vulnerability:  Contribution  of  Working  Group  II  to  the  Fourth  Assessment  Report  of  the  Intergovernmental  Panel  on  Climate  Change.  Edited  by  M  Parry.  Cambridge  U.K.;  New  York:  Cambridge  University  Press.  

Kelley,  Robert  L.  1989.  Battling  the  Inland  Sea:  Floods,  Public  Policy,  and  the  Sacramento  Valley.  Berkeley,  CA:  University  of  California  Press.  

Kundzewicz,  Zbigniew  W.  2002.  “Non-­‐Structural  Flood  Protection  and  Sustainability.”  Water  International  27  (1):  3–13.  doi:10.1080/02508060208686972.  

Lempert,  Robert  J.,  Steven  C.  Bankes,  and  Steven  W.  Popper.  2003.  Shaping  the  Next  One  Hundred  Years:  New  Methods  for  Quantitative,  Long-­‐Term  Policy  Analysis.  Santa  Monica,  CA:  RAND  Corporation.  http://www.rand.org/pubs/monograph_reports/MR1626.html.  

Lempert,  Robert  J.,  David  G.  Groves,  Steven  W.  Popper,  and  Steve  C.  Bankes.  2006.  “A  General,  Analytic  Method  for  Generating  Robust  Strategies  and  Narrative  Scenarios.”  Management  Science  52  (4):  514–28.  doi:10.1287/mnsc.1050.0472.  

Luers,  Amy  L.  2005.  “The  Surface  of  Vulnerability:  An  Analytical  Framework  for  Examining  Environmental  Change.”  Global  Environmental  Change  15  (3):  214–23.  

Milly,  P.  C.  D.,  J.  Betancourt,  M.  Falkenmark,  R.  M  Hirsch,  Z.  W  Kundzewicz,  D.  P  Lettenmaier,  and  R.  J  Stouffer.  2008.  “Stationarity  Is  Dead:  Whither  Water  Management?”  Earth  4:  20.  

Milly,  P.  C.  D.,  R.  T.  Wetherald,  K.  A.  Dunne,  and  T.  L.  Delworth.  2002.  “Increasing  Risk  of  Great  Floods  in  a  Changing  Climate.”  Nature  415  (6871):  514–17.  doi:10.1038/415514a.  

Minton,  Jonas.  2001.  “The  Old  and  the  New:  Evaluating  Existing  and  Proposed  Dams  in  California.”  Golden  Gate  University  Environmental  Law  Journal  2  (1):  6.  

National  Research  Council  (NRC),  Committee  on  Risk-­‐Based  Analysis  for  Flood  Damage  Reduction,  Water  Science  and  Technology  Board.  2000.  Risk  Analysis  and  Uncertainty  in  Flood  Damage  Reduction  Studies.  Washington,  D.C.:  The  National  Academies  Press.  

Page 75: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

65  

Nemetz,  P.L.,  and  L.W.  Fry.  1988.  “Flexible  Manufacturing  Organizations:  Implications  for  Strategy  Formulation  and  Organization  Design.”  Academy  of  Management  Review,  627–38.  

O’Brien,  Karen  L.,  and  Robin  M.  Leichenko.  2000.  “Double  Exposure:  Assessing  the  Impacts  of  Climate  Change  within  the  Context  of  Economic  Globalization.”  Global  Environmental  Change  10  (3):  221–32.  

Pahl-­‐Wostl,  Claudia,  J.  Sendzimir,  P.  Jeffrey,  J.  Aerts,  G.  Berkamp,  and  K.  Cross.  2007.  “Managing  Change  toward  Adaptive  Water  Management  through  Social  Learning.”  Ecology  and  Society  12  (2):  30.  

Pye,  Roger.  1978.  “A  Formal,  Decision-­‐Theoretic  Approach  to  Flexibility  and  Robustness.”  The  Journal  of  the  Operational  Research  Society  29  (3):  215–27.  doi:10.2307/3009448.  

Pyoun,  Y.  S,  and  B.  K  Choi.  1994.  “Quantifying  the  Flexibility  Value  in  Automated  Manufacturing  Systems.”  Journal  of  Manufacturing  Systems  13  (2):  108–18.  

Sayers,  Paul  B.,  Gerald  E.  Galloway,  and  Jim  W.  Hall.  2012.  “Robust  Decision-­‐Making  under  Uncertianty  -­‐  towards  Adaptive  and  Resilience  Flood  Risk  Managment  Infrastructure.”  In  Flood  Risk:  Planning,  Design  and  Management  of  Flood  Defence  Infrastructure,  edited  by  P.B.  Sayers.  London:  ICE  Publishing.  http://www.iwapublishing.com/template.cfm?name=isbn9781780404561.  

Smit,  Barry,  and  Johanna  Wandel.  2006.  “Adaptation,  Adaptive  Capacity  and  Vulnerability.”  Global  Environmental  Change  16  (3):  282–92.  

Turner,  Billie  L.,  Roger  E.  Kasperson,  Pamela  A.  Matson,  James  J.  McCarthy,  Robert  W.  Corell,  Lindsey  Christensen,  Noelle  Eckley,  Jeanne  X.  Kasperson,  Amy  Luers,  and  Marybeth  L.  Martello.  2003.  “A  Framework  for  Vulnerability  Analysis  in  Sustainability  Science.”  Proceedings  of  the  National  Academy  of  Sciences  100  (14):  8074–79.  

Turner,  Douglas  E,  and  William  M  Lankford.  2005.  “Information  Technology  Infrastructure:  A  Historical  Perspective  of  Flexibility.”  Journal  of  Information  Technology.  http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.94.6611.  

United  States  Army  Corps  of  Engineers  (USACE).  2002.  “Sacramento  and  San  Joaquin  River  Basins  Comprehensive  Study.”  http://www.compstudy.net/reports.html.  

Walker,  Brian,  Crawford  S.  Holling,  Stephen  R.  Carpenter,  and  Ann  Kinzig.  2004.  “Resilience,  Adaptability  and  Transformability  in  Social–ecological  Systems.”  Ecology  and  Society  9  (2):  5.  

Wang,  T.,  and  R.  De  Neufville.  2004.  “Building  Real  Options  into  Physical  Systems  with  Stochastic  Mixed-­‐Integer  Programming.”  In  The  8th  Real  Options  Annual  International  Conference.  Montreal,  Canada.  

Werritty,  Alan.  2006.  “Sustainable  Flood  Management:  Oxymoron  or  New  Paradigm?”  Area  38  (1):  16–23.  doi:10.1111/j.1475-­‐4762.2006.00658.x.  

Wilby,  Robert  L,  and  Suraje  Dessai.  2010.  “Robust  Adaptation  to  Climate  Change.”  Weather  65  (7):  180–85.  doi:10.1002/wea.543.  

Zhao,  Tong,  and  Chung-­‐Li  Tseng.  2003.  “Valuing  Flexibility  in  Infrastructure  Expansion.”  Journal  of  Infrastructure  Systems  9  (3):  89–97.  doi:10.1061/(ASCE)1076-­‐0342(2003)9:3(89).  

 

Page 76: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

66  

 Chapter  4. Bottom-­‐up  assessment  of  climate  risk  and  the  robustness  of  proposed  flood  

management  strategies  in  the  American  River,  CA  

 

Abstract:      

The  hydrologic  nonstationarity  and  uncertainty  associated  with  climate  change  requires  new  

decision-­‐making  methods  to  incorporate  climate  impacts  into  flood  frequency  analysis.  Further,  

water  resources  managers  currently  lack  planning  approaches  to  assess  how  uncertain  climate  

impacts  might  affect  the  performance  of  flood  risk  management  strategies  under  future  

hydrologic  conditions.  In  this  manuscript,  we  develop  a  bottom-­‐up  approach  for  assessing  of  

flood  management  systems  and  management  actions  under  uncertainty  and  nonstationarity.  

Using  the  developed  approach  we  characterize  the  vulnerability  of  the  current  American  River  

flood  management  system  and  potential  management  actions  to  changes  in  flood  frequency  

and  flood  risk.  We  first  identify  the  sensitivity  and  vulnerability  of  the  American  River  flood  

system  to  different  climates.  This  information  is  mapped  as  climate  response  surfaces  of  

Expected  Annual  Damages  (EAD,  $/yr)  under  different  flood  regimes.  Next,  we  determine  

potential  changes  in  flood  frequency  and  flood  risk  under  a  climate  change.  By  applying  

Bayesian  statistical  methods  to  projected  future  flows,  we  stochastically  generate  a  wide  range  

of  plausible  future  flood  frequency  scenarios.  Using  the  climate  response  surfaces,  we  identify  

the  portion  of  plausible  future  scenarios  under  which  the  current  flood  system  can  maintain  

damages  below  a  threshold  EAD,  a  measure  of  robustness.  Using  this  approach,  we  then  

evaluate  the  robustness  of  four  proposed  management  strategies  in  the  2012  Central  Valley  

Flood  Protection  Plan  in  terms  of  both  flood  risk  and  cost-­‐effectiveness,  to  assess  the  

performance  of  the  strategies  in  the  face  of  climate  risks.  Results  indicate  that  the  high  

sensitivity  of  the  expected  damages  to  changes  in  flood  regimes  makes  the  system  extremely  

vulnerable  to  a  large  portion  of  the  plausible  range  of  future  flood  conditions.  While  the  

proposed  management  strategies  all  offer  the  potential  to  increase  system  robustness  in  terms  

of  maintaining  EAD  below  an  acceptable  risk  threshold,  they  would  still  leave  the  system  

vulnerable  to  a  wide  range  of  future  conditions.  Further,  as  flood  frequency  regimes  increase  in  

Page 77: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

67  

intensity  from  the  current  conditions,  the  cost-­‐effectiveness  of  the  management  strategies  

increases,  to  a  point.  However,  under  the  most  extreme  flood  conditions  projected  by  global  

climate  models,  the  benefits  in  terms  of  reduction  in  EAD  begin  to  decline.  This  bottom  up  

analysis  demonstrates  a  viable  decision-­‐making  approach  for  water  managers  in  the  face  of  

uncertain  and  changing  future  conditions.  Neglecting  to  use  such  an  approach  and  omitting  

climate  considerations  from  water  resource  planning  could  lead  to  strategies  that  do  not  

perform  as  expected  or  which  actually  lead  to  mal-­‐adaptations,  increasing  vulnerability  to  

climate  change.            

 

Keywords:    Flood  frequency  analysis,  flood  risk,  bottom-­‐up  risk  assessment,  climate  change  

adaptation,  Bayesian  statistics,  nonstationarity  

   

Page 78: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

68  

4.1. Introduction  

Scientists  and  managers  currently  lack  reliable  climate  projections  at  the  temporal  and  

spatial  resolution  required  to  perform  traditional  flood  risk  analyses.  Furthermore,  there  is  no  

consensus  on  methods  to  incorporate  multiple,  uncertain  future  scenarios  into  such  analyses.  

Climate  model  output  has  served  as  the  starting  point  and  basis  of  most  studies  of  climate  risk  

(Hamlet  and  Lettenmaier  2007;  Das  et  al.  2011;  Willis  et  al.  2011).  However,  the  output  from  

climate  models  is  often  ill-­‐suited  for  this  role  for  several  interrelated  reasons  that  include:    

misalignment  with  designed  purpose  of  GCMs,  to  evaluate  global  policies  concerning  

greenhouse  gases,  and  their  application  to  regional  planning  and  decision-­‐making  (Mote  et  al.  

2011;  Brown  and  Wilby  2012);  incompatible  spatial  and  temporal  resolution  between  reliable  

General  Circulation  Model  (GCM)  output  and  water  resource  specialists’  needs  (Prudhomme,  

Reynard,  and  Crooks  2002;  Hallegatte  2009);  and  cascading  of  uncertainty  through  bias  

correction  and  downscaling  to  achieve  desired  spatial  and  temporal  resolution  (Wilby  and  

Dessai  2010).  Importantly,  advances  in  modeling  and  downscaling  techniques  will  not  

ameliorate  the  concerns  listed  above.  While  new  generations  of  GCMs,  Regional  Climate  

Models  (RCMs),  and  downscaling  techniques  all  possess  the  potential  to  better  characterize  

uncertainty,  these  new  models  and  techniques  will  by  no  means  eliminate  uncertainty,  and  

instead  may  increase  uncertainty  in  future  climate  projections  (Roe  and  Baker  2007;  Knutti  and  

Sedláček  2013).  Current  approaches  to  flood  frequency  analysis  (e.g.  Bulletin  17B  (US  Water  

Resources  Council  1982)),  that  rely  on  a  single,  reliable,  long-­‐term  hydrologic  record  and  

assume  stationarity  are  ill-­‐suited  for  assessing  flood  risk  using  multiple,  highly  uncertain  climate  

change  projections.    

To  date,  top-­‐down,  scenario-­‐led  impact  assessments  have  dominated  thinking  on  

climate  change  impacts  and  evaluation  of  potential  adaptation  measures  (e.g.  Hamlet  and  

Lettenmaier,  2007;  Das  et  al.,  2011;  Willis  et  al.,  2011).  However,  the  dependence  of  these  

approaches  on  a  small  set  of  deeply  uncertain,  downscaled  GCM  output  limits  their  ability  to  

reliably  assess  the  full  range  of  future  flood  risk.  Currently,  there  exists  no  agreement  on  a  

universally  appropriate  method  to  temporally  and  spatially  downscale  GCM  output  to  the  

Page 79: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

69  

resolution  required  for  flood  frequency  analysis  (e.g.  catchment  scale  and  daily  or  sub-­‐daily  

time  step)  (Xu  1999;  Fowler,  Blenkinsop,  and  Tebaldi  2007).  At  the  same  time,  the  choice  of  

downscaling  method  can  have  significant  implications  for  a  flood  frequency  analysis  

(Prudhomme,  Reynard,  and  Crooks  2002).  Alternatively,  RCMs  can  be  used  to  indirectly  derive  

regional  climate  from  GCM  output,  though  RCMs  have  their  own  issues  (Laprise  et  al.  2008).  In  

either  case,  calculating  the  resulting  streamflow  requires  further  modeling  efforts  to  force  

hydrologic  models  with  the  output  from  the  climate  models.  As  a  result,  uncertainty  is  cascaded  

down  the  various  steps  reaching  the  point  where  the  streamflow  impacts  can  span  wide,  

confounding  ranges,  which  may  even  include  opposite  signs  (Prudhomme  et  al.  2010;  Wilby  and  

Dessai  2010).  Few  studies  take  the  additional  step  of  combining  the  hydrologic  projections  with  

damage  projections  in  order  to  assess  vulnerability  and  flood  risk  (Prudhomme  et  al.  2010),  

which  adds  another  layer  of  uncertainty  to  the  results.      

Approaching  flood  risk  assessment  and  decision-­‐making  from  the  bottom-­‐up  can  

overcome  some  of  the  limitations  of  top-­‐down  decision-­‐making.  With  bottom-­‐up  approaches,  

assessments  are  tailored  to  address  a  specific  flood  management  decision  within  the  limitations  

of  the  available  data.  Bottom-­‐up  approaches  take  several  names  and  forms,  including:  scenario-­‐

neutral  approaches  (Prudhomme  et  al.  2010),  decision  scaling  (Brown  and  Wilby  2012;  Brown  

et  al.  2012),  climate  informed  decision  analysis  (Hallegatte  et  al.  2012),  and  robust  decision-­‐

making  (Lempert,  Bankes,  and  Popper  2003;  Wilby  and  Dessai  2010).  These  approaches  reverse  

the  order  of  typical  impact  and  vulnerability  assessment  used  in  top-­‐down  approaches,  as  well  

as  the  order  in  which  projected  hydrologic  information  is  used  to  inform  decision-­‐making.  Top-­‐

down  approaches  first  generate  a  limited  set  of  downscaled  GCM  scenarios  from  which  to  

assess  impacts  and  then  vulnerability  to  those  limited  scenarios.  In  contrast,  bottom-­‐up  

assessments  generally  start  with  an  identified  management  concern,  around  which  system  

sensitivity  and  vulnerability  to  climate  are  characterized.  Bottom-­‐up  approaches  acknowledge  

the  limits  of  uncertain  GCM  output  and  downscaling  approaches,  and  as  such  they  only  

consider  GCMs  in  the  later  stages  of  the  risk  assessment  process,  alongside  other  available  

climate  data  including  observations  and  paleontological  data.    

Page 80: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

70  

We  present  a  methodology  for  bottom-­‐up  assessment  of  flood  damages  based  on  

existing  frameworks  (e.g.  T.  E.  Johnson  and  Weaver  2009;  Brown  et  al.  2012)  that  require  first  

defining  the  decision  context  for  assessing  climate  impacts  on  water  systems.  The  decision  

context  refers  to  identifying  the  assessment  goals  and  relevant  parameters  in  the  context  of  a  

specific  management  or  policy  decision,  and  it  is  established  before  choosing  and  analyzing  

models  and  data  (T.  E.  Johnson  and  Weaver  2009).  Focusing  on  the  specific  management  

decision  or  policy  at  hand,  bottom-­‐up  approaches  scale  and  tailor  climate  information  to  inform  

that  decision,  usually  through  a  sensitivity  and  vulnerability  analysis.  We  begin  our  analysis  with  

a  sensitivity  and  vulnerability  assessment  that  does  not  consider  climate  projections,  but  is  

intended  to  help  water  managers  better  understand  the  hydrologic  conditions  that  push  the  

system  into  a  vulnerable  state.  For  this  bottom-­‐up  flood  risk  assessment,  sensitivity  is  defined  in  

terms  of  how  much  Expected  Annual  Damages  (EAD)  change  under  different  climatic  

conditions.  A  system’s  vulnerability  to  exceeding  an  acceptable  flood  risk  is  defined  by  the  

extent  to  which  a  system  is  unable  to  maintain  EAD  below  a  threshold  risk  level.  As  part  of  the  

sensitivity  and  vulnerability  analyses,  several  studies  (Prudhomme  et  al.  2010;  Brown  et  al.  

2011;  Brown  et  al.  2012)  develop  functions  to  describe  climate  response  (e.g.  increase  in  peak  

flows)  as  a  function  of  different  climate  states,  where  a  climate  state  is  represented  by  changes  

in  mean  annual  precipitation  and  seasonal  variation.  We  take  this  work  a  step  further  and  

describe  climate  response  in  terms  of  flood  risk,  a  function  of  both  changes  in  peak  flows  and  

the  damages  associated  with  those  flows  (NRC  2000).    

The  climate  response  surfaces,  describing  sensitivity  and  vulnerability,  in  combination  

with  plausible  climate  impacts,  can  then  be  used  to  compare  the  performance  of  different  

management  actions  in  the  future  and  determine  the  climate  scenarios  that  favor  certain  

management  strategies  over  others.  The  criteria  used  for  assessment  are  also  different  

between  bottom-­‐up  and  top-­‐down  approaches.  Top-­‐down  approaches  tend  to  seek  an  

optimum  solution  based  on  the  probability  of  future  scenarios  occurring  and  the  expected  

value  of  different  decisions  under  those  scenarios.  However,  in  the  face  of  uncertain  climatic  

changes,  a  growing  body  of  literature  advocates  for  seeking  robust  strategies  that  perform  

Page 81: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

71  

reasonably  well  over  a  wide  range  of  uncertain,  yet  plausible  future  scenarios  (Frederick,  Major,  

and  Stakhiv  1997;  Lempert,  Bankes,  and  Popper  2003;  Dessai  and  Hulme  2007;  Hallegatte  2009;  

Wilby  and  Dessai  2010).  Using  robustness  criterion  in  combination  with  a  vulnerability  and  

impact  assessment,  as  is  common  with  bottom-­‐up  assessments,  managers  can  evaluate:    

whether  actions  towards  adaptations  are  needed  (Brown  et  al.  2012),  the  conditions  that  cause  

a  particular  decision  to  be  favored  over  another  (Brown  et  al.  2011),  or  the  robustness  of  a  

policy  (Prudhomme  et  al.  2010).  

