differentialforms - mathematicsmath.mit.edu/classes/18.952/2018sp/files/18.952_book.pdfdraft:...

233
Dra๏ฌ…: March 28, 2018 Di๏ฌ€erential Forms Victor Guillemin & Peter J. Haine

Upload: others

Post on 07-Jan-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

Differential Forms

Victor Guillemin & Peter J. Haine

Page 2: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

Page 3: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

Contents

Preface vIntroduction vOrganization viNotational Conventions xAcknowledgments xi

Chapter 1. Multilinear Algebra 11.1. Background 11.2. Quotient spaces & dual spaces 31.3. Tensors 81.4. Alternating ๐‘˜-tensors 111.5. The space ๐›ฌ๐‘˜(๐‘‰โ‹†) 171.6. The wedge product 201.7. The interior product 231.8. The pullback operation on ๐›ฌ๐‘˜(๐‘‰โ‹†) 251.9. Orientations 29

Chapter 2. Differential Forms 332.1. Vector fields and one-forms 332.2. Integral Curves for Vector Fields 372.3. Differential ๐‘˜-forms 442.4. Exterior differentiation 462.5. The interior product operation 512.6. The pullback operation on forms 542.7. Divergence, curl, and gradient 592.8. Symplectic geometry & classical mechanics 63

Chapter 3. Integration of Forms 713.1. Introduction 713.2. The Poincarรฉ lemma for compactly supported forms on rectangles 713.3. The Poincarรฉ lemma for compactly supported forms on open subsets of ๐‘๐‘› 763.4. The degree of a differentiable mapping 773.5. The change of variables formula 803.6. Techniques for computing the degree of a mapping 853.7. Appendix: Sardโ€™s theorem 92

Chapter 4. Manifolds & Forms on Manifolds 974.1. Manifolds 974.2. Tangent spaces 1044.3. Vector fields & differential forms on manifolds 109

iii

Page 4: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

iv Contents

4.4. Orientations 1164.5. Integration of forms on manifolds 1244.6. Stokesโ€™ theorem & the divergence theorem 1284.7. Degree theory on manifolds 1334.8. Applications of degree theory 1374.9. The index of a vector field 143

Chapter 5. Cohomology via forms 1495.1. The de Rham cohomology groups of a manifold 1495.2. The Mayerโ€“Vietoris Sequence 1585.3. Cohomology of Good Covers 1655.4. Poincarรฉ duality 1715.5. Thom classes & intersection theory 1765.6. The Lefschetz Theorem 1835.7. The Kรผnneth theorem 1915.8. ฤŒech Cohomology 194

Appendix a. Bump Functions & Partitions of Unity 201

Appendix b. The Implicit Function Theorem 205

Appendix c. Good Covers & Convexity Theorems 211

Bibliography 215

Index of Notation 217

Glossary of Terminology 219

Page 5: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

Preface

Introduction

Formostmath undergraduates oneโ€™s first encounterwith differential forms is the changeof variables formula in multivariable calculus, i.e. the formula

(1) โˆซ๐‘ˆ๐‘“โ‹†๐œ™| det ๐ฝ๐‘“|๐‘‘๐‘ฅ = โˆซ

๐‘‰๐œ™๐‘‘๐‘ฆ

In this formula, ๐‘ˆ and ๐‘‰ are bounded open subsets of ๐‘๐‘›, ๐œ™โˆถ ๐‘‰ โ†’ ๐‘ is a bounded contin-uous function, ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘‰ is a bijective differentiable map, ๐‘“โ‹†๐œ™โˆถ ๐‘ˆ โ†’ ๐‘ is the function๐œ™ โˆ˜ ๐‘“, and det ๐ฝ๐‘“(๐‘ฅ) is the determinant of the Jacobian matrix.

๐ฝ๐‘“(๐‘ฅ) โ‰” [๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘—(๐‘ฅ)] ,

As for the โ€œ๐‘‘๐‘ฅโ€ and โ€œ๐‘‘๐‘ฆโ€, their presence in (1) can be accounted for by the fact that in single-variable calculus, with ๐‘ˆ = (๐‘Ž, ๐‘), ๐‘‰ = (๐‘, ๐‘‘), ๐‘“โˆถ (๐‘Ž, ๐‘) โ†’ (๐‘, ๐‘‘), and ๐‘ฆ = ๐‘“(๐‘ฅ) a ๐ถ1functionwith positive first derivative, the tautological equation ๐‘‘๐‘ฆ๐‘‘๐‘ฅ =

๐‘‘๐‘“๐‘‘๐‘ฅ can be rewritten in the form

๐‘‘(๐‘“โ‹†๐‘ฆ) = ๐‘“โ‹†๐‘‘๐‘ฆ

and (1) can be written more suggestively as

(2) โˆซ๐‘ˆ๐‘“โ‹†(๐œ™ ๐‘‘๐‘ฆ) = โˆซ

๐‘‰๐œ™๐‘‘๐‘ฆ

One of the goals of this text on differential forms is to legitimize this interpretation of equa-tion (1) in ๐‘› dimensions and in fact, more generally, show that an analogue of this formulais true when ๐‘ˆ and ๐‘‰ are ๐‘›-dimensional manifolds.

Another related goal is to prove an important topological generalization of the changeof variables formula (1). This formula asserts that if we drop the assumption that ๐‘“ be abijection and just require ๐‘“ to be proper (i.e., that pre-images of compact subsets of๐‘‰ to becompact subsets of ๐‘ˆ) then the formula (1) can be replaced by

(3) โˆซ๐‘ˆ๐‘“โ‹†(๐œ™ ๐‘‘๐‘ฆ) = deg(๐‘“) โˆซ

๐‘‰๐œ™๐‘‘๐‘ฆ

where deg(๐‘“) is a topological invariant of ๐‘“ that roughly speaking counts, with plus andminus signs, the number of pre-image points of a generically chosen point of ๐‘‰.1

This degree formula is just one of a host of results which connect the theory of differ-ential forms with topology, and one of the main goals of this book will explore some of theother examples. For instance, for ๐‘ˆ an open subset of ๐‘2, we define ๐›บ0(๐‘ˆ) to be the vector

1It is our feeling that this formula should, like formula (1), be part of the standard calculus curriculum,particularly in view of the fact that there now exists a beautiful elementary proof of it by Peter Lax (see [6,8,9]).

v

Page 6: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

vi Preface

space of ๐ถโˆž functions on ๐‘ˆ. We define the vector space ๐›บ1(๐‘ˆ) to be the space of formalsums(4) ๐‘“1 ๐‘‘๐‘ฅ1 + ๐‘“2 ๐‘‘๐‘ฅ2 ,where ๐‘“1, ๐‘“2 โˆˆ ๐ถโˆž(๐‘ˆ). We define the vector space ๐›บ2(๐‘ˆ) to be the space of expressions ofthe form(5) ๐‘“๐‘‘๐‘ฅ1 โˆง ๐‘‘๐‘ฅ2 ,where ๐‘“ โˆˆ ๐ถโˆž(๐‘ˆ), and for ๐‘˜ > 2 define ๐›บ๐‘˜(๐‘ˆ) to the zero vector space.

On these vector spaces one can define operators(6) ๐‘‘โˆถ ๐›บ๐‘–(๐‘ˆ) โ†’ ๐›บ๐‘–+1(๐‘ˆ)by the recipes

(7) ๐‘‘๐‘“ โ‰” ๐œ•๐‘“๐œ•๐‘ฅ1๐‘‘๐‘ฅ1 +๐œ•๐‘“๐œ•๐‘ฅ2๐‘‘๐‘ฅ2

for ๐‘– = 0,

(8) ๐‘‘(๐‘“1 ๐‘‘๐‘ฅ1 + ๐‘“2 ๐‘‘๐‘ฅ2) = (๐œ•๐‘“2๐œ•๐‘ฅ1โˆ’ ๐œ•๐‘“1๐œ•๐‘ฅ2) ๐‘‘๐‘ฅ1 โˆง ๐‘‘๐‘ฅ

for ๐‘– = 1, and ๐‘‘ = 0 for ๐‘– > 1. It is easy to see that the operator

(9) ๐‘‘2 โˆถ ๐›บ๐‘–(๐‘ˆ) โ†’ ๐›บ๐‘–+2(๐‘ˆ)is zero. Hence,

im(๐‘‘โˆถ ๐›บ๐‘–โˆ’1(๐‘ˆ) โ†’ ๐›บ๐‘–(๐‘ˆ)) โŠ‚ ker(๐‘‘โˆถ ๐›บ๐‘–(๐‘ˆ) โ†’ ๐›บ๐‘–+1(๐‘ˆ)) ,and this enables one to define the de Rham cohomology groups of ๐‘ˆ as the quotient vectorspace

(10) ๐ป๐‘–(๐‘ˆ) โ‰” ker(๐‘‘โˆถ ๐›บ๐‘–(๐‘ˆ) โ†’ ๐›บ๐‘–+1(๐‘ˆ))im(๐‘‘โˆถ ๐›บ๐‘–โˆ’1(๐‘ˆ) โ†’ ๐›บ๐‘–(๐‘ˆ))

.

It turns out that these cohomology groups are topological invariants of ๐‘ˆ and are, infact, isomorphic to the cohomology groups of๐‘ˆ defined by the algebraic topologists. More-over, by slightly generalizing the definitions in equations (4), (5) and (7) to (10) one candefine these groups for open subsets of ๐‘๐‘› and, with a bit more effort, for arbitrary ๐ถโˆžmanifolds (as we will do in Chapter 5); and their existence will enable us to describe inter-esting connections between problems in multivariable calculus and differential geometryon the one hand and problems in topology on the other.

To make the context of this book easier for our readers to access we will devote therest of this introduction to the following annotated table of contents, chapter by chapterdescriptions of the topics that we will be covering.

Organization

Chapter 1: Multilinear algebraAs we mentioned above one of our objectives is to legitimatize the presence of the ๐‘‘๐‘ฅ

and ๐‘‘๐‘ฆ in formula (1), and translate this formula into a theorem about differential forms.However a rigorous exposition of the theory of differential forms requires a lot of algebraicpreliminaries, and thesewill be the focus of Chapter 1.Weโ€™ll begin, in Sections 1.1 and 1.2, byreviewingmaterial that we hopemost of our readers are already familiar with: the definitionof vector space, the notions of basis, of dimension, of linear mapping, of bilinear form, and

Page 7: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

Organization vii

of dual space and quotient space. Then in Section 1.3 we will turn to the main topics ofthis chapter, the concept of ๐‘˜-tensor and (the future key ingredient in our exposition ofthe theory of differential forms in Chapter 2) the concept of alternating ๐‘˜-tensor. Those ๐‘˜tensors come up in fact in two contexts: as alternating ๐‘˜-tensors, and as exterior forms, i.e.,in the first context as a subspace of the space of ๐‘˜-tensors and in the second as a quotientspace of the space of ๐‘˜-tensors. Both descriptions of ๐‘˜-tensors will be needed in our laterapplications. For this reason the second half of Chapter 1 ismostly concernedwith exploringthe relationships between these two descriptions and making use of these relationships todefine a number of basic operations on exterior forms such as the wedge product operation(see ยง1.6), the interior product operation (see ยง1.7) and the pullback operation (see ยง1.8).We will alsomake use of these results in Section 1.9 to define the notion of an orientation foran ๐‘›-dimensional vector space, a notion that will, among other things, enable us to simplifythe change of variables formula (1) by getting rid of the absolute value sign in the term| det ๐ฝ๐‘“|.

Chapter 2: Differential FormsThe expressions in equations (4), (5), (7) and (8) are typical examples of differential

forms, and if this were intended to be a text for undergraduate physics majors we woulddefine differential forms by simply commenting that theyโ€™re expressions of this type. Weโ€™llbegin this chapter, however, with the following more precise definition: Let ๐‘ˆ be an opensubset of ๐‘๐‘›. Then a ๐‘˜-form ๐œ” on ๐‘ˆ is a โ€œfunctionโ€ which to each ๐‘ โˆˆ ๐‘ˆ assigns an elementof ๐›ฌ๐‘˜(๐‘‡โ‹†๐‘๐‘ˆ), ๐‘‡๐‘๐‘ˆ being the tangent space to ๐‘ˆ at ๐‘, ๐‘‡โ‹†๐‘๐‘ˆ its vector space dual, and ๐›ฌ๐‘˜(๐‘‡โ‹†๐‘ )the ๐‘˜th order exterior power of ๐‘‡โ‹†๐‘๐‘ˆ. (It turns out, fortunately, not to be too hard to recon-cile this definition with the physics definition above.) Differential 1-forms are perhaps bestunderstood as the dual objects to vector fields, and in Sections 2.1 and 2.2 we elaborate onthis observation, and recall for future use some standard facts about vector fields and theirintegral curves. Then in Section 2.3 we will turn to the topic of ๐‘˜-forms and in the exercisesat the end of Section 2.3 discuss a lot of explicit examples (that we strongly urge readers ofthis text to stare at). Then in Sections 2.4 to 2.7 we will discuss in detail three fundamen-tal operations on differential forms of which weโ€™ve already gotten preliminary glimpses inthe equation (3) and equations (5) to (9), namely the wedge product operation, the exteriordifferential operation, and the pullback operation. Also, to add to this list in Section 2.5 wewill discuss the interior product operation of vector fields on differential forms, a general-ization of the duality pairing of vector fields with one-forms that we alluded to earlier. (Inorder to get a better feeling for this material we strongly recommend that one take a lookat Section 2.7 where these operations are related to the div, curl, and grad operations infreshman calculus.) In addition this section contains some interesting applications of thematerial above to physics, in Section 2.8 to electrodynamics and Maxwellโ€™s equation, as wellas to classical mechanisms and the Hamiltonโ€“Jacobi equations.

Chapter 3: Integration of FormsAs we mentioned above, the change of variables formula in integral calculus is a special

case of a more general result: the degree formula; and we also cited a paper of Peter Laxwhich contains an elementary proof of this formula which will hopefully induce future au-thors of elementary text books in multivariate calculus to include it in their treatment of theRiemann integral. In this chapter we will also give a proof of this result but not, regrettably,Laxโ€™s proof. The reason why not is that we want to relate this result to another result which

Page 8: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

viii Preface

will have some important de Rham theoretic applications when we get to Chapter 5. To de-scribe this result let๐‘ˆ be a connected open set in ๐‘๐‘› and ๐œ” = ๐‘“๐‘‘๐‘ฅ1 โˆงโ‹ฏโˆง ๐‘‘๐‘ฅ๐‘› a compactlysupported ๐‘›-form on ๐‘ˆ. We will prove:

Theorem 11. The integral โˆซ๐‘ˆ ๐œ” = โˆซ๐‘ˆ ๐‘“๐‘‘๐‘ฅ1โ‹ฏ๐‘‘๐‘ฅ๐‘› of ๐œ” over ๐‘ˆ is zero if and only if ๐œ” = ๐‘‘๐œˆwhere ๐œˆ is a compactly supported (๐‘› โˆ’ 1)-form on ๐‘ˆ.

An easy corollary of this result is the following weak version of the degree theorem:Corollary 12. Let๐‘ˆ and๐‘‰ be connected open subsets of๐‘๐‘› and๐‘“โˆถ ๐‘ˆ โ†’ ๐‘‰ a propermapping.Then there exists a constant ๐›ฟ(๐‘“) with the property that for every compactly supported ๐‘›-form๐œ” on ๐‘‰

โˆซ๐‘ˆ๐‘“โ‹†๐œ” = ๐›ฟ(๐‘“)โˆซ

๐‘‰๐œ” .

Thus to prove the degree theorem it suffices to show that this ๐›ฟ(๐‘“) is the deg(๐‘“) in formula(3) and this turns out not to be terribly hard.

The degree formula has a lot of interesting applications and at the end of Chapter 3 wewill describe two of them. The first, the Brouwer fixed point theorem, asserts that if ๐ต๐‘› isthe closed unit ball in ๐‘๐‘› and ๐‘“โˆถ ๐ต๐‘› โ†’ ๐ต๐‘› is a continuous map, then ๐‘“ has a fixed point,i.e. there is a point ๐‘ฅ0 โˆˆ ๐ต๐‘› that gets mapped onto itself by ๐‘“. (We will show that if this werenot true the degree theorem would lead to an egregious contradiction.)

The second is the fundamental theorem of algebra. If๐‘(๐‘ง) = ๐‘Ž0 + ๐‘Ž1๐‘ง +โ‹ฏ + ๐‘Ž๐‘›โˆ’1๐‘ง๐‘›โˆ’1 + ๐‘ง๐‘›

is a polynomial function of the complex variable ๐‘ง, then it has to have a complex root ๐‘ง0satisfying ๐‘(๐‘ง0) = 0. (Weโ€™ll show that both these results are more-or-less one line corolariesof the degree theorem.)

Chapter 4: Forms on ManifoldsIn the previous two chapters the differential forms that we have been considering have

been forms defined on open subsets of ๐‘๐‘›. In this chapter weโ€™ll make the transition to formsdefined on manifolds; and to prepare our readers for this transition, include at the beginningof this chapter a brief introduction to the theory of manifolds. (It is a tradition in under-graduate courses to define ๐‘›-dimensional manifolds as ๐‘›-dimensional submanifolds of ๐‘๐‘,i.e., as ๐‘›-dimensional generalizations of curves and surfaces in ๐‘3, whereas the tradition ingraduate level courses is to define them as abstract entities. Since this is intended to be a textbook for undergraduates, weโ€™ll adopt the first of these approaches, our reluctance to doingso being somewhat tempered by the fact that, thanks to the Whitney embedding theorem,these two approaches are the same.) In section Section 4.1 we will review a few general factsabout manifolds, in section Section 4.2, define the crucial notion of the tangent space ๐‘‡๐‘๐‘‹to a manifold ๐‘‹ at a point ๐‘ and in sections Sections 4.3 and 4.4 show how to define dif-ferential forms on ๐‘‹ by defining a ๐‘˜-form to be, as in ยง2.4, a function ๐œ” which assigns toeach ๐‘ โˆˆ ๐‘‹ an element ๐œ”๐‘ of ๐›ฌ๐‘˜(๐‘‡โ‹†๐‘๐‘‹). Then in Section 4.4 we will define what it meansfor a manifold to be oriented and in Section 4.5 show that if๐‘‹ is an oriented ๐‘›-dimensionalmanifold and ๐œ” a compactly supported ๐‘›-form, the integral of ๐œ” is well-defined. Moreover,weโ€™ll prove in this section a manifold version of the change of variables formula and in Sec-tion 4.6 prove manifold versions of two standard results in integral calculus: the divergencetheorem and Stokes theorem, setting the stage for the main results of Chapter 4: the mani-fold version of the degree theorem (see ยง4.7) and a number of applications of this theorem(among them the Jordanโ€“Brouwer separation theorem, the Gaussโ€“Bonnet theorem and theIndex theorem for vector fields (see ยงยง4.8 and 4.9).

Page 9: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

Organization ix

Chapter 5: Cohomology via FormsGiven an ๐‘›-dimensional manifold let ๐›บ๐‘˜(๐‘‹) be the space of differential forms on ๐‘‹ of

degree ๐‘˜, let ๐‘‘โˆถ ๐›บ๐‘˜(๐‘‹) โ†’ ๐›บ๐‘˜+1(๐‘‹) be exterior differentiation and let ๐ป๐‘˜(๐‘‹) be the ๐‘˜th deRham cohomology group of๐‘‹: the quotient of the vector space

๐‘๐‘˜(๐‘‹) โ‰” ker(๐‘‘โˆถ ๐›บ๐‘˜(๐‘‹) โ†’ ๐›บ๐‘˜+1(๐‘‹))by the vector space

๐ต๐‘˜(๐‘‹) โ‰” im(๐‘‘โˆถ ๐›บ๐‘˜โˆ’1(๐‘‹) โ†’ ๐›บ๐‘˜(๐‘‹)) .In Chapter 5 we will make a systematic study of these groups and also show that some ofthe results about differential forms that we proved in earlier chapters can be interpreted ascohomological properties of these groups. For instance, in Section 5.1 we will show thatthe wedge product and pullback operations on forms that we discussed in Chapter 2 givesrise to analogous operations in cohomology and that for a compact oriented ๐‘›-dimensionalmanifold the integration operator on forms that we discussed in Chapter 4 gives rise to apairing

๐ป๐‘˜(๐‘‹) ร— ๐ป๐‘›โˆ’๐‘˜(๐‘‹) โ†’ ๐‘ ,and in fact more generally if๐‘‹ is non-compact, a pairing

(13) ๐ป๐‘˜๐‘ (๐‘‹) ร— ๐ป๐‘›โˆ’๐‘˜(๐‘‹) โ†’ ๐‘ ,

where the groups ๐ป๐‘–๐‘(๐‘‹) are the DeRham cohomology groups that one gets by replacingthe spaces of differential forms๐›บ๐‘–(๐‘‹) by the corresponding spaces๐›บ๐‘–๐‘(๐‘‹) of compactly sup-ported differential forms.

One problem one runs into in the definition of these cohomology groups is that sincethe spaces๐›บ๐‘˜(๐‘‹) and๐›บ๐‘˜๐‘ (๐‘‹) are infinite dimensional in general, thereโ€™s no guarantee that thesame wonโ€™t be the case for the spaces๐ป๐‘˜(๐‘‹) and๐ป๐‘˜๐‘ (๐‘‹), and weโ€™ll address this problem inSection 5.3.More explicitly, we will say that๐‘‹ has finite topology if it admits a finite coveringby open sets ๐‘ˆ1,โ€ฆ๐‘ˆ๐‘ such that for every multi-index ๐ผ = (๐‘–1,โ€ฆ , ๐‘–๐‘˜), where 1 โ‰ค ๐‘–๐‘Ÿ โ‰ค ๐‘,the intersection(14) ๐‘ˆ๐ผ โ‰” ๐‘ˆ๐‘–1 โˆฉโ‹ฏ โˆฉ ๐‘ˆ๐‘–๐‘˜is either empty or is diffeomorphic to a convex open subset of๐‘๐‘›. We will show that if๐‘‹ hasfinite topology, then its cohomology groups are finite dimensional and, secondly, we willshow that many manifolds have finite topology. (For instance, if ๐‘‹ is compact then ๐‘‹ hasfinite topology; for details see ยงยง5.2 and 5.3.)

We mentioned above that if ๐‘‹ is not compact it has two types of cohomology groups:the groups๐ป๐‘˜(๐‘‹) and the groups๐ป๐‘›โˆ’๐‘˜๐‘ (๐‘‹). In Section 5.5 we will show that if๐‘‹ is orientedthen for ๐œˆ โˆˆ ๐›บ๐‘˜(๐‘‹) and ๐œ” โˆˆ ๐›บ๐‘›โˆ’๐‘˜๐‘ (๐‘‹) the integration operation

(๐œˆ, ๐œ”) โ†ฆ โˆซ๐‘‹๐œˆ โˆง ๐œ”

gives rise to a pairing๐ป๐‘˜(๐‘‹) ร— ๐ป๐‘›โˆ’๐‘˜๐‘ (๐‘‹) โ†’ ๐‘ ,

and that if๐‘‹ is connected this pairing is non-degenerate, i.e., defines a bijective linear trans-formation

๐ป๐‘›โˆ’๐‘˜๐‘ (๐‘‹) โฅฒ ๐ป๐‘˜(๐‘‹)โ‹† .This results in the Poincarรฉ duality theorem and it has some interesting implications whichwe will explore in Sections 5.5 to 5.7. For instance in Section 5.5 we will show that if ๐‘Œ and๐‘ are closed oriented submanifolds of ๐‘‹ and ๐‘ is compact and of codimension equal to

Page 10: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

x Preface

the dimension of ๐‘Œ, then the intersection number ๐ผ(๐‘Œ, ๐‘) of ๐‘Œ and ๐‘ in ๐‘‹ is well-defined(no matter how badly ๐‘Œ and ๐‘ intersect). In Section 5.6 we will show that if๐‘‹ is a compactoriented manifold and ๐‘“โˆถ ๐‘‹ โ†’ ๐‘‹ a ๐ถโˆž map one can define the Lefschetz number of ๐‘“ asthe intersection number ๐ผ(๐›ฅ๐‘‹, graph(๐‘“)) where ๐›ฅ๐‘‹ is the diagonal in๐‘‹ ร— ๐‘‹, and view thisas a โ€œtopological countโ€ of the number of fixed points of the map ๐‘“.

Finally in Section 5.8 we will show that if ๐‘‹ has finite topology (in the sense we de-scribed above), then one can define an alternative set of cohomology groups for๐‘‹, the ฤŒechcohomology groups of a cover U, and we will sketch a proof of the association that this ฤŒechcohomology and de Rham cohomology coincide, leaving a lot of details as exercises (how-ever, with some hints supplied).

AppendicesIn Appendix a we review some techniques in multi-variable calculus that enable one to

reduce global problems to local problems and illustrate these techniques by describing sometypical applications. In particular we show how these techniques can be used to make senseof โ€œimproper integralsโ€ and to extend differentiable maps ๐‘“โˆถ ๐‘‹ โ†’ ๐‘ on arbitrary subsets๐‘‹ โŠ‚ ๐‘๐‘š to open neighborhoods of these sets.

In Appendix b we discuss another calculus issue: how to solve systems of equations

{{{{{

๐‘“1(๐‘ฅ) = ๐‘ฆ1โ‹ฎ

๐‘“๐‘(๐‘ฅ) = ๐‘ฆ๐‘for ๐‘ฅ in terms of ๐‘ฆ (here ๐‘“1,โ€ฆ, ๐‘“๐‘ are differentiable functions on an open subset of ๐‘๐‘›). Toanswer this question we prove a somewhat refined version of what in elementary calculustexts is referred to as the implicit function theorem and derive as corollaries of this theoremtwo results that we make extensive use of in Chapter 4: the canonical submersion theoremand the canonical immersion theorem.

Finally, in Appendix c we discuss a concept which plays an important role in the for-mulation of the โ€œfinite topologyโ€ results that we discussed in Chapter 5, namely the conceptof a โ€œgood coverโ€. In more detail let๐‘‹ be an ๐‘›-dimensional manifold an let U = {๐‘ˆ๐›ผ}๐›ผโˆˆ๐ผ bea collection of open subsets of๐‘‹ with the property thatโ‹ƒ๐›ผโˆˆ๐ผ๐‘ˆ๐›ผ = ๐‘‹.

Then U is a good cover of๐‘‹ if for every finite subset

{๐›ผ1,โ€ฆ, ๐›ผ๐‘Ÿ} โŠ‚ ๐ผ

the intersection ๐‘ˆ๐›ผ1 โˆฉโ‹ฏ โˆฉ ๐‘ˆ๐›ผ๐‘Ÿ is either empty or is diffeomorphic to a convex open subsetof ๐‘๐‘›. In Appendix c we will prove that good covers always exist.

Notational Conventions

Below we provide a list of a few of our common notational conventions.โ‰” used to define a term; the term being defined appears to the left of the colonโŠ‚ subsetโ†’ denotes an map (of sets, vector spaces, etc.)โ†ช inclusion mapโ†  surjective mapโฅฒ a map that is an isomorphismโˆ– difference of sets: if ๐ด โŠ‚ ๐‘‹, then๐‘‹ โˆ– ๐ด is the complement of ๐ด in๐‘‹

Page 11: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

Acknowledgments xi

Acknowledgments

To conclude this introduction we would like to thank Cole Graham and Farzan Vafafor helping us correct earlier versions of this text, a task which involved compiling long listof typos and errata. (In addition a lot of pertinent comments of theirs helped us improvethe readability of the text itself.)

Page 12: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

Page 13: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

CHAPTER 1

Multilinear Algebra

1.1. Background

We will list below some definitions and theorems that are part of the curriculum of astandard theory-based course in linear algebra.1

Definition 1.1.1. A (real) vector space is a set๐‘‰ the elements of which we refer to as vectors.The set ๐‘‰ is equipped with two vector space operations:(1) Vector space addition: Given vectors ๐‘ฃ1, ๐‘ฃ2 โˆˆ ๐‘‰ one can add them to get a third vector,๐‘ฃ1 + ๐‘ฃ2.

(2) Scalar multiplication: Given a vector ๐‘ฃ โˆˆ ๐‘‰ and a real number ๐œ†, one can multiply ๐‘ฃ by๐œ† to get a vector ๐œ†๐‘ฃ.These operations satisfy a number of standard rules: associativity, commutativity, dis-

tributive laws, etc. which we assume youโ€™re familiar with. (See Exercise 1.1.i.) In additionwe assume that the reader is familiar with the following definitions and theorems.(1) The zero vector in ๐‘‰ is the unique vector 0 โˆˆ ๐‘‰ with the property that for every vector๐‘ฃ โˆˆ ๐‘‰, we have ๐‘ฃ + 0 = 0 + ๐‘ฃ = ๐‘ฃ and ๐œ†๐‘ฃ = 0 if ๐œ† โˆˆ ๐‘ is nonzero.

(2) Linear independence: A (finite) set of vectors, ๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜ โˆˆ ๐‘‰ is linearly independent ifthe map

(1.1.2) ๐‘๐‘˜ โ†’ ๐‘‰ , (๐‘1,โ€ฆ, ๐‘๐‘˜) โ†ฆ ๐‘1๐‘ฃ1 +โ‹ฏ + ๐‘๐‘˜๐‘ฃ๐‘˜is injective.

(3) A (finite) set of vectors ๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜ โˆˆ ๐‘‰ spans ๐‘‰ if the map (1.1.2) is surjective.(4) Vectors ๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜ โˆˆ ๐‘‰ are a basis of ๐‘‰ if they span ๐‘‰ and are linearly independent; in

other words, if themap (1.1.2) is bijective.Thismeans that every vector ๐‘ฃ can be writtenuniquely as a sum

(1.1.3) ๐‘ฃ =๐‘›โˆ‘๐‘–=1๐‘๐‘–๐‘ฃ๐‘– .

(5) If๐‘‰ is a vector space with a basis ๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜, then๐‘‰ is said to be finite dimensional, and ๐‘˜is the dimension of๐‘‰. (It is a theorem that this definition is legitimate: every basis has tohave the same number of vectors.) In this chapter all the vector spaces weโ€™ll encounterwill be finite dimensional. We write dim(๐‘‰) for the dimension of ๐‘‰.

(6) A subset๐‘ˆ โŠ‚ ๐‘‰ is a subspace if it is vector space in its own right, i.e., for all ๐‘ฃ, ๐‘ฃ1, ๐‘ฃ2 โˆˆ ๐‘ˆand ๐œ† โˆˆ ๐‘, both ๐œ†๐‘ฃ and ๐‘ฃ1 + ๐‘ฃ2 are in ๐‘ˆ (where the addition and scalar multiplicationis given as vectors of ๐‘‰).

(7) Let๐‘‰ and๐‘Š be vector spaces. A map๐ดโˆถ ๐‘‰ โ†’ ๐‘Š is linear if for ๐‘ฃ, ๐‘ฃ1, ๐‘ฃ2 โˆˆ ๐‘ˆ and ๐œ† โˆˆ ๐‘we have

(1.1.4) ๐ด(๐œ†๐‘ฃ) = ๐œ†๐ด๐‘ฃ1Such a course is a prerequisite for reading this text.

1

Page 14: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

2 Chapter 1: Multilinear Algebra

and๐ด(๐‘ฃ1 + ๐‘ฃ2) = ๐ด๐‘ฃ1 + ๐ด๐‘ฃ2 .

(8) Let ๐ดโˆถ ๐‘‰ โ†’ ๐‘Š be a linear map of vector spaces. The kernel of ๐ด is the subset of ๐‘‰defined by

ker(๐ด) โ‰” { ๐‘ฃ โˆˆ ๐‘‰ |๐ด(๐‘ฃ) = 0 } ,i.e, is the set of vectors in ๐‘‰ which ๐ด sends to the zero vector in๐‘Š. By equation (1.1.4)and item 7, the subset ker(๐ด) is a subspace of ๐‘‰.

(9) By (1.1.4) and (7) the set-theoretic image im(๐ด)of ๐ด is a subspace of๐‘Š. We call im(๐ด)the image๐ด of๐ด.The following is an important rule for keeping track of the dimensionsof ker๐ด and im๐ด:

(1.1.5) dim(๐‘‰) = dim(ker(๐ด)) + dim(im(๐ด)) .(10) Linear mappings and matrices: Let ๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘› be a basis of ๐‘‰ and๐‘ค1,โ€ฆ,๐‘ค๐‘š a basis of๐‘Š.

Then by (1.1.3) ๐ด๐‘ฃ๐‘— can be written uniquely as a sum,

(1.1.6) ๐ด๐‘ฃ๐‘— =๐‘šโˆ‘๐‘–=1๐‘๐‘–,๐‘—๐‘ค๐‘– , ๐‘๐‘–,๐‘— โˆˆ ๐‘ .

The ๐‘š ร— ๐‘› matrix of real numbers, [๐‘๐‘–,๐‘—], is the matrix associated with ๐ด. Conversely,given such an๐‘š ร— ๐‘›matrix, there is a unique linear map ๐ด with the property (1.1.6).

(11) An inner product on a vector space is a map๐ตโˆถ ๐‘‰ ร— ๐‘‰ โ†’ ๐‘

with the following three properties:(a) Bilinearity: For vectors ๐‘ฃ, ๐‘ฃ1, ๐‘ฃ2, ๐‘ค โˆˆ ๐‘‰ and ๐œ† โˆˆ ๐‘ we have

๐ต(๐‘ฃ1 + ๐‘ฃ2, ๐‘ค) = ๐ต(๐‘ฃ1, ๐‘ค) + ๐ต(๐‘ฃ2, ๐‘ค)and

๐ต(๐œ†๐‘ฃ, ๐‘ค) = ๐œ†๐ต(๐‘ฃ, ๐‘ค) .(b) Symmetry: For vectors ๐‘ฃ, ๐‘ค โˆˆ ๐‘‰ we have ๐ต(๐‘ฃ, ๐‘ค) = ๐ต(๐‘ค, ๐‘ฃ).(c) Positivity: For every vector ๐‘ฃ โˆˆ ๐‘‰ we have ๐ต(๐‘ฃ, ๐‘ฃ) โ‰ฅ 0. Moreover, if ๐‘ฃ โ‰  0 then๐ต(๐‘ฃ, ๐‘ฃ) > 0.

Remark 1.1.7. Notice that by property (11b), property (11a) is equivalent to๐ต(๐‘ค, ๐œ†๐‘ฃ) = ๐œ†๐ต(๐‘ค, ๐‘ฃ)

and๐ต(๐‘ค, ๐‘ฃ1 + ๐‘ฃ2) = ๐ต(๐‘ค, ๐‘ฃ1) + ๐ต(๐‘ค, ๐‘ฃ2) .

Example 1.1.8. The map (1.1.2) is a linear map. The vectors ๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜ span๐‘‰ if its image ofthis map is๐‘‰, and the ๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜ are linearly independent if the kernel of this map is the zerovector in ๐‘๐‘˜.

The items on the list above are just a few of the topics in linear algebra that weโ€™re assum-ing our readers are familiar with. We have highlighted them because theyโ€™re easy to state.However, understanding them requires a heavy dollop of that indefinable quality โ€œmathe-matical sophisticationโ€, a quality which will be in heavy demand in the next few sections ofthis chapter. We will also assume that our readers are familiar with a number of more low-brow linear algebra notions: matrix multiplication, row and column operations on matrices,transposes of matrices, determinants of ๐‘› ร— ๐‘›matrices, inverses of matrices, Cramerโ€™s rule,recipes for solving systems of linear equations, etc. (See [10, ยงยง1.1 & 1.2] for a quick reviewof this material.)

Page 15: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง1.2 Quotient spaces & dual spaces 3

Exercises for ยง1.1Exercise 1.1.i. Our basic example of a vector space in this course is ๐‘๐‘› equipped with thevector addition operation

(๐‘Ž1,โ€ฆ, ๐‘Ž๐‘›) + (๐‘1,โ€ฆ, ๐‘๐‘›) = (๐‘Ž1 + ๐‘1,โ€ฆ, ๐‘Ž๐‘› + ๐‘๐‘›)and the scalar multiplication operation

๐œ†(๐‘Ž1,โ€ฆ, ๐‘Ž๐‘›) = (๐œ†๐‘Ž1,โ€ฆ, ๐œ†๐‘Ž๐‘›) .Check that these operations satisfy the axioms below.(1) Commutativity: ๐‘ฃ + ๐‘ค = ๐‘ค + ๐‘ฃ.(2) Associativity: ๐‘ข + (๐‘ฃ + ๐‘ค) = (๐‘ข + ๐‘ฃ) + ๐‘ค.(3) For the zero vector 0 โ‰” (0,โ€ฆ, 0) we have ๐‘ฃ + 0 = 0 + ๐‘ฃ.(4) ๐‘ฃ + (โˆ’1)๐‘ฃ = 0.(5) 1๐‘ฃ = ๐‘ฃ.(6) Associative law for scalar multiplication: (๐‘Ž๐‘)๐‘ฃ = ๐‘Ž(๐‘๐‘ฃ).(7) Distributive law for scalar addition: (๐‘Ž + ๐‘)๐‘ฃ = ๐‘Ž๐‘ฃ + ๐‘๐‘ฃ.(8) Distributive law for vector addition: ๐‘Ž(๐‘ฃ + ๐‘ค) = ๐‘Ž๐‘ฃ + ๐‘Ž๐‘ค.Exercise 1.1.ii. Check that the standard basis vectors of๐‘๐‘›: ๐‘’1 = (1, 0,โ€ฆ, 0), ๐‘’2 = (0, 1, 0,โ€ฆ, 0),etc. are a basis.

Exercise 1.1.iii. Check that the standard inner product on ๐‘๐‘›

๐ต((๐‘Ž1,โ€ฆ, ๐‘Ž๐‘›), (๐‘1,โ€ฆ, ๐‘๐‘›)) =๐‘›โˆ‘๐‘–=1๐‘Ž๐‘–๐‘๐‘–

is an inner product.

1.2. Quotient spaces & dual spaces

In this section we will discuss a couple of items which are frequently, but not always,covered in linear algebra courses, but which weโ€™ll need for our treatment of multilinear al-gebra in ยงยง1.3 to 1.8.

The quotient spaces of a vector spaceDefinition 1.2.1. Let ๐‘‰ be a vector space and๐‘Š a vector subspace of ๐‘‰. A๐‘Š-coset is a setof the form

๐‘ฃ +๐‘Š โ‰” { ๐‘ฃ + ๐‘ค |๐‘ค โˆˆ ๐‘Š} .It is easy to check that if ๐‘ฃ1 โˆ’ ๐‘ฃ2 โˆˆ ๐‘Š, the cosets ๐‘ฃ1 +๐‘Š and ๐‘ฃ2 +๐‘Š, coincide while if

๐‘ฃ1โˆ’๐‘ฃ2 โˆ‰ ๐‘Š, the cosets ๐‘ฃ1+๐‘Š and ๐‘ฃ2+๐‘Š are disjoint.Thus the distinct๐‘Š-cosets decompose๐‘‰ into a disjoint collection of subsets of ๐‘‰.Notation 1.2.2. Let ๐‘‰ be a vector space and๐‘Š โŠ‚ ๐‘‰ a subspace. We write ๐‘‰/๐‘Š for the setof distinct๐‘Š-cosets in ๐‘‰.Definition 1.2.3. Let ๐‘‰ be a vector space and๐‘Š โŠ‚ ๐‘‰ a subspace. Define a vector additionoperation on ๐‘‰/๐‘Š by setting(1.2.4) (๐‘ฃ1 +๐‘Š) + (๐‘ฃ2 +๐‘Š) โ‰” (๐‘ฃ1 + ๐‘ฃ2) + ๐‘Šand define a scalar multiplication operation on ๐‘‰/๐‘Š by setting(1.2.5) ๐œ†(๐‘ฃ +๐‘Š) โ‰” (๐œ†๐‘ฃ) + ๐‘Š .These operations make ๐‘‰/๐‘Š into a vector space, called quotient space of ๐‘‰ by๐‘Š.

Page 16: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

4 Chapter 1: Multilinear Algebra

It is easy to see that the operations on ๐‘‰/๐‘Š from Definition 1.2.3 are well-defined. Forinstance, suppose ๐‘ฃ1 +๐‘Š = ๐‘ฃโ€ฒ1 +๐‘Š and ๐‘ฃ2 +๐‘Š = ๐‘ฃโ€ฒ2 +๐‘Š. Then ๐‘ฃ1 โˆ’ ๐‘ฃโ€ฒ1 and ๐‘ฃ2 โˆ’ ๐‘ฃโ€ฒ2 are in๐‘Š, so

(๐‘ฃ1 + ๐‘ฃ2) โˆ’ (๐‘ฃโ€ฒ1 + ๐‘ฃโ€ฒ2) โˆˆ ๐‘Š ,and hence (๐‘ฃ1 + ๐‘ฃ2) + ๐‘Š = (๐‘ฃโ€ฒ1 + ๐‘ฃโ€ฒ2) + ๐‘Š.

Definition 1.2.6. Let ๐‘‰ be a vector space and๐‘Š โŠ‚ ๐‘‰ a subspace. Define a map quotientmap(1.2.7) ๐œ‹โˆถ ๐‘‰ โ†’ ๐‘‰/๐‘Šby setting ๐œ‹(๐‘ฃ) โ‰” ๐‘ฃ + ๐‘Š. It is clear from equations (1.2.4) and (1.2.5) that ๐œ‹ is linear, andthat it maps ๐‘‰ surjectively onto ๐‘‰/๐‘Š.

Observation 1.2.8. Note that the zero vector in the vector space ๐‘‰/๐‘Š is the zero coset0 + ๐‘Š = ๐‘Š. Hence ๐‘ฃ โˆˆ ker(๐œ‹) if and only if ๐‘ฃ + ๐‘Š = ๐‘Š, i.e., ๐‘ฃ โˆˆ ๐‘Š. In other words,ker(๐œ‹) = ๐‘Š.

In the Definitions 1.2.3 and 1.2.6, ๐‘‰ and๐‘Š do not have to be finite dimensional, but ifthey are then by equation (1.1.5) we have

dim(๐‘‰/๐‘Š) = dim(๐‘‰) โˆ’ dim(๐‘Š) .We leave the following easy proposition as an exercise.

Proposition 1.2.9. Let ๐ดโˆถ ๐‘‰ โ†’ ๐‘ˆ a linear map of vector spaces. If๐‘Š โŠ‚ ker(๐ด) there existsa unique linear map ๐ดโ™ฏ โˆถ ๐‘‰/๐‘Š โ†’ ๐‘ˆ with the property that ๐ด = ๐ดโ™ฏ โˆ˜ ๐œ‹, where ๐œ‹โˆถ ๐‘‰ โ†’ ๐‘‰/๐‘Šis the quotient map.

The dual space of a vector spaceDefinition 1.2.10. Let๐‘‰ be a vector space.Write๐‘‰โ‹† the set of all linear functions โ„“โˆถ ๐‘‰ โ†’ ๐‘.Define a vector space structure on ๐‘‰โ‹† as follows: if โ„“1, โ„“2 โˆˆ ๐‘‰โ‹†, then define the sum โ„“1 + โ„“2to be the map ๐‘‰ โ†’ ๐‘ given by

(โ„“1 + โ„“2)(๐‘ฃ) โ‰” โ„“1(๐‘ฃ) + โ„“2(๐‘ฃ) ,which is clearly is linear. If โ„“ โˆˆ ๐‘‰โ‹† is a linear function and ๐œ† โˆˆ ๐‘, define ๐œ†โ„“ by

(๐œ†โ„“)(๐‘ฃ) โ‰” ๐œ† โ‹… โ„“(๐‘ฃ) ;then ๐œ†โ„“ is clearly linear.

The vector space ๐‘‰โ‹† is called the dual space of ๐‘‰.

Suppose ๐‘‰ is ๐‘›-dimensional, and let ๐‘’1,โ€ฆ, ๐‘’๐‘› be a basis of ๐‘‰. Then every vector ๐‘ฃ โˆˆ ๐‘‰can be written uniquely as a sum

๐‘ฃ = ๐‘1๐‘’1 +โ‹ฏ + ๐‘๐‘›๐‘’๐‘› , ๐‘๐‘– โˆˆ ๐‘ .Let(1.2.11) ๐‘’โ‹†๐‘– (๐‘ฃ) = ๐‘๐‘– .If ๐‘ฃ = ๐‘1๐‘’1 +โ‹ฏ+๐‘๐‘›๐‘’๐‘› and ๐‘ฃโ€ฒ = ๐‘โ€ฒ1๐‘’1 +โ‹ฏ+๐‘โ€ฒ๐‘›๐‘’๐‘› then ๐‘ฃ+ ๐‘ฃโ€ฒ = (๐‘1 + ๐‘โ€ฒ1)๐‘’1 +โ‹ฏ+ (๐‘๐‘› + ๐‘โ€ฒ๐‘›)๐‘’๐‘›, so

๐‘’โ‹†๐‘– (๐‘ฃ + ๐‘ฃโ€ฒ) = ๐‘๐‘– + ๐‘โ€ฒ๐‘– = ๐‘’โ‹†๐‘– (๐‘ฃ) + ๐‘’โ‹†๐‘– (๐‘ฃโ€ฒ) .This shows that ๐‘’โ‹†๐‘– (๐‘ฃ) is a linear function of ๐‘ฃ and hence ๐‘’โ‹†๐‘– โˆˆ ๐‘‰โ‹†.

Claim 1.2.12. If ๐‘‰ is an ๐‘›-dimensional vector space with basis ๐‘’1,โ€ฆ, ๐‘’๐‘›, then ๐‘’โ‹†1 ,โ€ฆ, ๐‘’โ‹†๐‘› is abasis of ๐‘‰โ‹†.

Page 17: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง1.2 Quotient spaces & dual spaces 5

Proof. First of all note that by (1.2.11)

(1.2.13) ๐‘’โ‹†๐‘– (๐‘’๐‘—) = {1, ๐‘– = ๐‘—0, ๐‘– โ‰  ๐‘— .

If โ„“ โˆˆ ๐‘‰โ‹† let ๐œ†๐‘– = โ„“(๐‘’๐‘–) and let โ„“โ€ฒ = โˆ‘๐œ†๐‘–๐‘’โ‹†๐‘– . Then by (1.2.13)

โ„“โ€ฒ(๐‘’๐‘—) =๐‘›โˆ‘๐‘–=1๐œ†๐‘–๐‘’โ‹†๐‘– (๐‘’๐‘—) = ๐œ†๐‘— = โ„“(๐‘’๐‘—) ,

i.e., โ„“ and โ„“โ€ฒ take identical values on the basis vectors, ๐‘’๐‘—. Hence โ„“ = โ„“โ€ฒ.Suppose next that โˆ‘๐‘›๐‘–=1 ๐œ†๐‘–๐‘’โ‹†๐‘– = 0. Then by (1.2.13), ๐œ†๐‘— = (โˆ‘

๐‘›๐‘–=1 ๐œ†๐‘–๐‘’โ‹†๐‘– )(๐‘’๐‘—) = 0 for ๐‘— =

1,โ€ฆ, ๐‘›. Hence the vectors ๐‘’โ‹†1 ,โ€ฆ, ๐‘’โ‹†๐‘› are linearly independent. โ–ก

Let ๐‘‰ and๐‘Š be vector spaces and ๐ดโˆถ ๐‘‰ โ†’ ๐‘Š, a linear map. Given โ„“ โˆˆ ๐‘Šโ‹† the com-position, โ„“ โˆ˜ ๐ด, of ๐ด with the linear map, โ„“โˆถ ๐‘Š โ†’ ๐‘, is linear, and hence is an element of๐‘‰โ‹†. We will denote this element by ๐ดโ‹†โ„“, and we will denote by

๐ดโ‹† โˆถ ๐‘Šโ‹† โ†’ ๐‘‰โ‹†

the map, โ„“ โ†ฆ ๐ดโ‹†โ„“. It is clear from the definition that

๐ดโ‹†(โ„“1 + โ„“2) = ๐ดโ‹†โ„“1 + ๐ดโ‹†โ„“2and that

๐ดโ‹†(๐œ†โ„“) = ๐œ†๐ดโ‹†โ„“ ,i.e., that ๐ดโ‹† is linear.

Definition 1.2.14. Let๐‘‰ and๐‘Š be vector spaces and๐ดโˆถ ๐‘‰ โ†’ ๐‘Š, a linear map. We call themap ๐ดโ‹† โˆถ ๐‘Šโ‹† โ†’ ๐‘‰โ‹† defined above the transpose of the map ๐ด.

We conclude this section by giving a matrix description of ๐ดโ‹†. Let ๐‘’1,โ€ฆ, ๐‘’๐‘› be a basisof ๐‘‰ and ๐‘“1,โ€ฆ, ๐‘“๐‘š a basis of๐‘Š; let ๐‘’โ‹†1 ,โ€ฆ, ๐‘’โ‹†๐‘› and ๐‘“โ‹†1 ,โ€ฆ, ๐‘“โ‹†๐‘š be the dual bases of ๐‘‰โ‹† and๐‘Šโ‹†. Suppose ๐ด is defined in terms of ๐‘’1,โ€ฆ, ๐‘’๐‘› and ๐‘“1,โ€ฆ, ๐‘“๐‘š by the๐‘šร—๐‘›matrix, [๐‘Ž๐‘–,๐‘—], i.e.,suppose

๐ด๐‘’๐‘— =๐‘›โˆ‘๐‘–=1๐‘Ž๐‘–,๐‘—๐‘“๐‘– .

Claim 1.2.15. The linear map๐ดโ‹† is defined, in terms of๐‘“โ‹†1 ,โ€ฆ, ๐‘“โ‹†๐‘š and ๐‘’โ‹†1 ,โ€ฆ, ๐‘’โ‹†๐‘› by the trans-pose matrix (๐‘Ž๐‘—,๐‘–).

Proof. Let

๐ดโ‹†๐‘“โ‹†๐‘– =๐‘šโˆ‘๐‘—=1๐‘๐‘—,๐‘–๐‘’โ‹†๐‘— .

Then

๐ดโ‹†๐‘“โ‹†๐‘– (๐‘’๐‘—) =๐‘›โˆ‘๐‘˜=1๐‘๐‘˜,๐‘–๐‘’โ‹†๐‘˜ (๐‘’๐‘—) = ๐‘๐‘—,๐‘–

by (1.2.13). On the other hand

๐ดโ‹†๐‘“โ‹†๐‘– (๐‘’๐‘—) = ๐‘“โ‹†๐‘– (๐ด๐‘’๐‘—) = ๐‘“โ‹†๐‘– (๐‘šโˆ‘๐‘˜=1๐‘Ž๐‘˜,๐‘—๐‘“๐‘˜) =

๐‘šโˆ‘๐‘˜=1๐‘Ž๐‘˜,๐‘—๐‘“โ‹†๐‘– (๐‘“๐‘˜) = ๐‘Ž๐‘–,๐‘—

so ๐‘Ž๐‘–,๐‘— = ๐‘๐‘—,๐‘–. โ–ก

Page 18: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

6 Chapter 1: Multilinear Algebra

Exercises for ยง1.2Exercise 1.2.i. Let ๐‘‰ be an ๐‘›-dimensional vector space and๐‘Š a ๐‘˜-dimensional subspace.Show that there exists a basis, ๐‘’1,โ€ฆ, ๐‘’๐‘› of ๐‘‰ with the property that ๐‘’1,โ€ฆ, ๐‘’๐‘˜ is a basis of๐‘Š.

Hint: Induction on ๐‘› โˆ’ ๐‘˜. To start the induction suppose that ๐‘› โˆ’ ๐‘˜ = 1. Let ๐‘’1,โ€ฆ, ๐‘’๐‘›โˆ’1be a basis of๐‘Š and ๐‘’๐‘› any vector in ๐‘‰ โˆ–๐‘Š.

Exercise 1.2.ii. In Exercise 1.2.i show that the vectors ๐‘“๐‘– โ‰” ๐œ‹(๐‘’๐‘˜+๐‘–), ๐‘– = 1,โ€ฆ, ๐‘› โˆ’ ๐‘˜ are abasis of ๐‘‰/๐‘Š, where ๐œ‹โˆถ ๐‘‰ โ†’ ๐‘‰/๐‘Š is the quotient map.

Exercise 1.2.iii. In Exercise 1.2.i let๐‘ˆ be the linear span of the vectors ๐‘’๐‘˜+๐‘– for ๐‘– = 1,โ€ฆ, ๐‘›โˆ’๐‘˜.Show that the map

๐‘ˆ โ†’ ๐‘‰/๐‘Š , ๐‘ข โ†ฆ ๐œ‹(๐‘ข) ,is a vector space isomorphism, i.e., show that it maps ๐‘ˆ bijectively onto ๐‘‰/๐‘Š.

Exercise 1.2.iv. Let ๐‘ˆ, ๐‘‰ and๐‘Š be vector spaces and let ๐ดโˆถ ๐‘‰ โ†’ ๐‘Š and ๐ตโˆถ ๐‘ˆ โ†’ ๐‘‰ belinear mappings. Show that (๐ด๐ต)โ‹† = ๐ตโ‹†๐ดโ‹†.

Exercise 1.2.v. Let ๐‘‰ = ๐‘2 and let๐‘Š be the ๐‘ฅ1-axis, i.e., the one-dimensional subspace

{ (๐‘ฅ1, 0) | ๐‘ฅ1 โˆˆ ๐‘ }of ๐‘2.(1) Show that the๐‘Š-cosets are the lines, ๐‘ฅ2 = ๐‘Ž, parallel to the ๐‘ฅ1-axis.(2) Show that the sum of the cosets, โ€œ๐‘ฅ2 = ๐‘Žโ€ and โ€œ๐‘ฅ2 = ๐‘โ€ is the coset โ€œ๐‘ฅ2 = ๐‘Ž + ๐‘โ€.(3) Show that the scalar multiple of the coset, โ€œ๐‘ฅ2 = ๐‘โ€ by the number, ๐œ†, is the coset, โ€œ๐‘ฅ2 =๐œ†๐‘โ€.

Exercise 1.2.vi.(1) Let (๐‘‰โ‹†)โ‹† be the dual of the vector space, ๐‘‰โ‹†. For every ๐‘ฃ โˆˆ ๐‘‰, let ev๐‘ฃ โˆถ ๐‘‰โ‹† โ†’ ๐‘ be the

evaluation function ev๐‘ฃ(โ„“) = โ„“(๐‘ฃ). Show that the ev๐‘ฃ is a linear function on ๐‘‰โ‹†, i.e., anelement of (๐‘‰โ‹†)โ‹†, and show that the map

(1.2.16) ev = ev(โˆ’) โˆถ ๐‘‰ โ†’ (๐‘‰โ‹†)โ‹† , ๐‘ฃ โ†ฆ ev๐‘ฃis a linear map of ๐‘‰ into (๐‘‰โ‹†)โ‹†.

(2) If ๐‘‰ is finite dimensional, show that the map (1.2.16) is bijective. Conclude that there isa natural identification of ๐‘‰ with (๐‘‰โ‹†)โ‹†, i.e., that ๐‘‰ and (๐‘‰โ‹†)โ‹† are two descriptions ofthe same object.

Hint: dim(๐‘‰โ‹†)โ‹† = dim๐‘‰โ‹† = dim๐‘‰, so by equation (1.1.5) it suffices to show that(1.2.16) is injective.