We  present  analyses  on  the  hydrology  and  flood  management  system  in  the  American  

River,  California  with  the  objectives  of:    1)  developing  a  bottom-­‐up  methodology  for  the  

assessment  of  flood  management  decisions  in  which  uncertainty  and  nonstationarity  of  flood  

frequencies  are  directly  considered  and  2)  applying  the  methodology  to  the  flood  management  

system  in  the  American  River  to  characterize  its  vulnerabilities  to  flood  damages  under  

different  climate  and  management  scenarios.  Using  a  bottom-­‐up  approach,  we  begin  by  

framing  the  decision  context  around  a  key  question  water  resources  managers  have  been  

investigating  (CA-­‐DWR  2012):    Given  climate  change,  what  is  the  most  robust  strategy  to  take  

for  managing  flood  risk  in  the  American  River  basin?  To  inform  this  decision,  we  1)  identify  the  

sensitivity  of  the  American  River  flood  system  to  different  climates,  defined  in  terms  of  changes  

in  EAD;  2)  identify  a  vulnerability  range  of  flood  regimes  under  which  the  current  system  cannot  

maintain  flood  risk  (EAD)  below  an  acceptable  threshold;  3)  determine  potential  changes  in  

flood  frequency  and  flood  risk  by  stochastically  generating  a  set  of  plausible  future  flood  

regimes;  and  4)  evaluate  the  robustness  of  the  flood  management  scenarios  under  plausible  

future  conditions  in  terms  of  their  ability  to  maintain  flood  risk  below  a  threshold  EAD  and  

maintain  a  cost-­‐effective  benefit-­‐cost  ratio  above  a  threshold.  

 4.2. Study  area:  American  River  Basin,  CA    

  From  its  headwaters  in  the  western  slopes  of  the  Sierra  Nevada  mountain  range  in  

Northern  California,  the  American  River  flows  southwest  towards  its  confluence  with  the  

Sacramento  River  at  the  City  of  Sacramento  (Figure  4.1).  This  study  focuses  on  flood  risk  in  the  

highly  populated  portion  of  the  basin  to  the  south  of  the  American  River.  The  American  River  

Page 82: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

72  

drains  an  area  of  4,975  km2,  from  elevations  of  3,170  m.  along  the  Sierra  crest  to  7  m.  above  

sea  level  at  the  confluence  with  the  Sacramento  River.  Forty  percent  of  the  basin  lies  above  the  

snowline,  which  occurs  at  an  elevation  of  approximately  1,500  m.  The  basin  has  a  

Mediterranean  climate,  with  90%  of  annual  precipitation  falling  in  2-­‐3  winter  months  sometime  

between  November  and  April  (Willis  et  al.  2011).  Wintertime  rainfall  and  snowmelt  runoff  

comprises  about  two-­‐thirds  of  the  American  River  streamflow,  with  less  than  one-­‐third  derived  

from  springtime  snowmelt  runoff  (Dettinger  et  al.  2004).  The  American  River  experiences  large  

variations  in  annual  precipitation  and  streamflow  (Figure  4.2).  Much  of  this  variation  results  

from  water  years  that  include  a  few  large  storms  fueled  by  the  landfall  of  atmospheric  rivers.  

Known  informally  as  Pineapple  Express  storms  in  the  Pacific  region,  these  events  produce  a  

narrow  corridor  of  concentrated  moisture  that  travels  northeast  over  the  Pacific  Ocean  from  an  

area  near  Hawaii  to  California.  As  the  moist  air  and  orography  interact  over  land,  the  events  can  

generate  substantial  portions  of  a  basin’s  annual  precipitation  and  runoff  (e.g.  up  to  50%  for  

California;  Dettinger  et  al.,  2011)  over  the  course  of  a  few  days,  often  leading  to  substantial  

flood  hazards.  

  The  history  of  flooding  on  the  American  and  Sacramento  Rivers  pre-­‐dates  European  

settlement,  as,  in  1808  the  Spanish  explorer  Ensign  Gabriel  Moraga  knowingly  observed  

evidence  that  the  rivers  created  “one  immense  sea,  leaving  only  scattered  eminences  which  art  

of  nature  have  produced,  as  so  many  islets  or  spots  of  refuge”  (in  Kelley,  1989).  Attempts  to  

control  the  floodwaters  of  the  American  River  necessarily  coincided  with  settlement  and  

continue  to  this  day.  The  State  Plan  for  Flood  Control  (SPFC)  represents  California’s  first  large-­‐

scale  coordinated  effort  to  manage  floods  at  the  state  level.  The  SPFC  is  comprised  of:    facilities  

(levees,  weirs,  dams,  pumping  plants,  bypass  basins,  etc.);  lands  (fee  title,  easements,  and  land  

use  agreements);  operations  and  maintenance  (O&M)  requirements  of  SPFC  facilities,  

conditions  (terms,  Memorandums  of  Understanding,  regulations,  etc.);  and  programs  and  

plans.  Major  SPFC  works  in  the  American  River  basin  include  Folsom  Reservoir  and  Dam,  

located  at  the  confluence  of  the  American  River’s  two  main  tributaries  (Figure  4.1);  levees  on  

both  banks  of  much  of  lower  portions  of  the  river  below  Folsom;  and  three  pumping  plants  (CA-­‐

Page 83: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

73  

DWR  2010a).  About  the  SPFC,  the  California  Department  of  Water  Resources  (CA-­‐DWR)  (2010)  

has  concluded  that:  1)  it  has  prevented  billions  of  dollars  in  flood  damages  since  its  inception;  

2)  some  SPFC  facilities  face  an  unacceptably  high  chance  of  failure;  and  3)  an  unintended  

consequence  of  the  long-­‐term  effort  to  reduce  flooding  is  that  development  and  population  

growth  behind  levee-­‐protected  areas  have  increased  flood  damages  over  time.  Thus,  although  

the  probability  of  flooding  has  decreased,  the  damages  when  floods  occur  are  much  higher,  

resulting  in  a  net  long-­‐term  increase  in  flood  risk  (CA-­‐DWR,  2012).  The  City  of  Sacramento  faces  

some  of  the  highest  flood  risk  in  the  United  States  and  the  developed  world  (USACE,  2002),  

which  is  one  of  the  reasons  many  prior  research  efforts  (Ferreira  and  CA-­‐DWR,  1982;  Platt,  

1995;  NRC,  1999;  Dettinger  et  al.,  2004)  and  financial  investments  have  attempted  to  help  

manage  flood  risk  in  the  American  River  basin.  In  this  study,  we  expand  upon  previous  flood  

management  work  in  the  basin  to  include  a  bottom-­‐up  climate  impact  assessment.    

 4.3. Data  and  Methods:  Developing  the  bottom-­‐up  flood  risk  assessment  

To  develop  the  methodology  for  a  bottom-­‐up  risk  assessment,  we  adapted  each  of  the  

steps  in  the  general  approach  to  the  retrospective  decision  regarding  a  future  flood  

management  strategy  for  the  American  River  basin.  We  expand  and  quantify  the  CVFPP  analysis  

through  a  climate  risk  assessment  to  investigate  how  the  management  strategies  vary  in  their  

robustness  under  climate  change.  The  importance  of  tailoring  the  impact  assessment  to  the  

decision  context  requires  that  every  situation  be  treated  individually.  As  such  this  manuscript  

presents  a  methodology  in  line  with  other  bottom-­‐up  studies,  but  with  specific  aspects  uniquely  

tailored  to  the  decision  context  and  using  models  and  data  in  the  American  River  basin.  

 4.3.1. Establishment  of  the  decision  context    

In  response  to  increasing  flood  damages,  highlighted  during  flooding  in  the  1990s,  the  

California  State  Legislature  directed  the  CA-­‐DWR  to  prepare  a  Central  Valley  Flood  Protection  

Plan  (CVFPP)  and  supporting  documentation  (CA-­‐DWR,  2012).  The  primary  goal  of  the  2012  

CVFPP  is  to  improve  flood  risk  management,  though  the  plan  also  includes  supplemental  goals  

to:    improve  operations  and  maintenance  of  project  facilities;  promote  ecosystem  functions;  

Page 84: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

74  

improve  institutional  support;  and  promote  multi-­‐benefit  projects.  The  plan  developed  for  the  

CVFPP  outlines  three  preliminary  strategies  for  addressing  the  problems  identified  in  the  

current  Without  Project  SPFC  as  well  as  a  fourth  strategy  that  combines  the  strength  of  each  of  

the  preliminary  strategies,  described  below  (Table  4.1).  The  CVFPP  assessed  each  of  the  

strategies,  along  with  the  baseline  Without  Project  conditions,  based  on  effectiveness  in  

contributing  to  the  CVFPP  goals  and  other  quantitative  and  qualitative  performance  measures,  

including:    level  of  flood  protection,  population  with  less  than  100-­‐yr  protection,  EAD  and  

reduction  in  EAD,  capital  costs,  O&M  requirements,  opportunity  for  ecosystem  restoration,  

opportunity  for  multi-­‐benefit  projects,  ability  to  meet  objectives  in  flood  legislation,  social  

sustainability,  and  climate  change  adaptability.  The  CVFPP  analysis  concluded  that  the  Enhance  

System  strategy  best  meets  CVFPP  goals,  but  it  also  requires  the  highest  level  of  investment  and  

significant  institutional  changes.  Thus,  CA-­‐DWR  adopted  the  Combined  strategy  to  incorporate  

many  of  the  beneficial  features  included  in  the  three  preliminary  strategies  at  a  more  

reasonable  cost  and  implementation  time.  We  assess  the  robustness  of  the  management  

strategies  in  terms  of  their  ability  to  meet  the  primary  goal  of  flood  risk  reduction  in  terms  of  

EAD,  as  well  as  the  cost-­‐effectiveness  in  terms  of  the  Benefit-­‐Cost  Ratio  (BCR).    

While  the  CVFPP  did  not  include  a  full  climate  assessment,  the  plan  does  include  a  

description  of  potential  climate  change  effects  on  flood  management  and  a  discussion  of  a  pilot  

Climate  Change  Threshold  Analysis  Approach  (CA-­‐DWR,  2012).  The  Threshold  Analysis  

Approach  includes  aspects  of  both  top-­‐down  and  bottom-­‐up  climate  impact  analysis;  however  

it  was  only  applied  to  a  pilot  study  of  the  Oroville  Dam  on  the  Feather  River.  Despite  the  lack  of  

a  full  climate  assessment,  the  CVFPP  concluded  that  Enhance  System  is  the  only  preliminary  

strategy  that  substantially  improves  resiliency  to  climate  change  by  the  fact  that  it  enhances  

storage  and  conveyance.  Although  the  CVFPP  did  not  assess  the  resiliency  of  the  Combined  

strategy,  a  subset  of  the  storage  and  conveyance  projects  that  improve  resiliency  in  the  

Enhance  System  strategy  are  also  included  in  the  Combined  strategy  (CA-­‐DWR,  2012).      

 4.3.2. Sensitivity  of  current  system  to  flood  regime  changes  

Page 85: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

75  

We  assess  current  system  sensitivity  to  climate  change  by  evaluating  the  relationship  

between  flood  risk  and  changes  in  the  hydrologic  flood  regime.  Flood  risk  is  a  function  of  the  

probability  of  a  flood  event  occurring  multiplied  by  the  damages  expected  to  result  from  such  

event  (NRC,  2000).  Integrating  flood  damages  over  the  probability  of  all  possible  flood  events  in  

a  given  year  yields  EAD:  

 

Equation  1:   Expected  annual  damages   EAD =   D p 𝑑𝑝!!!  !  

where  D(p)  is  the  expected  damages,  D,  in  dollars,  based  on  the  probability  of  event  (p).  

 

Consistent  with  the  CVFPP  analysis  and  the  USACE  evaluation  procedures  for  flood  risk  

management  plans  (USACE,  1996,  2006),  we  base  our  climate  risk  metrics  on  EAD  and  reduction  

in  EAD.  Our  assessment  only  includes  hydrologic  changes  and  does  not  incorporate  changes  in  

the  damage  function,  D(p),  which  could  result,  for  example  from  development  and  landuse  

changes  in  the  floodplain.    

For  flood  risk  management,  the  most  important  input  to  characterize  hydrology  is  the  

probability  distribution  of  annual  peak  flows,  known  as  the  flood-­‐frequency  curve  (Faber  2010).  

In  the  U.S.,  flood  forecasting  by  federal  agencies  follows  the  analysis  techniques  outlined  in  the  

Guidelines  for  Determining  Flood  Flow  Frequency  Bulletin  17B,  commonly  referred  to  as  

“Bulletin  17B.”  Bulletin  17B  recommends  fitting  a  log-­‐Pearson  type  III  (LP3)  distribution  to  

observed  annual  maximum  streamflow  data  using  the  method-­‐of-­‐moments  to  estimate  the  

mean  (μ),  standard  deviation  (σ),  and  the  skew  coefficient  (ϒ)  (US  Water  Resources  Council  

1982).  In  terms  of  potential  changes  to  the  flood  frequency  curve:    higher  values  of  μ  indicate  

larger  expected  values  of  flood  magnitudes  in  any  given  year;  higher  values  of  σ  indicate  larger  

inter-­‐annual  variability  in  flood  magnitude;  and  higher  values  of  ϒ  steepen  upper  tail  of  the  

distribution,  resulting  in  larger  extreme  events.    

We  base  our  initial  flood  frequency  curve  analysis  on  historic  observations  of  daily  

streamflow  gauge  records  collected  on  the  American  River  at  Fair  Oaks  gauge  (USGS  11446500),  

located  11  km  downstream  of  Folsom  Dam,  from  1905-­‐2012.  However,  direct  gauge  data  after  

Page 86: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

76  

the  construction  of  Folsom  Dam  in  1955  represents  regulated  flow.  Thus,  we  replaced  the  

gauge  data  with  estimated  natural  flows  for  the  1955-­‐2012  period  (Northwest  River  Forecast  

Center  (NWRFC),  unpublished  data),  which  were  calculated  based  on  upstream  gauges,  storage  

volume,  and  release  rates  at  Folsom.  In  this  study  we  assume  a  skew  parameter  of  zero  for  the  

LP3  distribution,  which  is  a  reasonable  assumption  for  the  historic  period  at  considering  that  

the  calculated  station  skew  at  Fair  Oaks  gauge  is  -­‐0.035  with  a  standard  deviation  of  0.233  

(Parrett  et  al.  2011).  While  this  assumption  may  not  hold  into  the  future,  limited  historical  

records  already  result  in  unstable  skew  parameters  (Griffis  and  Stedinger  2007),  and  projections  

of  future  skew  are  even  more  uncertain  than  mean  and  standard  deviation.  In  addition,  the  

zero  skew  assumption  simplifies  the  Bayesian  analysis  and  does  not  detract  from  the  

methodological  focus  of  the  study.  

To  assess  the  sensitivity  of  the  current  flood  management  system  to  different  climates,  

we  first  develop  a  climate  response  function  that  describes  the  relationship  between  EAD  and  

log-­‐normal  flood  frequency  curve  parameter  sets  of  μ  and  σ  for  the  peak  3-­‐day  average  

discharge  at  Fair  Oaks  gauge.  We  calculate  EAD  with  the  USACE  Hydrologic  Engineering  Center’s  

Flood  Damage  Assessment  software  (HEC-­‐FDA)  (USACE,  2002;  CA-­‐DWR,  2012).  Using  HEC-­‐FDA,  

we  use  stage-­‐exceedance  probability  curves  and  damage-­‐stage  curves  to  estimate  EAD  (Figure  

4.3).  For  the  CVFPP,  the  stage-­‐exceedance  probability  curves  are  determined  in  HEC-­‐FDA  by  

inputting  the  stage  associated  with  99.9-­‐,  10-­‐,  4-­‐,  2-­‐,  1-­‐,  0.5-­‐,  and  0.2-­‐percent  exceedance  

events  derived  from  historical  gauge  data  (CA-­‐DWR,  2012]  (Figure  4.3a).  We  then  assess  EAD  

across  a  gridded  range  of  parameter  sets  representing  flood  frequency  curves;  for  each  

parameter  set,  we  calculated  the  probability  (Figure  4.3b)  of  exceeding  the  river  stage  

associated  with  the  historic  discrete  exceedance  events  (Figure  4.3b).  Combining  these  figures  

results  in  a  damage-­‐exceedance  plot  (Figure  4.3c).  

After  shifting  the  historic  stage-­‐exceedance  curves  using  the  gridded  parameter  sets,  we  

use  the  damage  exceedance  plots  from  HEC-­‐FDA  to  calculate  EAD  values  for  each  gridded  

parameter  set  (Figure  4.4).  Due  to  the  stepwise  nature  of  the  damages  functions,  where  

flooding  and  damages  only  occur  after  a  certain  flood  magnitude,  low  (μ,  σ)  combinations  

Page 87: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

77  

produce  EAD  values  of  $0,  or  no  damage.  We  concentrate  on  the  portion  of  the  EAD  functions  

that  produce  damages,  i.e.  those  with  σ  values  of  0.8  and  above.  To  assess  how  EAD  responds  

to  changes  in  the  flood  frequency  curve,  we  develop  a  continuous  climate  response  surfaces  for  

the  Without  Project  conditions  by  fitting  a  linear  climate  response  function  to  the  discrete  flood  

frequency  curve  parameter  sets  (Equation  2).  

Equation  2:    ln 𝐸𝐴𝐷 = 𝛽! +  𝛽!µμ+ 𝛽!!!  

where:    EAD  is  Expected  annual  damages  ($);  μ  is  the  mean  of  the  3-­‐day  peak  flow;  σ  is  the  standard  deviation;  and  βi  are  regression  coefficients.    We  develop  climate  response  surfaces  using  Equation  2  to  examine  the  sensitivity  of  changes  in  

EAD  to  changes  in  μ  and  σ  (Figure  4.4).    

 4.3.3. Vulnerability  of  system  to  flood  regime  changes  

After  developing  the  climate  response  surfaces,  we  identify  the  range  of  flood  frequency  

regimes  under  which  the  system  is  vulnerable  to  exceeding  an  acceptable  flood  risk.  We  define  

a  threshold  for  acceptable  flood  risk  as  the  EAD  ($38  million/year)  under  the  Combined  strategy  

that  was  selected  as  the  CVFPP  management  strategy  moving  forward    [CA-­‐DWR,  2012].  As  

such,  the  system  is  considered  vulnerable  when  mean  and  standard  deviation  combinations  

yield  EAD  above  the  threshold  of  $38  million.  We  term  the  region  above  the  threshold  the  

“vulnerability  range”  and  below  the  threshold  the  “coping  range”  (Smit  and  Wandel  2006),  and  

use  historical  gauge  data  to  assess  the  extent  to  which  the  current  system  is  vulnerable  to  

exceeding  the  threshold  EAD  (Figure  4.4).  

 4.3.4. Plausible  range  of  future  flood  regimes  

After  assessing  the  sensitivity  and  vulnerability  of  the  current  system  based  on  historic  

data,  we  then  develop  a  plausible  range  of  future  flood  regimes  based  on  GCM  simulations  of  

future  peak  flow.  We  also  use  historic  observations  and  historic  GCM  simulations  to  inform  our  

confidence  in  the  future  simulations  (Figure  4.5).  In  addition  to  the  historical  Fair  Oaks  gauge  

dataset,  we  assess  GCM-­‐derived  projections  based  on  daily  streamflow  output  from  a  Variable  

Page 88: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

78  

Infiltration  Capacity  (VIC)  model  of  the  Sacramento  Basin,  forced  with  Bias  Corrected  Spatially  

Downscaled  (BCSD)  output  from  two  runs  each  of  six  GCMs  (Maurer  and  Hidalgo  2008;  Maurer  

et  al.  2010).  We  use  streamflow  simulations  at  a  VIC  index  point  on  the  American  River  at  

Folsom  Dam,  11  km  upstream  of  Fair  Oaks  and  without  significant  inflow/outflow  between  the  

two  locations.  VIC  output  from  1950  to  1999  represent  a  forcing  of  the  GCMs  with  observed  

atmospheric  variables,  downscaled  and  input  into  the  hydrologic  model.  For  the  future  time  

period  (2000-­‐2100),  each  GCM  was  forced  with  two  climate  change  emissions  scenarios  (A2  and  

B1),  totaling  twelve  sets  of  daily  streamflow  projections  from  1950  to  2099.  

We  evaluate  flood  frequency  parameters  for  each  of  the  historic  and  future  flow  

datasets  to  both  characterize  plausible  climate  impacts  on  flood  regimes  and  to  qualitatively  

assess  the  reliability  and  uncertainty  in  the  climate  projections.  This  analysis  includes:    1)  

examining  trends  in  flood  frequency  parameters  based  in  the  observed  historic  data  (1905-­‐

2012);  2)  comparing  flood  frequency  parameters  based  on  historic  observations  and  historic  

GCM  simulations  (1950-­‐1999);  and  3)  comparing  flood  frequency  parameters  based  on  historic  

observations  (1905-­‐2012)  and  future  GCM  simulations  (2000-­‐2100).    

In  conducting  the  flood  frequency  analyses,  we  incorporate  two  major  modifications  to  

the  methods  outlined  in  Bulletin  17B.  The  first  is  the  inclusion  of  future  projections  in  addition  

to  historic  observations  in  the  analysis.  Secondly,  we  use  Bayesian  statistical  techniques  to  

develop  plausible  ranges  of  historic  and  future  flood  regime  projections  rather  than  Frequentist  

techniques.  Bayes  Theorem  (Bayes  and  Price  1763)  treats  the  parameters  of  the  probability  

distribution  as  variables  themselves,  which  allows  for  describing  the  parameters  of  fitted  flood  

frequency  curves  (μ,  σ)  in  terms  of  their  own  probabilistic  distributions,  conducive  to  

developing  our  desired  range  of  plausible  impacts.  For  this  analysis,  using  WinBUGS  (Lunn  et  al.  

2009)  we  fit  a  log-­‐normal  Bayesian  model  with  non-­‐informative  priors  to  the  observed  and  

simulated  peak  annual  3-­‐day  average  flood  discharge  datasets.  For  each  dataset,  we  use  a  

Gibbs  sampling  Markov  Chain  Monte  Carlo  (MCMC)  algorithm  to  produce  11,000  iterations,  

with  the  first  1,000  used  for  burn  in,  to  determine  posterior  intervals  of  the  flood  frequency  

Page 89: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

79  

parameters.  To  check  convergence  we  ensure  that  the  Gelman-­‐Rubin  diagnostic  results  in  𝑅  

values  less  than  1.05.  

 

4.3.4.1. Trends  in  mean  and  standard  deviation  of  flood  flows  for  the  historic  period  (1905  –  2012)  

  We  examine  trends  in  the  historical  data  and  projections  based  on  those  trends  to  help  

establish  a  level  of  confidence  in  the  future  GCM-­‐based  projections.  Studies  examining  climate  

trends  often  describe  the  factor  of  interest  (e.g.  precipitation,  temperature,  streamflow,  etc.)  in  

terms  of  the  mean  and  variability  over  a  period  of  time,  typically  20  to  40-­‐year  intervals  (e.g.  

Bengtsson,  Hagemann,  and  Hodges  2004;  Lins  and  Slack  2005).  As  such,  we  fit  log-­‐normal  flood  

frequency  curves  to  moving  30-­‐yr  time  periods  and  examine  trends  in  the  fitted  parameters  

over  the  historic  period.  Since  flood  frequency  methods  in  Bulletin  17B  generally  only  use  the  

peak  flow  in  any  given  year,  the  number  of  data  points  is  low  and  equivalent  to  the  number  of  

years  analyzed.  The  small  sample  size  associated  with  extreme  events  makes  conclusive  trend  

analysis  difficult  (Easterling  et  al.  2000).  As  a  result,  while  we  examine  a  30-­‐year  moving  

average  of  the  μ  and  σ  of  the  peak  discharge  to  investigate  historical  trends,  results  remain  

highly  uncertain.  

 

4.3.4.2. Comparison  of  historic  observations  and  historic  GCM  simulations  (1950  –  1999)  

To  assess  the  reliability  of  the  GCM  projections  in  projecting  observed  conditions,  we  

compare  the  posterior  intervals  of  the  Bayesian  flood  frequency  parameters  (μ  and  σ)  fit  to  the  

gauge  observations  and  those  fit  to  the  GCM  projections  forced  with  observed  historical  

emissions  scenarios  from  1950-­‐1999.    

 

4.3.4.3. Comparison  of  historic  observations  (1905  –  2012)  and  GCM  projections  (2000  –  2099)  

  Lastly  in  developing  the  plausible  impact  range,  for  the  historic  observed  and  twelve  

future  projected  peak  flow  datasets  (Figure  4.5),  we  generate  10,000  Markov  chain  samples  of  

Page 90: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

80  

(μ,  σ)  combinations  representing  flood  frequency  curves.  The  resulting  120,000  parameter  sets  

derived  from  the  future  GCM  projections  define  our  plausible  range  of  future  flood  regimes.  We  

compare  the  posterior  intervals  of  the  parameter  sets  derived  from  future  GCMs  to  those  

derived  from  the  historic  record  to  assess  potential  hydrologic  responses  to  climate  change.    

 4.3.5. Robustness  of  current  systems  and  management  strategies  

In  the  last  step  of  the  bottom-­‐up  decision-­‐making  approach,  we  combine  the  

vulnerability  and  impact  assessment  to  determine  the  robustness  of  the  current  system  and  

proposed  management  strategies.  Consistent  with  Lempert,  Bankes,  and  Popper  (2003),  we  

define  robust  strategies  as  those  that  perform  reasonably  well  compared  to  the  alternatives  

across  a  wide  range  of  plausible  scenarios.  As  an  indicator  of  the  robustness,  we  calculate  the  

percentage  of  the  draws  from  the  posterior  flood  frequencies  parameter  sets  below  an  

established  vulnerability  threshold:  

 

Equation  3:  

Robustness  indicator   =  Number  of  posterier  draws  below  threshold

Total  number  of  posterier  draws   ∗ 100  

 

A  robustness  value  of  one  indicates  that  the  full  range  of  flood  regimes  lies  below  the  

threshold,  and  thus  the  system  is  not  vulnerable  to  exceeding  the  decision  threshold.  On  the  

other  end  of  the  spectrum,  a  robustness  value  of  zero  indicates  that  the  system  is  vulnerable  to  

exceeding  the  vulnerability  threshold  for  all  potential  combinations  of  the  parameter  sets.    

We  use  two  different  robustness  metrics,  one  a  measure  of  flood  risk  (EAD)  and  the  

other  a  measure  of  cost-­‐effectiveness  (BCR).  We  assess  the  robustness  of  the  current  system  

and  management  strategies  in  terms  of  the  EAD  threshold  of  $38  million,  by  first  developing  

EAD  response  functions  for  each  of  the  management  strategies  using  the  same  methods  

described  in  Section  3.1.1.  We  then  determine  how  many  MCMC  parameter  sets  lie  above  and  

below  the  threshold.  In  addition,  we  develop  climate  response  surfaces  of  the  BCR  (Equation  4:)  

Page 91: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

81  

for  each  of  the  management  strategies  under  different  flood  regimes,  to  assess  their  cost-­‐

effectiveness.    

 

Equation  4:  

BCR   =    EAD!" − EAD!"#"$% ∗ 1− 1− r !!

r  𝑐𝑜𝑠𝑡  

 

Where  BCR  is  the  Benefit  Cost  Ratio  ($/$),  EADWO  is  the  EAD  under  Without  Project  conditions,  EADmanage  is  the  EAD  under  one  of  the  management  strategies,  r  is  the  discount  rate,  t    is  life  of  the  project,  and  cost  is  the  cost  of  the  management  strategy.    

Assessment  of  the  BCR  presents  difficulties  when  trying  to  align  the  spatial  extent  of  

costs  and  benefits.  We  measure  benefits  in  terms  of  EAD  reduction  within  the  American  River  

Basin,  however  the  cost  estimates  (CA-­‐DWR,  2012)  include  all  projects  located  within  the  lower  

Sacramento  region,  of  which  the  American  River  is  a  sub-­‐basin.  As  such,  the  cost  estimates  

includes  projects  outside  of  the  American  basin,  some  of  which  influence  EAD  within  the  

American  basin  (e.g.  expansion  of  Yolo  Bypass)  and  some  of  which  only  produce  benefits  

outside  the  American  basin  (e.g.  mainstem  levee  improvements  downstream  of  the  confluence  

of  the  American).  In  addition,  the  projects  included  in  the  costs  produce  benefits  outside  of  the  

American  Basin,  which  are  not  included  in  the  benefits  calculation.  To  roughly  address  the  

incongruence  with  costs  and  benefits,  similar  to  the  EAD  threshold,  we  set  the  BCR  decision  

threshold  to  the  BCR  of  the  Combined  strategy  under  historical  flood  conditions,  namely  0.2  

(California  Department  of  Water  Resources  (CA-­‐DWR)  2012).    

We  set  the  discount  rate  to  7%  as  recommended  by  the  Federal  Emergency  

Management  Agency  for  public  investments  (FEMA,  2001)  and  the  life  of  the  project  to  50  years  

based  on  the  CVFPP  planning  horizon  (CA-­‐DWR,  2009).  Further,  we  conservatively  use  the  high  

cost  estimate  for  each  strategy  (Table  4.2).  

4.4. Results  

Page 92: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

82  

We  present  the  results  of  the  bottom-­‐up  analysis  by  first  discussing  the  sensitivity  and  

vulnerability  of  the  current  system,  based  on  historic  data.  We  then  present  a  range  of  plausible  

future  potential  climates  and  finally  an  assessment  of  the  robustness  of  the  current  and  

possible  future  flood  management  strategies.    

 4.4.1. Sensitivity  of  flood  risk  (EAD)  to  changes  in  flood  frequency  regimes  

  The  climate  response  equation  provides  a  good  fit  (Table  4.3)  to  the  gridded  sets  of  (μ,  

σ),  providing  useful  insight  into  the  sensitivity  of  the  current  system  to  changes  in  the  flood  

regime.  The  sensitivity  of  EAD  to  the  flood  frequency  parameters  is  represented  by  β1  and  β2  

(Table  4.3).  Small  increases  in  the  mean  and  standard  deviation  of  peak  annual  floods  yield  large  

changes  in  EAD,  indicating  a  high  sensitive  to  flood  regime  changes  (Figure  4.4).  For  example,  an  

increase  in  μ  from  6.3  to  6.4  (540  to  600  m3/s,  11%  increase)  with  σ  =  0.9,  yields  a  27%  increase  

in  EAD  from  approximately  $55M  to  $70M.  EAD  increases  logarithmically  from  the  lower  left  

corner  of  the  climate  response  surfaces  to  the  upper  right  corner  (Figure  4.4).  We  note  that  the  

linear  model  exhibits  some  heteroscedasticity,  with  larger  residuals  at  high  μ  and  σ.  We  discuss  

potential  implications  of  this  in  Sections  4.4.3.2  and  4.5.    

 

4.4.1.1. Vulnerability  above  threshold  EAD  

The  Without  Project  system  currently  operates  in  the  vulnerability  range,  with  EAD  

above  the  threshold  of  $38M  (Figure  4.4).  posterior  median  of  μ  and  σ  (6.49,  0.89)  based  on  

historic  data  from  1905-­‐2012,  yields  an  EAD  of  $79  M,  shown  with  the  black  diamond  in  Figure  

4.4.  In  Section  4.4.3,  we  describe  the  results  of  combining  the  vulnerability  assessment  with  the  

impact  assessment  (Section  4.4.2)  to  determine  the  robustness  of  each  management  strategy.  

 4.4.2. Plausible  range  of  future  flood  impacts  

4.4.2.1. Trends  in  historical  gauge  data  (1905-­‐2012)  

Calculating  a  simple  30-­‐year  moving  μ  and  σ  for  the  historic  period  reveals  an  increasing  

trend  in  the  σ  and  a  smaller  increasing  trend  in  μ  (Figure  4.6).  For  the  historic  period  (1905-­‐

Page 93: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

83  

2012),  the  30-­‐year  mean  of  the  LN-­‐peak  annual  flood  flow  ranges  from  6.33  to  6.64,  and  the  

standard  deviation  ranges  from  0.68  to  1.10.  Projecting  the  linear  trend  into  2050  indicates  an  

E[μ]  =  6.55  (1,670  m3/s)  and  E[σ]  =  1.32  (3,630  m3/s).  By  2100,  and  with  less  certainty,  the  linear  

trend  indicates  an  E[μ]  =6.60  (2,644  m3/s)  and  E[σ]  =  1.60  (9,134  m3/s).  Furthermore,  a  short-­‐

term  cyclic  trend  in  the  moving  averages  is  apparent  (Figure  4.6)  and  described  with  good  fit  by  

fourth  degree  polynomial  functions.  This  simple  analysis  demonstrates  that  the  mean  and  

standard  deviation  of  the  flood  frequency  parameters  appear  to  exhibit  short-­‐term  increasing  

and  decreasing  cycles  with  some  evidence  of  increasing  long-­‐term  trends,  particularly  for  σ.    

 

4.4.2.2. Comparison  of  historic  observations  and  historic  GCM  simulations  (1950  –  1999)  

In  comparing  the  downscaled  GCM  output  to  the  historic  observed  data  from  1950-­‐99,  

the  GCM  output  more  accurately  estimates  the  historic  mean  (μ)  of  peak  annual  flood  flows  

than  the  historic  standard  deviation  (σ)  of  flood  flows  (Figure  4.7).  The  posterior  median  of  μ  

from  all  of  the  GCM  simulations  (Figure  4.7a)  fall  within  the  quartiles  around  the  posterior  

median  of  μ  based  on  historical  observed  peak  flows.  However,  the  posterior  median  of  σ  for  

only  two  of  the  12  GCMs  fall  within  the  quartiles  around  the  posterior  median  of  σ  based  on  

historical  observed  peak  flows  (Figure  4.7a).  All  of  the  GCMs  underestimate  σ  over  the  historical  

time  period  (Figure  4.7b).  These  differences  in  posterior  parameters  produce  substantially  

different  flood  frequency  curves,  particularly  for  estimations  of  more  extreme  events  (e.g.  100-­‐

yr,  200-­‐yr  floods)  (Figure  4.8).  The  parameter  μ  represents  the  50%  exceedance  probability  

event,  whereas  σ  determines  the  slope  of  the  flood  frequency  curve  (Figure  4.8).  The  lower  σ  

values  of  the  GCM  simulations  result  in  flood  frequency  curves  with  gentler  slopes,  leading  to  

underestimations  of  extreme  events  compared  to  the  curve  fit  to  the  historic  gauge  data.  For  

example,  based  on  the  historic  data,  the  expected  magnitude  of  a  100-­‐yr  flood  is  approximately  

7,500  m3/s,  while  the  expected  magnitude  based  on  the  GCMs  ranges  from  4,400  –  7,900  m3/s.  

Considering  the  sensitivity  of  EAD  to  changes  in  μ  and  σ,  the  differences  in  flood  frequency  

curve  parameters  derived  from  GCM  simulations  versus  historic  observations  can  lead  to  widely  

different  estimates  of  EAD.  The  GCMs’  lack  of  skill  in  capturing  the  mean  and  variation  in  the  

Page 94: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

84  

historic  data,  even  after  bias  correction,  is  indicative  of  the  uncertainty  associated  with  the  

downscaled  model  projections.  To  capture  some  of  this  uncertainty,  we  present  climate  impact  

(Section  4.4.2.3)  and  robustness  (Section  4.4.3)  results  in  terms  of  the  full  distribution  of  flood  

frequency  parameters,  rather  than  only  using  the  posterior  median  of  the  parameters.    

 

4.4.2.3. Future  climate  impact  assessment  

  The  plausible  range  of  the  flood  frequency  parameters  developed  from  the  posterior  

samples  fitted  with  the  GCM  output,  encapsulates  the  range  of  historic  hydrologic  conditions  

while  extended  into  much  higher  ranges  of  μ  and  σ  (Figure  4.9).  The  lower  bound  of  the  future  

plausible  range  for  the  mean  and  standard  deviation  projected  with  the  GCMs  resembles  the  

lower  bound  of  the  parameter  estimates  based  on  the  historical  data  (Figure  4.9).  However  the  

upper  bound  on  the  plausible  ranges  developed  from  the  GCMs  extends  far  beyond  the  

posterior  samples  based  on  the  historical  data.  As  such,  the  historic  output  occupies  the  lower  

left  quadrant  of  the  GCMs  projections,  the  region  of  the  lowest  flood  risk  (Figure  4.9).  Ten  of  

the  twelve  GCMs  project  a  larger  posterior  median  μ  for  the  future  peak  annual  flood  discharge  

than  the  historic  peak  (Figure  4.10a),  and  eleven  of  the  twelve  GCMs  project  a  higher  posterior  

median  σ  than  under  historical  conditions  (Figure  4.10b).  These  projected  increases  in  μ  and  σ  

are  consistent  with  the  results  identified  previously  in  the  historic  data  (Section  4.3.1).    

 

4.4.3. Robustness  of  current  system  and  management  strategies  

We  assess  robustness  in  terms  of  flood  risk  (EAD)  and  cost-­‐effectiveness  (BCR),  which  

yield  related,  but  different  results.    

 

4.4.3.1. Robustness  in  terms  of  flood  risk,  EAD  

  Under  historic  hydrologic  conditions,  the  current  Without  Project  system  exhibits  the  

lowest  robustness  in  terms  of  EAD,  though  this  is  greatly  improved  under  the  proposed  

management  strategies  (Table  4.4).  Eighty-­‐two  percent  of  the  draws  from  the  posterior  

distributions  of  the  flood  frequency  parameters  derived  from  the  historic  observations  lie  in  the  

Page 95: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

85  

vulnerability  range  above  the  Without  Project  threshold  (Figure  4.9).  This  indicates  that  the  

current  system  is  predominantly  operating  outside  of  its’  coping  range.  However,  each  of  the  

proposed  management  strategies  increases  system  robustness.  Under  the  Enhance  System  

strategy,  93%  of  the  draws  from  the  posterior  distributions  under  historic  hydrologic  conditions  

lie  below  the  EAD  threshold  (Table  4.4,  Figure  4.9),  making  it  the  most  robust  strategy.  The  

Combined  and  Protect  Communities  strategies  demonstrate  very  similar  robustness,  with  

overlapping  contour  EAD  threshold  lines  (Figure  4.9).  Lastly,  the  Design  Capacity  strategy  

exhibits  the  least  robustness  over  the  Without  Project  scenario.    