Exercise 1.2.vii. Let๐‘Š be a vector subspace of a finite dimensional vector space ๐‘‰ and let

๐‘ŠโŸ‚ = { โ„“ โˆˆ ๐‘‰โ‹† | โ„“(๐‘ค) = 0 for all ๐‘ค โˆˆ ๐‘Š} .๐‘ŠโŸ‚ is called the annihilator of๐‘Š in ๐‘‰โ‹†. Show that๐‘ŠโŸ‚ is a subspace of ๐‘‰โ‹† of dimensiondim๐‘‰ โˆ’ dim๐‘Š.

Hint: By Exercise 1.2.i we can choose a basis, ๐‘’1,โ€ฆ, ๐‘’๐‘› of ๐‘‰ such that ๐‘’1,โ€ฆ๐‘’๐‘˜ is a basisof๐‘Š. Show that ๐‘’โ‹†๐‘˜+1,โ€ฆ, ๐‘’โ‹†๐‘› is a basis of๐‘ŠโŸ‚.

Exercise 1.2.viii. Let ๐‘‰ and ๐‘‰โ€ฒ be vector spaces and ๐ดโˆถ ๐‘‰ โ†’ ๐‘‰โ€ฒ a linear map. Show that if๐‘Š โŠ‚ ker(๐ด), then there exists a linear map ๐ตโˆถ ๐‘‰/๐‘Š โ†’ ๐‘‰โ€ฒ with the property that๐ด = ๐ต โˆ˜ ๐œ‹(where ๐œ‹ is the quotient map (1.2.7)). In addition show that this linear map is injective ifand only if ker(๐ด) = ๐‘Š.

Page 19: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง1.2 Quotient spaces & dual spaces 7

Exercise 1.2.ix. Let ๐‘Š be a subspace of a finite dimensional vector space, ๐‘‰. From theinclusion map, ๐œ„ โˆถ ๐‘ŠโŸ‚ โ†’ ๐‘‰โ‹†, one gets a transpose map,

๐œ„โ‹† โˆถ (๐‘‰โ‹†)โ‹† โ†’ (๐‘ŠโŸ‚)โ‹†

and, by composing this with (1.2.16), a map

๐œ„โ‹† โˆ˜ ev โˆถ ๐‘‰ โ†’ (๐‘ŠโŸ‚)โ‹† .

Show that this map is onto and that its kernel is ๐‘Š. Conclude from Exercise 1.2.viii thatthere is a natural bijective linear map

๐œˆโˆถ ๐‘‰/๐‘Š โ†’ (๐‘ŠโŸ‚)โ‹†

with the property ๐œˆโˆ˜๐œ‹ = ๐œ„โ‹† โˆ˜ev. In other words,๐‘‰/๐‘Š and (๐‘ŠโŸ‚)โ‹† are two descriptions of thesame object. (This shows that the โ€œquotient spaceโ€ operation and the โ€œdual spaceโ€ operationare closely related.)

Exercise 1.2.x. Let๐‘‰1 and๐‘‰2 be vector spaces and๐ดโˆถ ๐‘‰1 โ†’ ๐‘‰2 a linear map. Verify that forthe transpose map ๐ดโ‹† โˆถ ๐‘‰โ‹†2 โ†’ ๐‘‰โ‹†1 we have:

ker(๐ดโ‹†) = im(๐ด)โŸ‚

andim(๐ดโ‹†) = ker(๐ด)โŸ‚ .

Exercise 1.2.xi. Let ๐‘‰ be a vector space.(1) Let ๐ตโˆถ ๐‘‰ ร— ๐‘‰ โ†’ ๐‘ be an inner product on ๐‘‰. For ๐‘ฃ โˆˆ ๐‘‰ let

โ„“๐‘ฃ โˆถ ๐‘‰ โ†’ ๐‘

be the function: โ„“๐‘ฃ(๐‘ค) = ๐ต(๐‘ฃ, ๐‘ค). Show that โ„“๐‘ฃ is linear and show that the map

(1.2.17) ๐ฟโˆถ ๐‘‰ โ†’ ๐‘‰โ‹† , ๐‘ฃ โ†ฆ โ„“๐‘ฃis a linear mapping.

(2) If๐‘‰ is finite dimensional, prove that ๐ฟ bijective. Conclude that if๐‘‰ has an inner productone gets from it a natural identification of ๐‘‰ with ๐‘‰โ‹†.

Hint: Since dim๐‘‰ = dim๐‘‰โ‹† it suffices by equation (1.1.5) to show that ker(๐ฟ) = 0.Now note that if ๐‘ฃ โ‰  0 โ„“๐‘ฃ(๐‘ฃ) = ๐ต(๐‘ฃ, ๐‘ฃ) is a positive number.

Exercise 1.2.xii. Let ๐‘‰ be an ๐‘›-dimensional vector space and ๐ตโˆถ ๐‘‰ ร— ๐‘‰ โ†’ ๐‘ an innerproduct on ๐‘‰. A basis, ๐‘’1,โ€ฆ, ๐‘’๐‘› of ๐‘‰ is orthonormal if

(1.2.18) ๐ต(๐‘’๐‘–, ๐‘’๐‘—) = {1, ๐‘– = ๐‘—0, ๐‘– โ‰  ๐‘— .

(1) Show that an orthonormal basis exists.Hint: By induction let ๐‘’1,โ€ฆ, ๐‘’๐‘˜ be vectors with the property (1.2.18) and let ๐‘ฃ be a

vector which is not a linear combination of these vectors. Show that the vector

๐‘ค = ๐‘ฃ โˆ’๐‘˜โˆ‘๐‘–=1๐ต(๐‘’๐‘–, ๐‘ฃ)๐‘’๐‘–

is nonzero and is orthogonal to the ๐‘’๐‘–โ€™s. Now let ๐‘’๐‘˜+1 = ๐œ†๐‘ค, where ๐œ† = ๐ต(๐‘ค,๐‘ค)โˆ’ 12 .

Page 20: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

8 Chapter 1: Multilinear Algebra

(2) Let ๐‘’1,โ€ฆ๐‘’๐‘› and ๐‘’โ€ฒ1,โ€ฆ๐‘’โ€ฒ๐‘› be two orthonormal bases of ๐‘‰ and let

๐‘’โ€ฒ๐‘— =๐‘›โˆ‘๐‘–=1๐‘Ž๐‘–,๐‘—๐‘’๐‘– .

Show that

(1.2.19)๐‘›โˆ‘๐‘–=1๐‘Ž๐‘–,๐‘—๐‘Ž๐‘–,๐‘˜ = {

1, ๐‘— = ๐‘˜0, ๐‘— โ‰  ๐‘˜ .

(3) Let ๐ด be the matrix [๐‘Ž๐‘–,๐‘—]. Show that equation (1.2.19) can be written more compactlyas the matrix identity

(1.2.20) ๐ด๐ดโŠบ = id๐‘›where id๐‘› is the ๐‘› ร— ๐‘› identity matrix.

(4) Let ๐‘’1,โ€ฆ, ๐‘’๐‘› be an orthonormal basis of๐‘‰ and ๐‘’โ‹†1 ,โ€ฆ, ๐‘’โ‹†๐‘› the dual basis of๐‘‰โ‹†. Show thatthe mapping (1.2.17) is the mapping, ๐ฟ๐‘’๐‘– = ๐‘’โ‹†๐‘– , ๐‘– = 1,โ€ฆ๐‘›.

1.3. Tensors

Definition 1.3.1. Let๐‘‰ be an ๐‘›-dimensional vector space and let๐‘‰๐‘˜ be the set of all ๐‘˜-tuples(๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜), where ๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜ โˆˆ ๐‘‰, that is, the ๐‘˜-fold direct sum of ๐‘‰ with itself. A function

๐‘‡โˆถ ๐‘‰๐‘˜ โ†’ ๐‘is said to be linear in its ๐‘–th variable if, when we fix vectors, ๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘–โˆ’1, ๐‘ฃ๐‘–+1,โ€ฆ, ๐‘ฃ๐‘˜, the map๐‘‰ โ†’ ๐‘ defined by(1.3.2) ๐‘ฃ โ†ฆ ๐‘‡(๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘–โˆ’1, ๐‘ฃ, ๐‘ฃ๐‘–+1,โ€ฆ, ๐‘ฃ๐‘˜)is linear.

If ๐‘‡ is linear in its ๐‘–th variable for ๐‘– = 1,โ€ฆ, ๐‘˜ it is said to be ๐‘˜-linear, or alternativelyis said to be a ๐‘˜-tensor. We write L๐‘˜(๐‘‰) for the set of all ๐‘˜-tensors in ๐‘‰. We will agree that0-tensors are just the real numbers, that is L0(๐‘‰) โ‰” ๐‘.

Let ๐‘‡1, ๐‘‡2 โˆถ ๐‘‰๐‘˜ โ†’ ๐‘ be linear functions. It is clear from (1.3.2) that if ๐‘‡1 and ๐‘‡2 are๐‘˜-linear, so is ๐‘‡1 + ๐‘‡2. Similarly if ๐‘‡ is ๐‘˜-linear and ๐œ† is a real number, ๐œ†๐‘‡ is ๐‘˜-linear. HenceL๐‘˜(๐‘‰) is a vector space. Note that for ๐‘˜ = 1, โ€œ๐‘˜-linearโ€ just means โ€˜linearโ€, so L1(๐‘‰) = ๐‘‰โ‹†.

Definition 1.3.3. Let ๐‘› and ๐‘˜ be positive integers. Amulti-index of ๐‘› of length ๐‘˜ is a ๐‘˜-tuple๐ผ = (๐‘–1,โ€ฆ, ๐‘–๐‘˜) of integers with 1 โ‰ค ๐‘–๐‘Ÿ โ‰ค ๐‘› for ๐‘Ÿ = 1,โ€ฆ, ๐‘˜.

Example 1.3.4. Let ๐‘› be a positive integer.Themulti-indices of ๐‘› of length 2 are in bijectionthe square of pairs of integers integers

(๐‘–, ๐‘—) , 1 โ‰ค ๐‘–, ๐‘— โ‰ค ๐‘› ,and there are exactly ๐‘›2 of them.

We leave the following generalization as an easy exercise.

Lemma 1.3.5. Let ๐‘› and ๐‘˜ be positive integers. There are exactly ๐‘›๐‘˜multi-indices of ๐‘› of length๐‘˜.

Now fix a basis ๐‘’1,โ€ฆ, ๐‘’๐‘› of ๐‘‰. For ๐‘‡ โˆˆ L๐‘˜(๐‘‰) write(1.3.6) ๐‘‡๐ผ โ‰” ๐‘‡(๐‘’๐‘–1 ,โ€ฆ, ๐‘’๐‘–๐‘˜)for every multi-index ๐ผ of length ๐‘˜.

Page 21: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง1.3 Tensors 9

Proposition 1.3.7. The real numbers ๐‘‡๐ผ determine ๐‘‡, i.e., if ๐‘‡ and ๐‘‡โ€ฒ are ๐‘˜-tensors and ๐‘‡๐ผ =๐‘‡โ€ฒ๐ผ for all ๐ผ, then ๐‘‡ = ๐‘‡โ€ฒ.

Proof. By induction on ๐‘›. For ๐‘› = 1 we proved this result in ยง1.1. Letโ€™s prove that if thisassertion is true for ๐‘› โˆ’ 1, it is true for ๐‘›. For each ๐‘’๐‘– let ๐‘‡๐‘– be the (๐‘˜ โˆ’ 1)-tensor

(๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘›โˆ’1) โ†ฆ ๐‘‡(๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘›โˆ’1, ๐‘’๐‘–) .Then for ๐‘ฃ = ๐‘1๐‘’1 +โ‹ฏ๐‘๐‘›๐‘’๐‘›

๐‘‡(๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘›โˆ’1, ๐‘ฃ) =๐‘›โˆ‘๐‘–=1๐‘๐‘–๐‘‡๐‘–(๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘›โˆ’1) ,

so the ๐‘‡๐‘–โ€™s determine ๐‘‡. Now apply the inductive hypothesis. โ–ก

The tensor product operationDefinition 1.3.8. If ๐‘‡1 is a ๐‘˜-tensor and ๐‘‡2 is an โ„“-tensor, one can define a ๐‘˜ + โ„“-tensor,๐‘‡1 โŠ— ๐‘‡2, by setting

(๐‘‡1 โŠ— ๐‘‡2)(๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜+โ„“) = ๐‘‡1(๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜)๐‘‡2(๐‘ฃ๐‘˜+1,โ€ฆ, ๐‘ฃ๐‘˜+โ„“) .This tensor is called the tensor product of ๐‘‡1 and ๐‘‡2.

We note that if ๐‘‡1 is a 0-tensor, i.e., scalar, then tensor product with ๐‘‡1 is just scalarmultiplication by ๐‘‡1, and similarly if ๐‘‡2 is a 0-tensor. That is ๐‘Ž โŠ— ๐‘‡ = ๐‘‡ โŠ— ๐‘Ž = ๐‘Ž๐‘‡ for ๐‘Ž โˆˆ ๐‘and ๐‘‡ โˆˆ L๐‘˜(๐‘‰).

Properties 1.3.9. Suppose that we are given a ๐‘˜1-tensor ๐‘‡1, a ๐‘˜2-tensor ๐‘‡2, and a ๐‘˜3-tensor๐‘‡3 on a vector space ๐‘‰.(1) Associativity: One can define a (๐‘˜1 + ๐‘˜2 + ๐‘˜3)-tensor ๐‘‡1 โŠ— ๐‘‡2 โŠ— ๐‘‡3 by setting

(๐‘‡1 โŠ— ๐‘‡2 โŠ— ๐‘‡3)(๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜+โ„“+๐‘š) โ‰” ๐‘‡1(๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜)๐‘‡2(๐‘ฃ๐‘˜+1,โ€ฆ, ๐‘ฃ๐‘˜+โ„“)๐‘‡3(๐‘ฃ๐‘˜+โ„“+1,โ€ฆ, ๐‘ฃ๐‘˜+โ„“+๐‘š) .Alternatively, one can define ๐‘‡1 โŠ— ๐‘‡2 โŠ— ๐‘‡3 by defining it to be the tensor product of(๐‘‡1 โŠ— ๐‘‡2) โŠ— ๐‘‡3 or the tensor product of ๐‘‡1 โŠ— (๐‘‡2 โŠ— ๐‘‡3). It is easy to see that both thesetensor products are identical with ๐‘‡1 โŠ— ๐‘‡2 โŠ— ๐‘‡3:

(๐‘‡1 โŠ— ๐‘‡2) โŠ— ๐‘‡3 = ๐‘‡1 โŠ— ๐‘‡2 โŠ— ๐‘‡3 = ๐‘‡1 โŠ— (๐‘‡2 โŠ— ๐‘‡3) .(2) Distributivity of scalar multiplication: We leave it as an easy exercise to check that if ๐œ† is

a real number then

๐œ†(๐‘‡1 โŠ— ๐‘‡2) = (๐œ†๐‘‡1) โŠ— ๐‘‡2 = ๐‘‡1 โŠ— (๐œ†๐‘‡2)(3) Left and right distributive laws: If ๐‘˜1 = ๐‘˜2, then

(๐‘‡1 + ๐‘‡2) โŠ— ๐‘‡3 = ๐‘‡1 โŠ— ๐‘‡3 + ๐‘‡2 โŠ— ๐‘‡3and if ๐‘˜2 = ๐‘˜3, then

๐‘‡1 โŠ— (๐‘‡2 + ๐‘‡3) = ๐‘‡1 โŠ— ๐‘‡2 + ๐‘‡1 โŠ— ๐‘‡3 .

A particularly interesting tensor product is the following. For ๐‘– = 1,โ€ฆ, ๐‘˜ let โ„“๐‘– โˆˆ ๐‘‰โ‹†and let

(1.3.10) ๐‘‡ = โ„“1 โŠ—โ‹ฏ โŠ— โ„“๐‘˜ .Thus, by definition,

(1.3.11) ๐‘‡(๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜) = โ„“1(๐‘ฃ1)โ‹ฏโ„“๐‘˜(๐‘ฃ๐‘˜) .

Page 22: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

10 Chapter 1: Multilinear Algebra

A tensor of the form (1.3.11) is called a decomposable ๐‘˜-tensor. These tensors, as we willsee, play an important role in what follows. In particular, let ๐‘’1,โ€ฆ, ๐‘’๐‘› be a basis of ๐‘‰ and๐‘’โ‹†1 ,โ€ฆ, ๐‘’โ‹†๐‘› the dual basis of ๐‘‰โ‹†. For every multi-index ๐ผ of length ๐‘˜ let

๐‘’โ‹†๐ผ = ๐‘’โ‹†๐‘–1 โŠ—โ‹ฏ โŠ— ๐‘’โ‹†๐‘–๐‘˜ .

Then if ๐ฝ is another multi-index of length ๐‘˜,

(1.3.12) ๐‘’โ‹†๐ผ (๐‘’๐‘—1 ,โ€ฆ, ๐‘’๐‘—๐‘˜) = {1, ๐ผ = ๐ฝ0, ๐ผ โ‰  ๐ฝ

by (1.2.13), (1.3.10) and (1.3.11). From (1.3.12) it is easy to conclude:

Theorem 1.3.13. Let ๐‘‰ be a vector space with basis ๐‘’1,โ€ฆ, ๐‘’๐‘› and 0 โ‰ค ๐‘˜ โ‰ค ๐‘› be an integer.The ๐‘˜-tensors ๐‘’โ‹†๐ผ of (1.3.12) are a basis of L๐‘˜(๐‘‰).

Proof. Given ๐‘‡ โˆˆ L๐‘˜(๐‘‰), let๐‘‡โ€ฒ = โˆ‘

๐ผ๐‘‡๐ผ๐‘’โ‹†๐ผ

where the ๐‘‡๐ผโ€™s are defined by (1.3.6). Then

(1.3.14) ๐‘‡โ€ฒ(๐‘’๐‘—1 ,โ€ฆ, ๐‘’๐‘—๐‘˜) = โˆ‘๐ผ๐‘‡๐ผ๐‘’โ‹†๐ผ (๐‘’๐‘—1 ,โ€ฆ, ๐‘’๐‘—๐‘˜) = ๐‘‡๐ฝ

by (1.3.12); however, by Proposition 1.3.7 the ๐‘‡๐ฝโ€™s determine ๐‘‡, so ๐‘‡โ€ฒ = ๐‘‡. This proves thatthe ๐‘’โ‹†๐ผ โ€™s are a spanning set of vectors for L๐‘˜(๐‘‰). To prove theyโ€™re a basis, suppose

โˆ‘๐ผ๐ถ๐ผ๐‘’โ‹†๐ผ = 0

for constants, ๐ถ๐ผ โˆˆ ๐‘. Then by (1.3.14) with ๐‘‡โ€ฒ = 0, ๐ถ๐ฝ = 0, so the ๐‘’โ‹†๐ผ โ€™s are linearly indepen-dent. โ–ก

As we noted in Lemma 1.3.5, there are exactly ๐‘›๐‘˜ multi-indices of length ๐‘˜ and hence๐‘›๐‘˜ basis vectors in the set {๐‘’โ‹†๐ผ }๐ผ, so we have proved

Corollary 1.3.15. Let ๐‘‰ be an ๐‘›-dimensional vector space. Then dim(L๐‘˜(๐‘‰)) = ๐‘›๐‘˜.

The pullback operationDefinition 1.3.16. Let ๐‘‰ and๐‘Š be finite dimensional vector spaces and let ๐ดโˆถ ๐‘‰ โ†’ ๐‘Š bea linear mapping. If ๐‘‡ โˆˆ L๐‘˜(๐‘Š), we define

๐ดโ‹†๐‘‡โˆถ ๐‘‰๐‘˜ โ†’ ๐‘

to be the function

(1.3.17) (๐ดโ‹†๐‘‡)(๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜) โ‰” ๐‘‡(๐ด๐‘ฃ1,โ€ฆ,๐ด๐‘ฃ๐‘˜) .

It is clear from the linearity of ๐ด that this function is linear in its ๐‘–th variable for all ๐‘–, andhence is a ๐‘˜-tensor. We call ๐ดโ‹†๐‘‡ the pullback of ๐‘‡ by the map ๐ด.

Proposition 1.3.18. The map

๐ดโ‹† โˆถ L๐‘˜(๐‘Š) โ†’ L๐‘˜(๐‘‰) , ๐‘‡ โ†ฆ ๐ดโ‹†๐‘‡ ,

is a linear mapping.

Page 23: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง1.4 Alternating ๐‘˜-tensors 11

We leave this as an exercise. We also leave as an exercise the identity

(1.3.19) ๐ดโ‹†(๐‘‡1 โŠ— ๐‘‡2) = ๐ดโ‹†(๐‘‡1) โŠ— ๐ดโ‹†(๐‘‡2)

for ๐‘‡1 โˆˆ L๐‘˜(๐‘Š) and ๐‘‡2 โˆˆ L๐‘š(๐‘Š). Also, if ๐‘ˆ is a vector space and ๐ตโˆถ ๐‘ˆ โ†’ ๐‘‰ a linearmapping, we leave for you to check that

(1.3.20) (๐ด๐ต)โ‹†๐‘‡ = ๐ตโ‹†(๐ดโ‹†๐‘‡)

for all ๐‘‡ โˆˆ L๐‘˜(๐‘Š).

Exercises for ยง1.3Exercise 1.3.i. Verify that there are exactly ๐‘›๐‘˜ multi-indices of length ๐‘˜.

Exercise 1.3.ii. Prove Proposition 1.3.18.

Exercise 1.3.iii. Verify equation (1.3.19).

Exercise 1.3.iv. Verify equation (1.3.20).

Exercise 1.3.v. Let ๐ดโˆถ ๐‘‰ โ†’ ๐‘Š be a linear map. Show that if โ„“๐‘–, ๐‘– = 1,โ€ฆ, ๐‘˜ are elements of๐‘Šโ‹†

๐ดโ‹†(โ„“1 โŠ—โ‹ฏ โŠ— โ„“๐‘˜) = ๐ดโ‹†(โ„“1) โŠ— โ‹ฏ โŠ— ๐ดโ‹†(โ„“๐‘˜) .Conclude that ๐ดโ‹† maps decomposable ๐‘˜-tensors to decomposable ๐‘˜-tensors.

Exercise 1.3.vi. Let ๐‘‰ be an ๐‘›-dimensional vector space and โ„“๐‘–, ๐‘– = 1, 2, elements of ๐‘‰โ‹†.Show that โ„“1 โŠ— โ„“2 = โ„“2 โŠ— โ„“1 if and only if โ„“1 and โ„“2 are linearly dependent.

Hint: Show that if โ„“1 and โ„“2 are linearly independent there exist vectors, ๐‘ฃ๐‘–, ๐‘– =, 1, 2 in๐‘‰ with property

โ„“๐‘–(๐‘ฃ๐‘—) = {1, ๐‘– = ๐‘—0, ๐‘– โ‰  ๐‘— .

Now compare (โ„“1 โŠ— โ„“2)(๐‘ฃ1, ๐‘ฃ2) and (โ„“2 โŠ— โ„“1)(๐‘ฃ1, ๐‘ฃ2). Conclude that if dim๐‘‰ โ‰ฅ 2 the tensorproduct operation is not commutative, i.e., it is usually not true that โ„“1 โŠ— โ„“2 = โ„“2 โŠ— โ„“1.

Exercise 1.3.vii. Let ๐‘‡ be a ๐‘˜-tensor and ๐‘ฃ a vector. Define ๐‘‡๐‘ฃ โˆถ ๐‘‰๐‘˜โˆ’1 โ†’ ๐‘ to be the map

(1.3.21) ๐‘‡๐‘ฃ(๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜โˆ’1) โ‰” ๐‘‡(๐‘ฃ, ๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜โˆ’1) .

Show that ๐‘‡๐‘ฃ is a (๐‘˜ โˆ’ 1)-tensor.

Exercise 1.3.viii. Show that if ๐‘‡1 is an ๐‘Ÿ-tensor and ๐‘‡2 is an ๐‘ -tensor, then if ๐‘Ÿ > 0,

(๐‘‡1 โŠ— ๐‘‡2)๐‘ฃ = (๐‘‡1)๐‘ฃ โŠ— ๐‘‡2 .

Exercise 1.3.ix. Let ๐ดโˆถ ๐‘‰ โ†’ ๐‘Š be a linear map mapping, and ๐‘ฃ โˆˆ ๐‘‰. Write ๐‘ค โ‰” ๐ด๐‘ฃ. Showthat for ๐‘‡ โˆˆ L๐‘˜(๐‘Š), ๐ดโ‹†(๐‘‡๐‘ค) = (๐ดโ‹†๐‘‡)๐‘ฃ.

1.4. Alternating ๐‘˜-tensorsWewill discuss in this section a class of ๐‘˜-tensors which play an important role inmulti-

variable calculus. In this discussionwewill need some standard facts about the โ€œpermutationgroupโ€. For those of you who are already familiar with this object (and I suspect most of youare) you can regard the paragraph below as a chance to re-familiarize yourselves with thesefacts.

Page 24: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

12 Chapter 1: Multilinear Algebra

PermutationsDefinition 1.4.1. Let ๐›ด๐‘˜ be the ๐‘˜-element set ๐›ด๐‘˜ โ‰” {1, 2,โ€ฆ, ๐‘˜}. A permutation of order๐‘˜ is a bijecton ๐œŽโˆถ ๐›ด๐‘˜ โฅฒ ๐›ด๐‘˜. Given two permutations ๐œŽ1 and ๐œŽ2, their product ๐œŽ1๐œŽ2 is thecomposition of ๐œŽ1 โˆ˜ ๐œŽ2, i.e., the map,

๐‘– โ†ฆ ๐œŽ1(๐œŽ2(๐‘–)) .For every permutation ๐œŽ, one denotes by ๐œŽโˆ’1 the inverse permutation given by the inversebijection of ๐œŽ, i.e., defined by

๐œŽ(๐‘–) โ‰” ๐‘— โŸบ ๐œŽโˆ’1(๐‘—) = ๐‘– .Let ๐‘†๐‘˜ be the set of all permutations of order ๐‘˜. One calls ๐‘†๐‘˜ the permutation group of ๐›ด๐‘˜ or,alternatively, the symmetric group on ๐‘˜ letters.

It is easy to check the following.

Lemma 1.4.2. The group ๐‘†๐‘˜ has ๐‘˜! elements.

Definition 1.4.3. Let ๐‘˜ be a positive integer. For every 1 โ‰ค ๐‘– < ๐‘— โ‰ค ๐‘˜, let ๐œ๐‘–,๐‘— be the permu-tation

๐œ๐‘–,๐‘—(โ„“) โ‰”{{{{{

๐‘—, โ„“ = ๐‘–๐‘–, โ„“ = ๐‘—โ„“, โ„“ โ‰  ๐‘–, ๐‘— .

The permuation ๐œ๐‘–,๐‘— is called a transposition, and if ๐‘— = ๐‘–+1, then ๐œ๐‘–,๐‘— is called an elementarytransposition.

Theorem 1.4.4. Every permutation in ๐‘†๐‘˜ can be written as a product of (a finite number of)transpositions.

Proof. We prove this by induction on ๐‘˜. The base case when ๐‘˜ = 2 is obvious.For the induction step, suppose that we know the claim for ๐‘†๐‘˜โˆ’1. Given ๐œŽ โˆˆ ๐‘†๐‘˜, we

have ๐œŽ(๐‘˜) = ๐‘– if and only if ๐œ๐‘–,๐‘˜๐œŽ(๐‘˜) = ๐‘˜. Thus ๐œ๐‘–,๐‘˜๐œŽ is, in effect, a permutation of ๐›ด๐‘˜โˆ’1. Byinduction, ๐œ๐‘–,๐‘˜๐œŽ can be written as a product of transpositions, so

๐œŽ = ๐œ๐‘–,๐‘˜(๐œ๐‘–,๐‘˜๐œŽ)can be written as a product of transpositions. โ–ก

Theorem 1.4.5. Every transposition can be written as a product of elementary transpositions.

Proof. Let ๐œ = ๐œ๐‘–๐‘—, ๐‘– < ๐‘—. With ๐‘– fixed, argue by induction on ๐‘—. Note that for ๐‘— > ๐‘– + 1๐œ๐‘–๐‘— = ๐œ๐‘—โˆ’1,๐‘—๐œ๐‘–,๐‘—โˆ’1๐œ๐‘—โˆ’1,๐‘— .

Now apply the inductive hypothesis to ๐œ๐‘–,๐‘—โˆ’1. โ–ก

Corollary 1.4.6. Every permutation can be written as a product of elementary transpositions.

The sign of a permutationDefinition 1.4.7. Let ๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘˜ be the coordinate functions on ๐‘๐‘˜. For ๐œŽ โˆˆ ๐‘†๐‘˜ we define

(1.4.8) (โˆ’1)๐œŽ โ‰”โˆ๐‘–<๐‘—

๐‘ฅ๐œŽ(๐‘–) โˆ’ ๐‘ฅ๐œŽ(๐‘—)๐‘ฅ๐‘– โˆ’ ๐‘ฅ๐‘—

.

Notice that the numerator and denominator in (1.4.8) are identical up to sign. Indeed,if ๐‘ = ๐œŽ(๐‘–) < ๐œŽ(๐‘—) = ๐‘ž, the term, ๐‘ฅ๐‘ โˆ’ ๐‘ฅ๐‘ž occurs once and just once in the numerator andonce and just once in the denominator; and if ๐‘ž = ๐œŽ(๐‘–) > ๐œŽ(๐‘—) = ๐‘, the term, ๐‘ฅ๐‘ โˆ’๐‘ฅ๐‘ž, occurs

Page 25: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง1.4 Alternating ๐‘˜-tensors 13

once and just once in the numerator and its negative, ๐‘ฅ๐‘ž โˆ’ ๐‘ฅ๐‘, once and just once in thenumerator. Thus

(โˆ’1)๐œŽ = ยฑ1 .In light of this, we call (โˆ’1)๐œŽ the sign of ๐œŽ.

Claim 1.4.9. For ๐œŽ, ๐œ โˆˆ ๐‘†๐‘˜ we have

(โˆ’1)๐œŽ๐œ = (โˆ’1)๐œŽ(โˆ’1)๐œ .

That is, the sign defines a group homomorphism ๐‘†๐‘˜ โ†’ {ยฑ1}.

Proof. By definition,

(โˆ’1)๐œŽ๐œ = โˆ๐‘–<๐‘—

๐‘ฅ๐œŽ๐œ(๐‘–) โˆ’ ๐‘ฅ๐œŽ๐œ(๐‘—)๐‘ฅ๐‘– โˆ’ ๐‘ฅ๐‘—

.

We write the right hand side as a product of

โˆ๐‘–<๐‘—

๐‘ฅ๐œ(๐‘–) โˆ’ ๐‘ฅ๐œ(๐‘—)๐‘ฅ๐‘– โˆ’ ๐‘ฅ๐‘—

= (โˆ’1)๐œ

and

(1.4.10) โˆ๐‘–<๐‘—

๐‘ฅ๐œŽ๐œ(๐‘–) โˆ’ ๐‘ฅ๐œŽ๐œ(๐‘—)๐‘ฅ๐œ(๐‘–) โˆ’ ๐‘ฅ๐œ(๐‘—)

For ๐‘– < ๐‘—, let ๐‘ = ๐œ(๐‘–) and ๐‘ž = ๐œ(๐‘—) when ๐œ(๐‘–) < ๐œ(๐‘—) and let ๐‘ = ๐œ(๐‘—) and ๐‘ž = ๐œ(๐‘–) when๐œ(๐‘—) < ๐œ(๐‘–). Then

๐‘ฅ๐œŽ๐œ(๐‘–) โˆ’ ๐‘ฅ๐œŽ๐œ(๐‘—)๐‘ฅ๐œ(๐‘–) โˆ’ ๐‘ฅ๐œ(๐‘—)

=๐‘ฅ๐œŽ(๐‘) โˆ’ ๐‘ฅ๐œŽ(๐‘ž)๐‘ฅ๐‘ โˆ’ ๐‘ฅ๐‘ž

(i.e., if ๐œ(๐‘–) < ๐œ(๐‘—), the numerator and denominator on the right equal the numerator anddenominator on the left and, if ๐œ(๐‘—) < ๐œ(๐‘–) are negatives of the numerator and denominatoron the left). Thus equation (1.4.10) becomes

โˆ๐‘<๐‘ž

๐‘ฅ๐œŽ(๐‘) โˆ’ ๐‘ฅ๐œŽ(๐‘ž)๐‘ฅ๐‘ โˆ’ ๐‘ฅ๐‘ž

= (โˆ’1)๐œŽ . โ–ก

Weโ€™ll leave for you to check that if ๐œ is a transposition, (โˆ’1)๐œ = โˆ’1 and to conclude fromthis:

Proposition 1.4.11. If ๐œŽ is the product of an odd number of transpositions, (โˆ’1)๐œŽ = โˆ’1 andif ๐œŽ is the product of an even number of transpositions (โˆ’1)๐œŽ = +1.

AlternationDefinition 1.4.12. Let ๐‘‰ be an ๐‘›-dimensional vector space and ๐‘‡ โˆˆ L๐‘˜(๐‘ฃ) a ๐‘˜-tensor. For๐œŽ โˆˆ ๐‘†๐‘˜, define ๐‘‡๐œŽ โˆˆ L๐‘˜(๐‘‰) to be the ๐‘˜-tensor

(1.4.13) ๐‘‡๐œŽ(๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜) โ‰” ๐‘‡(๐‘ฃ๐œŽโˆ’1(1),โ€ฆ, ๐‘ฃ๐œŽโˆ’1(๐‘˜)) .

Proposition 1.4.14.(1) If ๐‘‡ = โ„“1 โŠ—โ‹ฏ โŠ— โ„“๐‘˜, โ„“๐‘– โˆˆ ๐‘‰โ‹†, then ๐‘‡๐œŽ = โ„“๐œŽ(1) โŠ—โ‹ฏ โŠ— โ„“๐œŽ(๐‘˜).(2) The assignment ๐‘‡ โ†ฆ ๐‘‡๐œŽ is a linear map L๐‘˜(๐‘‰) โ†’ L๐‘˜(๐‘‰).(3) If ๐œŽ, ๐œ โˆˆ ๐‘†๐‘˜, we have ๐‘‡๐œŽ๐œ = (๐‘‡๐œŽ)๐œ.

Page 26: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

14 Chapter 1: Multilinear Algebra

Proof. To (1), we note that by equation (1.4.13)

(โ„“1 โŠ—โ‹ฏ โŠ— โ„“๐‘˜)๐œŽ(๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜) = โ„“1(๐‘ฃ๐œŽโˆ’1(1))โ‹ฏโ„“๐‘˜(๐‘ฃ๐œŽโˆ’1(๐‘˜)) .

Setting ๐œŽโˆ’1(๐‘–) = ๐‘ž, the ๐‘–th term in this product is โ„“๐œŽ(๐‘ž)(๐‘ฃ๐‘ž); so the product can be rewrittenas

โ„“๐œŽ(1)(๐‘ฃ1)โ€ฆโ„“๐œŽ(๐‘˜)(๐‘ฃ๐‘˜)or

(โ„“๐œŽ(1) โŠ—โ‹ฏ โŠ— โ„“๐œŽ(๐‘˜))(๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜) .We leave the proof of (2) as an exercise.

Now we prove (3). Let ๐‘‡ = โ„“1 โŠ—โ‹ฏ โŠ— โ„“๐‘˜. Then

๐‘‡๐œŽ = โ„“๐œŽ(1) โŠ—โ‹ฏ โŠ— โ„“๐œŽ(๐‘˜) = โ„“โ€ฒ1 โŠ—โ‹ฏ โŠ— โ„“โ€ฒ๐‘˜where โ„“โ€ฒ๐‘— = โ„“๐œŽ(๐‘—). Thus

(๐‘‡๐œŽ)๐œ = โ„“โ€ฒ๐œ(1) โŠ—โ‹ฏ โŠ— โ„“โ€ฒ๐œ(๐‘˜) .But if ๐œ(๐‘–) = ๐‘—, โ„“โ€ฒ๐œ(๐‘—) = โ„“๐œŽ(๐œ(๐‘—)). Hence

(๐‘‡๐œŽ)๐œโ„“๐œŽ๐œ(1) โŠ—โ‹ฏ โŠ— โ„“๐œŽ๐œ(๐‘˜) = ๐‘‡๐œŽ๐œ . โ–ก

Definition 1.4.15. Let ๐‘‰ be a vector space and ๐‘˜ โ‰ฅ 0 an integer. A ๐‘˜-tensor ๐‘‡ โˆˆ L๐‘˜(๐‘‰) isalternating if ๐‘‡๐œŽ = (โˆ’1)๐œŽ๐‘‡ for all ๐œŽ โˆˆ ๐‘†๐‘˜.

We denote by A๐‘˜(๐‘‰) the set of all alternating ๐‘˜-tensors in L๐‘˜(๐‘‰). By (2) this set is avector subspace of L๐‘˜(๐‘‰).

It is not easy to write down simple examples of alternating ๐‘˜-tensors. However, there isa method, called the alternation operation Alt for constructing such tensors.

Definition 1.4.16. Let ๐‘‰ be a vector space and ๐‘˜ a nonnegative integer. The alternationoperation on L๐‘˜(๐‘‰) is defined as follows: given ๐‘‡ โˆˆ L๐‘˜(๐‘‰) let

Alt(๐‘‡) โ‰” โˆ‘๐œโˆˆ๐‘†๐‘˜(โˆ’1)๐œ๐‘‡๐œ .

The alternation operation enjoys the following properties.

Proposition 1.4.17. For ๐‘‡ โˆˆ L๐‘˜(๐‘‰) and ๐œŽ โˆˆ ๐‘†๐‘˜,(1) Alt(๐‘‡)๐œŽ = (โˆ’1)๐œŽ Alt๐‘‡(2) If ๐‘‡ โˆˆ A๐‘˜(๐‘‰), then Alt๐‘‡ = ๐‘˜!๐‘‡.(3) Alt(๐‘‡๐œŽ) = Alt(๐‘‡)๐œŽ(4) The map

Alt โˆถ L๐‘˜(๐‘‰) โ†’ L๐‘˜(๐‘‰) , ๐‘‡ โ†ฆ Alt(๐‘‡)is linear.

Proof. To prove (1) we note that by Proposition 1.4.14:

Alt(๐‘‡)๐œŽ = โˆ‘๐œโˆˆ๐‘†๐‘˜(โˆ’1)๐œ๐‘‡๐œ๐œŽ = (โˆ’1)๐œŽ โˆ‘

๐œโˆˆ๐‘†๐‘˜(โˆ’1)๐œ๐œŽ๐‘‡๐œ๐œŽ .

But as ๐œ runs over ๐‘†๐‘˜, ๐œ๐œŽ runs over ๐‘†๐‘˜, and hence the right hand side is (โˆ’1)๐œŽ Alt(๐‘‡).To prove (2), note that if ๐‘‡ โˆˆ A๐‘˜(๐‘‰)

Alt๐‘‡ = โˆ‘๐œโˆˆ๐‘†๐‘˜(โˆ’1)๐œ๐‘‡๐œ = โˆ‘

๐œโˆˆ๐‘†๐‘˜(โˆ’1)๐œ(โˆ’1)๐œ๐‘‡ = ๐‘˜!๐‘‡ .

Page 27: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง1.4 Alternating ๐‘˜-tensors 15

To prove (3), we compute:

Alt(๐‘‡๐œŽ) = โˆ‘๐œโˆˆ๐‘†๐‘˜(โˆ’1)๐œ๐‘‡๐œ๐œŽ = (โˆ’1)๐œŽ โˆ‘

๐œโˆˆ๐‘†๐‘˜(โˆ’1)๐œ๐œŽ๐‘‡๐œ๐œŽ

= (โˆ’1)๐œŽ Alt(๐‘‡) = Alt(๐‘‡)๐œŽ .Finally, (4) is an easy corollary of (2) of Proposition 1.4.14. โ–ก

Wewill use this alternation operation to construct a basis for A๐‘˜(๐‘‰). First, however, werequire some notation.

Definition 1.4.18. Let ๐ผ = (๐‘–1,โ€ฆ, ๐‘–๐‘˜) be a multi-index of length ๐‘˜.(1) ๐ผ is repeating if ๐‘–๐‘Ÿ = ๐‘–๐‘  for some ๐‘Ÿ โ‰  ๐‘ .(2) ๐ผ is strictly increasing if ๐‘–1 < ๐‘–2 < โ‹ฏ < ๐‘–๐‘Ÿ.(3) For ๐œŽ โˆˆ ๐‘†๐‘˜, write ๐ผ๐œŽ โ‰” (๐‘–๐œŽ(1),โ€ฆ, ๐‘–๐œŽ(๐‘˜)).

Remark 1.4.19. If ๐ผ is non-repeating there is a unique ๐œŽ โˆˆ ๐‘†๐‘˜ so that ๐ผ๐œŽ is strictly increasing.

Let ๐‘’1,โ€ฆ, ๐‘’๐‘› be a basis of ๐‘‰ and let

๐‘’โ‹†๐ผ = ๐‘’โ‹†๐‘–1 โŠ—โ‹ฏ โŠ— ๐‘’โ‹†๐‘–๐‘˜

and๐œ“๐ผ = Alt(๐‘’โ‹†๐ผ ) .

Proposition 1.4.20.(1) ๐œ“๐ผ๐œŽ = (โˆ’1)๐œŽ๐œ“๐ผ.(2) If ๐ผ is repeating, ๐œ“๐ผ = 0.(3) If ๐ผ and ๐ฝ are strictly increasing,

๐œ“๐ผ(๐‘’๐‘—1 ,โ€ฆ, ๐‘’๐‘—๐‘˜) = {1, ๐ผ = ๐ฝ0, ๐ผ โ‰  ๐ฝ .

Proof. To prove (1) we note that (๐‘’โ‹†๐ผ )๐œŽ = ๐‘’โ‹†๐ผ๐œŽ ; soAlt(๐‘’โ‹†๐ผ๐œŽ) = Alt(๐‘’โ‹†๐ผ )๐œŽ = (โˆ’1)๐œŽ Alt(๐‘’โ‹†๐ผ ) .

To prove (2), suppose ๐ผ = (๐‘–1,โ€ฆ, ๐‘–๐‘˜) with ๐‘–๐‘Ÿ = ๐‘–๐‘  for ๐‘Ÿ โ‰  ๐‘ . Then if ๐œ = ๐œ๐‘–๐‘Ÿ,๐‘–๐‘  , ๐‘’โ‹†๐ผ = ๐‘’โ‹†๐ผ๐œ so

๐œ“๐ผ = ๐œ“๐ผ๐œ = (โˆ’1)๐œ๐œ“๐ผ = โˆ’๐œ“๐ผ .To prove (3), note that by definition

๐œ“๐ผ(๐‘’๐‘—1 ,โ€ฆ, ๐‘’๐‘—๐‘˜) = โˆ‘๐œ(โˆ’1)๐œ๐‘’โ‹†๐ผ๐œ(๐‘’๐‘—1 ,โ€ฆ, ๐‘’๐‘—๐‘˜) .

But by (1.3.12)

(1.4.21) ๐‘’โ‹†๐ผ๐œ(๐‘’๐‘—1 ,โ€ฆ, ๐‘’๐‘—๐‘˜) = {1, ๐ผ๐œ = ๐ฝ0, ๐ผ๐œ โ‰  ๐ฝ .

Thus if ๐ผ and ๐ฝ are strictly increasing, ๐ผ๐œ is strictly increasing if and only if ๐ผ๐œ = ๐ผ, and(1.4.21) is nonzero if and only if ๐ผ = ๐ฝ. โ–ก

Now let ๐‘‡ be in A๐‘˜(๐‘‰). By Theorem 1.3.13,

๐‘‡ = โˆ‘๐ฝ๐‘Ž๐ฝ๐‘’โ‹†๐ฝ , ๐‘Ž๐ฝ โˆˆ ๐‘ .

Page 28: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

16 Chapter 1: Multilinear Algebra

Since ๐‘˜!๐‘‡ = Alt(๐‘‡),๐‘‡ = 1๐‘˜!โˆ‘๐‘Ž๐ฝ Alt(๐‘’โ‹†๐ฝ ) = โˆ‘๐‘๐ฝ๐œ“๐ฝ .

We candiscard all repeating terms in this sum since they are zero; and for every non-repeatingterm, ๐ฝ, we can write ๐ฝ = ๐ผ๐œŽ, where ๐ผ is strictly increasing, and hence ๐œ“๐ฝ = (โˆ’1)๐œŽ๐œ“๐ผ.Conclusion 1.4.22. We can write ๐‘‡ as a sum(1.4.23) ๐‘‡ = โˆ‘

๐ผ๐‘๐ผ๐œ“๐ผ .

with ๐ผโ€™s strictly increasing.

Claim 1.4.24. The ๐‘๐ผโ€™s are unique.

Proof. For ๐ฝ strictly increasing

(1.4.25) ๐‘‡(๐‘’๐‘—1 ,โ€ฆ, ๐‘’๐‘—๐‘˜) = โˆ‘๐ผ๐‘๐ผ๐œ“๐ผ(๐‘’๐‘—1 ,โ€ฆ, ๐‘’๐‘—๐‘˜) = ๐‘๐ฝ .

By (1.4.23) the ๐œ“๐ผโ€™s, ๐ผ strictly increasing, are a spanning set of vectors for A๐‘˜(๐‘‰), and by(1.4.25) they are linearly independent, so we have proved:

Proposition 1.4.26. The alternating tensors, ๐œ“๐ผ, ๐ผ strictly increasing, are a basis for A๐‘˜(๐‘‰).

Thus dimA๐‘˜(๐‘‰) is equal to the number of strictly increasingmulti-indices ๐ผ of length ๐‘˜.We leave for you as an exercise to show that this number is equal to the binomal coefficient

(1.4.27) (๐‘›๐‘˜) โ‰” ๐‘›!(๐‘› โˆ’ ๐‘˜)!๐‘˜!

if 1 โ‰ค ๐‘˜ โ‰ค ๐‘›. โ–กHint: Show that every strictly increasingmulti-index of length ๐‘˜ determines a ๐‘˜ element

subset of {1,โ€ฆ, ๐‘›} and vice-versa.Note also that if ๐‘˜ > ๐‘› every multi-index

๐ผ = (๐‘–1,โ€ฆ, ๐‘–๐‘˜)of length ๐‘˜ has to be repeating: ๐‘–๐‘Ÿ = ๐‘–๐‘  for some ๐‘Ÿ โ‰  ๐‘  since the ๐‘–๐‘โ€™s lie on the interval 1 โ‰ค ๐‘– โ‰ค ๐‘›.Thus by Proposition 1.4.17

๐œ“๐ผ = 0for all multi-indices of length ๐‘˜ > 0 and

A๐‘˜(๐‘‰) = 0 .Exercises for ยง1.4

Exercise 1.4.i. Show that there are exactly ๐‘˜! permutations of order ๐‘˜.Hint: Induction on ๐‘˜: Let ๐œŽ โˆˆ ๐‘†๐‘˜, and let ๐œŽ(๐‘˜) = ๐‘–, 1 โ‰ค ๐‘– โ‰ค ๐‘˜. Show that ๐œ๐‘–,๐‘˜๐œŽ leaves ๐‘˜

fixed and hence is, in effect, a permutation of ๐›ด๐‘˜โˆ’1.Exercise 1.4.ii. Prove that if ๐œ โˆˆ ๐‘†๐‘˜ is a transposition, (โˆ’1)๐œ = โˆ’1 and deduce from thisProposition 1.4.11.

Exercise 1.4.iii. Prove assertion 2 in Proposition 1.4.14.

Exercise 1.4.iv. Prove that dimA๐‘˜(๐‘‰) is given by (1.4.27).

Exercise 1.4.v. Verify that for ๐‘– < ๐‘— โˆ’ 1๐œ๐‘–,๐‘— = ๐œ๐‘—โˆ’1,๐‘—๐œ๐‘–,๐‘—โˆ’1, ๐œ๐‘—โˆ’1,๐‘— .

Page 29: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง1.5 The space ๐›ฌ๐‘˜(๐‘‰โ‹†) 17

Exercise 1.4.vi. For ๐‘˜ = 3 show that every one of the six elements of ๐‘†3 is either a transpo-sition or can be written as a product of two transpositions.

Exercise 1.4.vii. Let ๐œŽ โˆˆ ๐‘†๐‘˜ be the โ€œcyclicโ€ permutation๐œŽ(๐‘–) โ‰” ๐‘– + 1 , ๐‘– = 1,โ€ฆ, ๐‘˜ โˆ’ 1

and ๐œŽ(๐‘˜) โ‰” 1. Show explicitly how to write ๐œŽ as a product of transpositions and compute(โˆ’1)๐œŽ.

Hint: Same hint as in Exercise 1.4.i.

Exercise 1.4.viii. In Exercise 1.3.vii show that if ๐‘‡ is in A๐‘˜(๐‘‰), ๐‘‡๐‘ฃ is in A๐‘˜โˆ’1(๐‘‰). Show inaddition that for ๐‘ฃ, ๐‘ค โˆˆ ๐‘‰ and ๐‘‡ โˆˆ A๐‘˜(๐‘‰) we have (๐‘‡๐‘ฃ)๐‘ค = โˆ’(๐‘‡๐‘ค)๐‘ฃ.

Exercise 1.4.ix. Let ๐ดโˆถ ๐‘‰ โ†’ ๐‘Š be a linear mapping. Show that if ๐‘‡ is in A๐‘˜(๐‘Š), ๐ดโ‹†๐‘‡ is inA๐‘˜(๐‘‰).Exercise 1.4.x. In Exercise 1.4.ix show that if ๐‘‡ is in L๐‘˜(๐‘Š) then Alt(๐ดโ‹†๐‘‡) = ๐ดโ‹†(Alt(๐‘‡)),i.e., show that the Alt operation commutes with the pullback operation.

1.5. The space ๐›ฌ๐‘˜(๐‘‰โ‹†)

In ยง1.4 we showed that the image of the alternation operation, Alt โˆถ L๐‘˜(๐‘‰) โ†’ L๐‘˜(๐‘‰) isA๐‘˜(๐‘‰). In this section we will compute the kernel of Alt.

Definition 1.5.1. A decomposable ๐‘˜-tensor โ„“1 โŠ—โ‹ฏโŠ— โ„“๐‘˜, with โ„“1,โ€ฆ, โ„“๐‘˜ โˆˆ ๐‘‰โ‹†, is redundantif for some index ๐‘– we have โ„“๐‘– = โ„“๐‘–+1.

Let I๐‘˜(๐‘‰) โŠ‚ L๐‘˜(๐‘‰) be the linear span of the set of redundant ๐‘˜-tensors.Note that for ๐‘˜ = 1 the notion of redundant does not really make sense; a single vector

โ„“ โˆˆ L1(๐‘‰โ‹†) cannot be โ€œredundantโ€ so we decreeI1(๐‘‰) โ‰” 0 .

Proposition 1.5.2. If ๐‘‡ โˆˆ I๐‘˜(๐‘‰) then Alt(๐‘‡) = 0.Proof. Let ๐‘‡ = โ„“1 โŠ—โ‹ฏ โŠ— โ„“๐‘˜ with โ„“๐‘– = โ„“๐‘–+1. Then if ๐œ = ๐œ๐‘–,๐‘–+1, ๐‘‡๐œ = ๐‘‡ and (โˆ’1)๐œ = โˆ’1. HenceAlt(๐‘‡) = Alt(๐‘‡๐œ) = Alt(๐‘‡)๐œ = โˆ’Alt(๐‘‡); so Alt(๐‘‡) = 0. โ–กProposition 1.5.3. If ๐‘‡ โˆˆ I๐‘Ÿ(๐‘‰) and ๐‘‡โ€ฒ โˆˆ L๐‘ (๐‘‰) then ๐‘‡ โŠ— ๐‘‡โ€ฒ and ๐‘‡โ€ฒ โŠ— ๐‘‡ are in I๐‘Ÿ+๐‘ (๐‘‰).Proof. We can assume that ๐‘‡ and ๐‘‡โ€ฒ are decomposable, i.e., ๐‘‡ = โ„“1 โŠ— โ‹ฏ โŠ— โ„“๐‘Ÿ and ๐‘‡โ€ฒ =โ„“โ€ฒ1 โŠ—โ‹ฏ โŠ— โ„“โ€ฒ๐‘  and that ๐‘‡ is redundant: โ„“๐‘– = โ„“๐‘–+1. Then

๐‘‡ โŠ— ๐‘‡โ€ฒ = โ„“1 โŠ—โ‹ฏโ„“๐‘–โˆ’1 โŠ— โ„“๐‘– โŠ— โ„“๐‘– โŠ—โ‹ฏโ„“๐‘Ÿ โŠ— โ„“โ€ฒ1 โŠ—โ‹ฏ โŠ— โ„“โ€ฒ๐‘ is redundant and hence in I๐‘Ÿ+๐‘ . The argument for ๐‘‡โ€ฒ โŠ— ๐‘‡ is similar. โ–ก

Proposition 1.5.4. If ๐‘‡ โˆˆ L๐‘˜(๐‘‰) and ๐œŽ โˆˆ ๐‘†๐‘˜, then(1.5.5) ๐‘‡๐œŽ = (โˆ’1)๐œŽ๐‘‡ + ๐‘†where ๐‘† is in I๐‘˜(๐‘‰).Proof. We can assume๐‘‡ is decomposable, i.e.,๐‘‡ = โ„“1โŠ—โ‹ฏโŠ—โ„“๐‘˜. Letโ€™s first look at the simplestpossible case: ๐‘˜ = 2 and ๐œŽ = ๐œ1,2. Then

๐‘‡๐œŽ โˆ’ (โˆ’1)๐œŽ๐‘‡ = โ„“1 โŠ— โ„“2 + โ„“2 โŠ— โ„“1

= 12((โ„“1 + โ„“2) โŠ— (โ„“1 + โ„“2) โˆ’ โ„“1 โŠ— โ„“1 โˆ’ โ„“2 โŠ— โ„“2) ,

Page 30: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

18 Chapter 1: Multilinear Algebra

and the terms on the right are redundant, and hence in I2(๐‘‰). Next let ๐‘˜ be arbitrary and๐œŽ = ๐œ๐‘–,๐‘–+1. If ๐‘‡1 = โ„“1 โŠ—โ‹ฏ โŠ— โ„“๐‘–โˆ’2 and ๐‘‡2 = โ„“๐‘–+2 โŠ—โ‹ฏ โŠ— โ„“๐‘˜. Then

๐‘‡ โˆ’ (โˆ’1)๐œŽ๐‘‡ = ๐‘‡1 โŠ— (โ„“๐‘– โŠ— โ„“๐‘–+1 + โ„“๐‘–+1 โŠ— โ„“๐‘–) โŠ— ๐‘‡2is in I๐‘˜(๐‘‰) by Proposition 1.5.3 and the computation above.The general case: By Theorem 1.4.5, ๐œŽ can be written as a product of๐‘š elementary transpo-sitions, and weโ€™ll prove (1.5.5) by induction on๐‘š.

We have just dealt with the case๐‘š = 1.The induction step: theโ€œ๐‘šโˆ’ 1โ€ case implies the โ€œ๐‘šโ€ case. Let ๐œŽ = ๐œ๐›ฝ where ๐›ฝ is a product of๐‘š โˆ’ 1 elementary transpositions and ๐œ is an elementary transposition. Then

๐‘‡๐œŽ = (๐‘‡๐›ฝ)๐œ = (โˆ’1)๐œ๐‘‡๐›ฝ +โ‹ฏ= (โˆ’1)๐œ(โˆ’1)๐›ฝ๐‘‡ +โ‹ฏ= (โˆ’1)๐œŽ๐‘‡ +โ‹ฏ

where the โ€œdotsโ€ are elements of I๐‘˜(๐‘‰), and the induction hypothesis was used in the secondline. โ–ก

Corollary 1.5.6. If ๐‘‡ โˆˆ L๐‘˜(๐‘‰), then(1.5.7) Alt(๐‘‡) = ๐‘˜!๐‘‡ +๐‘Š ,

where๐‘Š is in I๐‘˜(๐‘‰).