  While  the  management  strategies  perform  well  in  terms  of  robustness  based  on  

historical  conditions,  the  robustness  of  all  of  the  strategies  critically  declines  under  the  

plausible  range  of  future  conditions.  Under  the  future  simulations  and  Without  Project  flood  

management,  only  1%  of  the  draws  from  the  posterior  distributions  lie  below  the  EAD  

threshold  (Table  4.4,  Figure  4.9).  While  the  most  robust  Enhance  System  strategy  performs  very  

well  under  historic  conditions,  under  the  future  simulations  only  22%  of  the  draws  from  the  

future  posterior  distributions  lie  below  the  threshold.    

 

4.4.3.2. Robustness  in  terms  of  cost-­‐effectiveness,  BCR  

As  μ  and  σ  increase  from  historic  conditions,  the  reduction  in  EAD  and  the  BCR  of  each  

of  the  management  strategies  initially  increases,  but  then  begins  to  decrease  at  higher  μ  and  σ  

(Figure  4.11).  In  contrast  to  the  EAD  robustness,  the  robustness  of  each  of  the  management  

strategies  increases  under  future  conditions  (Table  4.5).  In  other  words,  the  cost-­‐effectiveness  

of  the  management  actions  increases  under  higher  μ,  σ  combinations  and  more  extreme  flood  

regimes.  The  Protect  Communities  exceeds  the  BCR  threshold  under  the  largest  portion  of  

plausible  future  conditions,  while  the  Design  Capacity  strategy  does  not  meet  the  threshold  BCR  

under  any  of  the  historic  or  future  scenarios.  Furthermore,  under  the  Design  Capacity  strategy  

very  high  μ,  σ  combinations  yield  EAD  that  are  actually  higher  than  under  the  Without  Project  

conditions.  This  also  occurs  to  a  lesser  extent  under  the  Enhance  System  strategy,  leading  to  

negative  BCRs  in  the  upper  right-­‐hand  corner  of  Figure  4.11  b  and  c.      

Page 96: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

86  

4.5. Discussion  

The  potential  for  changes  in  flood  regimes  due  to  climate  change  in  combination  with  

the  deep  limitations  of  climate  projections,  necessitate  rethinking  how  we  make  flood  risk  

management  decisions.  While  bottom-­‐up  climate  assessments  hold  promise  as  a  new  way  to  

view  water  resources  management  under  climate  change,  few  studies  have  carried  out  a  full  

bottom-­‐up  approach  to  flood  risk  management  in  practice.  In  addition,  many  options  exist  

within  the  broadly  outlined  approaches  in  the  literature  (Lempert,  Bankes,  and  Popper  2003;  

Prudhomme  et  al.  2010;  Brown  and  Wilby  2012;  Brown  et  al.  2012)  that  need  to  be  explored  

further.  In  developing  a  bottom-­‐up  climate  assessment  of  flood  risk  for  the  American  River  

flood  management  system,  we  identify  several  key  points  both  about  the  bottom-­‐up  

methodology  and  about  flood  risk  within  the  American  River  system,  with  the  goal  of  

establishing  a  methodology  that  will  aid  water  managers  everywhere  to  better  understand  the  

hydrologic  conditions  that  push  a  flood  management  system  into  a  vulnerable  state.  We  begin  

our  discussion  around  the  methodology  employed,  and  then  discuss  the  results  for  the  

American  River  basin  in  particular.    

The  methods  used  for  the  sensitivity  and  vulnerability  assessment  allow  water  managers  

to  identify  the  hydrologic  conditions  that  shift  the  system  into  a  vulnerable  state,  using  only  the  

historic  data  and  models  currently  available  in  the  American  River  basin.  Our  method  of  fitting  

EAD  response  curves  to  a  grid  of  flood  frequency  curve  parameters  (μ,  σ)  provides  a  

computationally  efficient  method  to  assess  the  sensitivity  of  a  system  to  a  large  range  of  

potential  flood  regimes.  However,  this  method  does  have  limitations.  Some  accuracy  is  lost  in  

fitting  a  linear  model  to  a  relatively  small  number  of  HEC-­‐FDA  runs,  particularly  at  the  lowest  

and  highest  range  of  μ,  σ  combinations.  However,  the  R2  value  for  these  equations  fitted  to  the  

FDA  model  runs,  ranges  from  0.79  to  0.87,  providing  an  adequate  fit  for  a  reconnaissance  level  

pre-­‐project  planning  analysis,  such  as  presented  in  the  2012  CVFPP.    

We  use  the  EAD  under  the  CVFPP  strategy  moving  forward  as  a  simple,  justifiable  

method  to  determine  the  EAD  vulnerability  threshold,  but  many  bottom-­‐up  approaches  

emphasize  the  importance  of  including  stakeholders  in  process,  particularly  the  vulnerability  

Page 97: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

87  

assessment  (Kloprogge  and  Van  Der  Sluijs  2006;  Few,  Brown,  and  Tompkins  2007).  

Unfortunately,  the  time  required  to  collaboratively  establish  acceptable  risk  thresholds  is  

beyond  the  scope  of  our  work.  We  acknowledge  the  lack  of  stakeholder  participation  as  a  

shortcoming  in  our  case  study.          

To  capture  some  of  the  uncertainty  associated  with  the  future  projections  and  

incorporate  it  into  the  decision-­‐making  process,  we  use  Bayesian  techniques  to  develop  a  wide  

range  of  plausible  flood  frequency  regimes  characterized  by  their  statistical  parameters,  μ  and  

σ.  Using  draws  from  the  posterior  parameter  sets  in  combination  with  the  climate  response  

surfaces  enables  us  to  quickly  calculate  the  EAD  under  thousands  of  plausible  future  flood  

regimes.  The  Bayesian  analysis  also  lends  itself  to  a  variety  of  techniques  to  combine  the  

historical  and  future  data  depending  on  its  uncertainty  and  the  decision  at  hand.  For  example,  

while  we  used  non-­‐informative  priors  throughout  the  study,  it  is  possible  to  inform  future  flood  

frequency  parameters  with  prior  information  based  on  the  historical  data.  Determination  of  the  

plausible  range  of  future  scenarios  would  then  incorporate,  and  place  weight  on,  the  historical  

record.  In  addition,  rather  than  examining  the  12  sets  of  future  projections  in  isolation,  we  

could  use  a  hierarchical  Bayesian  model  to  combine  the  projections  from  different  GCMs  and  

emissions  scenarios,  and  then  examine  the  hyper-­‐parameters  that  guide  μi  and  σi,  the  posterior  

flood  frequency  parameters  for  each  set  of  future  projections.  Furthermore,  adding  the  skew  

parameter,  ϒ,  to  the  Bayesian  analysis  in  order  to  fit  LP3  distributions  to  the  historic  and  future  

data,  could  improve  the  fit  of  the  distribution,  but  it  could  also  add  more  uncertainty  with  the  

additional  parameter.      

Assessing  the  proposed  management  strategies  based  on  two  different  robustness  

parameters  demonstrates  how  the  climate  response  surfaces  can  be  adjusted  for  different  

metrics,  as  well  as  the  importance  of  examining  all  pertinent  criteria  for  decision-­‐making.  Our  

assessment  based  on  EAD  demonstrates  the  extent  to  which  the  management  strategies  

increase  the  robustness  of  the  systems,  but  it  only  examines  flood  risk  benefits  without  

examining  cost  of  the  strategies.  Adding  costs  into  the  analysis,  as  well  as  the  net  benefits  over  

the  life  of  the  project,  rather  than  average  damages  (EAD),  provides  an  alternate  perspective  on  

Page 98: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

88  

the  cost-­‐effectiveness  of  the  projects.  Nonetheless,  these  two  metrics  only  address  the  primary  

goal  of  the  CVFPP,  to  reduce  flood  risk,  and  neglect  to  consider  the  three  sub-­‐goals,  namely  to:    

improve  operations  and  maintenance;  promote  ecosystem  functions;  improve  institutional  

support;  and  promote  multi-­‐benefit  projects.  Similar  climate  response  surfaces  could  be  

developed  for  metrics  to  assess  the  three  sub-­‐goals  of  the  CVFPP.            

Our  case  study  demonstration  of  a  bottom-­‐up  methodology  also  reveals  interesting  

points  regarding  flood  risk  within  the  American  River  system  and  the  robustness  of  proposed  

management  actions.  We  find  that  the  EAD  of  the  American  River  flood  management  system  is  

highly  sensitive  to  small  changes  in  the  flood  frequency  parameters,  which  brings  up  two  points  

of  concern.  First,  real  changes  in  the  flood  regime  due  to  nonstationarity  could  result  in  very  

different  damage  scenarios  for  the  basin.  Secondly,  considering  the  uncertainty  associated  with  

flood  frequency  parameters,  even  those  calculated  with  observed  gauge  records,  water  

managers  must  use  caution  in  basing  decisions  on  the  median  or  mean  EAD  without  considering  

the  uncertainty  of  the  calculation  and  sensitivity  of  EAD  to  the  frequency  parameters.  

In  terms  of  vulnerability,  we  find  that  the  current  system  operates  in  a  vulnerable  state  

with  a  median  EAD  above  the  threshold  EAD,  as  expected.  The  vulnerability  of  the  flood  

management  system  to  current  conditions  provides  the  impetus  to  invest  in  improving  the  

system  through  the  CVFPP  management  strategy.    

To  increase  the  utility  of  the  vulnerability  assessment,  we  use  historic  observed  and  

future  project  hydrologic  data  to  develop  a  plausible  range  of  future  flood  regimes  and  our  

confidence  in  that  range.  Our  results  demonstrate  poor  skill  in  ability  of  GCM  model  runs  forced  

with  observed  parameters  to  capture  to  statistical  parameters  of  the  observed  historic  flood  

regime  of  the  American  River.  Some  correlation  is  found  between  future  model  projections  and  

trends  in  the  historic  data.  However,  trends  based  on  the  historic  data  exhibit  a  high  degree  of  

uncertainty  due  to  the  limited  length  of  the  gauge  record.  Further,  we  in  no  way  demonstrate  

that  the  historic  trend  in  increased  flood  regime  intensity  is  linked  to  anthropogenic  climatic  

changes.  Nonetheless,  both  the  future  GCM  projections  and  historic  data  trends  indicate  a  

similar  increase  in  the  flood  frequency  mean  and  standard  deviation  over  time.  These  results  

Page 99: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

89  

are  also  in  agreement  with  the  physical  science  governing  floods  under  climate  change  and  

direct  output  from  the  GCMs,  which  suggest  warmer  winters  with  more  precipitation  in  the  

Sierra  Nevada  mountain  range  (IPCC,  2007,  2012;  Das  et  al.,  2011).  

Our  results  also  highlight  differences  in  the  robustness  of  different  flood  management  

strategies  in  the  CVFPP,  depending  on  whether  robustness  is  measured  in  terms  of  flood  risk  

(EAD)  or  cost-­‐effectiveness  (BCR).  The  Enhance  System  strategy  provides  the  greatest  

robustness  in  terms  of  EAD,  and  is  also  the  most  expensive  strategy.  Taking  project  costs  into  

consideration,  the  Protect  Communities  strategy  exhibits  the  greatest  robustness  in  terms  its  

ability  to  maintain  a  BCR  above  the  threshold  for  the  largest  portion  of  the  plausible  future  

range.  The  Combined  strategy  exhibits  the  second  highest  robustness  indicator  values  for  both  

metrics,  and  is  also  the  second  most  expensive  strategy.    

The  results  of  the  robustness  assessment  lead  to  important  planning  considerations.  

While  all  of  the  proposed  strategies  offer  substantial  gains  in  EAD  robustness  under  historic  

hydrological  conditions,  the  robustness  drops  drastically  when  considering  the  plausible  range  

of  future  climate  impacts.  As  such,  decision-­‐making  processes  that  neglect  to  consider  future  

impacts  run  the  danger  of  implementing  strategies  that  do  not  reduce  risk  as  much  as  expected.  

Alternatively,  the  cost-­‐effectiveness  of  the  management  strategies  initially  increases  in  value  

under  more  extreme  flood  conditions.  As  such,  some  management  strategies  may  become  

more  financially  appealing  when  future  hydrologic  conditions  are  taken  into  consideration.  

While  our  results  describe  the  conditions  that  may  favor  one  strategy  over  another,  the  

uncertainty  associated  with  climate  change  and  the  wide  plausible  range  of  future  conditions  

say  little  to  nothing  about  which  conditions  we  expect  to  occur  in  the  future.  However,  over  the  

course  of  the  long  implementation  time  (15-­‐40  years)  for  the  CVFPP  strategies,  advances  in  

modeling,  data,  and  analysis  methods  may  allow  us  to:    track  changes  in  observed  flood  

frequency;  narrow  the  plausible  range  of  future  conditions  by  decreasing  uncertainty;  and/or  

better  describe  uncertainty  and  associate  probabilities  with  future  conditions.  As  we  gain  such  

knowledge  we  can  adapt  our  decision-­‐making  process  and  management  strategies  to  the  

expected  future  conditions.          

Page 100: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

90  

 4.6. Conclusions  

The  bottom-­‐up  methodology  addresses  arguably  the  two  largest  challenges  facing  

future  flood  management,  namely,  the  lack  of:  1)  climate  projections  that  can  reliably  represent  

historic  conditions  at  the  temporal  and  spatial  resolution  required  for  flood  frequency  analysis,  

and  2)  methods  to  tailor  climate  projections  into  information  useful  to  flood  managers.  

Beginning  the  climate  assessment  process  from  the  bottom-­‐up  enables  us  to  describe  the  

sensitivity  and  vulnerability  of  the  system  to  changes  in  flood  regime,  using  only  historic  data.  

The  climate  response  surfaces  provide  flood  mangers  with  a  visual  representation  of  the  

sensitivity  and  vulnerability  of  the  system.  On  their  own,  these  response  surfaces  can  be  used  

to  assess:  whether  the  current  system  is  operating  above  or  below  vulnerability  thresholds;  

how  flood  risk  might  change  under  different  flood  regimes;  as  well  as  how  different  

management  strategies  might  affect  system  vulnerabilities.  Furthermore,  by  combining  the  

response  surfaces  with  future  climate  projections,  we  can  assess  the  robustness  of  the  current  

system  and  management  strategies  in  terms  of  their  ability  to  meet  a  performance  threshold  

under  a  large  portion  of  the  plausible  range  of  future  conditions.    

Our  case  study  of  the  CVFPP  in  the  American  River  basin  provides  an  opportunity  to  

demonstrate  the  utility  of  bottom-­‐up  methods,  while  yielding  insight  into  the  sensitivity,  

vulnerability,  and  robustness  of  the  American  River  basin  and  management  strategies  proposed  

in  the  CVFPP.  Our  analysis  intentionally  uses  limited  data  sources  and  models  outside  those  

already  included  in  the  2012  CVFPP,  making  it  relatively  easy  to  expand  to  the  larger  Central  

Valley  planning  region  for  inclusion  in  the  forthcoming  2017  CVFPP.  The  2017  CVFPP  builds  

upon  the  decision  made  in  the  2012  CVFPP  to  pursue  the  Combined  strategy  and  focuses  on  

Basin-­‐Wide  Feasibility  Studies,  Regional  Flood  Management  Planning,  and  the  Central  Valley  

Flood  System  Conservation  Strategy  (CA-­‐DWR,  n.d.).  As  the  planning  process  for  the  CVFPP  

moves  forward  and  more  money  is  at  stake,  the  importance  of  considering  climate  impacts  

increases,  along  with  the  consequences  of  not  considering  climate  impacts.      

  While  bottom-­‐up  approaches  hold  promise  for  future  water  resources  decision-­‐making,  

very  few  applications  exist  in  practice  and  many  questions  remain  regarding  the  specific  

Page 101: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

91  

methods  to  use.  This  leads  the  way  for  many  potential  avenues  of  future  work  related  

specifically  to  this  study  and  bottom-­‐up  climate  assessment  more  generally.  In  relation  to  

climate  risk  assessment  for  the  CVFPP,  we  recommend  further  work  to:    a)  include  public  

participation  in  identifying  threshold  metrics  and  levels;  b)  include  other  metrics  besides  those  

focused  on  EAD  (i.e.  those  that  address  the  sub-­‐goals  of  the  CVFPP);  c)  consider  different  

methods  to  combine  historic  and  future  data  (i.e.  informative  priors  of  future  projections  based  

on  historical  data);  and  d)  consider  other  sources  of  uncertainty  and  nonstationarity  (e.g.  

population  growth,  land  change,  etc.).  More  generally,  the  field  of  climate  adaptation  could  

benefit  tremendously  from  more  on-­‐the-­‐ground  examples  of  climate  risk  assessment  and  

adaptation  planning.    

 

   

Page 102: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

92  

Figure  4.1.  Map  of  the  American  River  Basin,  CA  showing  major  SPFC  project  works  

   

   

Figure  4.2.  Daily  hydrograph  at  Fair  Oaks  USGS  gauge  on  the  American  River,  CA.  

   

Folsom  Dam  

Page 103: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

93  

Figure  4.3.  Basis  of  the  EAD  computation  used  in  CVFPP  HEC-­‐FDA  model  (modified  from  CA-­‐DWR,  2012).  a)  Stage-­‐damage  curve,  where  the  solid  line  indicates  the  curve  calculated  in  HEC-­‐FDA  from  discrete  exceedance  events  calculated  using  historical  gauge  data;  b)  Stage-­‐exceedance  curves,  where  the  solid  line  indicates  the  stage-­‐exceedance  curve  calculated  in  HEC-­‐FDA  from  the  99.9-­‐,  10-­‐,  4-­‐,  2-­‐,  1-­‐,  0.5-­‐,  and  0.2-­‐percent  exceedance  events  calculated  using  historical  gauge  data  (closed  points).  The  dashed  lines  and  open  points  indicate  how  the  stage-­‐probability  curves  were  shifted  to  assess  the  sensitivity  of  EAD  to  different  climates.  c)  Damage-­‐exceedance  curves  calculated  in  FDA  by  combining  a)  and  b).        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Stage (ft)

Dam

age

($)

EAD = DdF(D)0

Exceedance Probability 1 0

Dam

age

($)

p

p

Sta

ge (f

t)

Exceedance Probability 1 0

Page 104: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

94  

Figure  4.4.  Gridded  FDA  model  runs  (open  circles)  used  in  the  regression  model  to  develop  the  flood  risk  response  surface,  LN(EAD)  =  ƒ(µ,  σ),  under  Without  Project  conditions  (shaded  background).  The  system  is  vulnerable  to  flood  regimes  above  the  white  threshold  line  where  EAD  =  $38M.    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4.5.  Observed  and  modeled  daily  streamflow  used  for  historic  and  future  flood  frequency  analysis  on  the  American  River  at  Folsom.  

 

 

 

 

 

 

 

 

 

   

1900 2000 2100

CNRM CM3 GFDL CM2.1

CCSR MIROC3.2 MPI ECHAM5

NCAR CCSM3 NCAR PCM1

CNRM CM3 GFDL CM2.1

CCSR MIROC3.2 MPI ECHAM5

NCAR CCSM3 NCAR PCM1

Observed - gauge

A2

B1

*

Year

Historic observed Historic simulations Future simulations

Climate projections

(12)

1905-2012 Gauge data

Vulnerabili

ty  range  

Coping  

Coping  range  

Vulnerability  range  

Page 105: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

95  

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

σ, 3

0-da

y S

D L

N(D

isch

arge

)

30 previous yrs MA

b)

30 yr. MA Linear (R-sq = 0.80) Poly (R-sq = 0.96)

6.1

6.2

6.3

6.4

6.5

6.6

6.7

µ, 3

0-da

y m

ean

LN(D

isch

arge

)

30 previous yrs MA

a)

30 yr. MA Linear (R-sq = 0.10) Poly (R-sq = 0.74)

Figure  4.6.  Expected  value  of  30-­‐year  a)  average  (μ)  and  standard  deviation  (σ)  of  LN-­‐historic  observed  3-­‐day  average  peak  annual  flows.  The  solid  lines  represent  long  term  linear  trends  fit  to  the  moving  average  (MA),  with  fourth  degree  polynomial  trends,  displayed  with  the  dashed  lines.      

 

 

Figure  4.7.  Posterior  interval  boxplots  of:    a)  mean  peak  annual  flow,  μ,  and  b)  standard  deviation,  σ,  of  peak  annual  flow  for  observed  streamflow  data  (dark  gray)  and  GCMs  forced  with  observed  parameters  (light  gray)  from  1950  –  1999.  The  whiskers  signify  the  95%  posterior  interval,  with  quartiles  around  the  median  value  (black  line)  indicated  with  the  boxes.      

 

 

     

   

0.4

0.6

0.8

1.0

1.2

1.4

Stan

dard

dev

iatio

n, m

Observed and modeled historic record

6.0

6.2

6.4

6.6

6.8

7.0

7.2

LN(M

ean

annu

al p

eak

disc

harg

e, c

ms)

, µ

Observed and modeled historic record

a)   b)  

Page 106: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

96  

Figure  4.8.  Expected  posterior  flood  frequency  curves  derived  from  observed  streamflow  data  and  GCMs  forced  with  observed  parameters  from  1950  –  1999.  

 

                     

Page 107: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

97  

 Figure  4.9.  Posterior  distribution  draws  for  the  historic  data  (1905-­‐2012,  light  grey  circles)  and  each  of  the  GCMs  (2000-­‐2099,  dark  grey  circles).  The  contour  lines  represent  the  EAD  threshold  under  Without  Project  conditions  and  the  four  management  strategies  outlined  in  the  2012  CVFPP.  The  percentage  of  posterior  distribution  draws  below  the  threshold  represents  the  coping  range  for  both  historic  and  future  conditions,  while  the  system  remains  vulnerable  to  conditions  above  the  threshold  lines.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Page 108: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

98  

Figure  4.10.  Posterior  interval  boxplots  of:    a)  mean  peak  annual  flow,  μ,  and  b)  standard  deviation,  σ,  of  peak  annual  flow  for  observed  streamflow  data  from  1905  -­‐  2012  (dark  gray  box)  and  GCMs  forced  with  future  emissions  scenarios  (light  gray)  from  2000  –  2099.  The  whiskers  signify  the  95%  posterior  interval,  with  quartiles  around  the  median  value  (black  line)  indicated  with  the  boxes.    

   

         

   

   

 

 

 

 

 

 

   

6.2

6.4

6.6

6.8

7.0

7.2

LN(M

ean

annu

al p

eak

disc

harg

e, c

ms)

, µ

Observed historic and modeled future

0.6

0.8

1.0

1.2

1.4

Stan

dard

dev

iatio

n, m

Observed historic and modeled future

a)   b)  

Page 109: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

99  

 Figure  4.11.  Benefit-­‐cost  ratio  response  surfaces  for  each  of  the  management  strategies:    a)  Design  Capacity,  b)  Protect  Communities,  c)  Enhance  System,  d)  Combined.  The  strategy  exceeds  the  cost-­‐effectiveness  threshold  for  flood  regimes  between  the  black  threshold  lines  where  BCR  =  0.2.  BCR  below  -­‐3  are  displayed  in  white.      

 

       

a)   b)  

d)  c)  

a)  

c)  

Page 110: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

100  

Table  4.1.  Overview  of  CVFPP  management  strategies  Short  name   CVFPP  name    

[CA-­‐DWR,  2012]  Strategy  description  [CA-­‐DWR,  2012]  

Without  Project  

No  Project   Continuation  of  existing  conditions  and  inclusion  of  projects  that  are  currently  authorized,  funded,  permitted,  and/or  under  construction.  

Design  Capacity  

Achieve  SPFC  Design  Capacity  (SPFC)  

Focuses  on  improving  existing  SPFC  facilities,  primarily  urban  and  rural  levees,  so  that  they  can  convey  their  design  flows  outlined  in  the  USACE  1957  Design  Profile  and  Operations  and  Maintenance  Manuals  of  the  SPFC.  

Protect  Communities  

Protect  High  Risk  Communities  (PHRC)  

Focuses  on  levee  improvements  to  protect  life,  safety,  and  property  for  high  risk  population  centers,  in  particular  the  city  of  Sacramento.    

Enhance  System  

Enhance  Flood  System  Capacity  (EFSC)  

Seeks  opportunities  to  achieve  multiple  benefits  through  enhanced  flood  system  storage  and  conveyance  capacity,  to  protect  high  risk  communities,  and  to  fix  levees  in  place  in  rural-­‐agricultural  areas.  This  approach  combines  most  of  the  features  of  the  above  two  approaches,  with  additional  features  and  functions  for  ecosystem  restoration  and  enhancements.  

Combined   State  Systemwide  Investment  Approach  (SSIA)  

Combines  the  strengths  of  above  three  strategies  by  including  significant  capital  investment  to  strengthen  levees  protecting  urban  areas  and  small  communities,  while  also  expanding  flood  conveyance  capacities,  coordinating  reservoir  operations,  and  restoring  floodplains.  

   

   

Table  4.2.  Low  and  high  cost  upfront  estimates  ($M)  for  each  of  the  CVFPP  management  strategies  [CA-­‐DWR,  2012]  

Cost  estimate   Design  Capacity  

Protect  Communities  

Enhance  System   Combined  

Low     3,065   3,965   6,669   6,391  

High     3,833   4,460   8,110   6,502  

 

     

Page 111: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

101  

Table  4.3.  Summary  statistics  for  the  linear  response  function  fit  to  the  EAD,  mean,  and  standard  deviation,  ln 𝐸𝐴𝐷 = 𝛽! +  𝛽!µμ+ 𝛽!

!!.  

Regression  coefficients   Goodness  of  fit  

𝜷𝟎   𝜷𝟏   𝜷𝟐   Multiple  R2  

8.08***   2.53***   -­‐5.45***   0.87  

Significance  Codes:    0  ‘***’  0.001  ‘**’  0.01  ‘*’  0.05  ‘.’  0.1  ‘  ’  1  

     Table  4.4.  EAD  robustness  indicator,  percent  of  posterior  draws  of  flood  frequency  parameters  that  yield  an  EAD  below  the  threshold.  

Input  data     Without  Project  

Design  Capacity  

Protect  Communities  

Enhance  System   Combined  

Observed    (1905-­‐2012)     15%   27%   84%   93%   86%  

Modeled    (2000-­‐2099)     1%   3%   15%   22%   17%  

   

   Table  4.5.  BCR  robustness  indicator,  percent  of  posterior  draws  of  flood  frequency  parameters  that  yield  a  BCR  above  the  threshold.  

Input  data     Design  Capacity  

Protect  Communities  

Enhance  System   Combined  

Observed    (1905-­‐2012)     0%   15%   2%   3%  

Modeled    (2000-­‐2099)     0%   86%   69%   75%  

       

Page 112: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

102  

References  

Bayes,  Mr,  and  Mr  Price.  1763.  “An  Essay  towards  Solving  a  Problem  in  the  Doctrine  of  Chances.  By  the  Late  Rev.  Mr.  Bayes,  F.  R.  S.  Communicated  by  Mr.  Price,  in  a  Letter  to  John  Canton,  A.  M.  F.  R.  S.”  Philosophical  Transactions  53  (January):  370–418.  doi:10.1098/rstl.1763.0053.  

Bengtsson,  Lennart,  Stefan  Hagemann,  and  Kevin  I.  Hodges.  2004.  “Can  Climate  Trends  Be  Calculated  from  Reanalysis  Data?”  Journal  of  Geophysical  Research:  Atmospheres  109  (D11):  n/a–n/a.  doi:10.1029/2004JD004536.  

Brown,  Casey,  Yonas  Ghile,  Mikaela  Laverty,  and  Ke  Li.  2012.  “Decision  Scaling:  Linking  Bottom-­‐up  Vulnerability  Analysis  with  Climate  Projections  in  the  Water  Sector.”  Water  Resources  Research  48  (9):  n/a–n/a.  doi:10.1029/2011WR011212.  

Brown,  Casey,  William  Werick,  Wendy  Leger,  and  David  Fay.  2011.  “A  Decision-­‐Analytic  Approach  to  Managing  Climate  Risks:  Application  to  the  Upper  Great  Lakes.”  JAWRA  Journal  of  the  American  Water  Resources  Association  47  (3):  524–34.  doi:10.1111/j.1752-­‐1688.2011.00552.x.  

Brown,  Casey,  and  Robert  L.  Wilby.  2012.  “An  Alternate  Approach  to  Assessing  Climate  Risks.”  Eos,  Transactions  American  Geophysical  Union  93  (41):  401–2.  doi:10.1029/2012EO410001.  

California  Department  of  Water  Resources  (CA-­‐DWR).  2009.  “Climate  Change  Work  Group  Meeting  #2  Minutes.”  http://www.water.ca.gov/cvfmp/docs/Meeting2SummaryCCTAWG_20100927.pdf.  

———.  2010a.  “Central  Valley  Flood  Protection  Plan  Regional  Conditions  Report.”  http://www.water.ca.gov/cvfmp/docs/RegionalConditionsReportCVFPP201003.pdf.  

———.  2010b.  “State  Plan  of  Flood  Control  Descriptive  Document.”  http://www.water.ca.gov/cvfmp/documents.cfm.  

———.  2012.  “2012  Central  Valley  Flood  Protection  Plan.”  http://www.water.ca.gov/cvfmp/docs/2012%20CVFPP_June.pdf.  

———.  2013.  “Central  Valley  Flood  Management  Planning  Program.”  2017  CVFPP  Update.  September  17.  http://www.water.ca.gov/cvfmp/2017cvfpp.cfm.  

Das,  Tapash,  Michael  Dettinger,  Daniel  Cayan,  and  Hugo  Hidalgo.  2011.  “Potential  Increase  in  Floods  in  California’s  Sierra  Nevada  under  Future  Climate  Projections.”  Climatic  Change  109:  71–94.  doi:10.1007/s10584-­‐011-­‐0298-­‐z.  

Dessai,  Suraje,  and  Mike  Hulme.  2007.  “Assessing  the  Robustness  of  Adaptation  Decisions  to  Climate  Change  Uncertainties:  A  Case  Study  on  Water  Resources  Management  in  the  East  of  England.”  Global  Environmental  Change  17  (1):  59–72.  doi:16/j.gloenvcha.2006.11.005.  

Dettinger,  Michael  D.,  Daniel  R.  Cayan,  Mary  K.  Meyer,  and  Anne  E.  Jeton.  2004.  “Simulated  Hydrologic  Responses  to  Climate  Variations  and  Change  in  the  Merced,  Carson,  and  American  River  Basins,  Sierra  Nevada,  California,  1900–2099.”  Climatic  Change  62  (1-­‐3):  283–317.  doi:10.1023/B:CLIM.0000013683.13346.4f.  

Easterling,  D.  R.,  J.  L.  Evans,  P.  Ya  Groisman,  T.  R.  Karl,  K.  E.  Kunkel,  and  P.  Ambenje.  2000.  “Observed  Variability  and  Trends  in  Extreme  Climate  Events:  A  Brief  Review  *.”  Bulletin  

Page 113: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

103  

of  the  American  Meteorological  Society  81  (3):  417–25.  doi:10.1175/1520-­‐0477(2000)081<0417:OVATIE>2.3.CO;2.  

Faber,  Beth  A.  2010.  “Current  Methods  for  Hydrologic  Frequency  Analysis.”  In  Workshop  on  Nonstationarity,  Hydrologic  Frequency  Analysis,  and  Water  Management,  edited  by  J.  Rolf  Olsen,  Julie  Kiang,  and  Reagan  Waskom.  Information  Series  No.  109.  Boulder,  CO:  Colorado  Water  Institute.  http://www.cwi.colostate.edu/NonstationarityWorkshop/index.shtml.  

Ferreira,  Joseph,  and  California  Department  of  Water  Resources  (CA-­‐DWR).  1982.  A  Preliminary  Study  of  Flood  Control  Alternatives  on  the  Lower  American  River.  Sacramento:  State  of  California,  the  Resources  Agency,  Department  of  Water  Resources,  Central  District.  

Few,  Roger,  Katrina  Brown,  and  Emma  L.  Tompkins.  2007.  “Public  Participation  and  Climate  Change  Adaptation:  Avoiding  the  Illusion  of  Inclusion.”  Climate  Policy  7  (1):  46–59.  

Fowler,  H.  J.,  S.  Blenkinsop,  and  C.  Tebaldi.  2007.  “Linking  Climate  Change  Modelling  to  Impacts  Studies:  Recent  Advances  in  Downscaling  Techniques  for  Hydrological  Modelling.”  International  Journal  of  Climatology  27  (12):  1547–78.  

Frederick,  K.  D,  D.  C  Major,  and  E.  Z  Stakhiv.  1997.  “Water  Resources  Planning  Principles  and  Evaluation  Criteria  for  Climate  Change:  Summary  and  Conclusions.”  Climatic  Change  37  (1):  291–313.  

Griffis,  Veronica  W.,  and  Jery  R.  Stedinger.  2007.  “Incorporating  Climate  Change  and  Variability  into  Bulletin  17B  LP3  Model.”  In  World  Environmental  and  Water  Resources  Congress  2007,  1–8.  http://ascelibrary.org/doi/pdf/10.1061/40927(243)69.  

Hallegatte,  Stéphane.  2009.  “Strategies  to  Adapt  to  an  Uncertain  Climate  Change.”  Global  Environmental  Change  19  (2):  240–47.  doi:10.1016/j.gloenvcha.2008.12.003.  

Hallegatte,  Stéphane,  Ankur  Shah,  Casey  Brown,  Robert  Lempert,  and  Stuart  Gill.  2012.  “Investment  Decision  Making  Under  Deep  Uncertainty  -­‐-­‐  Application  to  Climate  Change”.  SSRN  Scholarly  Paper  ID  2143067.  Rochester,  NY:  Social  Science  Research  Network.  http://papers.ssrn.com/abstract=2143067.  

Hamlet,  Alan  F.,  and  Dennis  P.  Lettenmaier.  2007.  “Effects  of  20th  Century  Warming  and  Climate  Variability  on  Flood  Risk  in  the  Western  U.S.”  Water  Resources  Research  43  (June):  17  PP.  doi:200710.1029/2006WR005099.  

Intergovernmental  Panel  on  Climate  Change  (IPCC).  2007.  Climate  Change  2007:  Impacts,  Adaptation  and  Vulnerability:  Contribution  of  Working  Group  II  to  the  Fourth  Assessment  Report  of  the  Intergovernmental  Panel  on  Climate  Change.  Edited  by  M  Parry.  Cambridge  U.K.;  New  York:  Cambridge  University  Press.  

———.  2012.  “Summary  for  Policymakers.  In:  Managing  the  Risks  of  Extreme  Events  and  Disasters  to  Advance  Climate  Change  Adaptation.”  A  Special  Report  of  Working  Groups  I  and  II  of  the  Intergovernmental  Panel  on  Climate  Change.  C.  Cambridge,  U.K.  and  New  York,  NY,  USA.  http://ipcc-­‐wg2.gov/SREX/images/uploads/SREX-­‐SPMbrochure_FINAL.pdf.  

Johnson,  Thomas  E.,  and  Christopher  P.  Weaver.  2009.  “A  Framework  for  Assessing  Climate  Change  Impacts  on  Water  and  Watershed  Systems.”  Environmental  Management  43  (1):  118–34.  doi:10.1007/s00267-­‐008-­‐9205-­‐4.  

Page 114: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

104  

Kelley,  Robert  L.  1989.  Battling  the  Inland  Sea:  Floods,  Public  Policy,  and  the  Sacramento  Valley.  Berkeley,  CA:  University  of  California  Press.  

Kloprogge,  Penny,  and  Jeroen  P.  Van  Der  Sluijs.  2006.  “The  Inclusion  of  Stakeholder  Knowledge  and  Perspectives  in  Integrated  Assessment  of  Climate  Change.”  Climatic  Change  75  (3):  359–89.  

Knutti,  Reto,  and  Jan  Sedláček.  2013.  “Robustness  and  Uncertainties  in  the  New  CMIP5  Climate  Model  Projections.”  Nature  Climate  Change  3  (4):  369–73.  doi:10.1038/nclimate1716.  

Laprise,  René,  R.  De  Elia,  D.  Caya,  S.  Biner,  Ph  Lucas-­‐Picher,  E.  Diaconescu,  M.  Leduc,  A.  Alexandru,  and  L.  Separovic.  2008.  “Challenging  Some  Tenets  of  Regional  Climate  Modelling.”  Meteorology  and  Atmospheric  Physics  100  (1-­‐4):  3–22.  

Lempert,  Robert  J.,  Steven  C.  Bankes,  and  Steven  W.  Popper.  2003.  Shaping  the  Next  One  Hundred  Years:  New  Methods  for  Quantitative,  Long-­‐Term  Policy  Analysis.  Santa  Monica,  CA:  RAND  Corporation.  http://www.rand.org/pubs/monograph_reports/MR1626.html.  

Lins,  Harry  F.,  and  James  R.  Slack.  2005.  “Seasonal  and  Regional  Characteristics  of  US  Streamflow  Trends  in  the  United  States  from  1940  to  1999.”  Physical  Geography  26  (6):  489–501.  

Lunn,  David  J.,  Andrew  Thomas,  Nicky  Best,  and  David  Spiegelhalter.  2009.  “WinBUGS-­‐a  Bayesian  Modelling  Framework:  Concepts,  Structure,  and  Extensibility.”  Statistics  and  Computing  10  (4):  325–37.  

Maurer,  E.  P.,  and  H.  G.  Hidalgo.  2008.  “Utility  of  Daily  vs.  Monthly  Large-­‐Scale  Climate  Data:  An  Intercomparison  of  Two  Statistical  Downscaling  Methods.”  Hydrology  and  Earth  System  Sciences  12  (2):  551–63.  

Maurer,  E.  P.,  H.  G.  Hidalgo,  T.  Das,  M.  D.  Dettinger,  and  D.  R.  Cayan.  2010.  “The  Utility  of  Daily  Large-­‐Scale  Climate  Data  in  the  Assessment  of  Climate  Change  Impacts  on  Daily  Streamflow  in  California.”  Hydrol.  Earth  Syst.  Sci.  14  (6):  1125–38.  

Mote,  Philip,  Levi  Brekke,  Philip  B.  Duffy,  and  Ed  Maurer.  2011.  “Guidelines  for  Constructing  Climate  Scenarios.”  Eos,  Transactions  American  Geophysical  Union  92  (31):  257–58.  doi:10.1029/2011EO310001.  