Proof. By definition Alt(๐‘‡) = โˆ‘๐œŽโˆˆ๐‘†๐‘˜(โˆ’1)๐œŽ๐‘‡๐œŽ, and by Proposition 1.5.4, ๐‘‡๐œŽ = (โˆ’1)๐œŽ๐‘‡ +๐‘Š๐œŽ,

with๐‘Š๐œŽ โˆˆ I๐‘˜(๐‘‰). Thus

Alt(๐‘‡) = โˆ‘๐œŽโˆˆ๐‘†๐‘˜(โˆ’1)๐œŽ(โˆ’1)๐œŽ๐‘‡ + โˆ‘

๐œŽโˆˆ๐‘†๐‘˜(โˆ’1)๐œŽ๐‘Š๐œŽ = ๐‘˜!๐‘‡ +๐‘Š

where๐‘Š = โˆ‘๐œŽโˆˆ๐‘†๐‘˜(โˆ’1)๐œŽ๐‘Š๐œŽ. โ–ก

Corollary 1.5.8. Let ๐‘‰ be a vector space and ๐‘˜ โ‰ฅ 1. Then

I๐‘˜(๐‘‰) = ker(Alt โˆถ L๐‘˜(๐‘‰) โ†’ A๐‘˜(๐‘‰)) .

Proof. We have already proved that if ๐‘‡ โˆˆ I๐‘˜(๐‘‰), then Alt(๐‘‡) = 0. To prove the converseassertion we note that if Alt(๐‘‡) = 0, then by (1.5.7)

๐‘‡ = โˆ’ 1๐‘˜!๐‘Š .

with๐‘Š โˆˆ I๐‘˜(๐‘‰) . โ–ก

Putting these results together we conclude:

Theorem 1.5.9. Every element ๐‘‡ โˆˆ L๐‘˜(๐‘‰) can be written uniquely as a sum ๐‘‡ = ๐‘‡1 + ๐‘‡2,where ๐‘‡1 โˆˆ A๐‘˜(๐‘‰) and ๐‘‡2 โˆˆ I๐‘˜(๐‘‰).

Proof. By (1.5.7), ๐‘‡ = ๐‘‡1 + ๐‘‡2 with

๐‘‡1 =1๐‘˜!

Alt(๐‘‡)

and๐‘‡2 = โˆ’1๐‘˜!๐‘Š .

Page 31: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง1.5 The space ๐›ฌ๐‘˜(๐‘‰โ‹†) 19

To prove that this decomposition is unique, suppose ๐‘‡1 + ๐‘‡2 = 0, with ๐‘‡1 โˆˆ A๐‘˜(๐‘‰) and๐‘‡2 โˆˆ I๐‘˜(๐‘‰). Then

0 = Alt(๐‘‡1 + ๐‘‡2) = ๐‘˜!๐‘‡1so ๐‘‡1 = 0, and hence ๐‘‡2 = 0. โ–ก

Definition 1.5.10. Let ๐‘‰ be a finite dimensional vector space and ๐‘˜ โ‰ฅ 0. Define

(1.5.11) ๐›ฌ๐‘˜(๐‘‰โ‹†) โ‰” L๐‘˜(๐‘‰)/I๐‘˜(๐‘‰) ,i.e., let ๐›ฌ๐‘˜(๐‘‰โ‹†) be the quotient of the vector space L๐‘˜(๐‘‰) by the subspace I๐‘˜(๐‘‰). By (1.2.7)one has a linear map:

(1.5.12) ๐œ‹โˆถ L๐‘˜(๐‘‰) โ†’ ๐›ฌ๐‘˜(๐‘‰โ‹†) , ๐‘‡ โ†ฆ ๐‘‡ + I๐‘˜(๐‘‰)which is onto and has I๐‘˜(๐‘‰) as kernel.

Theorem 1.5.13. The map ๐œ‹โˆถ L๐‘˜(๐‘‰) โ†’ ๐›ฌ๐‘˜(๐‘‰โ‹†)maps A๐‘˜(๐‘‰) bijectively onto ๐›ฌ๐‘˜(๐‘‰โ‹†).

Proof. ByTheorem 1.5.9 every I๐‘˜(๐‘‰) coset๐‘‡+I๐‘˜(๐‘‰) contains a unique element๐‘‡1 ofA๐‘˜(๐‘‰).Hence for every element of ๐›ฌ๐‘˜(๐‘‰โ‹†) there is a unique element of A๐‘˜(๐‘‰) which gets mappedonto it by ๐œ‹. โ–ก

Remark 1.5.14. Since๐›ฌ๐‘˜(๐‘‰โ‹†) and A๐‘˜(๐‘‰) are isomorphic as vector spaces many treatmentsof multilinear algebra avoid mentioning ๐›ฌ๐‘˜(๐‘‰โ‹†), reasoning that A๐‘˜(๐‘‰) is a perfectly goodsubstitute for it and that one should, if possible, not make two different definitions for whatis essentially the same object.This is a justifiable point of view (and is the point of view takenby in [4,10,12]).There are, however, some advantages to distinguishing betweenA๐‘˜(๐‘‰) and๐›ฌ๐‘˜(๐‘‰โ‹†), as we shall see in ยง1.6.

Exercises for ยง1.5Exercise 1.5.i. A ๐‘˜-tensor ๐‘‡ โˆˆ L๐‘˜(๐‘‰) is symmetric if ๐‘‡๐œŽ = ๐‘‡ for all ๐œŽ โˆˆ ๐‘†๐‘˜. Show that theset ๐’ฎ ๐‘˜(๐‘‰) of symmetric ๐‘˜ tensors is a vector subspace of L๐‘˜(๐‘‰).

Exercise 1.5.ii. Let ๐‘’1,โ€ฆ, ๐‘’๐‘› be a basis of ๐‘‰. Show that every symmetric 2-tensor is of theform

โˆ‘1โ‰ค๐‘–,๐‘—โ‰ค๐‘›๐‘Ž๐‘–,๐‘—๐‘’โ‹†๐‘– โŠ— ๐‘’โ‹†๐‘—

where ๐‘Ž๐‘–,๐‘— = ๐‘Ž๐‘—,๐‘– and ๐‘’โ‹†1 ,โ€ฆ, ๐‘’โ‹†๐‘› are the dual basis vectors of ๐‘‰โ‹†.

Exercise 1.5.iii. Show that if ๐‘‡ is a symmetric ๐‘˜-tensor, then for ๐‘˜ โ‰ฅ 2, then ๐‘‡ is in I๐‘˜(๐‘‰).Hint: Let ๐œŽ be a transposition and deduce from the identity, ๐‘‡๐œŽ = ๐‘‡, that ๐‘‡ has to be in

the kernel of Alt.

Exercise 1.5.iv (a warning). In general ๐’ฎ ๐‘˜(๐‘‰) โ‰  I๐‘˜(๐‘‰). Show, however, that if ๐‘˜ = 2 thesetwo spaces are equal.

Exercise 1.5.v. Show that if โ„“ โˆˆ ๐‘‰โ‹† and ๐‘‡ โˆˆ L๐‘˜โˆ’2(๐‘‰), then โ„“ โŠ— ๐‘‡ โŠ— โ„“ is in I๐‘˜(๐‘‰).

Exercise 1.5.vi. Show that if โ„“1 and โ„“2 are in๐‘‰โ‹† and๐‘‡ โˆˆ L๐‘˜โˆ’2(๐‘‰), then โ„“1โŠ—๐‘‡โŠ—โ„“2+โ„“2โŠ—๐‘‡โŠ—โ„“1is in I๐‘˜(๐‘‰).

Exercise 1.5.vii. Given a permutation ๐œŽ โˆˆ ๐‘†๐‘˜ and ๐‘‡ โˆˆ I๐‘˜(๐‘‰), show that ๐‘‡๐œŽ โˆˆ I๐‘˜(๐‘‰).

Exercise 1.5.viii. Let W(๐‘‰) be a subspace of L๐‘˜(๐‘‰) having the following two properties.(1) For ๐‘† โˆˆ ๐’ฎ 2(๐‘‰) and ๐‘‡ โˆˆ L๐‘˜โˆ’2(๐‘‰), ๐‘† โŠ— ๐‘‡ is in W(๐‘‰).

Page 32: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

20 Chapter 1: Multilinear Algebra

(2) For ๐‘‡ in W(๐‘‰) and ๐œŽ โˆˆ ๐‘†๐‘˜, ๐‘‡๐œŽ is in W(๐‘‰).Show that W(๐‘‰) has to contain I๐‘˜(๐‘‰) and conclude that I๐‘˜(๐‘‰) is the smallest subspace

of L๐‘˜(๐‘‰) having properties (1) and (2).

Exercise 1.5.ix. Show that there is a bijective linear map

๐›ผโˆถ ๐›ฌ๐‘˜(๐‘‰โ‹†) โฅฒ A๐‘˜(๐‘‰)with the property

(1.5.15) ๐›ผ๐œ‹(๐‘‡) = 1๐‘˜!

Alt(๐‘‡)

for all๐‘‡ โˆˆ L๐‘˜(๐‘‰), and show that ๐›ผ is the inverse of themap ofA๐‘˜(๐‘‰) onto๐›ฌ๐‘˜(๐‘‰โ‹†) describedin Theorem 1.5.13.

Hint: Exercise 1.2.viii.

Exercise 1.5.x. Let ๐‘‰ be an ๐‘›-dimensional vector space. Compute the dimension of ๐’ฎ ๐‘˜(๐‘‰).Hints:

(1) Introduce the following symmetrization operation on tensors ๐‘‡ โˆˆ L๐‘˜(๐‘‰):Sym(๐‘‡) = โˆ‘

๐œโˆˆ๐‘†๐‘˜๐‘‡๐œ .

Prove that this operation has properties (2)โ€“(4) of Proposition 1.4.17 and, as a substitutefor (1), has the property: Sym(๐‘‡)๐œŽ = Sym(๐‘‡).

(2) Let ๐œ™๐ผ = Sym(๐‘’โ‹†๐ผ ), ๐‘’โ‹†๐ผ = ๐‘’โ‹†๐‘–1 โŠ—โ‹ฏโŠ—๐‘’โ‹†๐‘–๐‘› . Prove that { ๐œ™๐ผ | ๐ผ is non-decreasing } form a basis

of ๐‘†๐‘˜(๐‘‰).(3) Conclude that dim(๐’ฎ ๐‘˜(๐‘‰)) is equal to the number of non-decreasing multi-indices of

length ๐‘˜: 1 โ‰ค ๐‘–1 โ‰ค ๐‘–2 โ‰ค โ‹ฏ โ‰ค โ„“๐‘˜ โ‰ค ๐‘›.(4) Compute this number by noticing that the assignment

(๐‘–1,โ€ฆ, ๐‘–๐‘˜) โ†ฆ (๐‘–1 + 0, ๐‘–2 + 1,โ€ฆ, ๐‘–๐‘˜ + ๐‘˜ โˆ’ 1)is a bijection between the set of these non-decreasing multi-indicesand the set of in-creasing multi-indices 1 โ‰ค ๐‘—1 < โ‹ฏ < ๐‘—๐‘˜ โ‰ค ๐‘› + ๐‘˜ โˆ’ 1.

1.6. The wedge product

The tensor algebra operations on the spaces L๐‘˜(๐‘‰)which we discussed in ยงยง1.2 and 1.3,i.e., the โ€œtensor product operationโ€ and the โ€œpullbackโ€ operation, give rise to similar oper-ations on the spaces, ๐›ฌ๐‘˜(๐‘‰โ‹†). We will discuss in this section the analogue of the tensorproduct operation.

Definition 1.6.1. Given ๐œ”๐‘– โˆˆ ๐›ฌ๐‘˜๐‘–(๐‘‰โ‹†), ๐‘– = 1, 2 we can, by equation (1.5.12), find a ๐‘‡๐‘– โˆˆL๐‘˜๐‘–(๐‘‰) with ๐œ”๐‘– = ๐œ‹(๐‘‡๐‘–). Then ๐‘‡1 โŠ— ๐‘‡2 โˆˆ L๐‘˜1+๐‘˜2(๐‘‰). The wedge product ๐œ”1 โˆง ๐œ”2 is defined by(1.6.2) ๐œ”1 โˆง ๐œ”2 โ‰” ๐œ‹(๐‘‡1 โŠ— ๐‘‡2) โˆˆ ๐›ฌ๐‘˜1+๐‘˜2(๐‘‰โ‹†) .Claim 1.6.3. This wedge product is well defined, i.e., does not depend on our choices of ๐‘‡1 and๐‘‡2.

Proof. Let ๐œ‹(๐‘‡1) = ๐œ‹(๐‘‡โ€ฒ1 ) = ๐œ”1. Then ๐‘‡โ€ฒ1 = ๐‘‡1 +๐‘Š1 for some๐‘Š1 โˆˆ I๐‘˜1(๐‘‰), so๐‘‡โ€ฒ1 โŠ— ๐‘‡2 = ๐‘‡1 โŠ— ๐‘‡2 +๐‘Š1 โŠ— ๐‘‡2 .

But๐‘Š1 โˆˆ I๐‘˜1(๐‘‰) implies๐‘Š1 โŠ— ๐‘‡2 โˆˆ I๐‘˜1+๐‘˜2(๐‘‰) and this implies:๐œ‹(๐‘‡โ€ฒ1 โŠ— ๐‘‡2) = ๐œ‹(๐‘‡1 โŠ— ๐‘‡2) .

Page 33: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง1.6 The wedge product 21

A symmetric argument shows that ๐œ”1 โˆง ๐œ”2 is well-defined, independent of the choice of๐‘‡2. โ–ก

More generally let ๐œ”๐‘– โˆˆ ๐›ฌ๐‘˜๐‘–(๐‘‰โ‹†), for ๐‘– = 1, 2, 3, and let ๐œ”๐‘– = ๐œ‹(๐‘‡๐‘–), ๐‘‡๐‘– โˆˆ L๐‘˜๐‘–(๐‘‰). Define

๐œ”1 โˆง ๐œ”2 โˆง ๐œ”3 โˆˆ ๐›ฌ๐‘˜1+๐‘˜2+๐‘˜3(๐‘‰โ‹†)by setting

๐œ”1 โˆง ๐œ”2 โˆง ๐œ”3 = ๐œ‹(๐‘‡1 โŠ— ๐‘‡2 โŠ— ๐‘‡3) .As above it is easy to see that this is well-defined independent of the choice of ๐‘‡1, ๐‘‡2 and ๐‘‡3.It is also easy to see that this triple wedge product is just the wedge product of ๐œ”1 โˆง ๐œ”2 with๐œ”3 or, alternatively, the wedge product of ๐œ”1 with ๐œ”2 โˆง ๐œ”3, i.e.,

๐œ”1 โˆง ๐œ”2 โˆง ๐œ”3 = (๐œ”1 โˆง ๐œ”2) โˆง ๐œ”3 = ๐œ”1 โˆง (๐œ”2 โˆง ๐œ”3).We leave for you to check: for ๐œ† โˆˆ ๐‘

(1.6.4) ๐œ†(๐œ”1 โˆง ๐œ”2) = (๐œ†๐œ”1) โˆง ๐œ”2 = ๐œ”1 โˆง (๐œ†๐œ”2)and verify the two distributive laws:

(1.6.5) (๐œ”1 + ๐œ”2) โˆง ๐œ”3 = ๐œ”1 โˆง ๐œ”3 + ๐œ”2 โˆง ๐œ”3and

(1.6.6) ๐œ”1 โˆง (๐œ”2 + ๐œ”3) = ๐œ”1 โˆง ๐œ”2 + ๐œ”1 โˆง ๐œ”3 .As we noted in ยง1.4, I๐‘˜(๐‘‰) = 0 for ๐‘˜ = 1, i.e., there are no nonzero โ€œredundantโ€ ๐‘˜ tensorsin degree ๐‘˜ = 1. Thus

๐›ฌ1(๐‘‰โ‹†) = ๐‘‰โ‹† = L1(๐‘‰).A particularly interesting example of a wedge product is the following. Let โ„“1,โ€ฆ, โ„“๐‘˜ โˆˆ

๐‘‰โ‹† = ๐›ฌ1(๐‘‰โ‹†). Then if ๐‘‡ = โ„“1 โŠ—โ‹ฏ โŠ— โ„“๐‘˜(1.6.7) โ„“1 โˆงโ‹ฏ โˆง โ„“๐‘˜ = ๐œ‹(๐‘‡) โˆˆ ๐›ฌ๐‘˜(๐‘‰โ‹†) .We will call (1.6.7) a decomposable element of ๐›ฌ๐‘˜(๐‘‰โ‹†).

We will prove that these elements satisfy the following wedge product identity. For ๐œŽ โˆˆ๐‘†๐‘˜:(1.6.8) โ„“๐œŽ(1) โˆงโ‹ฏ โˆง โ„“๐œŽ(๐‘˜) = (โˆ’1)๐œŽโ„“1 โˆงโ‹ฏ โˆง โ„“๐‘˜ .

Proof. For every ๐‘‡ โˆˆ L๐‘˜(๐‘‰), ๐‘‡ = (โˆ’1)๐œŽ๐‘‡ + ๐‘Š for some๐‘Š โˆˆ I๐‘˜(๐‘‰) by Proposition 1.5.4.Therefore since ๐œ‹(๐‘Š) = 0

๐œ‹(๐‘‡๐œŽ) = (โˆ’1)๐œŽ๐œ‹(๐‘‡) .In particular, if ๐‘‡ = โ„“1 โŠ—โ‹ฏ โŠ— โ„“๐‘˜, ๐‘‡๐œŽ = โ„“๐œŽ(1) โŠ—โ‹ฏ โŠ— โ„“๐œŽ(๐‘˜), so

๐œ‹(๐‘‡๐œŽ) = โ„“๐œŽ(1) โˆงโ‹ฏ โˆง โ„“๐œŽ(๐‘˜) = (โˆ’1)๐œŽ๐œ‹(๐‘‡)= (โˆ’1)๐œŽโ„“1 โˆงโ‹ฏ โˆง โ„“๐‘˜ . โ–ก

In particular, for โ„“1 and โ„“2 โˆˆ ๐‘‰โ‹†

(1.6.9) โ„“1 โˆง โ„“2 = โˆ’โ„“2 โˆง โ„“1and for โ„“1, โ„“2 and โ„“3 โˆˆ ๐‘‰โ‹†

โ„“1 โˆง โ„“2 โˆง โ„“3 = โˆ’โ„“2 โˆง โ„“1 โˆง โ„“3 = โ„“2 โˆง โ„“3 โˆง โ„“1 .More generally, it is easy to deduce from equation (1.6.8) the following result (which weโ€™llleave as an exercise).

Page 34: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

22 Chapter 1: Multilinear Algebra

Theorem 1.6.10. If ๐œ”1 โˆˆ ๐›ฌ๐‘Ÿ(๐‘‰โ‹†) and ๐œ”2 โˆˆ ๐›ฌ๐‘ (๐‘‰โ‹†) then

(1.6.11) ๐œ”1 โˆง ๐œ”2 = (โˆ’1)๐‘Ÿ๐‘ ๐œ”2 โˆง ๐œ”1 .

Hint: It suffices to prove this for decomposable elements i.e., for ๐œ”1 = โ„“1 โˆงโ‹ฏ โˆง โ„“๐‘Ÿ and๐œ”2 = โ„“โ€ฒ1 โˆงโ‹ฏ โˆง โ„“โ€ฒ๐‘  . Now make ๐‘Ÿ๐‘  applications of (1.6.9).

Let ๐‘’1,โ€ฆ, ๐‘’๐‘› be a basis of ๐‘‰ and let ๐‘’โ‹†1 ,โ€ฆ, ๐‘’โ‹†๐‘› be the dual basis of ๐‘‰โ‹†. For every multi-index ๐ผ of length ๐‘˜,

(1.6.12) ๐‘’โ‹†๐‘–1 โˆงโ‹ฏ โˆง ๐‘’โ‹†๐‘–๐‘˜ = ๐œ‹(๐‘’

โ‹†๐ผ ) = ๐œ‹(๐‘’โ‹†๐‘–1 โŠ—โ‹ฏ โŠ— ๐‘’

โ‹†๐‘–๐‘˜) .

Theorem 1.6.13. The elements (1.6.12), with ๐ผ strictly increasing, are basis vectors of๐›ฌ๐‘˜(๐‘‰โ‹†).

Proof. The elements ๐œ“๐ผ = Alt(๐‘’โ‹†๐ผ ), for ๐ผ strictly increasing, are basis vectors of A๐‘˜(๐‘‰) byProposition 1.4.26; so their images, ๐œ‹(๐œ“๐ผ), are a basis of ๐›ฌ๐‘˜(๐‘‰โ‹†). But

๐œ‹(๐œ“๐ผ) = ๐œ‹ (โˆ‘๐œŽโˆˆ๐‘†๐‘˜(โˆ’1)๐œŽ(๐‘’โ‹†๐ผ )๐œŽ) = โˆ‘

๐œŽโˆˆ๐‘†๐‘˜(โˆ’1)๐œŽ๐œ‹(๐‘’โ‹†๐ผ )๐œŽ

= โˆ‘๐œŽโˆˆ๐‘†๐‘˜(โˆ’1)๐œŽ(โˆ’1)๐œŽ๐œ‹(๐‘’โ‹†๐ผ ) = ๐‘˜!๐œ‹(๐‘’โ‹†๐ผ ) . โ–ก

Exercises for ยง1.6Exercise 1.6.i. Prove the assertions (1.6.4), (1.6.5), and (1.6.6).

Exercise 1.6.ii. Verify the multiplication law in equation (1.6.11) for the wedge product.

Exercise 1.6.iii. Given ๐œ” โˆˆ ๐›ฌ๐‘Ÿ(๐‘‰โ‹†) let ๐œ”๐‘˜ be the ๐‘˜-fold wedge product of ๐œ” with itself, i.e.,let ๐œ”2 = ๐œ” โˆง ๐œ”, ๐œ”3 = ๐œ” โˆง ๐œ” โˆง ๐œ”, etc.(1) Show that if ๐‘Ÿ is odd then for ๐‘˜ > 1, ๐œ”๐‘˜ = 0.(2) Show that if ๐œ” is decomposable, then for ๐‘˜ > 1, ๐œ”๐‘˜ = 0.

Exercise 1.6.iv. If ๐œ” and ๐œ‡ are in ๐›ฌ๐‘Ÿ(๐‘‰โ‹†) prove:

(๐œ” + ๐œ‡)๐‘˜ =๐‘˜โˆ‘โ„“=0(๐‘˜โ„“)๐œ”โ„“ โˆง ๐œ‡๐‘˜โˆ’โ„“ .

Hint:As in freshman calculus, prove this binomial theoremby induction using the iden-tity: (๐‘˜โ„“) = (

๐‘˜โˆ’1โ„“โˆ’1) + (

๐‘˜โˆ’1โ„“ ).

Exercise 1.6.v. Let ๐œ” be an element of๐›ฌ2(๐‘‰โ‹†). By definition the rank of ๐œ” is ๐‘˜ if ๐œ”๐‘˜ โ‰  0 and๐œ”๐‘˜+1 = 0. Show that if

๐œ” = ๐‘’1 โˆง ๐‘“1 +โ‹ฏ + ๐‘’๐‘˜ โˆง ๐‘“๐‘˜with ๐‘’๐‘–, ๐‘“๐‘– โˆˆ ๐‘‰โ‹†, then ๐œ” is of rank โ‰ค ๐‘˜.

Hint: Show that๐œ”๐‘˜ = ๐‘˜!๐‘’1 โˆง ๐‘“1 โˆงโ‹ฏ โˆง ๐‘’๐‘˜ โˆง ๐‘“๐‘˜ .

Exercise 1.6.vi. Given ๐‘’๐‘– โˆˆ ๐‘‰โ‹†, ๐‘– = 1,โ€ฆ, ๐‘˜ show that ๐‘’1 โˆง โ‹ฏ โˆง ๐‘’๐‘˜ โ‰  0 if and only if the ๐‘’๐‘–โ€™sare linearly independent.

Hint: Induction on ๐‘˜.

Page 35: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง1.7 The interior product 23

1.7. The interior product

Weโ€™ll describe in this section another basic product operation on the spaces๐›ฌ๐‘˜(๐‘‰โ‹†). Asabove weโ€™ll begin by defining this operator on the L๐‘˜(๐‘‰)โ€™s.

Definition 1.7.1. Let๐‘‰ be a vector space and ๐‘˜ a nonnegative integer. Given๐‘‡ โˆˆ L๐‘˜(๐‘‰) and๐‘ฃ โˆˆ ๐‘‰ let ๐œ„๐‘ฃ๐‘‡ be the be the (๐‘˜ โˆ’ 1)-tensor which takes the value

(๐œ„๐‘ฃ๐‘‡)(๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜โˆ’1) โ‰”๐‘˜โˆ‘๐‘Ÿ=1(โˆ’1)๐‘Ÿโˆ’1๐‘‡(๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘Ÿโˆ’1, ๐‘ฃ, ๐‘ฃ๐‘Ÿ,โ€ฆ, ๐‘ฃ๐‘˜โˆ’1)

on the ๐‘˜ โˆ’ 1-tuple of vectors, ๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜โˆ’1, i.e., in the ๐‘Ÿth summand on the right, ๐‘ฃ gets in-serted between ๐‘ฃ๐‘Ÿโˆ’1 and ๐‘ฃ๐‘Ÿ. (In particular the first summand is ๐‘‡(๐‘ฃ, ๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜โˆ’1) and the lastsummand is (โˆ’1)๐‘˜โˆ’1๐‘‡(๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜โˆ’1, ๐‘ฃ).)

It is clear from the definition that if ๐‘ฃ = ๐‘ฃ1 + ๐‘ฃ2(1.7.2) ๐œ„๐‘ฃ๐‘‡ = ๐œ„๐‘ฃ1๐‘‡ + ๐œ„๐‘ฃ2๐‘‡ ,and if ๐‘‡ = ๐‘‡1 + ๐‘‡2(1.7.3) ๐œ„๐‘ฃ๐‘‡ = ๐œ„๐‘ฃ๐‘‡1 + ๐œ„๐‘ฃ๐‘‡2 ,and we will leave for you to verify by inspection the following two lemmas.

Lemma 1.7.4. If ๐‘‡ is the decomposable ๐‘˜-tensor โ„“1 โŠ—โ‹ฏ โŠ— โ„“๐‘˜ then

(1.7.5) ๐œ„๐‘ฃ๐‘‡ =๐‘˜โˆ‘๐‘Ÿ=1(โˆ’1)๐‘Ÿโˆ’1โ„“๐‘Ÿ(๐‘ฃ)โ„“1 โŠ—โ‹ฏ โŠ— โ„“๐‘Ÿ โŠ—โ‹ฏ โŠ— โ„“๐‘˜ ,

where the โ€œhatโ€ over โ„“๐‘Ÿ means that โ„“๐‘Ÿ is deleted from the tensor product.

Lemma 1.7.6. If ๐‘‡1 โˆˆ L๐‘(๐‘‰) and ๐‘‡2 โˆˆ L๐‘ž(๐‘‰)(1.7.7) ๐œ„๐‘ฃ(๐‘‡1 โŠ— ๐‘‡2) = ๐œ„๐‘ฃ๐‘‡1 โŠ— ๐‘‡2 + (โˆ’1)๐‘๐‘‡1 โŠ— ๐œ„๐‘ฃ๐‘‡2 .

We will next prove the important identity.