National  Research  Council  (NRC),  Committee  on  Risk-­‐Based  Analysis  for  Flood  Damage  Reduction,  Water  Science  and  Technology  Board.  2000.  Risk  Analysis  and  Uncertainty  in  Flood  Damage  Reduction  Studies.  Washington,  D.C.:  The  National  Academies  Press.  

National  Research  Council  (NRC).  Committee  on  American  River  Flood  Frequencies.  1999.  Improving  American  River  Flood  Frequency  Analysis.  National  Academies  Press.  

Parrett,  C.,  A.  Veilleux,  J.  R.  Stedinger,  N.  A.  Barth,  D.  L.  Knifong,  and  J.  C.  Ferris.  2011.  “Regional  Skew  for  California,  and  Flood  Frequency  for  Selected  Sites  in  the  Sacramento-­‐San  Joaquin  River  Basin,  Based  on  Data  through  Water  Year  2006”.  U.  S.  Geological  Survey.  http://pubs.usgs.gov/sir/2010/5260/.  

Platt,  Rutherford  H.  1995.  Flood  Risk  Management  and  the  American  River  Basin:  An  Evaluation.  National  Academies  Press.  

Page 115: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

105  

Prudhomme,  Christel,  Nick  Reynard,  and  Sue  Crooks.  2002.  “Downscaling  of  Global  Climate  Models  for  Flood  Frequency  Analysis:  Where  Are  We  Now?”  Hydrological  Processes  16  (6):  1137–50.  doi:10.1002/hyp.1054.  

Prudhomme,  Christel,  R.L.  Wilby,  S.  Crooks,  A.L.  Kay,  and  N.S.  Reynard.  2010.  “Scenario-­‐Neutral  Approach  to  Climate  Change  Impact  Studies:  Application  to  Flood  Risk.”  Journal  of  Hydrology  390  (3-­‐4):  198–209.  doi:10.1016/j.jhydrol.2010.06.043.  

Roe,  Gerard  H.,  and  Marcia  B.  Baker.  2007.  “Why  Is  Climate  Sensitivity  So  Unpredictable?”  Science  318  (5850):  629–32.  doi:10.1126/science.1144735.  

Smit,  Barry,  and  Johanna  Wandel.  2006.  “Adaptation,  Adaptive  Capacity  and  Vulnerability.”  Global  Environmental  Change  16  (3):  282–92.  

United  States  Army  Corps  of  Engineers  (USACE).  1996.  “Risk-­‐Based  Analysis  for  Damage  Reduction  Studies”.  Engineering  and  Design  Manual  EM  1110-­‐2-­‐1619.  http://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-­‐2-­‐1619.pdf.  

———.  2002.  “Sacramento  and  San  Joaquin  River  Basins  Comprehensive  Study.”  http://www.compstudy.net/reports.html.  

———.  2006.  Regulation  No.  1105-­‐2-­‐101.  http://140.194.76.129/publications/eng-­‐regs/er1105-­‐2-­‐101/entire.pdf.  

US  Federal  Emergency  Management  Agency  (FEMA).  2001.  “Appendix  B.  Understanding  the  FEMA  Benefit-­‐Cost  Analysis  Process.”  In  Engineering  Principles  and  Practices  for  Retrofitting  Flood-­‐Prone  Residential  Structures.  FEMA.  http://www.fema.gov/media-­‐library/assets/documents/3001?id=1645.  

US  Water  Resources  Council.  1982.  “Guidelines  for  Determining  Flood  Flow  Frequency”.  Bulletin  #17B.  

Wilby,  Robert  L,  and  Suraje  Dessai.  2010.  “Robust  Adaptation  to  Climate  Change.”  Weather  65  (7):  180–85.  doi:10.1002/wea.543.  

Willis,  Ann  D.,  Jay  R.  Lund,  Edwin  S.  Townsley,  and  Faber,  Beth  A.  2011.  “Climate  Change  and  Flood  Operations  in  the  Sacramento  Basin,  California.”  San  Francisco  Estuary  and  Watershed  Science  9  (2).  

Xu,  C.  1999.  “From  GCMs  to  River  Flow:  A  Review  of  Downscaling  Methods  and  Hydrologic  Modelling  Approaches.”  Progress  in  Physical  Geography  23  (2):  229–49.  

 

   

Page 116: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

106  

Chapter  5. Conclusions  

 

  Despite  widespread  recognition  that  climate  change  will  reveal  its  most  profound  

effects  through  changes  in  hydrology,  the  incorporation  of  climate  change  into  water  resources  

management  lags  behind  the  climate  literature.  Water  managers  face  considerable  barriers  in  

incorporating  climate  considerations  into  planning  and  management.  In  particular,  status  quo  

flood  frequency  analysis  and  top-­‐down  climate  risk  assessment  are  ill-­‐suited  for  addressing  

deeply  uncertain,  nonstationary  conditions.  To  address  these  issues,  I  develop  a  set  of  

complimentary  methods  to  assess  climate  risk  and  potential  adaptation  strategies.  These  

include  methods  to  assess  a  current  system’s  flexibility,  sensitivity,  and  vulnerability,  as  well  as  

the  robustness  of  management  actions  and  their  impact  on  system  flexibility.    

  We  find  that  flexibility  is  an  inherent  ability  of  the  human  and  physical  elements  of  a  

water  system  to  cope  with,  or  adapt  to,  uncertain  and  changing  conditions,  in  a  timely  and  cost-­‐

effective  manner.  Given  that  the  flexibility  of  a  system  is  determined  by  its  inherent  

characteristics,  we  propose  metrics  that  are  assessable  using  system  specifications,  

components,  and  institutions,  rather  than  deeply  uncertain  future  climate  projections.  These  

metrics  provide  the  most  utility  when  applied  in  a  comparative  manner,  such  as  by  assessing  

the  additional  flexibility  provided  by  a  management  action  in  comparison  to  baseline  

conditions.  Further  application  of  the  metrics  to  a  larger  range  of  case  studies  can  provide  more  

insight  into  broader  thinking  on  flood  management  flexibility  and  its  relationship  to  adaptive  

capacity.  

  In  addition  to  the  flexibility  assessment,  we  also  present  a  bottom-­‐up  climate  risk  

assessment  as  an  alternative  to  more  traditional  top-­‐down  approaches.  The  outlined  approach  

provides  a  viable  method  for  flood  managers  to  assess  the  sensitivity  and  vulnerability  of  

systems,  without  the  need  to  use  deeply  uncertain  climate  projections.  From  this  assessment,  

water  managers  can  identify  the  climate  conditions  that  push  the  system  into  a  vulnerable  state  

in  which  it  is  unable  to  meet  performance  thresholds.  Combining  this  information  with  historic  

flow  data  and  future  projections,  allows  us  to  assess  the  robustness  of  the  current  system  and  

Page 117: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

107  

management  strategies.  While  we  compare  management  strategies  based  on  flood  risk  and  

cost-­‐effectiveness  robustness  metrics,  other  metrics  could  and  should  be  developed  to  more  

holistically  compare  the  benefits  and  costs  of  each  strategy  (e.g.  metrics  related  to  the  CVFPP  

secondary  goals).  

Application  of  the  flexibility  and  bottom-­‐up  climate  assessment  reveal  interesting  points  

regarding  the  existing  flood  management  system,  as  well  as  the  proposed  management  actions  

in  the  Sacramento  River  basin,  CA.  In  terms  of  flexibility,  the  proposed  strategies  place  a  

disproportionate  emphasis  on  increasing  slack  in  the  current  system  as  well  as  a  concentration  

of  expenditures  towards  structural  versus  non-­‐structural  components.  Strategies  that  have  

broader  management  goals  (e.g.  Enhance  System  and  Combined)  use  a  larger  variety  of  

management  elements  and  contribute  more  to  increasing  the  flexibility  characteristics  than  

more  narrowly  focused  strategies  (e.g.  Protecting  Communities  and  restoring  the  Design  

Capacity  of  the  system).  The  Enhance  System  and  Combined  strategy  also  costs  the  most  and  

require  the  longest  implementation  time,  indicating  that  flexibility  comes  at  a  price.  

The  robustness  assessment  for  the  four  CVFPP  management  strategies  compliments  the  

flexibility  assessment,  yielding  related,  but  slightly  different  results.  Strategies  that  most  

increase  flexibility  also  perform  well  in  terms  of  the  robustness  indicator  for  flood  risk  and  cost-­‐

effectiveness.  On  the  other  end  of  the  spectrum,  the  Design  Capacity  strategy  performed  the  

poorest  in  all  flexibility  and  climate  risk  assessments.  Not  as  clearly  in  line  with  the  other  

results,  the  Protect  Communities  approach  performs  well  under  the  robustness  metrics,  but  it  

ranks  as  one  of  the  least  flexible  strategies.  As  such,  we  cannot  make  any  conclusive  statement  

about  the  relationship  between  flexibility  and  robustness  of  management  actions  from  this  

limited  case  study.  

In  examining  the  management  strategy  moving  forward,  CA-­‐DWR  adopted  the  

Combined  strategy  to  incorporate  many  of  the  beneficial  features  included  in  the  three  

preliminary  approaches  at  a  more  reasonable  cost,  and  it  appears  to  fill  that  role  well.  The  

Combined  strategy  ranks  slightly  behind  the  top  performing  strategy  in  terms  of  flexibility,  

robustness  in  maintaining  flood  risk  below  the  threshold,  and  robustness  based  on  cost-­‐

Page 118: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

108  

effectiveness.  Thus,  it  appears  as  though  a  management  strategy  that  balances  cost-­‐

effectiveness  with  flexibility  and  flood-­‐risk  robustness  appeals  most  to  decision-­‐makers.  

In  this  dissertation  I  demonstrate  the  utility  of  a  set  of  methods  to  assess  climate  risk  in  

practice.  As  a  new  field,  full  of  unknowns,  much  work  remains  undone  in  the  realm  of  climate  

risk  assessment  and  adaptation.  The  presented  studies  in  California  offer  a  starting  point  for  

collecting  a  suite  of  climate  risk  assessment  case  studies  as  reference  material  for  water  

managers.  The  resources  available  in  California,  along  with  extensive  previous  research,  

provides  a  wide  breadth  of  existing  data  and  models  for  the  studies  presented  here.  However,  

we  intentionally  designed  our  methods  to  be  applicable  in  data  poorer  regions,  and  to  provide  

valuable  information  even  in  the  absence  of  uncertain  GCM  output.  It  remains  essential  that  

future  studies  modify  the  assessment  methods  around  the  decision  context  and  appropriate  

data  and  models.  We  intend  our  studies  to  provide  water  managers  with  a  methodological  

basis  to  assess  climate  risk,  which  can  be  adapted  and  applied  to  other  water  systems  around  

the  world.    

   

Page 119: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

109  

Bibliography  

Adger,  W.  Neil,  Nigel  W.  Arnell,  and  Emma  L.  Tompkins.  2005.  “Successful  Adaptation  to  Climate  Change  across  Scales.”  Global  Environmental  Change  15  (2):  77–86.  

Adger,  W.  Neil,  Nick  Brooks,  Graham  Bentham,  Maureen  Agnew,  and  Siri  Eriksen.  2004.  New  Indicators  of  Vulnerability  and  Adaptive  Capacity.  Vol.  122.  Tyndall  Centre  for  Climate  Change  Research  Norwich.  http://www.tyndall.ac.uk/content/new-­‐indicators-­‐vulnerability-­‐and-­‐adaptive-­‐capacity.  

Adger,  W.  Neil,  Katrina  Brown,  and  Emma  L.  Tompkins.  2005.  “The  Political  Economy  of  Cross-­‐Scale  Networks  in  Resource  Co-­‐Management.”  Ecology  and  Society  10  (2):  9.  

Akanbi,  A.A.,  Y.  Lian,  and  T.W.  Soong.  1999.  “An  Analysis  on  Managed  Flood  Storage  Options  for  Selected  Levees  along  the  Lower  Illinois  River  for  Enhancing  Flood  Protection”.  Report  No.  4.  Flood  Storage  Reservoirs  and  Flooding  on  the  Lower  Illinios  River.  Prepared  for  the  Office  of  Water  Resources  Illinois  Department  of  Natural  Resources.  http://www.isws.uiuc.edu/pubdoc/CR/ISWSCR-­‐645.pdf.  

Armitage,  Derek  R.,  Ryan  Plummer,  Fikret  Berkes,  Robert  I.  Arthur,  Anthony  T.  Charles,  Iain  J.  Davidson-­‐Hunt,  Alan  P.  Diduck,  Nancy  C.  Doubleday,  Derek  S.  Johnson,  and  Melissa  Marschke.  2008.  “Adaptive  Co-­‐Management  for  Social-­‐Ecological  Complexity.”  Frontiers  in  Ecology  and  the  Environment  7  (2):  95–102.  

Arthington,  Angela  H.,  Stuart  E.  Bunn,  N.  LeRoy  Poff,  and  Robert  J.  Naiman.  2006.  “The  Challenge  of  Providing  Environmental  Flow  Rules  to  Sustain  River  Ecosystems.”  Ecological  Applications  16  (4):  1311–18.  

Bayes,  Mr,  and  Mr  Price.  1763.  “An  Essay  towards  Solving  a  Problem  in  the  Doctrine  of  Chances.  By  the  Late  Rev.  Mr.  Bayes,  F.  R.  S.  Communicated  by  Mr.  Price,  in  a  Letter  to  John  Canton,  A.  M.  F.  R.  S.”  Philosophical  Transactions  53  (January):  370–418.  doi:10.1098/rstl.1763.0053.  

Bengtsson,  Lennart,  Stefan  Hagemann,  and  Kevin  I.  Hodges.  2004.  “Can  Climate  Trends  Be  Calculated  from  Reanalysis  Data?”  Journal  of  Geophysical  Research:  Atmospheres  109  (D11):  n/a–n/a.  doi:10.1029/2004JD004536.  

Berkes,  Fikret.  2009.  “Evolution  of  Co-­‐Management:  Role  of  Knowledge  Generation,  Bridging  Organizations  and  Social  Learning.”  Journal  of  Environmental  Management  90  (5):  1692–1702.  

Bonder,  Seth.  1979.  “Changing  the  Future  of  Operations  Research.”  Operations  Research  27  (2):  209–24.  

Brean,  Henry.  2012.  “Third  Intake  into  Lake  Mead  Hits  $5  Million  Snag.”  Las  Vegas  Review  Journal,  May  17.  http://www.reviewjournal.com/news/water-­‐environment/third-­‐intake-­‐lake-­‐mead-­‐hits-­‐5-­‐million-­‐snag.  

Brekke,  L.  D,  E.  P  Maurer,  J.  D  Anderson,  M.  D  Dettinger,  E.  S  Townsley,  A.  Harrison,  and  T.  Pruitt.  2009.  “Assessing  Reservoir  Operations  Risk  under  Climate  Change.”  Water  Resources  Research  45  (4):  W04411.  

Brooks,  D.  B,  O.  M  Brandes,  and  S.  Gurman.  2009.  Making  the  Most  of  the  Water  We  Have:  The  Soft  Path  Approach  to  Water  Management.  Earthscan/James  &  James.  

Page 120: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

110  

Brown,  Casey,  Yonas  Ghile,  Mikaela  Laverty,  and  Ke  Li.  2012.  “Decision  Scaling:  Linking  Bottom-­‐up  Vulnerability  Analysis  with  Climate  Projections  in  the  Water  Sector.”  Water  Resources  Research  48  (9):  n/a–n/a.  doi:10.1029/2011WR011212.  

Brown,  Casey,  William  Werick,  Wendy  Leger,  and  David  Fay.  2011.  “A  Decision-­‐Analytic  Approach  to  Managing  Climate  Risks:  Application  to  the  Upper  Great  Lakes.”  JAWRA  Journal  of  the  American  Water  Resources  Association  47  (3):  524–34.  doi:10.1111/j.1752-­‐1688.2011.00552.x.  

Brown,  Casey,  and  Robert  L.  Wilby.  2012.  “An  Alternate  Approach  to  Assessing  Climate  Risks.”  Eos,  Transactions  American  Geophysical  Union  93  (41):  401–2.  doi:10.1029/2012EO410001.  

Byrd,  T.A.,  and  Douglas  E  Turner.  2000.  “Measuring  the  Flexibility  of  Information  Technology  Infrastructure:  Exploratory  Analysis  of  a  Construct.”  Journal  of  Management  Information  Systems  17  (1):  167–208.  

California  Department  of  Water  Resources  (CA-­‐DWR).  2009a.  “California  Water  Plan  Update  2009:  Integrated  Water  Management.”  http://www.waterplan.water.ca.gov/cwpu2009/index.cfm.  

———.  2009b.  “Climate  Change  Work  Group  Meeting  #2  Minutes.”  http://www.water.ca.gov/cvfmp/docs/Meeting2SummaryCCTAWG_20100927.pdf.  

———.  2010a.  “Central  Valley  Flood  Protection  Plan  Regional  Conditions  Report.”  http://www.water.ca.gov/cvfmp/docs/RegionalConditionsReportCVFPP201003.pdf.  

———.  2010b.  “State  Plan  of  Flood  Control  Descriptive  Document.”  http://www.water.ca.gov/cvfmp/docs/SPFCDescriptiveDocNov2010GuideandTOC.pdf.  

———.  2010c.  “State  Plan  of  Flood  Control  Descriptive  Document.”  http://www.water.ca.gov/cvfmp/documents.cfm.  

———.  2012.  “2012  Central  Valley  Flood  Protection  Plan.”  http://www.water.ca.gov/cvfmp/docs/2012%20CVFPP_June.pdf.  

———.  2013a.  “Central  Valley  Flood  Management  Planning  Program.”  2017  CVFPP  Update.  September  17.  http://www.water.ca.gov/cvfmp/2017cvfpp.cfm.  

———.  2013b.  “California’s  Flood  Future:  Recommendations  for  Managing  the  State’s  Flood  Risk.”  

Cameron,  D.,  K.  Beven,  and  P.  Naden.  2000.  “Flood  Frequency  Estimation  by  Continuous  Simulation  under  Climate  Change  (with  Uncertainty).”  http://hal-­‐insu.archives-­‐ouvertes.fr/hal-­‐00304673/.  

Carpenter,  Stephen  R.,  and  William  A.  Brock.  2008.  “Adaptive  Capacity  and  Traps.”  Ecology  and  Society  13  (2):  40.  

Carpenter,  Stephen  R.,  B.  Walker,  J.M.  Anderies,  and  N.  Abel.  2001.  “From  Metaphor  to  Measurement:  Resilience  of  What  to  What?”  Ecosystems  4  (8):  765–81.  

Chatterjee,  S.,  and  B.  Wernerfelt.  1991.  “The  Link  between  Resources  and  Type  of  Diversification:  Theory  and  Evidence.”  Strategic  Management  Journal  12  (1):  33–48.  

Congressional  Budget  Office  (CBO).  1997.  “Water  Use  Conflicts  in  the  West:    Implications  of  Reforming  the  Bureau  of  Reclamations  Water  Supply  Policies.”  http://www.cbo.gov/ftpdocs/0xx/doc46/wateruse.pdf.  

Page 121: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

111  

Curtis.  2013.  “Flood  Warning  Systems  Saved  Lives  During  Colorado  Flood.”  National  Hydrologic  Warning  Council  Press  Release,  October  16.  http://finance.yahoo.com/news/flood-­‐warning-­‐systems-­‐saved-­‐lives-­‐150000047.html.  

Das,  Tapash,  Michael  Dettinger,  Daniel  Cayan,  and  Hugo  Hidalgo.  2011.  “Potential  Increase  in  Floods  in  California’s  Sierra  Nevada  under  Future  Climate  Projections.”  Climatic  Change  109:  71–94.  doi:10.1007/s10584-­‐011-­‐0298-­‐z.  

DeLeo,  Giulio  A.,  and  Simon  Levin.  1997.  “The  Multifaceted  Aspects  of  Ecosystem  Integrity.”  Conservation  Ecology  1  (1):  3.  

Dessai,  Suraje,  and  Mike  Hulme.  2007.  “Assessing  the  Robustness  of  Adaptation  Decisions  to  Climate  Change  Uncertainties:  A  Case  Study  on  Water  Resources  Management  in  the  East  of  England.”  Global  Environmental  Change  17  (1):  59–72.  doi:16/j.gloenvcha.2006.11.005.  

Dettinger,  Michael  D.,  Daniel  R.  Cayan,  Mary  K.  Meyer,  and  Anne  E.  Jeton.  2004.  “Simulated  Hydrologic  Responses  to  Climate  Variations  and  Change  in  the  Merced,  Carson,  and  American  River  Basins,  Sierra  Nevada,  California,  1900–2099.”  Climatic  Change  62  (1-­‐3):  283–317.  doi:10.1023/B:CLIM.0000013683.13346.4f.  

Dettinger,  Michael  D.,  Fred  Martin  Ralph,  Tapash  Das,  Paul  J.  Neiman,  and  Daniel  R.  Cayan.  2011.  “Atmospheric  Rivers,  Floods  and  the  Water  Resources  of  California.”  Water  3  (2):  445–78.  doi:10.3390/w3020445.  

DiFrancesco,  Kara,  and  Desiree  Tullos.  In  review.  “Flexibility  in  Water  Resources  Management:    Review  of  Concepts  and  Development  of  Assessment  Measures.”  JAWRA  Journal  of  the  American  Water  Resources  Association  

Duimering,  P.R.,  F.  Safayeni,  and  L.  Purdy.  1993.  “Integrated  Manufacturing:  Redesign  the  Organization  before  Implementing  Flexible  Technology.”  Sloan  Management  Review  34:  47–47.  

Duncan,  N.B.  1995.  “Capturing  Flexibility  of  Information  Technology  Infrastructure:  A  Study  of  Resource  Characteristics  and  Their  Measure.”  Journal  of  Management  Information  Systems,  37–57.  

Easterling,  D.  R.,  J.  L.  Evans,  P.  Ya  Groisman,  T.  R.  Karl,  K.  E.  Kunkel,  and  P.  Ambenje.  2000.  “Observed  Variability  and  Trends  in  Extreme  Climate  Events:  A  Brief  Review  *.”  Bulletin  of  the  American  Meteorological  Society  81  (3):  417–25.  doi:10.1175/1520-­‐0477(2000)081<0417:OVATIE>2.3.CO;2.  

Elmqvist,  Thomas,  Carl  Folke,  Magnus  Nyström,  Garry  Peterson,  Jan  Bengtsson,  Brian  Walker,  and  Jon  Norberg.  2003.  “Response  Diversity,  Ecosystem  Change,  and  Resilience.”  Frontiers  in  Ecology  and  the  Environment  1  (9):  488–94.  doi:10.1890/1540-­‐9295(2003)001[0488:RDECAR]2.0.CO;2.  

Engle,  Nathan  L.  2011.  “Adaptive  Capacity  and  Its  Assessment.”  Global  Environmental  Change  21  (2):  647–56.  

Faber,  Beth  A.  2010.  “Current  Methods  for  Hydrologic  Frequency  Analysis.”  In  Workshop  on  Nonstationarity,  Hydrologic  Frequency  Analysis,  and  Water  Management,  edited  by  J.  Rolf  Olsen,  Julie  Kiang,  and  Reagan  Waskom.  Information  Series  No.  109.  Boulder,  CO:  

Page 122: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

112  

Colorado  Water  Institute.  http://www.cwi.colostate.edu/NonstationarityWorkshop/index.shtml.  

Faber,  Beth  A.,  and  J.R.  Stedinger.  2001.  “Reservoir  Optimization  Using  Sampling  SDP  with  Ensemble  Streamflow  Prediction  (ESP)  Forecasts.”  Journal  of  Hydrology  249  (1–4):  113–33.  doi:10.1016/S0022-­‐1694(01)00419-­‐X.  

Falkenmark,  Malin,  and  Carl  Widstrand.  1992.  “Population  and  Water  Resources:  A  Delicate  Balance.”  Population  Bulletin  47  (3):  1.  

Fausch,  Kurt  D.,  Bruce  E.  Rieman,  Jason  B.  Dunham,  Michael  K.  Young,  and  Douglas  P.  Peterson.  2009.  “Invasion  versus  Isolation:  Trade-­‐Offs  in  Managing  Native  Salmonids  with  Barriers  to  Upstream  Movement.”  Conservation  Biology  23  (4):  859–70.  

Fayol,  H.  1916.  Administration  générale  et  industrielle.  France:  Gauthiers-­‐Villars.  Ferreira,  Joseph,  and  California  Department  of  Water  Resources  (CA-­‐DWR).  1982.  A  Preliminary  

Study  of  Flood  Control  Alternatives  on  the  Lower  American  River.  Sacramento:  State  of  California,  the  Resources  Agency,  Department  of  Water  Resources,  Central  District.  

Few,  Roger,  Katrina  Brown,  and  Emma  L.  Tompkins.  2007.  “Public  Participation  and  Climate  Change  Adaptation:  Avoiding  the  Illusion  of  Inclusion.”  Climate  Policy  7  (1):  46–59.  

Field,  Christopher  B.,  Vicente  Barros,  Thomas  F.  Stocker,  and  Qin  Dahe.  2012.  Managing  the  Risks  of  Extreme  Events  and  Disasters  to  Advance  Climate  Change  Adaptation:  Special  Report  of  the  Intergovernmental  Panel  on  Climate  Change.  Cambridge  University  Press.  http://books.google.com/books?hl=en&lr=&id=nQg3SJtkOGwC&oi=fnd&pg=PR4&dq=Managing+the+Risks+of+Extreme+Events+and+Disasters+to+Advance+Climate+Change+Adaptation+(SREX)&ots=11KgtrnwXS&sig=SYUbp_4tgw8-­‐egCrSe1i3jLFSeY.  

Folke,  Carl,  Stephen  R.  Carpenter,  Thomas  Elmqvist,  Lance  Gunderson,  Crawford  S.  Holling,  and  Brian  Walker.  2002.  “Resilience  and  Sustainable  Development:  Building  Adaptive  Capacity  in  a  World  of  Transformations.”  AMBIO:  A  Journal  of  the  Human  Environment  31  (5):  437–40.  

Folke,  Carl,  Stephen  R.  Carpenter,  Brian  Walker,  Marten  Scheffer,  Thomas  Elmqvist,  Lance  Gunderson,  and  C.S.  Holling.  2004.  “Regime  Shifts,  Resilience,  and  Biodiversity  in  Ecosystem  Management.”  Annual  Review  of  Ecology,  Evolution,  and  Systematics  35  (1):  557–81.  doi:10.1146/annurev.ecolsys.35.021103.105711.  

Food  and  Agriculture  Organization  (FAO).  1993.  “The  State  of  Food  and  Agriculture  1993”.  26.  FAO  Agriculture  Series.  Rome,  Italy.  http://www.fao.org/docrep/003/t0800e/t0800e00.htm.  

Fowler,  H.  J.,  S.  Blenkinsop,  and  C.  Tebaldi.  2007.  “Linking  Climate  Change  Modelling  to  Impacts  Studies:  Recent  Advances  in  Downscaling  Techniques  for  Hydrological  Modelling.”  International  Journal  of  Climatology  27  (12):  1547–78.  

Fraser,  Evan  DG,  Warren  Mabee,  and  Frank  Figge.  2005.  “A  Framework  for  Assessing  the  Vulnerability  of  Food  Systems  to  Future  Shocks.”  Futures  37  (6):  465–79.  

Frederick,  K.  D,  D.  C  Major,  and  E.  Z  Stakhiv.  1997.  “Water  Resources  Planning  Principles  and  Evaluation  Criteria  for  Climate  Change:  Summary  and  Conclusions.”  Climatic  Change  37  (1):  291–313.  

Page 123: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

113  

Gallopín,  G.C.  2006.  “Linkages  between  Vulnerability,  Resilience,  and  Adaptive  Capacity.”  Global  Environmental  Change  16  (3):  293–303.  

Galloway,  Gerald  E.  1997.  “River  Basin  Management  in  the  21st  Century:  Blending  Development  with  Economic,  Ecologic,  and  Cultural  Sustainability.”  Water  International  22  (2):  82–89.  doi:10.1080/02508069708686675.  

———.  2011.  “If  Stationarity  Is  Dead,  What  Do  We  Do  Now?”  Journal  of  the  American  Water  Resources  Association  47  (3):  563–70.  doi:10.1111/j.1752-­‐1688.2011.00550.x.  

Gersonius,  Berry,  Richard  Ashley,  Assela  Pathirana,  and  Chris  Zevenbergen.  2013.  “Climate  Change  Uncertainty:  Building  Flexibility  into  Water  and  Flood  Risk  Infrastructure.”  Climatic  Change  116  (2):  411–23.  

Gleick,  Peter  H.  2003.  “Global  Freshwater  Resources:  Soft-­‐Path  Solutions  for  the  21st  Century.”  Science  302  (5650):  1524  –1528.  doi:10.1126/science.1089967.  

Golden,  W.,  and  P.  Powell.  2000.  “Towards  a  Definition  of  Flexibility:  In  Search  of  the  Holy  Grail?”  Omega  28  (4):  373–84.  

Griffis,  Veronica  W.,  and  Jery  R.  Stedinger.  2007.  “Incorporating  Climate  Change  and  Variability  into  Bulletin  17B  LP3  Model.”  In  World  Environmental  and  Water  Resources  Congress  2007,  1–8.  http://ascelibrary.org/doi/pdf/10.1061/40927(243)69.  

Gunderson,  Lance  H,  and  C.  S  Holling.  2002.  Panarchy:  Understanding  Transformations  in  Human  and  Natural  Systems.  Washington,  DC:  Island  Press.  

Hall,  J.,  and  C.  Murphy.  2012.  “Adapting  Water  Supply  Systems  in  a  Changing  Climate.”  In  Water  Supply  Systems,  Distribution  and  Environmental  Effects.  Hauppauge,  NY:  Nova  Science  Publishers,  Inc.  

Hall,  J.,  and  D.  Solomatine.  2008.  “A  Framework  for  Uncertainty  Analysis  in  Flood  Risk  Management  Decisions.”  International  Journal  of  River  Basin  Management  6  (2):  85–98.  

Hallegatte,  Stéphane.  2009.  “Strategies  to  Adapt  to  an  Uncertain  Climate  Change.”  Global  Environmental  Change  19  (2):  240–47.  doi:10.1016/j.gloenvcha.2008.12.003.  

Hallegatte,  Stéphane,  Ankur  Shah,  Casey  Brown,  Robert  Lempert,  and  Stuart  Gill.  2012.  “Investment  Decision  Making  Under  Deep  Uncertainty  -­‐-­‐  Application  to  Climate  Change”.  SSRN  Scholarly  Paper  ID  2143067.  Rochester,  NY:  Social  Science  Research  Network.  http://papers.ssrn.com/abstract=2143067.  

Hamlet,  Alan  F.,  D.  Huppert,  and  D.  P  Lettenmaier.  2002.  “Economic  Value  of  Long-­‐Lead  Streamflow  Forecasts  for  Columbia  River  Hydropower.”  Journal  of  Water  Resources  Planning  and  Management  128:  91.  

Hamlet,  Alan  F.,  and  D.  P  Lettenmaier.  1999.  “Columbia  River  Streamflow  Forecasting  Based  on  ENSO  and  PDO  Climate  Signals.”  Journal  of  Water  Resources  Planning  and  Management  125  (6):  333–41.  

Hamlet,  Alan  F.,  and  Dennis  P.  Lettenmaier.  2007.  “Effects  of  20th  Century  Warming  and  Climate  Variability  on  Flood  Risk  in  the  Western  U.S.”  Water  Resources  Research  43  (June):  17  PP.  doi:200710.1029/2006WR005099.  

Heal,  Geoffrey,  and  Bengt  Kriström.  2002.  “Uncertainty  and  Climate  Change.”  Environmental  and  Resource  Economics  22  (1):  3–39.  doi:10.1023/A:1015556632097.  

Page 124: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

114  

Hertzler,  Greg.  2007.  “Adapting  to  Climate  Change  and  Managing  Climate  Risks  by  Using  Real  Options.”  In  Australian  Journal  of  Agricultural  Research,  58:985–92.  Commonwealth  Scientific  and  Industrial  Research  Organization.  http://cat.inist.fr/?aModele=afficheN&cpsidt=19907584.  

Holdren,  John  P.,  and  Paul  R.  Ehrlich.  1974.  “Human  Population  and  the  Global  Environment:  Population  Growth,  Rising  per  Capita  Material  Consumption,  and  Disruptive  Technologies  Have  Made  Civilization  a  Global  Ecological  Force.”  American  Scientist  62  (3):  282–92.  

Huang,  D.,  K.  Vairavamoorthy,  and  S.  Tsegaye.  2010.  “Flexible  Design  of  Urban  Water  Distribution  Networks.”  In  World  Environmental  and  Water  Resources  Congress  2010:  Challenges  of  Change,  4225–36.  

Huitema,  Dave,  Erik  Mostert,  Wouter  Egas,  Sabine  Moellenkamp,  Claudia  Pahl-­‐Wostl,  and  Resul  Yalcin.  2009.  “Adaptive  Water  Governance:  Assessing  the  Institutional  Prescriptions  of  Adaptive  (co-­‐)  Management  from  a  Governance  Perspective  and  Defining  a  Research  Agenda.”  Ecology  and  Society  14  (1):  26.  

Intergovernmental  Panel  on  Climate  Change  (IPCC).  2007.  Climate  Change  2007:  Impacts,  Adaptation  and  Vulnerability:  Contribution  of  Working  Group  II  to  the  Fourth  Assessment  Report  of  the  Intergovernmental  Panel  on  Climate  Change.  Edited  by  M  Parry.  Cambridge  U.K.;  New  York:  Cambridge  University  Press.  

———.  2012.  “Summary  for  Policymakers.  In:  Managing  the  Risks  of  Extreme  Events  and  Disasters  to  Advance  Climate  Change  Adaptation.”  A  Special  Report  of  Working  Groups  I  and  II  of  the  Intergovernmental  Panel  on  Climate  Change.  C.  Cambridge,  U.K.  and  New  York,  NY,  USA.  http://ipcc-­‐wg2.gov/SREX/images/uploads/SREX-­‐SPMbrochure_FINAL.pdf.  

International  Water  Management  Institute  (IWMI).  2009.  “Flexible  Water  Storage  Options  and  Adaptation  to  Climate  Change”.  Water  Policy  Brief  Issue  31.  http://www.iwmi.cgiar.org/Publications/Water_Policy_Briefs/PDF/WPB31.pdf.  

Jantarasami,  Lesley  C.,  Joshua  J.  Lawler,  and  Craig  W.  Thomas.  2010.  “Institutional  Barriers  to  Climate  Change  Adaptation  in  US  National  Parks  and  Forests.”  Ecology  &  Society  15  (4).  http://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=17083087&AN=66785180&h=B%2FmtCn7CD3rEpSF8MQVKEGks2Utb0iYZo3xi0zILVbSjTtlDXGS9A%2FCfZdQQN1Wb2eZYwhYkmQV3RFCEFtb6Yg%3D%3D&crl=c.  

Johnson,  Alicia  M.  Austin,  and  Gene  Lilly.  2009.  “Western  States  Watershed  Study.”  http://www.westgov.org/wswc/wsws%20main%20report_jan09.pdf.  

Johnson,  Thomas  E.,  and  Christopher  P.  Weaver.  2009.  “A  Framework  for  Assessing  Climate  Change  Impacts  on  Water  and  Watershed  Systems.”  Environmental  Management  43  (1):  118–34.  doi:10.1007/s00267-­‐008-­‐9205-­‐4.  

Jones,  Lindsey,  Eva  Ludi,  and  Simon  Levine.  2011.  “Towards  a  Characterisation  of  Adaptive  Capacity:  A  Framework  for  Analysing  Adaptive  Capacity  at  the  Local  Level”.  London:  Overseas  Development  Agency.  http://www.odi.org.uk/publications/5177-­‐adaptive-­‐capacity-­‐framework-­‐local-­‐level-­‐climate.  

Page 125: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

115  

Karl,  Thomas  R.,  and  David  R.  Easterling.  1999.  “Climate  Extremes:  Selected  Review  and  Future  Research  Directions.”  In  Weather  and  Climate  Extremes,  309–25.  Springer.  http://link.springer.com/chapter/10.1007/978-­‐94-­‐015-­‐9265-­‐9_17.  

Kelley,  Robert  L.  1989.  Battling  the  Inland  Sea:  Floods,  Public  Policy,  and  the  Sacramento  Valley.  Berkeley,  CA:  University  of  California  Press.  

Khosrowpour,  Mehdi.  2006.  Advanced  Topics  in  Information  Resources  Management.  Hershey,  PA:  Idea  Group  Inc  (IGI).  

Kloprogge,  Penny,  and  Jeroen  P.  Van  Der  Sluijs.  2006.  “The  Inclusion  of  Stakeholder  Knowledge  and  Perspectives  in  Integrated  Assessment  of  Climate  Change.”  Climatic  Change  75  (3):  359–89.  

Knutti,  Reto,  and  Jan  Sedláček.  2013.  “Robustness  and  Uncertainties  in  the  New  CMIP5  Climate  Model  Projections.”  Nature  Climate  Change  3  (4):  369–73.  doi:10.1038/nclimate1716.  

Kondolf,  G.  Mathias,  Andrew  J.  Boulton,  Scott  O’Daniel,  Geoffrey  C.  Poole,  Frank  J.  Rahel,  Emily  H.  Stanley,  Ellen  Wohl,  Asa  Baang,  Julia  Carlstrom,  and  Chiara  Cristoni.  2006.  “Process-­‐Based  Ecological  River  Restoration:  Visualizing  Three-­‐Dimensional  Connectivity  and  Dynamic  Vectors  to  Recover  Lost  Linkages.”  Ecology  and  Society  11  (2):  5.  

Kundzewicz,  Zbigniew  W.  2002.  “Non-­‐Structural  Flood  Protection  and  Sustainability.”  Water  International  27  (1):  3–13.  doi:10.1080/02508060208686972.  

Langsdale,  Stacy  M.,  Allyson  Beall,  Jeff  Carmichael,  Stewart  J.  Cohen,  Craig  B.  Forster,  and  Tina  Neale.  2009.  “Exploring  the  Implications  of  Climate  Change  on  Water  Resources  through  Participatory  Modeling:  Case  Study  of  the  Okanagan  Basin,  British  Columbia.”  Journal  of  Water  Resources  Planning  and  Management  135  (5):  373–81.  

Laprise,  René,  R.  De  Elia,  D.  Caya,  S.  Biner,  Ph  Lucas-­‐Picher,  E.  Diaconescu,  M.  Leduc,  A.  Alexandru,  and  L.  Separovic.  2008.  “Challenging  Some  Tenets  of  Regional  Climate  Modelling.”  Meteorology  and  Atmospheric  Physics  100  (1-­‐4):  3–22.  