Lemma 1.7.8. Let ๐‘‰ be a vector space and ๐‘‡ โˆˆ L๐‘˜(๐‘‰). Then for all ๐‘ฃ โˆˆ ๐‘‰ we have

(1.7.9) ๐œ„๐‘ฃ(๐œ„๐‘ฃ๐‘‡) = 0 .

Proof. It suffices by linearity to prove this for decomposable tensors and since (1.7.9) istrivially true for ๐‘‡ โˆˆ L1(๐‘‰), we can by induction assume (1.7.9) is true for decomposabletensors of degree ๐‘˜ โˆ’ 1. Let โ„“1 โŠ— โ‹ฏ โŠ— โ„“๐‘˜ be a decomposable tensor of degree ๐‘˜. Setting๐‘‡ โ‰” โ„“1 โŠ—โ‹ฏ โŠ— โ„“๐‘˜โˆ’1 and โ„“ = โ„“๐‘˜ we have

๐œ„๐‘ฃ(โ„“1 โŠ—โ‹ฏ โŠ— โ„“๐‘˜) = ๐œ„๐‘ฃ(๐‘‡ โŠ— โ„“) = ๐œ„๐‘ฃ๐‘‡ โŠ— โ„“ + (โˆ’1)๐‘˜โˆ’1โ„“(๐‘ฃ)๐‘‡by (1.7.7). Hence

๐œ„๐‘ฃ(๐œ„๐‘ฃ(๐‘‡ โŠ— โ„“)) = ๐œ„๐‘ฃ(๐œ„๐‘ฃ๐‘‡) โŠ— โ„“ + (โˆ’1)๐‘˜โˆ’2โ„“(๐‘ฃ)๐œ„๐‘ฃ๐‘‡ + (โˆ’1)๐‘˜โˆ’1โ„“(๐‘ฃ)๐œ„๐‘ฃ๐‘‡ .But by induction the first summand on the right is zero and the two remaining summandscancel each other out. โ–ก

From (1.7.9) we can deduce a slightly stronger result: For ๐‘ฃ1, ๐‘ฃ2 โˆˆ ๐‘‰(1.7.10) ๐œ„๐‘ฃ1 ๐œ„๐‘ฃ2 = โˆ’๐œ„๐‘ฃ2 ๐œ„๐‘ฃ1 .

Page 36: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

24 Chapter 1: Multilinear Algebra

Proof. Let ๐‘ฃ = ๐‘ฃ1 + ๐‘ฃ2. Then ๐œ„๐‘ฃ = ๐œ„๐‘ฃ1 + ๐œ„๐‘ฃ2 so

0 = ๐œ„๐‘ฃ๐œ„๐‘ฃ = (๐œ„๐‘ฃ1 + ๐œ„๐‘ฃ2)(๐œ„๐‘ฃ1 + ๐œ„๐‘ฃ2)= ๐œ„๐‘ฃ1 ๐œ„๐‘ฃ1 + ๐œ„๐‘ฃ1 ๐œ„๐‘ฃ2 + ๐œ„๐‘ฃ2 ๐œ„๐‘ฃ1 + ๐œ„๐‘ฃ2 ๐œ„๐‘ฃ2= ๐œ„๐‘ฃ1 ๐œ„๐‘ฃ2 + ๐œ„๐‘ฃ2 ๐œ„๐‘ฃ1

since the first and last summands are zero by (1.7.9). โ–ก

Weโ€™ll now show how to define the operation ๐œ„๐‘ฃ on ๐›ฌ๐‘˜(๐‘‰โ‹†). Weโ€™ll first prove:

Lemma 1.7.11. If ๐‘‡ โˆˆ L๐‘˜(๐‘‰) is redundant then so is ๐œ„๐‘ฃ๐‘‡.

Proof. Let ๐‘‡ = ๐‘‡1 โŠ— โ„“ โŠ— โ„“ โŠ— ๐‘‡2 where โ„“ is in ๐‘‰โ‹†, ๐‘‡1 is in L๐‘(๐‘‰) and ๐‘‡2 is in L๐‘ž(๐‘‰). Then byequation (1.7.7)

๐œ„๐‘ฃ๐‘‡ = ๐œ„๐‘ฃ๐‘‡1 โŠ— โ„“ โŠ— โ„“ โŠ— ๐‘‡2 + (โˆ’1)๐‘๐‘‡1 โŠ— ๐œ„๐‘ฃ(โ„“ โŠ— โ„“) โŠ— ๐‘‡2 + (โˆ’1)๐‘+2๐‘‡1 โŠ— โ„“ โŠ— โ„“ โŠ— ๐œ„๐‘ฃ๐‘‡2 .However, the first and the third terms on the right are redundant and

๐œ„๐‘ฃ(โ„“ โŠ— โ„“) = โ„“(๐‘ฃ)โ„“ โˆ’ โ„“(๐‘ฃ)โ„“by equation (1.7.5). โ–ก

Now let ๐œ‹ be the projection (1.5.12) of L๐‘˜(๐‘‰) onto ๐›ฌ๐‘˜(๐‘‰โ‹†) and for ๐œ” = ๐œ‹(๐‘‡) โˆˆ ๐›ฌ๐‘˜(๐‘‰โ‹†)define

(1.7.12) ๐œ„๐‘ฃ๐œ” = ๐œ‹(๐œ„๐‘ฃ๐‘‡) .To show that this definition is legitimate we note that if ๐œ” = ๐œ‹(๐‘‡1) = ๐œ‹(๐‘‡2), then ๐‘‡1 โˆ’ ๐‘‡2 โˆˆI๐‘˜(๐‘‰), so by Lemma 1.7.11 ๐œ„๐‘ฃ๐‘‡1 โˆ’ ๐œ„๐‘ฃ๐‘‡2 โˆˆ I๐‘˜โˆ’1 and hence

๐œ‹(๐œ„๐‘ฃ๐‘‡1) = ๐œ‹(๐œ„๐‘ฃ๐‘‡2) .Therefore, (1.7.12) does not depend on the choice of ๐‘‡.

By definition, ๐œ„๐‘ฃ is a linear map ๐›ฌ๐‘˜(๐‘‰โ‹†) โ†’ ๐›ฌ๐‘˜โˆ’1(๐‘‰โ‹†). We call this the interior productoperation. From the identities (1.7.2)โ€“(1.7.12) one gets, for ๐‘ฃ, ๐‘ฃ1, ๐‘ฃ2 โˆˆ ๐‘‰, ๐œ” โˆˆ ๐›ฌ๐‘˜(๐‘‰โ‹†), ๐œ”1 โˆˆ๐›ฌ๐‘(๐‘‰โ‹†), and ๐œ”2 โˆˆ ๐›ฌ2(๐‘‰โ‹†)

๐œ„(๐‘ฃ1+๐‘ฃ2)๐œ” = ๐œ„๐‘ฃ1๐œ” + ๐œ„๐‘ฃ2๐œ”(1.7.13)๐œ„๐‘ฃ(๐œ”1 โˆง ๐œ”2) = ๐œ„๐‘ฃ๐œ”1 โˆง ๐œ”2 + (โˆ’1)๐‘๐œ”1 โˆง ๐œ„๐‘ฃ๐œ”2(1.7.14)๐œ„๐‘ฃ(๐œ„๐‘ฃ๐œ”) = 0(1.7.15)

and๐œ„๐‘ฃ1 ๐œ„๐‘ฃ2๐œ” = โˆ’๐œ„๐‘ฃ2 ๐œ„๐‘ฃ1๐œ” .

Moreover if ๐œ” = โ„“1 โˆงโ‹ฏ โˆง โ„“๐‘˜ is a decomposable element of ๐›ฌ๐‘˜(๐‘‰โ‹†) one gets from (1.7.5)

๐œ„๐‘ฃ๐œ” =๐‘˜โˆ‘๐‘Ÿ=1(โˆ’1)๐‘Ÿโˆ’1โ„“๐‘Ÿ(๐‘ฃ)โ„“1 โˆงโ‹ฏ โˆง โ„“๐‘Ÿ โˆงโ‹ฏ โˆง โ„“๐‘˜ .

In particular if ๐‘’1,โ€ฆ, ๐‘’๐‘› is a basis of ๐‘‰, ๐‘’โ‹†1 ,โ€ฆ, ๐‘’โ‹†๐‘› the dual basis of ๐‘‰โ‹† and ๐œ”๐ผ = ๐‘’โ‹†๐‘–1 โˆงโ‹ฏโˆง ๐‘’โ‹†๐‘–๐‘˜ ,

1 โ‰ค ๐‘–1 < โ‹ฏ < ๐‘–๐‘˜ โ‰ค ๐‘›, then ๐œ„๐‘’๐‘—๐œ”๐ผ = 0 if ๐‘— โˆ‰ ๐ผ and if ๐‘— = ๐‘–๐‘Ÿ

(1.7.16) ๐œ„๐‘’๐‘—๐œ”๐ผ = (โˆ’1)๐‘Ÿโˆ’1๐œ”๐ผ๐‘Ÿ

where ๐ผ๐‘Ÿ = (๐‘–1,โ€ฆ, ๐šค๐‘Ÿ,โ€ฆ, ๐‘–๐‘˜) (i.e., ๐ผ๐‘Ÿ is obtained from the multi-index ๐ผ by deleting ๐‘–๐‘Ÿ).

Page 37: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง1.8 The pullback operation on ๐›ฌ๐‘˜(๐‘‰โ‹†) 25

Exercises for ยง1.7Exercise 1.7.i. Prove Lemma 1.7.4.

Exercise 1.7.ii. Prove Lemma 1.7.6.

Exercise 1.7.iii. Show that if๐‘‡ โˆˆ A๐‘˜, ๐œ„๐‘ฃ๐‘‡ = ๐‘˜๐‘‡๐‘ฃ where๐‘‡๐‘ฃ is the tensor (1.3.21). In particularconclude that ๐œ„๐‘ฃ๐‘‡ โˆˆ A๐‘˜โˆ’1(๐‘‰). (See Exercise 1.4.viii.)

Exercise 1.7.iv. Assume the dimension of ๐‘‰ is ๐‘› and let๐›บ be a nonzero element of the onedimensional vector space ๐›ฌ๐‘›(๐‘‰โ‹†). Show that the map(1.7.17) ๐œŒโˆถ ๐‘‰ โ†’ ๐›ฌ๐‘›โˆ’1(๐‘‰โ‹†) , ๐‘ฃ โ†ฆ ๐œ„๐‘ฃ๐›บ ,is a bijective linear map. Hint: One can assume๐›บ = ๐‘’โ‹†1 โˆงโ‹ฏโˆง ๐‘’โ‹†๐‘› where ๐‘’1,โ€ฆ, ๐‘’๐‘› is a basis of๐‘‰. Now use equation (1.7.16) to compute this map on basis elements.

Exercise 1.7.v (cross-product). Let ๐‘‰ be a 3-dimensional vector space, ๐ต an inner producton ๐‘‰ and ๐›บ a nonzero element of ๐›ฌ3(๐‘‰โ‹†). Define a map

โˆ’ ร— โˆ’โˆถ ๐‘‰ ร— ๐‘‰ โ†’ ๐‘‰by setting

๐‘ฃ1 ร— ๐‘ฃ2 โ‰” ๐œŒโˆ’1(๐ฟ๐‘ฃ1 โˆง ๐ฟ๐‘ฃ2)where ๐œŒ is the map (1.7.17) and ๐ฟโˆถ ๐‘‰ โ†’ ๐‘‰โ‹† the map (1.2.17). Show that this map is linearin ๐‘ฃ1, with ๐‘ฃ2 fixed and linear in ๐‘ฃ2 with ๐‘ฃ1 fixed, and show that ๐‘ฃ1 ร— ๐‘ฃ2 = โˆ’๐‘ฃ2 ร— ๐‘ฃ1.Exercise 1.7.vi. For๐‘‰ = ๐‘3 let ๐‘’1, ๐‘’2 and ๐‘’3 be the standard basis vectors and ๐ต the standardinner product. (See ยง1.1.) Show that if ๐›บ = ๐‘’โ‹†1 โˆง ๐‘’โ‹†2 โˆง ๐‘’โ‹†3 the cross-product above is thestandard cross-product:

๐‘’1 ร— ๐‘’2 = ๐‘’3๐‘’2 ร— ๐‘’3 = ๐‘’1๐‘’3 ร— ๐‘’1 = ๐‘’2 .

Hint: If ๐ต is the standard inner product, then ๐ฟ๐‘’๐‘– = ๐‘’โ‹†๐‘– .Remark 1.7.18. One can make this standard cross-product look even more standard byusing the calculus notation: ๐‘’1 = ๐šค, ๐‘’2 = ๐šฅ, and ๐‘’3 = ๏ฟฝ๏ฟฝ.

1.8. The pullback operation on ๐›ฌ๐‘˜(๐‘‰โ‹†)Let ๐‘‰ and๐‘Š be vector spaces and let ๐ด be a linear map of ๐‘‰ into๐‘Š. Given a ๐‘˜-tensor

๐‘‡ โˆˆ L๐‘˜(๐‘Š), recall that the pullback ๐ดโ‹†๐‘‡ is the ๐‘˜-tensor(๐ดโ‹†๐‘‡)(๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜) = ๐‘‡(๐ด๐‘ฃ1,โ€ฆ,๐ด๐‘ฃ๐‘˜)

in L๐‘˜(๐‘‰). (See ยง1.3 and equation (1.3.17).) In this section weโ€™ll show how to define a similarpullback operation on ๐›ฌ๐‘˜(๐‘‰โ‹†).

Lemma 1.8.1. If ๐‘‡ โˆˆ I๐‘˜(๐‘Š), then ๐ดโ‹†๐‘‡ โˆˆ I๐‘˜(๐‘‰).Proof. It suffices to verify this when ๐‘‡ is a redundant ๐‘˜-tensor, i.e., a tensor of the form

๐‘‡ = โ„“1 โŠ—โ‹ฏ โŠ— โ„“๐‘˜where โ„“๐‘Ÿ โˆˆ ๐‘Šโ‹† and โ„“๐‘– = โ„“๐‘–+1 for some index, ๐‘–. But by equation (1.3.19),

๐ดโ‹†๐‘‡ = ๐ดโ‹†โ„“1 โŠ—โ‹ฏ โŠ— ๐ดโ‹†โ„“๐‘˜and the tensor on the right is redundant since ๐ดโ‹†โ„“๐‘– = ๐ดโ‹†โ„“๐‘–+1. โ–ก

Page 38: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

26 Chapter 1: Multilinear Algebra

Now let ๐œ” be an element of ๐›ฌ๐‘˜(๐‘Šโ‹†) and let ๐œ” = ๐œ‹(๐‘‡) where ๐‘‡ is in L๐‘˜(๐‘Š). We define

(1.8.2) ๐ดโ‹†๐œ” = ๐œ‹(๐ดโ‹†๐‘‡) .

Claim 1.8.3. The left hand side of equation (1.8.2) is well-defined.

Proof. If ๐œ” = ๐œ‹(๐‘‡) = ๐œ‹(๐‘‡โ€ฒ), then ๐‘‡ = ๐‘‡โ€ฒ + ๐‘† for some ๐‘† โˆˆ I๐‘˜(๐‘Š), and ๐ดโ‹†๐‘‡ = ๐ดโ‹†๐‘‡โ€ฒ + ๐ดโ‹†๐‘†.But ๐ดโ‹†๐‘† โˆˆ I๐‘˜(๐‘‰), so

๐œ‹(๐ดโ‹†๐‘‡โ€ฒ) = ๐œ‹(๐ดโ‹†๐‘‡) . โ–ก

Proposition 1.8.4. The map ๐ดโ‹† โˆถ ๐›ฌ๐‘˜(๐‘Šโ‹†) โ†’ ๐›ฌ๐‘˜(๐‘‰โ‹†) sending ๐œ” โ†ฆ ๐ดโ‹†๐œ” is linear. Moreover,(1) If ๐œ”๐‘– โˆˆ ๐›ฌ๐‘˜๐‘–(๐‘Šโ‹†), ๐‘– = 1, 2, then

๐ดโ‹†(๐œ”1 โˆง ๐œ”2) = ๐ดโ‹†(๐œ”1) โˆง ๐ดโ‹†(๐œ”2) .

(2) If ๐‘ˆ is a vector space and ๐ต โˆถ ๐‘ˆ โ†’ ๐‘‰ a linear map, then for ๐œ” โˆˆ ๐›ฌ๐‘˜(๐‘Šโ‹†),

๐ตโ‹†๐ดโ‹†๐œ” = (๐ด๐ต)โ‹†๐œ” .

Weโ€™ll leave the proof of these three assertions as exercises. As a hint, they follow im-mediately from the analogous assertions for the pullback operation on tensors. (See equa-tions (1.3.19) and (1.3.20).)

As an application of the pullback operation weโ€™ll show how to use it to define the notionof determinant for a linear mapping.

Definition 1.8.5. Let ๐‘‰ be a ๐‘›-dimensional vector space. Then dim๐›ฌ๐‘›(๐‘‰โ‹†) = (๐‘›๐‘›) = 1;i.e., ๐›ฌ๐‘›(๐‘‰โ‹†) is a one-dimensional vector space. Thus if ๐ดโˆถ ๐‘‰ โ†’ ๐‘‰ is a linear mapping, theinduced pullback mapping:

๐ดโ‹† โˆถ ๐›ฌ๐‘›(๐‘‰โ‹†) โ†’ ๐›ฌ๐‘›(๐‘‰โ‹†) ,is just โ€œmultiplication by a constantโ€. We denote this constant by det(๐ด) and call it the de-terminant of ๐ด, Hence, by definition,

(1.8.6) ๐ดโ‹†๐œ” = det(๐ด)๐œ”

for all ๐œ” โˆˆ ๐›ฌ๐‘›(๐‘‰โ‹†).

From equation (1.8.6) it is easy to derive a number of basic facts about determinants.

Proposition 1.8.7. If ๐ด and ๐ต are linear mappings of ๐‘‰ into ๐‘‰, then

det(๐ด๐ต) = det(๐ด) det(๐ต) .

Proof. By (2) and

(๐ด๐ต)โ‹†๐œ” = det(๐ด๐ต)๐œ” = ๐ตโ‹†(๐ดโ‹†๐œ”)= det(๐ต)๐ดโ‹†๐œ” = det(๐ต) det(๐ด)๐œ” ,

so det(๐ด๐ต) = det(๐ด) det(๐ต). โ–ก

Proposition 1.8.8. Write id๐‘‰ โˆถ ๐‘‰ โ†’ ๐‘‰ for the identity map. Then det(id๐‘‰) = 1.

Weโ€™ll leave the proof as an exercise. As a hint, note that idโ‹†๐‘‰ is the identity map on๐›ฌ๐‘›(๐‘‰โ‹†).

Proposition 1.8.9. If ๐ดโˆถ ๐‘‰ โ†’ ๐‘‰ is not surjective, then det(๐ด) = 0.

Page 39: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง1.8 The pullback operation on ๐›ฌ๐‘˜(๐‘‰โ‹†) 27

Proof. Let๐‘Š be the image of ๐ด. Then if ๐ด is not onto, the dimension of๐‘Š is less than ๐‘›,so ๐›ฌ๐‘›(๐‘Šโ‹†) = 0. Now let ๐ด = ๐‘–๐‘Š๐ต where ๐‘–๐‘Š is the inclusion map of๐‘Š into ๐‘‰ and ๐ต is themapping, ๐ด, regarded as a mapping from ๐‘‰ to๐‘Š. Thus if ๐œ” is in ๐›ฌ๐‘›(๐‘‰โ‹†), then by (2)

๐ดโ‹†๐œ” = ๐ตโ‹†๐‘–โ‹†๐‘Š๐œ”and since ๐‘–โ‹†๐‘Š๐œ” is in ๐›ฌ๐‘›(๐‘Šโ‹†) it is zero. โ–ก

We will derive by wedge product arguments the familiar โ€œmatrix formulaโ€ for the deter-minant. Let ๐‘‰ and๐‘Š be ๐‘›-dimensional vector spaces and let ๐‘’1,โ€ฆ, ๐‘’๐‘› be a basis for ๐‘‰ and๐‘“1,โ€ฆ, ๐‘“๐‘› a basis for๐‘Š. From these bases we get dual bases, ๐‘’โ‹†1 ,โ€ฆ, ๐‘’โ‹†๐‘› and ๐‘“โ‹†1 ,โ€ฆ, ๐‘“โ‹†๐‘› , for๐‘‰โ‹†and๐‘Šโ‹†. Moreover, if ๐ด is a linear map of ๐‘‰ into๐‘Š and [๐‘Ž๐‘–,๐‘—] the ๐‘› ร— ๐‘› matrix describing๐ด in terms of these bases, then the transpose map, ๐ดโ‹† โˆถ ๐‘Šโ‹† โ†’ ๐‘‰โ‹†, is described in terms ofthese dual bases by the ๐‘› ร— ๐‘› transpose matrix, i.e., if

๐ด๐‘’๐‘— =๐‘›โˆ‘๐‘–=1๐‘Ž๐‘–,๐‘—๐‘“๐‘– ,

then

๐ดโ‹†๐‘“โ‹†๐‘— =๐‘›โˆ‘๐‘–=1๐‘Ž๐‘—,๐‘–๐‘’โ‹†๐‘– .

(See ยง1.2.) Consider now ๐ดโ‹†(๐‘“โ‹†1 โˆงโ‹ฏ โˆง ๐‘“โ‹†๐‘› ). By (1),

๐ดโ‹†(๐‘“โ‹†1 โˆงโ‹ฏ โˆง ๐‘“โ‹†๐‘› ) = ๐ดโ‹†๐‘“โ‹†1 โˆงโ‹ฏ โˆง ๐ดโ‹†๐‘“โ‹†๐‘›= โˆ‘1โ‰ค๐‘˜1,โ€ฆ,๐‘˜๐‘›โ‰ค๐‘›

(๐‘Ž1,๐‘˜1๐‘’โ‹†๐‘˜1) โˆง โ‹ฏ โˆง (๐‘Ž๐‘›,๐‘˜๐‘›๐‘’

โ‹†๐‘˜๐‘›) .

Thus,๐ดโ‹†(๐‘“โ‹†1 โˆงโ‹ฏ โˆง ๐‘“โ‹†๐‘› ) = โˆ‘๐‘Ž1,๐‘˜1โ€ฆ๐‘Ž๐‘›,๐‘˜๐‘› ๐‘’

โ‹†๐‘˜1 โˆงโ‹ฏ โˆง ๐‘’

โ‹†๐‘˜๐‘› .

If the multi-index, ๐‘˜1,โ€ฆ, ๐‘˜๐‘›, is repeating, then ๐‘’โ‹†๐‘˜1 โˆงโ‹ฏโˆง๐‘’โ‹†๐‘˜๐‘› is zero, and if it is not repeating

then we can write๐‘˜๐‘– = ๐œŽ(๐‘–) ๐‘– = 1,โ€ฆ, ๐‘›

for some permutation, ๐œŽ, and hence we can rewrite ๐ดโ‹†(๐‘“โ‹†1 โˆงโ‹ฏ โˆง ๐‘“โ‹†๐‘› ) as

๐ดโ‹†(๐‘“โ‹†1 โˆงโ‹ฏ โˆง ๐‘“โ‹†๐‘› ) = โˆ‘๐œŽโˆˆ๐‘†๐‘›๐‘Ž1,๐œŽ(1)โ‹ฏ๐‘Ž๐‘›,๐œŽ(๐‘›) (๐‘’โ‹†1 โˆงโ‹ฏ โˆง ๐‘’โ‹†๐‘› )๐œŽ .

But(๐‘’โ‹†1 โˆงโ‹ฏ โˆง ๐‘’โ‹†๐‘› )๐œŽ = (โˆ’1)๐œŽ๐‘’โ‹†1 โˆงโ‹ฏ โˆง ๐‘’โ‹†๐‘›

so we get finally the formula

(1.8.10) ๐ดโ‹†(๐‘“โ‹†1 โˆงโ‹ฏ โˆง ๐‘“โ‹†๐‘› ) = det([๐‘Ž๐‘–,๐‘—])๐‘’โ‹†1 โˆงโ‹ฏ โˆง ๐‘’โ‹†๐‘›where

(1.8.11) det([๐‘Ž๐‘–,๐‘—]) = โˆ‘๐œŽโˆˆ๐‘†๐‘›(โˆ’1)๐œŽ๐‘Ž1,๐œŽ(1)โ‹ฏ๐‘Ž๐‘›,๐œŽ(๐‘›)

summed over ๐œŽ โˆˆ ๐‘†๐‘›. The sum on the right is (as most of you know) the determinant of thematric [๐‘Ž๐‘–,๐‘—].

Notice that if ๐‘‰ = ๐‘Š and ๐‘’๐‘– = ๐‘“๐‘–, ๐‘– = 1,โ€ฆ, ๐‘›, then ๐œ” = ๐‘’โ‹†1 โˆง โ‹ฏ โˆง ๐‘’โ‹†๐‘› = ๐‘“โ‹†1 โˆง โ‹ฏ โˆง ๐‘“โ‹†๐‘› ,hence by (1.8.6) and (1.8.10),

det(๐ด) = det[๐‘Ž๐‘–,๐‘—] .

Page 40: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

28 Chapter 1: Multilinear Algebra

Exercises for ยง1.8Exercise 1.8.i. Verify the three assertions of Proposition 1.8.4.

Exercise 1.8.ii. Deduce from Proposition 1.8.9 a well-known fact about determinants of๐‘› ร— ๐‘›matrices: If two columns are equal, the determinant is zero.

Exercise 1.8.iii. Deduce from Proposition 1.8.7 another well-known fact about determi-nants of ๐‘› ร— ๐‘›matrices: If one interchanges two columns, then one changes the sign of thedeterminant.

Hint: Let ๐‘’1,โ€ฆ, ๐‘’๐‘› be a basis of ๐‘‰ and let ๐ตโˆถ ๐‘‰ โ†’ ๐‘‰ be the linear mapping: ๐ต๐‘’๐‘– = ๐‘’๐‘—,๐ต๐‘’๐‘— = ๐‘’๐‘– and ๐ต๐‘’โ„“ = ๐‘’โ„“, โ„“ โ‰  ๐‘–, ๐‘—. What is ๐ตโ‹†(๐‘’โ‹†1 โˆงโ‹ฏ โˆง ๐‘’โ‹†๐‘› )?

Exercise 1.8.iv. Deduce from Propositions 1.8.3 and 1.8.4 another well-known fact aboutdeterminants of ๐‘› ร— ๐‘›matrix: If (๐‘๐‘–,๐‘—) is the inverse of [๐‘Ž๐‘–,๐‘—], its determinant is the inverse ofthe determinant of [๐‘Ž๐‘–,๐‘—].

Exercise 1.8.v. Extract from (1.8.11) a well-known formula for determinants of 2 ร— 2 ma-trices:

det(๐‘Ž11 ๐‘Ž12๐‘Ž21, ๐‘Ž22) = ๐‘Ž11๐‘Ž22 โˆ’ ๐‘Ž12๐‘Ž21 .

Exercise 1.8.vi. Show that if ๐ด = [๐‘Ž๐‘–,๐‘—] is an ๐‘› ร— ๐‘› matrix and ๐ดโŠบ = [๐‘Ž๐‘—,๐‘–] is its transposedet๐ด = det๐ดโŠบ.

Hint: You are required to show that the sums

โˆ‘๐œŽโˆˆ๐‘†๐‘›(โˆ’1)๐œŽ๐‘Ž1,๐œŽ(1)โ€ฆ๐‘Ž๐‘›,๐œŽ(๐‘›)

andโˆ‘๐œŽโˆˆ๐‘†๐‘›(โˆ’1)๐œŽ๐‘Ž๐œŽ(1),1โ€ฆ๐‘Ž๐œŽ(๐‘›),๐‘›

are the same. Show that the second sum is identical with

โˆ‘๐œŽโˆˆ๐‘†๐‘›(โˆ’1)๐œŽโˆ’1๐‘Ž๐œŽโˆ’1(1),1โ€ฆ๐‘Ž๐œŽโˆ’1(๐‘›),๐‘› .

Exercise 1.8.vii. Let ๐ด be an ๐‘› ร— ๐‘›matrix of the form

๐ด = (๐ต โˆ—0 ๐ถ) ,

where ๐ต is a ๐‘˜ ร— ๐‘˜ matrix and ๐ถ the โ„“ ร— โ„“ matrix and the bottom โ„“ ร— ๐‘˜ block is zero. Showthat

det(๐ด) = det(๐ต) det(๐ถ) .Hint: Show that in equation (1.8.11) every nonzero term is of the form

(โˆ’1)๐œŽ๐œ๐‘1,๐œŽ(1)โ€ฆ๐‘๐‘˜,๐œŽ(๐‘˜)๐‘1,๐œ(1)โ€ฆ๐‘โ„“,๐œ(โ„“)where ๐œŽ โˆˆ ๐‘†๐‘˜ and ๐œ โˆˆ ๐‘†โ„“.

Exercise 1.8.viii. Let ๐‘‰ and๐‘Š be vector spaces and let ๐ดโˆถ ๐‘‰ โ†’ ๐‘Š be a linear map. Showthat if ๐ด๐‘ฃ = ๐‘ค then for ๐œ” โˆˆ ๐›ฌ๐‘(๐‘Šโ‹†),

๐ดโ‹†๐œ„๐‘ค๐œ” = ๐œ„๐‘ฃ๐ดโ‹†๐œ” .Hint:By equation (1.7.14) and Proposition 1.8.4 it suffices to prove this for๐œ” โˆˆ ๐›ฌ1(๐‘Šโ‹†),

i.e., for ๐œ” โˆˆ ๐‘Šโ‹†.

Page 41: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง1.9 Orientations 29

1.9. Orientations

Definition 1.9.1. We recall from freshman calculus that if โ„“ โŠ‚ ๐‘2 is a line through theorigin, then โ„“ โˆ– {0} has two connected components and an orientation of โ„“ is a choice ofone of these components (as in the Figure 1.9.1 below).

โ„“

0

Figure 1.9.1. A line in ๐‘2

More generally, if ๐ฟ is a one-dimensional vector space then ๐ฟโˆ– {0} consists of two com-ponents: namely if ๐‘ฃ is an element of ๐ฟ โˆ– {0}, then these two components are

๐ฟ1 = { ๐œ†๐‘ฃ | ๐œ† > 0 }and

๐ฟ2 = { ๐œ†๐‘ฃ | ๐œ† < 0 } .

Definition 1.9.2. Let ๐ฟ be a one-dimensional vector space. An orientation of ๐ฟ is a choice ofone of a connected component of ๐ฟโˆ–{0}. Usually the component chosen is denoted ๐ฟ+, andcalled the positive component of๐ฟโˆ–{0} and the other component๐ฟโˆ’ the negative componentof ๐ฟ โˆ– {0}.

Definition 1.9.3. Let (๐ฟ, ๐ฟ+) be an oriented one-dimensional vector space. A vector ๐‘ฃ โˆˆ ๐ฟis positively oriented if ๐‘ฃ โˆˆ ๐ฟ+.

Definition 1.9.4. Let ๐‘‰ be an ๐‘›-dimensional vector space. An orientation of ๐‘‰ is an orien-tation of the one-dimensional vector space ๐›ฌ๐‘›(๐‘‰โ‹†).

One important way of assigning an orientation to ๐‘‰ is to choose a basis, ๐‘’1,โ€ฆ, ๐‘’๐‘› of ๐‘‰.Then, if ๐‘’โ‹†1 ,โ€ฆ, ๐‘’โ‹†๐‘› is the dual basis, we can orient ๐›ฌ๐‘›(๐‘‰โ‹†) by requiring that ๐‘’โ‹†1 โˆง โ‹ฏ โˆง ๐‘’โ‹†๐‘› bein the positive component of ๐›ฌ๐‘›(๐‘‰โ‹†).

Definition 1.9.5. Let ๐‘‰ be an oriented ๐‘›-dimensional vector space. We say that an orderedbasis (๐‘’1,โ€ฆ, ๐‘’๐‘›) of ๐‘‰ is positively oriented if ๐‘’โ‹†1 โˆง โ‹ฏ โˆง ๐‘’โ‹†๐‘› is in the positive component of๐›ฌ๐‘›(๐‘‰โ‹†).

Suppose that ๐‘’1,โ€ฆ, ๐‘’๐‘› and ๐‘“1,โ€ฆ, ๐‘“๐‘› are bases of ๐‘‰ and that

(1.9.6) ๐‘’๐‘— =๐‘›โˆ‘๐‘–=1๐‘Ž๐‘–,๐‘—,๐‘“๐‘– .

Then by (1.7.10)๐‘“โ‹†1 โˆงโ‹ฏ โˆง ๐‘“โ‹†๐‘› = det[๐‘Ž๐‘–,๐‘—]๐‘’โ‹†1 โˆงโ‹ฏ โˆง ๐‘’โ‹†๐‘›

so we conclude:

Page 42: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

30 Chapter 1: Multilinear Algebra

Proposition 1.9.7. If ๐‘’1,โ€ฆ, ๐‘’๐‘› is positively oriented, then๐‘“1,โ€ฆ, ๐‘“๐‘› is positively oriented if andonly if det[๐‘Ž๐‘–,๐‘—] is positive.

Corollary 1.9.8. If ๐‘’1,โ€ฆ, ๐‘’๐‘› is a positively oriented basis of ๐‘‰, then the basis

๐‘’1,โ€ฆ, ๐‘’๐‘–โˆ’1, โˆ’๐‘’๐‘–, ๐‘’๐‘–+1,โ€ฆ, ๐‘’๐‘›is negatively oriented.

Now let ๐‘‰ be a vector space of dimension ๐‘› > 1 and๐‘Š a subspace of dimension ๐‘˜ < ๐‘›.We will use the result above to prove the following important theorem.

Theorem 1.9.9. Given orientations on๐‘‰ and๐‘‰/๐‘Š, one gets from these orientations a naturalorientation on๐‘Š.

Remark 1.9.10. What we mean by โ€œnaturalโ€ will be explained in the course of the proof.

Proof. Let ๐‘Ÿ = ๐‘›โˆ’ ๐‘˜ and let ๐œ‹ be the projection of๐‘‰ onto๐‘‰/๐‘Š . By Exercises 1.2.i and 1.2.iiwe can choose a basis ๐‘’1,โ€ฆ, ๐‘’๐‘› of ๐‘‰ such that ๐‘’๐‘Ÿ+1,โ€ฆ, ๐‘’๐‘› is a basis of๐‘Š and ๐œ‹(๐‘’1),โ€ฆ, ๐œ‹(๐‘’๐‘Ÿ)a basis of๐‘‰/๐‘Š. Moreover, replacing ๐‘’1 by โˆ’๐‘’1 if necessary we can assume by Corollary 1.9.8that ๐œ‹(๐‘’1),โ€ฆ, ๐œ‹(๐‘’๐‘Ÿ) is a positively oriented basis of ๐‘‰/๐‘Š and replacing ๐‘’๐‘› by โˆ’๐‘’๐‘› if neces-sary we can assume that ๐‘’1,โ€ฆ, ๐‘’๐‘› is a positively oriented basis of ๐‘‰. Now assign to๐‘Š theorientation associated with the basis ๐‘’๐‘Ÿ+1,โ€ฆ, ๐‘’๐‘›.

Letโ€™s show that this assignment is โ€œnaturalโ€(i.e., does not depend on our choice of basis๐‘’1,โ€ฆ, ๐‘’๐‘›). To see this let ๐‘“1,โ€ฆ, ๐‘“๐‘› be another basis of ๐‘‰ with the properties above and let๐ด = [๐‘Ž๐‘–,๐‘—] be thematrix (1.9.6) expressing the vectors ๐‘’1,โ€ฆ, ๐‘’๐‘› as linear combinations of thevectors ๐‘“1,โ€ฆ๐‘“๐‘›. This matrix has to have the form

(1.9.11) ๐ด = (๐ต ๐ถ0 ๐ท)

where ๐ต is the ๐‘Ÿร—๐‘Ÿmatrix expressing the basis vectors ๐œ‹(๐‘’1),โ€ฆ, ๐œ‹(๐‘’๐‘Ÿ) of๐‘‰/๐‘Š as linear com-binations of ๐œ‹(๐‘“1),โ€ฆ, ๐œ‹(๐‘“๐‘Ÿ) and ๐ท the ๐‘˜ ร— ๐‘˜matrix expressing the basis vectors ๐‘’๐‘Ÿ+1,โ€ฆ, ๐‘’๐‘›of๐‘Š as linear combinations of ๐‘“๐‘Ÿ+1,โ€ฆ, ๐‘“๐‘›. Thus

det(๐ด) = det(๐ต) det(๐ท) .However, by Proposition 1.9.7, det๐ด and det๐ต are positive, so det๐ท is positive, and henceif ๐‘’๐‘Ÿ+1,โ€ฆ, ๐‘’๐‘› is a positively oriented basis of๐‘Š so is ๐‘“๐‘Ÿ+1,โ€ฆ, ๐‘“๐‘›. โ–ก

As a special case of this theorem suppose dim๐‘Š = ๐‘› โˆ’ 1. Then the choice of a vector๐‘ฃ โˆˆ ๐‘‰โˆ–๐‘Š gives one a basis vector ๐œ‹(๐‘ฃ) for the one-dimensional space๐‘‰/๐‘Š and hence if๐‘‰is oriented, the choice of ๐‘ฃ gives one a natural orientation on๐‘Š.

Definition 1.9.12. Let๐ดโˆถ ๐‘‰1 โ†’ ๐‘‰2 a bijective linear map of oriented ๐‘›-dimensional vectorspaces. We say that ๐ด is orientation-preserving if, for ๐œ” โˆˆ ๐›ฌ๐‘›(๐‘‰โ‹†2 )+, we have that ๐ดโ‹†๐œ” is in๐›ฌ๐‘›(๐‘‰โ‹†1 )+.

Example 1.9.13. If ๐‘‰1 = ๐‘‰2 then ๐ดโ‹†๐œ” = det(๐ด)๐œ” so ๐ด is orientation preserving if and onlyif det(๐ด) > 0.

The following proposition weโ€™ll leave as an exercise.

Proposition 1.9.14. Let๐‘‰1,๐‘‰2, and๐‘‰3 be oriented ๐‘›-dimensional vector spaces and๐ด๐‘– โˆถ ๐‘‰๐‘– โฅฒ๐‘‰๐‘–+1 for ๐‘– = 1, 2 be bijective linear maps. Then if ๐ด1 and ๐ด2 are orientation preserving, so is๐ด2 โˆ˜ ๐ด1.

Page 43: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง1.9 Orientations 31

Exercises for ยง1.9Exercise 1.9.i. Prove Corollary 1.9.8.

Exercise 1.9.ii. Show that the argument in the proof of Theorem 1.9.9 can be modified toprove that if ๐‘‰ and๐‘Š are oriented then these orientations induce a natural orientation on๐‘‰/๐‘Š.

Exercise 1.9.iii. Similarly show that if๐‘Š and ๐‘‰/๐‘Š are oriented these orientations inducea natural orientation on ๐‘‰.

Exercise 1.9.iv. Let ๐‘‰ be an ๐‘›-dimensional vector space and๐‘Š โŠ‚ ๐‘‰ a ๐‘˜-dimensional sub-space. Let ๐‘ˆ = ๐‘‰/๐‘Š and let ๐œ„ โˆถ ๐‘Š โ†’ ๐‘‰ and ๐œ‹โˆถ ๐‘‰ โ†’ ๐‘ˆ be the inclusion and projectionmaps. Suppose ๐‘‰ and ๐‘ˆ are oriented. Let ๐œ‡ be in ๐›ฌ๐‘›โˆ’๐‘˜(๐‘ˆโ‹†)+ and let ๐œ” be in ๐›ฌ๐‘›(๐‘‰โ‹†)+. Showthat there exists a ๐œˆ in๐›ฌ๐‘˜(๐‘‰โ‹†) such that ๐œ‹โ‹†๐œ‡โˆง๐œˆ = ๐œ”. Moreover show that ๐œ„โ‹†๐œˆ is intrinsicallydefined (i.e., does not depend on how we choose ๐œˆ) and sits in the positive part๐›ฌ๐‘˜(๐‘Šโ‹†)+ of๐›ฌ๐‘˜(๐‘Šโ‹†).

Exercise 1.9.v. Let ๐‘’1,โ€ฆ, ๐‘’๐‘› be the standard basis vectors of๐‘๐‘›.The standard orientation of๐‘๐‘› is, by definition, the orientation associated with this basis. Show that if๐‘Š is the subspaceof ๐‘๐‘› defined by the equation ๐‘ฅ1 = 0, and ๐‘ฃ = ๐‘’1 โˆ‰ ๐‘Š then the natural orientation of๐‘Šassociated with ๐‘ฃ and the standard orientation of ๐‘๐‘› coincide with the orientation given bythe basis vectors ๐‘’2,โ€ฆ, ๐‘’๐‘› of๐‘Š.

Exercise 1.9.vi. Let๐‘‰be anoriented๐‘›-dimensional vector space and๐‘Š an๐‘›โˆ’1-dimensionalsubspace. Show that if ๐‘ฃ and ๐‘ฃโ€ฒ are in๐‘‰โˆ–๐‘Š then ๐‘ฃโ€ฒ = ๐œ†๐‘ฃ+๐‘ค, where๐‘ค is in๐‘Š and๐œ† โˆˆ ๐‘โˆ–{0}.Show that ๐‘ฃ and ๐‘ฃโ€ฒ give rise to the same orientation of๐‘Š if and only if ๐œ† is positive.

Exercise 1.9.vii. Prove Proposition 1.9.14.

Exercise 1.9.viii. A key step in the proof of Theorem 1.9.9 was the assertion that the matrix๐ด expressing the vectors, ๐‘’๐‘– as linear combinations of the vectors ๐‘“๐ฝ, had to have the form(1.9.11). Why is this the case?

Exercise 1.9.ix.(1) Let๐‘‰ be a vector space,๐‘Š a subspace of๐‘‰ and๐ดโˆถ ๐‘‰ โ†’ ๐‘‰ a bijective linear map which

maps๐‘Š onto๐‘Š. Show that one gets from ๐ด a bijective linear map๐ตโˆถ ๐‘‰/๐‘Š โ†’ ๐‘‰/๐‘Š

with the property๐œ‹๐ด = ๐ต๐œ‹ ,

where ๐œ‹โˆถ ๐‘‰ โ†’ ๐‘‰/๐‘Š is the quotient map.(2) Assume that ๐‘‰, ๐‘Š and ๐‘‰/๐‘Š are compatibly oriented. Show that if ๐ด is orientation-

preserving and its restriction to๐‘Š is orientation preserving then ๐ต is orientation pre-serving.

Exercise 1.9.x. Let ๐‘‰ be a oriented ๐‘›-dimensional vector space,๐‘Š an (๐‘› โˆ’ 1)-dimensionalsubspace of ๐‘‰ and ๐‘– โˆถ ๐‘Š โ†’ ๐‘‰ the inclusion map. Given ๐œ” โˆˆ ๐›ฌ๐‘›(๐‘‰โ‹†)+ and ๐‘ฃ โˆˆ ๐‘‰ โˆ–๐‘Š showthat for the orientation of๐‘Š described in Exercise 1.9.v, ๐‘–โ‹†(๐œ„๐‘ฃ๐œ”) โˆˆ ๐›ฌ๐‘›โˆ’1(๐‘Šโ‹†)+.

Exercise 1.9.xi. Let ๐‘‰ be an ๐‘›-dimensional vector space, ๐ตโˆถ ๐‘‰ ร— ๐‘‰ โ†’ ๐‘ an inner prod-uct and ๐‘’1,โ€ฆ, ๐‘’๐‘› a basis of ๐‘‰ which is positively oriented and orthonormal. Show that thevolume element

vol โ‰” ๐‘’โ‹†1 โˆงโ‹ฏ โˆง ๐‘’โ‹†๐‘› โˆˆ ๐›ฌ๐‘›(๐‘‰โ‹†)

Page 44: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

32 Chapter 1: Multilinear Algebra

is intrinsically defined, independent of the choice of this basis.Hint: Equations (1.2.20) and (1.8.10).

Exercise 1.9.xii.(1) Let ๐‘‰ be an oriented ๐‘›-dimensional vector space and ๐ต an inner product on ๐‘‰. Fix an

oriented orthonormal basis, ๐‘’1,โ€ฆ, ๐‘’๐‘›, of ๐‘‰ and let ๐ดโˆถ ๐‘‰ โ†’ ๐‘‰ be a linear map. Showthat if

๐ด๐‘’๐‘– = ๐‘ฃ๐‘– =๐‘›โˆ‘๐‘—=1๐‘Ž๐‘—,๐‘–๐‘’๐‘—

and ๐‘๐‘–,๐‘— = ๐ต(๐‘ฃ๐‘–, ๐‘ฃ๐‘—), the matrices ๐‘€๐ด = [๐‘Ž๐‘–,๐‘—] and ๐‘€๐ต = (๐‘๐‘–,๐‘—) are related by: ๐‘€๐ต =๐‘€โŠบ๐ด๐‘€๐ด.

(2) Show that if vol is the volume form ๐‘’โ‹†1 โˆงโ‹ฏ โˆง ๐‘’โ‹†๐‘› , and ๐ด is orientation preserving

๐ดโ‹† vol = det(๐‘€๐ต)12 vol .

(3) ByTheorem 1.5.13 one has a bijective map๐›ฌ๐‘›(๐‘‰โ‹†) โ‰… A๐‘›(๐‘‰) .

Show that the element, ๐›บ, of ๐ด๐‘›(๐‘‰) corresponding to the form vol has the property|๐›บ(๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘›)|2 = det((๐‘๐‘–,๐‘—))

where ๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘› are any ๐‘›-tuple of vectors in ๐‘‰ and ๐‘๐‘–,๐‘— = ๐ต(๐‘ฃ๐‘–, ๐‘ฃ๐‘—).

Page 45: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

CHAPTER 2

Differential Forms

The goal of this chapter is to generalize to ๐‘› dimensions the basic operations of threedimensional vector calculus: divergence, curl, and gradient. The divergence and gradientoperations have fairly straightforward generalizations, but the curl operation is more subtle.For vector fields it does not have any obvious generalization, however, if one replaces vectorfields by a closely related class of objects, differential forms, then not only does it have anatural generalization but it turns out that divergence, curl, and gradient are all special casesof a general operation on differential forms called exterior differentiation.

2.1. Vector fields and one-forms

In this section we will review some basic facts about vector fields in ๐‘› variables andintroduce their dual objects: one-forms. We will then take up in ยง2.3 the theory of ๐‘˜-formsfor ๐‘˜ > 1. We begin by fixing some notation.

Definition 2.1.1. Let ๐‘ โˆˆ ๐‘๐‘›. The tangent space to ๐‘๐‘› at ๐‘ is the set of pairs๐‘‡๐‘๐‘๐‘› โ‰” { (๐‘, ๐‘ฃ) | ๐‘ฃ โˆˆ ๐‘๐‘› } .

The identification(2.1.2) ๐‘‡๐‘๐‘๐‘› โฅฒ ๐‘๐‘› , (๐‘, ๐‘ฃ) โ†ฆ ๐‘ฃmakes ๐‘‡๐‘๐‘๐‘› into a vector space. More explicitly, for ๐‘ฃ, ๐‘ฃ1, ๐‘ฃ2 โˆˆ ๐‘๐‘› and ๐œ† โˆˆ ๐‘ we define theaddition and scalar multiplication operations on ๐‘‡๐‘๐‘๐‘› by setting

(๐‘, ๐‘ฃ1) + (๐‘, ๐‘ฃ2) โ‰” (๐‘, ๐‘ฃ1 + ๐‘ฃ2)and

๐œ†(๐‘, ๐‘ฃ) โ‰” (๐‘, ๐œ†๐‘ฃ) .

Let ๐‘ˆ be an open subset of ๐‘๐‘› and ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘๐‘š a ๐ถ1 map. We recall that the derivative๐ท๐‘“(๐‘)โˆถ ๐‘๐‘› โ†’ ๐‘๐‘š

of ๐‘“ at ๐‘ is the linear map associated with the๐‘š ร— ๐‘›matrix

[ ๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘—(๐‘)] .

It will be useful to have a โ€œbase-pointedโ€ version of this definition aswell. Namely, if ๐‘ž = ๐‘“(๐‘)we will define

๐‘‘๐‘“๐‘ โˆถ ๐‘‡๐‘๐‘๐‘› โ†’ ๐‘‡๐‘ž๐‘๐‘š

to be the map๐‘‘๐‘“๐‘(๐‘, ๐‘ฃ) โ‰” (๐‘ž,๐ท๐‘“(๐‘)๐‘ฃ) .

It is clear from the way we have defined vector space structures on ๐‘‡๐‘๐‘๐‘› and ๐‘‡๐‘ž๐‘๐‘š that thismap is linear.

33

Page 46: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

34 Chapter 2: Differential Forms

Suppose that the image of ๐‘“ is contained in an open set ๐‘‰, and suppose ๐‘”โˆถ ๐‘‰ โ†’ ๐‘๐‘˜ isa ๐ถ1 map. Then the โ€œbase-pointedโ€ version of the chain rule asserts that

๐‘‘๐‘”๐‘ž โˆ˜ ๐‘‘๐‘“๐‘ = ๐‘‘(๐‘“ โˆ˜ ๐‘”)๐‘ .(This is just an alternative way of writing๐ท๐‘”(๐‘ž)๐ท๐‘“(๐‘) = ๐ท(๐‘” โˆ˜ ๐‘“)(๐‘).)

In 3-dimensional vector calculus a vector field is a functionwhich attaches to each point๐‘ of ๐‘3 a base-pointed arrow (๐‘, ๐‘ฃ) โˆˆ ๐‘‡๐‘๐‘3. The ๐‘›-dimensional version of this definition isessentially the same.

Definition 2.1.3. Let ๐‘ˆ be an open subset of ๐‘๐‘›. A vector field ๐’— on ๐‘ˆ is a function whichassigns to each point ๐‘ โˆˆ ๐‘ˆ a vector ๐’—(๐‘) โˆˆ ๐‘‡๐‘๐‘๐‘›.

Thus a vector field is a vector-valued function, but its value at ๐‘ is an element of a vectorspace ๐‘‡๐‘๐‘๐‘› that itself depends on ๐‘.

Examples 2.1.4.(1) Given a fixed vector ๐‘ฃ โˆˆ ๐‘๐‘›, the function(2.1.5) ๐‘ โ†ฆ (๐‘, ๐‘ฃ)

is a vector field on ๐‘๐‘›. Vector fields of this type are called constant vector fields.(2) In particular let ๐‘’1,โ€ฆ, ๐‘’๐‘› be the standard basis vectors of๐‘๐‘›. If ๐‘ฃ = ๐‘’๐‘– we will denote the

vector field (2.1.5) by ๐œ•/๐œ•๐‘ฅ๐‘–. (The reason for this โ€œderivation notationโ€ will be explainedbelow.)

(3) Given a vector field ๐’— on๐‘ˆ and a function, ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘ we denote by ๐‘“๐’— the vector fieldon ๐‘ˆ defined by

๐‘ โ†ฆ ๐‘“(๐‘)๐’—(๐‘) .(4) Given vector fields ๐’—1 and ๐’—2 on ๐‘ˆ, we denote by ๐’—1 + ๐’—2 the vector field on ๐‘ˆ defined

by๐‘ โ†ฆ ๐’—1(๐‘) + ๐’—2(๐‘) .

(5) The vectors, (๐‘, ๐‘’๐‘–), ๐‘– = 1,โ€ฆ, ๐‘›, are a basis of ๐‘‡๐‘๐‘๐‘›, so if ๐’— is a vector field on ๐‘ˆ, ๐’—(๐‘)can be written uniquely as a linear combination of these vectors with real numbers๐‘”1(๐‘),โ€ฆ, ๐‘”๐‘›(๐‘) as coefficients. In other words, using the notation in example (2) above,๐’— can be written uniquely as a sum

(2.1.6) ๐’— =๐‘›โˆ‘๐‘–=1๐‘”๐‘–๐œ•๐œ•๐‘ฅ๐‘–

where ๐‘”๐‘– โˆถ ๐‘ˆ โ†’ ๐‘ is the function ๐‘ โ†ฆ ๐‘”๐‘–(๐‘).

Definition 2.1.7. We say that ๐’— is a ๐ถโˆž vector field if the ๐‘”๐‘–โ€™s are in ๐ถโˆž(๐‘ˆ).

Definition 2.1.8. Abasic vector field operation is Lie differentiation. If๐‘“ โˆˆ ๐ถ1(๐‘ˆ)we define๐ฟ๐’—๐‘“ to be the function on ๐‘ˆ whose value at ๐‘ is given by(2.1.9) ๐ฟ๐’—๐‘“(๐‘) โ‰” ๐ท๐‘“(๐‘)๐‘ฃ ,where ๐’—(๐‘) = (๐‘, ๐‘ฃ).

Example 2.1.10. If ๐’— is the vector field (2.1.6) then

๐ฟ๐’—๐‘“ =๐‘›โˆ‘๐‘–=1๐‘”๐‘–๐œ•๐‘“๐œ•๐‘ฅ๐‘–

,

(motivating our โ€œderivation notationโ€ for ๐’—).

Page 47: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง2.1 Vector fields and one-forms 35

We leave the following generalization of the product rule for differentiation as an exer-cise.

Lemma 2.1.11. Let๐‘ˆ be an open subset of๐‘๐‘›, ๐’— a vector field on๐‘ˆ, and๐‘“1, ๐‘“2 โˆˆ ๐ถ1(๐‘ˆ). Then๐ฟ๐’—(๐‘“1 โ‹… ๐‘“2) = ๐ฟ๐’—(๐‘“1) โ‹… ๐‘“2 + ๐‘“1 โ‹… ๐ฟ๐’—(๐‘“2) .

We now discuss a class of objects which are in some sense โ€œdual objectsโ€ to vector fields.

Definition 2.1.12. Let ๐‘ โˆˆ ๐‘๐‘›. The cotangent space to ๐‘๐‘› at ๐‘ is the dual vector space๐‘‡โ‹†๐‘ ๐‘๐‘› โ‰” (๐‘‡๐‘๐‘)โ‹† .

An element of ๐‘‡โ‹†๐‘ ๐‘๐‘› is called a cotangent vector to ๐‘๐‘› at ๐‘.

Definition 2.1.13. Let ๐‘ˆ be an open subset of ๐‘๐‘›. A differential one-form, or simply one-form on ๐‘ˆ is a function ๐œ” which assigns to each point ๐‘ โˆˆ ๐‘ˆ a vector ๐œ”๐‘ in ๐‘‡โ‹†๐‘ ๐‘๐‘›.

Examples 2.1.14.(1) Let ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘ be a ๐ถ1 function. Then for ๐‘ โˆˆ ๐‘ˆ and ๐‘ž = ๐‘“(๐‘) one has a linear map(2.1.15) ๐‘‘๐‘“๐‘ โˆถ ๐‘‡๐‘๐‘๐‘› โ†’ ๐‘‡๐‘ž๐‘

and by making the identification ๐‘‡๐‘ž๐‘ โฅฒ ๐‘ by sending (๐‘ž, ๐‘ฃ) โ†ฆ ๐‘ฃ, the differential ๐‘‘๐‘“๐‘can be regarded as a linear map from ๐‘‡๐‘๐‘๐‘› to ๐‘, i.e., as an element of ๐‘‡โ‹†๐‘ ๐‘๐‘›. Hence theassignment

๐‘ โ†ฆ ๐‘‘๐‘“๐‘defines a one-form on ๐‘ˆ which we denote by ๐‘‘๐‘“.