Learn,  Scott.  2011.  “Getting  Salmon  Past  Daunting  Willamette  Basin  Dams  Could  Have  a  Big  Price  Tag  -­‐-­‐  and  a  Big  Payoff.”  The  Oregonian  -­‐  OregonLive.com,  September  7.  http://www.oregonlive.com/environment/index.ssf/2011/09/detroit_dam_to_restore_wild_ru.html.  

Leary,  Neil  A.  1999.  “A  Framework  for  Benefit-­‐Cost  Analysis  of  Adaptation  to  Climate  Change  and  Climate  Variability.”  Mitigation  and  Adaptation  Strategies  for  Global  Change  4  (3):  307–18.  doi:10.1023/A:1009667706027.  

Lempert,  Robert  J.,  Steven  C.  Bankes,  and  Steven  W.  Popper.  2003.  Shaping  the  Next  One  Hundred  Years:  New  Methods  for  Quantitative,  Long-­‐Term  Policy  Analysis.  Santa  Monica,  CA:  RAND  Corporation.  http://www.rand.org/pubs/monograph_reports/MR1626.html.  

Lempert,  Robert  J.,  David  G.  Groves,  Steven  W.  Popper,  and  Steve  C.  Bankes.  2006.  “A  General,  Analytic  Method  for  Generating  Robust  Strategies  and  Narrative  Scenarios.”  Management  Science  52  (4):  514–28.  doi:10.1287/mnsc.1050.0472.  

Lins,  Harry  F.,  and  James  R.  Slack.  2005.  “Seasonal  and  Regional  Characteristics  of  US  Streamflow  Trends  in  the  United  States  from  1940  to  1999.”  Physical  Geography  26  (6):  489–501.  

Page 126: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

116  

Luers,  Amy  L.  2005.  “The  Surface  of  Vulnerability:  An  Analytical  Framework  for  Examining  Environmental  Change.”  Global  Environmental  Change  15  (3):  214–23.  

Lunn,  David  J.,  Andrew  Thomas,  Nicky  Best,  and  David  Spiegelhalter.  2009.  “WinBUGS-­‐a  Bayesian  Modelling  Framework:  Concepts,  Structure,  and  Extensibility.”  Statistics  and  Computing  10  (4):  325–37.  

Maurer,  E.  P.,  and  H.  G.  Hidalgo.  2008.  “Utility  of  Daily  vs.  Monthly  Large-­‐Scale  Climate  Data:  An  Intercomparison  of  Two  Statistical  Downscaling  Methods.”  Hydrology  and  Earth  System  Sciences  12  (2):  551–63.  

Maurer,  E.  P.,  H.  G.  Hidalgo,  T.  Das,  M.  D.  Dettinger,  and  D.  R.  Cayan.  2010.  “The  Utility  of  Daily  Large-­‐Scale  Climate  Data  in  the  Assessment  of  Climate  Change  Impacts  on  Daily  Streamflow  in  California.”  Hydrol.  Earth  Syst.  Sci.  14  (6):  1125–38.  

Meadows,  D.  H.,  D.  L.  Meadows,  J.  Randers,  and  W.  W.  Behrens  III.  1972.  The  Limits  to  Growth:  A  Report  to  The  Club  of  Rome  (1972).  Universe  Books,  New  York.  

Merriam-­‐Webster,  Inc.  2003.  Merriam-­‐Webster’s  Collegiate  Dictionary.  Merriam-­‐Webster.  Milly,  P.  C.  D.,  J.  Betancourt,  M.  Falkenmark,  R.  M  Hirsch,  Z.  W  Kundzewicz,  D.  P  Lettenmaier,  

and  R.  J  Stouffer.  2008.  “Stationarity  Is  Dead:  Whither  Water  Management?”  Earth  4:  20.  

Milly,  P.  C.  D.,  R.  T.  Wetherald,  K.  A.  Dunne,  and  T.  L.  Delworth.  2002.  “Increasing  Risk  of  Great  Floods  in  a  Changing  Climate.”  Nature  415  (6871):  514–17.  doi:10.1038/415514a.  

Minton,  Jonas.  2001.  “The  Old  and  the  New:  Evaluating  Existing  and  Proposed  Dams  in  California.”  Golden  Gate  University  Environmental  Law  Journal  2  (1):  6.  

Mote,  Philip,  Levi  Brekke,  Philip  B.  Duffy,  and  Ed  Maurer.  2011.  “Guidelines  for  Constructing  Climate  Scenarios.”  Eos,  Transactions  American  Geophysical  Union  92  (31):  257–58.  doi:10.1029/2011EO310001.  

Naeem,  Shahid.  1998.  “Species  Redundancy  and  Ecosystem  Reliability.”  Conservation  Biology  12  (1):  39–45.  

National  Research  Council  -­‐  Committee  on  Sustainable  Water  and  Environmental  Management  in  the  California  Bay-­‐Delta.  2012.  Sustainable  Water  and  Environmental  Management  in  the  California  Bay-­‐Delta.  Washington,  D.C.:  The  National  Academies  Press.  

National  Research  Council  (NRC),  Committee  on  Risk-­‐Based  Analysis  for  Flood  Damage  Reduction,  Water  Science  and  Technology  Board.  2000.  Risk  Analysis  and  Uncertainty  in  Flood  Damage  Reduction  Studies.  Washington,  D.C.:  The  National  Academies  Press.  

National  Research  Council  (NRC).  Committee  on  American  River  Flood  Frequencies.  1999.  Improving  American  River  Flood  Frequency  Analysis.  National  Academies  Press.  

Nemetz,  P.L.,  and  L.W.  Fry.  1988.  “Flexible  Manufacturing  Organizations:  Implications  for  Strategy  Formulation  and  Organization  Design.”  Academy  of  Management  Review,  627–38.  

O’Brien,  Karen  L.,  and  Robin  M.  Leichenko.  2000.  “Double  Exposure:  Assessing  the  Impacts  of  Climate  Change  within  the  Context  of  Economic  Globalization.”  Global  Environmental  Change  10  (3):  221–32.  

Page 127: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

117  

Opperman,  Jeffrey  J.,  Gerald  E.  Galloway,  Joseph  Fargione,  Jeffrey  F.  Mount,  Brian  D.  Richter,  and  Silvia  Secchi.  2009.  “Sustainable  Floodplains  Through  Large-­‐Scale  Reconnection  to  Rivers.”  Science  326  (5959):  1487  –1488.  doi:10.1126/science.1178256.  

Ospina,  Angelica  Valeria,  and  Richard  Heeks.  2010.  “Linking  ICTs  and  Climate  Change  Adaptation.”  Manchester:  University  of  Manchester.  http://africa-­‐adapt.net/media/resources/413/Linking%20ICTs%20and%20Climate%20Change%20Adaptation.pdf.  

Pahl-­‐Wostl,  Claudia.  2007.  “Transitions  towards  Adaptive  Management  of  Water  Facing  Climate  and  Global  Change.”  Integrated  Assessment  of  Water  Resources  and  Global  Change,  49–62.  

———.  2009.  “A  Conceptual  Framework  for  Analysing  Adaptive  Capacity  and  Multi-­‐Level  Learning  Processes  in  Resource  Governance  Regimes.”  Global  Environmental  Change  19  (3):  354–65.  doi:10.1016/j.gloenvcha.2009.06.001.  

Pahl-­‐Wostl,  Claudia,  J.  Sendzimir,  P.  Jeffrey,  J.  Aerts,  G.  Berkamp,  and  K.  Cross.  2007.  “Managing  Change  toward  Adaptive  Water  Management  through  Social  Learning.”  Ecology  and  Society  12  (2):  30.  

Palmer,  Susan.  2010.  “Helping  Fish  Find  Their  Way.”  The  Register  Guard,  August  20.  Parrett,  C.,  A.  Veilleux,  J.  R.  Stedinger,  N.  A.  Barth,  D.  L.  Knifong,  and  J.  C.  Ferris.  2011.  “Regional  

Skew  for  California,  and  Flood  Frequency  for  Selected  Sites  in  the  Sacramento-­‐San  Joaquin  River  Basin,  Based  on  Data  through  Water  Year  2006”.  U.  S.  Geological  Survey.  http://pubs.usgs.gov/sir/2010/5260/.  

Patel  Center.  2011.  “Flexible  Design  of  Urban  Water  Management  Systems.”  Patel  School  of  Global  Sustainability,  University  of  South  Florida.  http://psgs.usf.edu/patel-­‐center/flexible-­‐design/.  

Pearce,  Fred.  2004.  Keepers  of  the  Spring:  Reclaiming  Our  Water  in  an  Age  of  Globalization.  Washington,  D.C.:  Island  Press.  

Pettengell,  Catherine.  2010.  “Climate  Change  Adaptation:  Enabling  People  Living  in  Poverty  to  Adapt.”  Oxfam  Policy  and  Practice:  Climate  Change  and  Resilience  6  (2):  1–48.  

Platt,  Rutherford  H.  1995.  Flood  Risk  Management  and  the  American  River  Basin:  An  Evaluation.  National  Academies  Press.  

Prudhomme,  Christel,  Nick  Reynard,  and  Sue  Crooks.  2002.  “Downscaling  of  Global  Climate  Models  for  Flood  Frequency  Analysis:  Where  Are  We  Now?”  Hydrological  Processes  16  (6):  1137–50.  doi:10.1002/hyp.1054.  

Prudhomme,  Christel,  R.L.  Wilby,  S.  Crooks,  A.L.  Kay,  and  N.S.  Reynard.  2010.  “Scenario-­‐Neutral  Approach  to  Climate  Change  Impact  Studies:  Application  to  Flood  Risk.”  Journal  of  Hydrology  390  (3-­‐4):  198–209.  doi:10.1016/j.jhydrol.2010.06.043.  

Pye,  Roger.  1978.  “A  Formal,  Decision-­‐Theoretic  Approach  to  Flexibility  and  Robustness.”  The  Journal  of  the  Operational  Research  Society  29  (3):  215–27.  doi:10.2307/3009448.  

Pyoun,  Y.  S,  and  B.  K  Choi.  1994.  “Quantifying  the  Flexibility  Value  in  Automated  Manufacturing  Systems.”  Journal  of  Manufacturing  Systems  13  (2):  108–18.  

Page 128: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

118  

Richter,  Brian  D.,  R.  Mathews,  D.L.  Harrison,  and  R.  Wigington.  2003.  “Ecologically  Sustainable  Water  Management:  Managing  River  Flows  for  Ecological  Integrity.”  Ecological  Applications  13  (1):  206–24.  

Richter,  Brian  D.,  and  Gregory  A.  Thomas.  2007.  “Restoring  Environmental  Flows  by  Modifying  Dam  Operations.”  Ecology  and  Society  12  (1):  12.  

Rijsberman,  F.  R.  2006.  “Water  Scarcity:  Fact  or  Fiction?”  Agricultural  Water  Management  80  (1):  5–22.  

Roe,  Gerard  H.,  and  Marcia  B.  Baker.  2007.  “Why  Is  Climate  Sensitivity  So  Unpredictable?”  Science  318  (5850):  629–32.  doi:10.1126/science.1144735.  

Sayers,  Paul  B.,  Gerald  E.  Galloway,  and  Jim  W.  Hall.  2012.  “Robust  Decision-­‐Making  under  Uncertianty  -­‐  towards  Adaptive  and  Resilience  Flood  Risk  Managment  Infrastructure.”  In  Flood  Risk:  Planning,  Design  and  Management  of  Flood  Defence  Infrastructure,  edited  by  Paul  B.  Sayers.  London:  ICE  Publishing.  http://www.iwapublishing.com/template.cfm?name=isbn9781780404561.  

Smit,  Barry,  and  Johanna  Wandel.  2006.  “Adaptation,  Adaptive  Capacity  and  Vulnerability.”  Global  Environmental  Change  16  (3):  282–92.  

Stakhiv,  Eugene  Z.  2010.  “Practical  Approaches  to  Water  Management  under  Climate  Change  Uncertainty.”  In  Workshop  on  Nonstationarity,  Hydrologic  Frequency  Analysis,  and  Water  Management,  edited  by  J.  Rolf  Olsen,  Julie  Kiang,  and  Reagan  Waskom.  Information  Series  No.  109.  Boulder,  CO:  Colorado  Water  Institute.  http://www.cwi.colostate.edu/NonstationarityWorkshop/index.shtml.  

State  of  California.  2010.  “California  Strategic  Growth  Plan  Bond  Accountability,  Folsom  Dam  Raise.”  http://bondaccountability.resources.ca.gov/Project.aspx?ProjectPK=3860-­‐P1E-­‐041&pid=5.  

Suttinon,  Pongsak,  and  Seigo  Nasu.  2010.  “Real  Options  for  Increasing  Value  in  Industrial  Water  Infrastructure.”  Water  Resources  Management  24  (12):  2881–92.  doi:10.1007/s11269-­‐010-­‐9585-­‐0.  

Turner,  Billie  L.,  Roger  E.  Kasperson,  Pamela  A.  Matson,  James  J.  McCarthy,  Robert  W.  Corell,  Lindsey  Christensen,  Noelle  Eckley,  Jeanne  X.  Kasperson,  Amy  Luers,  and  Marybeth  L.  Martello.  2003.  “A  Framework  for  Vulnerability  Analysis  in  Sustainability  Science.”  Proceedings  of  the  National  Academy  of  Sciences  100  (14):  8074–79.  

Turner,  Douglas  E,  and  William  M  Lankford.  2005.  “Information  Technology  Infrastructure:  A  Historical  Perspective  of  Flexibility.”  Journal  of  Information  Technology.  http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.94.6611.  

U.S.  Water  Resources  Council.  1983.  Economic  and  Environmental  Principles  and  Guidelines  for  Water  and  Related  Land  Resources  Implementation  Studies.  Water  Resources  Council.  

United  States  Army  Corps  of  Engineers  (USACE).  1996.  “Risk-­‐Based  Analysis  for  Damage  Reduction  Studies”.  Engineering  and  Design  Manual  EM  1110-­‐2-­‐1619.  http://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-­‐2-­‐1619.pdf.  

Page 129: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

119  

———.  1999.  “Ch  13,  Flood  Damage  Reduction.”  In  Digest  of  Water  Resources  Policies  and  Authorities.  EP  1165-­‐2-­‐1.  http://140.194.76.129/publications/eng-­‐pamphlets/ep1165-­‐2-­‐1/c-­‐13.pdf.  

———.  2002.  “Sacramento  and  San  Joaquin  River  Basins  Comprehensive  Study.”  http://www.compstudy.net/reports.html.  

———.  2006.  Regulation  No.  1105-­‐2-­‐101.  http://140.194.76.129/publications/eng-­‐regs/er1105-­‐2-­‐101/entire.pdf.  

———.  2009.  “Flood  Risk  Management  -­‐  Value  to  the  Nation.”  http://www.poa.usace.army.mil/Portals/34/docs/engineering/USACEFloodRiskMgmtBrochure.pdf.  

US  Federal  Emergency  Management  Agency  (FEMA).  2001.  “Appendix  B.  Understanding  the  FEMA  Benefit-­‐Cost  Analysis  Process.”  In  Engineering  Principles  and  Practices  for  Retrofitting  Flood-­‐Prone  Residential  Structures.  FEMA.  http://www.fema.gov/media-­‐library/assets/documents/3001?id=1645.  

US  Water  Resources  Council.  1982.  “Guidelines  for  Determining  Flood  Flow  Frequency”.  Bulletin  #17B.  

Vörösmarty,  Charles  J.,  Pamela  Green,  Joseph  Salisbury,  and  Richard  B.  Lammers.  2000.  “Global  Water  Resources:  Vulnerability  from  Climate  Change  and  Population  Growth.”  Science  289  (5477):  284.  

Walker,  Brian  H.  1992.  “Biodiversity  and  Ecological  Redundancy.”  Conservation  Biology  6  (1):  18–23.  

Walker,  Brian,  Crawford  S.  Holling,  Stephen  R.  Carpenter,  and  Ann  Kinzig.  2004.  “Resilience,  Adaptability  and  Transformability  in  Social–ecological  Systems.”  Ecology  and  Society  9  (2):  5.  

Wallace,  Jim  S.,  Michael  C.  Acreman,  and  Caroline  A.  Sullivan.  2003.  “The  Sharing  of  Water  between  Society  and  Ecosystems:  From  Conflict  to  Catchment–based  Co–management.”  Philosophical  Transactions  of  the  Royal  Society  of  London.  Series  B:  Biological  Sciences  358  (1440):  2011–26.  

Wang,  T.,  and  R.  De  Neufville.  2004.  “Building  Real  Options  into  Physical  Systems  with  Stochastic  Mixed-­‐Integer  Programming.”  In  The  8th  Real  Options  Annual  International  Conference.  Montreal,  Canada.  

Werritty,  Alan.  2006.  “Sustainable  Flood  Management:  Oxymoron  or  New  Paradigm?”  Area  38  (1):  16–23.  doi:10.1111/j.1475-­‐4762.2006.00658.x.  

Western  Governors’  Association.  2008.  “Water  Needs  and  Strategies  for  a  Sustainable  Future:  Next  Steps.”  

Wilby,  Robert  L,  and  Suraje  Dessai.  2010.  “Robust  Adaptation  to  Climate  Change.”  Weather  65  (7):  180–85.  doi:10.1002/wea.543.  

Willis,  Ann  D.,  Jay  R.  Lund,  Edwin  S.  Townsley,  and  Faber,  Beth  A.  2011.  “Climate  Change  and  Flood  Operations  in  the  Sacramento  Basin,  California.”  San  Francisco  Estuary  and  Watershed  Science  9  (2).  

Page 130: DiFrancesco Dissertation 03 28 2014 - Campanastan · 2014-10-18 · AN!ABSTRACT!OF!THE!DISSERTATION!OF!! KaraN.!DiFrancesco!for!the!degree!of!Doctor!of!Philosophy!inWater!Resources!Engineering!

 

 

 

120  

Wolman,  Abel,  and  National  Research  Council  (U.S.).  Committee  on  Natural  Resources.  1962.  Water  Resources:  A  Report  to  the  Committee  on  Natural  Resources  of  the  National  Academy  of  Sciences-­‐National  Research  Council.  National  Academies.  

Wurbs,  R.A.  1991.  “Optimization  of  Multiple-­‐Purpose  Reservoir  Systems  Operations:  A  Review  of  Modeling  and  Analysis  Approaches”.  DTIC  Document.  

Xu,  C.  1999.  “From  GCMs  to  River  Flow:  A  Review  of  Downscaling  Methods  and  Hydrologic  Modelling  Approaches.”  Progress  in  Physical  Geography  23  (2):  229–49.  

Yang,  Shu-­‐Li,  Nien-­‐Sheng  Hsu,  Peter  WF  Louie,  and  William  WG  Yeh.  1996.  “Water  Distribution  Network  Reliability:  Connectivity  Analysis.”  Journal  of  Infrastructure  Systems  2  (2):  54–64.  

Yuba  County  Water  Agency.  2008.  “Forecast-­‐Coordinated  Operations  of  Lake  Oroville  and  New  Bullards  Bar  Reservoir  for  Managing  Major  Flood  Events.”  http://www.water.ca.gov/floodmgmt/docs/fco_brochure_v9_jan2008_update.pdf.  

Zhao,  Tong,  and  Chung-­‐Li  Tseng.  2003.  “Valuing  Flexibility  in  Infrastructure  Expansion.”  Journal  of  Infrastructure  Systems  9  (3):  89–97.  doi:10.1061/(ASCE)1076-­‐0342(2003)9:3(89).