(2) Given a one-form๐œ” and a function๐œ™โˆถ ๐‘ˆ โ†’ ๐‘ the pointwise product of๐œ™with๐œ” definesone-form ๐œ™๐œ” on ๐‘ˆ by (๐œ™๐œ”)๐‘ โ‰” ๐œ™(๐‘)๐œ”๐‘.

(3) Given two one-forms ๐œ”1 and ๐œ”2 their pointwise sum defines a one-form ๐œ”1 + ๐œ”2 by(๐œ”1 + ๐œ”2)๐‘ โ‰” (๐œ”1)๐‘ + (๐œ”2)๐‘.

(4) The one-forms ๐‘‘๐‘ฅ1,โ€ฆ, ๐‘‘๐‘ฅ๐‘› play a particularly important role. By equation (2.1.15)

(2.1.16) (๐‘‘๐‘ฅ๐‘–) (๐œ•๐œ•๐‘ฅ๐‘—)๐‘= ๐›ฟ๐‘–,๐‘—

i.e., is equal to 1 if ๐‘– = ๐‘— and zero if ๐‘– โ‰  ๐‘—. Thus (๐‘‘๐‘ฅ1)๐‘,โ€ฆ, (๐‘‘๐‘ฅ๐‘›)๐‘ are the basis of๐‘‡โ‹†๐‘ ๐‘๐‘› dual to the basis (๐œ•/๐œ•๐‘ฅ๐‘–)๐‘. Therefore, if ๐œ” is any one-form on๐‘ˆ, ๐œ”๐‘ can be writtenuniquely as a sum

๐œ”๐‘ =๐‘›โˆ‘๐‘–=1๐‘“๐‘–(๐‘)(๐‘‘๐‘ฅ๐‘–)๐‘ , ๐‘“๐‘–(๐‘) โˆˆ ๐‘ ,

and ๐œ” can be written uniquely as a sum

(2.1.17) ๐œ” =๐‘›โˆ‘๐‘–=1๐‘“๐‘–๐‘‘๐‘ฅ๐‘–

where ๐‘“๐‘– โˆถ ๐‘ˆ โ†’ ๐‘ is the function ๐‘ โ†ฆ ๐‘“๐‘–(๐‘). We say that ๐œ” is a ๐ถโˆž one-form or smoothone-form if the functions ๐‘“1,โ€ฆ, ๐‘“๐‘› are ๐ถโˆž.

We leave the following as an exercise.

Lemma 2.1.18. Let ๐‘ˆ be an open subset of ๐‘๐‘›. If ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘ is a ๐ถโˆž function, then

๐‘‘๐‘“ =๐‘›โˆ‘๐‘–=1

๐œ•๐‘“๐œ•๐‘ฅ๐‘–๐‘‘๐‘ฅ๐‘– .

Page 48: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

36 Chapter 2: Differential Forms

Suppose that ๐’— is a vector field and ๐œ” a one-form on ๐‘ˆ โŠ‚ ๐‘๐‘›. Then for every ๐‘ โˆˆ ๐‘ˆ thevectors ๐’—(๐‘) โˆˆ ๐‘‡๐‘๐‘๐‘› and ๐œ”๐‘ โˆˆ (๐‘‡๐‘๐‘๐‘›)โ‹† can be paired to give a number ๐œ„๐’—(๐‘)๐œ”๐‘ โˆˆ ๐‘, andhence, as ๐‘ varies, an๐‘-valued function ๐œ„๐’—๐œ”which we will call the interior product of ๐’—with๐œ”.Example 2.1.19. For instance if ๐’— is the vector field (2.1.6) and ๐œ” the one-form (2.1.17),then

๐œ„๐’—๐œ” =๐‘›โˆ‘๐‘–=1๐‘“๐‘–๐‘”๐‘– .

Thus if ๐’— and ๐œ” are ๐ถโˆž, so is the function ๐œ„๐’—๐œ”. Also notice that if ๐œ™ โˆˆ ๐ถโˆž(๐‘ˆ), then as weobserved above

๐‘‘๐œ™ =๐‘›โˆ‘๐‘–=1

๐œ•๐œ™๐œ•๐‘ฅ๐‘–๐œ•๐œ•๐‘ฅ๐‘–

so if ๐’— is the vector field (2.1.6) then we have

๐œ„๐’— ๐‘‘๐œ™ =๐‘›โˆ‘๐‘–=1๐‘”๐‘–๐œ•๐œ™๐œ•๐‘ฅ๐‘–= ๐ฟ๐’—๐œ™ .

Exercises for ยง2.1Exercise 2.1.i. Prove Lemma 2.1.18

Exercise 2.1.ii. Prove Lemma 2.1.11

Exercise 2.1.iii. Let ๐‘ˆ be an open subset of ๐‘๐‘› and ๐’—1 and ๐’—2 vector fields on ๐‘ˆ. Show thatthere is a unique vector field ๐’˜, on ๐‘ˆ with the property

๐ฟ๐’˜๐œ™ = ๐ฟ๐’—1(๐ฟ๐’—2๐œ™) โˆ’ ๐ฟ๐’—2(๐ฟ๐’—1๐œ™)for all ๐œ™ โˆˆ ๐ถโˆž(๐‘ˆ).Exercise 2.1.iv. The vector field ๐’˜ in Exercise 2.1.iii is called the Lie bracket of the vectorfields ๐’—1 and ๐’—2 and is denoted by [๐’—1, ๐’—2]. Verify that the Lie bracket is skew-symmetric, i.e.,

[๐’—1, ๐’—2] = โˆ’[๐’—2, ๐’—1] ,and satisfies the Jacobi identity

[๐’—1, [๐’—2, ๐’—3]] + [๐’—2, [๐’—3, ๐’—1]] + [๐’—3, [๐’—1, ๐’—2]] = 0 .(And thus defines the structure of a Lie algebra.)

Hint: Prove analogous identities for ๐ฟ๐’—1 , ๐ฟ๐’—2 and ๐ฟ๐’—3 .

Exercise 2.1.v. Let ๐’—1 = ๐œ•/๐œ•๐‘ฅ๐‘– and ๐’—2 = โˆ‘๐‘›๐‘—=1 ๐‘”๐‘—๐œ•/๐œ•๐‘ฅ๐‘—. Show that

[๐’—1, ๐’—2] =๐‘›โˆ‘๐‘—=1

๐œ•๐‘”๐‘—๐œ•๐‘ฅ๐‘–๐œ•๐œ•๐‘ฅ๐‘—

.

Exercise 2.1.vi. Let ๐’—1 and ๐’—2 be vector fields and ๐‘“ a ๐ถโˆž function. Show that[๐’—1, ๐‘“๐’—2] = ๐ฟ๐’—1๐‘“๐’—2 + ๐‘“[๐’—1, ๐’—2] .

Exercise 2.1.vii. Let ๐‘ˆ be an open subset of ๐‘๐‘› and let ๐›พโˆถ [๐‘Ž, ๐‘] โ†’ ๐‘ˆ, ๐‘ก โ†ฆ (๐›พ1(๐‘ก),โ€ฆ, ๐›พ๐‘›(๐‘ก))be a ๐ถ1 curve. Given a ๐ถโˆž one-form ๐œ” = โˆ‘๐‘›๐‘–=1 ๐‘“๐‘–๐‘‘๐‘ฅ๐‘– on๐‘ˆ, define the line integral of ๐œ” over๐›พ to be the integral

โˆซ๐›พ๐œ” โ‰”๐‘›โˆ‘๐‘–=1โˆซ๐‘

๐‘Ž๐‘“๐‘–(๐›พ(๐‘ก))๐‘‘๐›พ๐‘–๐‘‘๐‘ก๐‘‘๐‘ก .

Page 49: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง2.2 Integral Curves for Vector Fields 37

Show that if ๐œ” = ๐‘‘๐‘“ for some ๐‘“ โˆˆ ๐ถโˆž(๐‘ˆ)

โˆซ๐›พ๐œ” = ๐‘“(๐›พ(๐‘)) โˆ’ ๐‘“(๐›พ(๐‘Ž)) .

In particular conclude that if ๐›พ is a closed curve, i.e., ๐›พ(๐‘Ž) = ๐›พ(๐‘), this integral is zero.

Exercise 2.1.viii. Let ๐œ” be the ๐ถโˆž one-form on ๐‘2 โˆ– {0} defined by

๐œ” = ๐‘ฅ1๐‘‘๐‘ฅ2 โˆ’ ๐‘ฅ2๐‘‘๐‘ฅ1๐‘ฅ21 + ๐‘ฅ22

,

and let ๐›พโˆถ [0, 2๐œ‹] โ†’ ๐‘2โˆ–{0} be the closed curve ๐‘ก โ†ฆ (cos ๐‘ก, sin ๐‘ก). Compute the line integralโˆซ๐›พ ๐œ”, and note that โˆซ๐›พ ๐œ” โ‰  0. Conclude that ๐œ” is not of the form ๐‘‘๐‘“ for ๐‘“ โˆˆ ๐ถโˆž(๐‘2 โˆ– {0}).

Exercise 2.1.ix. Let ๐‘“ be the function

๐‘“(๐‘ฅ1, ๐‘ฅ2) ={{{{{{{

arctan ๐‘ฅ2๐‘ฅ1 ๐‘ฅ1 > 0๐œ‹2 , ๐‘ฅ2 > 0 or ๐‘ฅ1 = 0arctan ๐‘ฅ2๐‘ฅ1 + ๐œ‹ ๐‘ฅ1 < 0 .

Recall that โˆ’๐œ‹2 < arctan(๐‘ก) < ๐œ‹2 . Show that ๐‘“ is ๐ถโˆž and that ๐‘‘๐‘“ is the 1-form ๐œ” in Exer-cise 2.1.viii. Why does not this contradict what you proved in Exercise 2.1.viii?

2.2. Integral Curves for Vector Fields

In this section weโ€™ll discuss some properties of vector fields which weโ€™ll need for themanifold segment of this text. Weโ€™ll begin by generalizing to ๐‘›-variables the calculus notionof an โ€œintegral curveโ€ of a vector field.

Definition 2.2.1. Let ๐‘ˆ โŠ‚ ๐‘๐‘› be open and ๐’— a vector field on ๐‘ˆ. A ๐ถ1 curve ๐›พโˆถ (๐‘Ž, ๐‘) โ†’ ๐‘ˆis an integral curve of ๐’— if for all ๐‘ก โˆˆ (๐‘Ž, ๐‘) we have

๐’—(๐›พ(๐‘ก)) = (๐›พ(๐‘ก), ๐‘‘๐›พ๐‘‘๐‘ก (๐‘ก)) .Remark 2.2.2. If ๐’— is the vector field (2.1.6) and ๐‘”โˆถ ๐‘ˆ โ†’ ๐‘๐‘› is the function (๐‘”1,โ€ฆ, ๐‘”๐‘›),the condition for ๐›พ(๐‘ก) to be an integral curve of ๐’— is that it satisfy the system of differentialequations

(2.2.3) ๐‘‘๐›พ๐‘‘๐‘ก(๐‘ก) = ๐‘”(๐›พ(๐‘ก)) .

We will quote without proof a number of basic facts about systems of ordinary differ-ential equations of the type (2.2.3).1

Theorem 2.2.4 (existence of integral curves). Let ๐‘ˆ be an open subset of ๐‘๐‘› and ๐’— a vectorfield on ๐‘ˆ. Given a point ๐‘0 โˆˆ ๐‘ˆ and ๐‘Ž โˆˆ ๐‘, there exists an interval ๐ผ = (๐‘Ž โˆ’ ๐‘‡, ๐‘Ž + ๐‘‡), aneighborhood๐‘ˆ0 of ๐‘0 in๐‘ˆ, and for every ๐‘ โˆˆ ๐‘ˆ0 an integral curve ๐›พ๐‘ โˆถ ๐ผ โ†’ ๐‘ˆ for ๐’— such that๐›พ๐‘(๐‘Ž) = ๐‘.Theorem 2.2.5 (uniqueness of integral curves). Let๐‘ˆ be an open subset of ๐‘๐‘› and ๐’— a vectorfield on ๐‘ˆ. For ๐‘– = 1, 2, let ๐›พ๐‘– โˆถ ๐ผ๐‘– โ†’ ๐‘ˆ, ๐‘– = 1, 2 be integral curves for ๐’—. If ๐‘Ž โˆˆ ๐ผ1 โˆฉ ๐ผ2 and๐›พ1(๐‘Ž) = ๐›พ2(๐‘Ž) then ๐›พ1|๐ผ1โˆฉ๐ผ2 = ๐›พ2|๐ผ1โˆฉ๐ผ2 and the curve ๐›พโˆถ ๐ผ1 โˆช ๐ผ2 โ†’ ๐‘ˆ defined by

๐›พ(๐‘ก) โ‰” {๐›พ1(๐‘ก), ๐‘ก โˆˆ ๐ผ1๐›พ2(๐‘ก), ๐‘ก โˆˆ ๐ผ2

1A source for these results that we highly recommend is [2, Ch. 6].

Page 50: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

38 Chapter 2: Differential Forms

is an integral curve for ๐’—.

Theorem 2.2.6 (smooth dependence on initial data). Let ๐‘‰ โŠ‚ ๐‘ˆ โŠ‚ ๐‘๐‘› be open subsets. Let๐’— be a ๐ถโˆž-vector field on ๐‘‰, ๐ผ โŠ‚ ๐‘ an open interval, ๐‘Ž โˆˆ ๐ผ, and โ„Žโˆถ ๐‘‰ ร— ๐ผ โ†’ ๐‘ˆ a map withthe following properties.(1) โ„Ž(๐‘, ๐‘Ž) = ๐‘.(2) For all ๐‘ โˆˆ ๐‘‰ the curve

๐›พ๐‘ โˆถ ๐ผ โ†’ ๐‘ˆ , ๐›พ๐‘(๐‘ก) โ‰” โ„Ž(๐‘, ๐‘ก)is an integral curve of ๐’—.

Then the map โ„Ž is ๐ถโˆž.

One important feature of the system (2.2.3) is that it is an autonomous system of differ-ential equations: the function ๐‘”(๐‘ฅ) is a function of ๐‘ฅ alone (it does not depend on ๐‘ก). Oneconsequence of this is the following.

Theorem 2.2.7. Let ๐ผ = (๐‘Ž, ๐‘) and for ๐‘ โˆˆ ๐‘ let ๐ผ๐‘ = (๐‘Ž โˆ’ ๐‘, ๐‘ โˆ’ ๐‘). Then if ๐›พโˆถ ๐ผ โ†’ ๐‘ˆ is anintegral curve, the reparametrized curve

(2.2.8) ๐›พ๐‘ โˆถ ๐ผ๐‘ โ†’ ๐‘ˆ , ๐›พ๐‘(๐‘ก) โ‰” ๐›พ(๐‘ก + ๐‘)is an integral curve.

We recall that ๐ถ1-function ๐œ™โˆถ ๐‘ˆ โ†’ ๐‘ is an integral of the system (2.2.3) if for everyintegral curve ๐›พ(๐‘ก), the function ๐‘ก โ†ฆ ๐œ™(๐›พ(๐‘ก)) is constant. This is true if and only if for all ๐‘ก

0 = ๐‘‘๐‘‘๐‘ก๐œ™(๐›พ(๐‘ก)) = (๐ท๐œ™)๐›พ(๐‘ก) (

๐‘‘๐›พ๐‘‘๐‘ก) = (๐ท๐œ™)๐›พ(๐‘ก)(๐‘ฃ)

where ๐’—(๐‘) = (๐‘, ๐‘ฃ). By equation (2.1.6) the term on the right is ๐ฟ๐’—๐œ™(๐‘). Hence we conclude:

Theorem 2.2.9. Let ๐‘ˆ be an open subset of ๐‘๐‘› and ๐œ™ โˆˆ ๐ถ1(๐‘ˆ). Then ๐œ™ is an integral of thesystem (2.2.3) if and only if ๐ฟ๐’—๐œ™ = 0.

Definition 2.2.10. Let๐‘ˆ be an open subset of ๐‘๐‘› and ๐’— a vector field on๐‘ˆ. We say that ๐’— iscomplete if for every ๐‘ โˆˆ ๐‘ˆ there exists an integral curve ๐›พโˆถ ๐‘ โ†’ ๐‘ˆ with ๐›พ(0) = ๐‘, i.e., forevery ๐‘ there exists an integral curve that starts at ๐‘ and exists for all time.

To see what completeness involves, we recall that an integral curve

๐›พโˆถ [0, ๐‘) โ†’ ๐‘ˆ ,

with ๐›พ(0) = ๐‘ is called maximal if it cannot be extended to an interval [0, ๐‘โ€ฒ), where ๐‘โ€ฒ > ๐‘.(See for instance [2, ยง6.11].) For such curves it is known that either(1) ๐‘ = +โˆž,(2) |๐›พ(๐‘ก)| โ†’ +โˆž as ๐‘ก โ†’ ๐‘,(3) or the limit set of

{ ๐›พ(๐‘ก) | 0 โ‰ค ๐‘ก < ๐‘ }contains points on the boundary of ๐‘ˆ.Hence if we can exclude (2) and (3), we have shown that an integral curve with ๐›พ(0) = ๐‘

exists for all positive time. A simple criterion for excluding (2) and (3) is the following.

Lemma 2.2.11. The scenarios (2) and (3) cannot happen if there exists a proper ๐ถ1-function๐œ™โˆถ ๐‘ˆ โ†’ ๐‘ with ๐ฟ๐’—๐œ™ = 0.

Page 51: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง2.2 Integral Curves for Vector Fields 39

Proof. The identity ๐ฟ๐’—๐œ™ = 0 implies that ๐œ™ is constant on ๐›พ(๐‘ก), but if ๐œ™(๐‘) = ๐‘ this impliesthat the curve ๐›พ(๐‘ก) lies on the compact subset ๐œ™โˆ’1(๐‘) โŠ‚ ๐‘ˆ, hence it cannot โ€œrun off to infinityโ€as in scenario (2) or โ€œrun off the boundaryโ€ as in scenario (3). โ–ก

Applying a similar argument to the interval (โˆ’๐‘, 0] we conclude:

Theorem 2.2.12. Suppose there exists a proper ๐ถ1-function ๐œ™โˆถ ๐‘ˆ โ†’ ๐‘ with the property๐ฟ๐’—๐œ™ = 0. Then the vector field ๐’— is complete.

Example 2.2.13. Let ๐‘ˆ = ๐‘2 and let ๐‘ฃ be the vector field

๐‘ฃ = ๐‘ฅ3 ๐œ•๐œ•๐‘ฆโˆ’ ๐‘ฆ ๐œ•๐œ•๐‘ฅ

.

Then ๐œ™(๐‘ฅ, ๐‘ฆ) = 2๐‘ฆ2 + ๐‘ฅ4 is a proper function with the property above.

Another hypothesis on ๐’— which excludes (2) and (3) is the following.

Definition 2.2.14. The support of ๐’— is set

supp(๐’—) = { ๐‘ž โˆˆ ๐‘ˆ | ๐’—(๐‘ž) โ‰  0 } .

We say that ๐’— is compactly supported if supp(๐’—) is compact.

We now show that compactly supported vector fields are complete.

Theorem 2.2.15. If a vector field ๐’— is compactly supported, then ๐’— is complete.

Proof. Notice first that if ๐’—(๐‘) = 0, the constant curve, ๐›พ0(๐‘ก) = ๐‘, โˆ’โˆž < ๐‘ก < โˆž, satisfies theequation

๐‘‘๐‘‘๐‘ก๐›พ0(๐‘ก) = 0 = ๐’—(๐‘) ,

so it is an integral curve of ๐’—. Hence if ๐›พ(๐‘ก), โˆ’๐‘Ž < ๐‘ก < ๐‘, is any integral curve of ๐’— with theproperty ๐›พ(๐‘ก0) = ๐‘ for some ๐‘ก0, it has to coincide with ๐›พ0 on the interval (โˆ’๐‘Ž, ๐‘Ž), and hencehas to be the constant curve ๐›พ(๐‘ก) = ๐‘ on (โˆ’๐‘Ž, ๐‘Ž).

Now suppose the support supp(๐’—) of ๐’— is compact. Then either ๐›พ(๐‘ก) is in supp(๐’—) for all๐‘ก or is in ๐‘ˆ โˆ– supp(๐’—) for some ๐‘ก0. But if this happens, and ๐‘ = ๐›พ(๐‘ก0) then ๐’—(๐‘) = 0, so ๐›พ(๐‘ก)has to coincide with the constant curve ๐›พ0(๐‘ก) = ๐‘, for all ๐‘ก. In neither case can it go off toโˆžor off to the boundary of ๐‘ˆ as ๐‘ก โ†’ ๐‘. โ–ก

One useful application of this result is the following. Suppose ๐’— is a vector field on๐‘ˆ โŠ‚ ๐‘๐‘›, and one wants to see what its integral curves look like on some compact set ๐ด โŠ‚ ๐‘ˆ.Let ๐œŒ โˆˆ ๐ถโˆž0 (๐‘ˆ) be a bump function which is equal to one on a neighborhood of ๐ด. Thenthe vector field ๐’˜ = ๐œŒ๐’— is compactly supported and hence complete, but it is identical with๐’— on ๐ด, so its integral curves on ๐ด coincide with the integral curves of ๐’—.

If ๐’— is complete then for every ๐‘, one has an integral curve ๐›พ๐‘ โˆถ ๐‘ โ†’ ๐‘ˆ with ๐›พ๐‘(0) = ๐‘,so one can define a map

๐‘“๐‘ก โˆถ ๐‘ˆ โ†’ ๐‘ˆby setting๐‘“๐‘ก(๐‘) โ‰” ๐›พ๐‘(๐‘ก). If ๐’— is๐ถโˆž, thismapping is๐ถโˆž by the smooth dependence on initialdata theorem, and, by definition, ๐‘“0 = id๐‘ˆ. We claim that the ๐‘“๐‘กโ€™s also have the property

(2.2.16) ๐‘“๐‘ก โˆ˜ ๐‘“๐‘Ž = ๐‘“๐‘ก+๐‘Ž .

Page 52: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

40 Chapter 2: Differential Forms

Indeed if ๐‘“๐‘Ž(๐‘) = ๐‘ž, then by the reparametrization theorem, ๐›พ๐‘ž(๐‘ก) and ๐›พ๐‘(๐‘ก + ๐‘Ž) are bothintegral curves of ๐’—, and since ๐‘ž = ๐›พ๐‘ž(0) = ๐›พ๐‘(๐‘Ž) = ๐‘“๐‘Ž(๐‘), they have the same initial point,so

๐›พ๐‘ž(๐‘ก) = ๐‘“๐‘ก(๐‘ž) = (๐‘“๐‘ก โˆ˜ ๐‘“๐‘Ž)(๐‘)= ๐›พ๐‘(๐‘ก + ๐‘Ž) = ๐‘“๐‘ก+๐‘Ž(๐‘)

for all ๐‘ก. Since ๐‘“0 is the identity it follows from (2.2.16) that ๐‘“๐‘ก โˆ˜ ๐‘“โˆ’๐‘ก is the identity, i.e.,

๐‘“โˆ’๐‘ก = ๐‘“โˆ’1๐‘ก ,

so ๐‘“๐‘ก is a ๐ถโˆž diffeomorphism. Hence if ๐’— is complete it generates a one-parameter group ๐‘“๐‘ก,โˆ’โˆž < ๐‘ก < โˆž, of ๐ถโˆž-diffeomorphisms of ๐‘ˆ.

If ๐’— is not complete there is an analogous result, but it is trickier to formulate precisely.Roughly speaking ๐’— generates a one-parameter group of diffeomorphisms ๐‘“๐‘ก but these dif-feomorphisms are not defined on all of ๐‘ˆ nor for all values of ๐‘ก. Moreover, the identity(2.2.16) only holds on the open subset of ๐‘ˆ where both sides are well-defined.

We devote the remainder of this section to discussing some โ€œfunctorialโ€ properties ofvector fields and one-forms.

Definition 2.2.17. Let๐‘ˆ โŠ‚ ๐‘๐‘› and๐‘Š โŠ‚ ๐‘๐‘š be open, and let ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘Š be a ๐ถโˆž map. If ๐’—is a ๐ถโˆž-vector field on ๐‘ˆ and ๐’˜ a ๐ถโˆž-vector field on๐‘Š we say that ๐’— and ๐’˜ are ๐‘“-relatedif, for all ๐‘ โˆˆ ๐‘ˆ we have

๐‘‘๐‘“๐‘(๐’—(๐‘)) = ๐’˜(๐‘“(๐‘)) .

Writing

๐’— =๐‘›โˆ‘๐‘–=1๐‘ฃ๐‘–๐œ•๐œ•๐‘ฅ๐‘–

, ๐‘ฃ๐‘– โˆˆ ๐ถ๐‘˜(๐‘ˆ)

and

๐’˜ =๐‘šโˆ‘๐‘—=1๐‘ค๐‘—๐œ•๐œ•๐‘ฆ๐‘—

, ๐‘ค๐‘— โˆˆ ๐ถ๐‘˜(๐‘‰)

this equation reduces, in coordinates, to the equation

๐‘ค๐‘–(๐‘ž) =๐‘›โˆ‘๐‘—=1

๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘—(๐‘)๐‘ฃ๐‘—(๐‘) .

In particular, if๐‘š = ๐‘› and๐‘“ is a๐ถโˆž diffeomorphism, the formula (3.2) defines a๐ถโˆž-vectorfield on๐‘Š, i.e.,

๐’˜ =๐‘›โˆ‘๐‘—=1๐‘ค๐‘–๐œ•๐œ•๐‘ฆ๐‘—

is the vector field defined by the equation

๐‘ค๐‘– =๐‘›โˆ‘๐‘—=1(๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘—๐‘ฃ๐‘—) โˆ˜ ๐‘“โˆ’1 .

Hence we have proved:

Theorem 2.2.18. If ๐‘“โˆถ ๐‘ˆ โฅฒ ๐‘Š is a ๐ถโˆž diffeomorphism and ๐’— a ๐ถโˆž-vector field on๐‘ˆ, thereexists a unique ๐ถโˆž vector field ๐’˜ on๐‘Š having the property that ๐’— and ๐’˜ are ๐‘“-related.

Definition 2.2.19. In the setting of Theorem 2.2.18, we denote the vector field ๐’˜ by ๐‘“โ‹†๐’—,and call ๐‘“โ‹†๐’— the pushforward of ๐’— by ๐‘“ .

Page 53: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง2.2 Integral Curves for Vector Fields 41

We leave the following assertions as easy exercises (but provide some hints).

Theorem 2.2.20. For ๐‘– = 1, 2, let ๐‘ˆ๐‘– be an open subset of ๐‘๐‘›๐‘– , ๐’—๐‘– a vector field on ๐‘ˆ๐‘– and๐‘“โˆถ ๐‘ˆ1 โ†’ ๐‘ˆ2 a ๐ถโˆž-map. If ๐’—1 and ๐’—2 are ๐‘“-related, every integral curve

๐›พโˆถ ๐ผ โ†’ ๐‘ˆ1of ๐’—1 gets mapped by ๐‘“ onto an integral curve ๐‘“ โˆ˜ ๐›พโˆถ ๐ผ โ†’ ๐‘ˆ2 of ๐’—2.

Proof sketch. Theorem 2.2.20 follows from the chain rule: if ๐‘ = ๐›พ(๐‘ก) and ๐‘ž = ๐‘“(๐‘)

๐‘‘๐‘“๐‘ (๐‘‘๐‘‘๐‘ก๐›พ(๐‘ก)) = ๐‘‘

๐‘‘๐‘ก๐‘“(๐›พ(๐‘ก)) . โ–ก

Corollary 2.2.21. In the setting of Theorem 2.2.20, suppose ๐’—1 and ๐’—2 are complete. Let(๐‘“๐‘–,๐‘ก)๐‘กโˆˆ๐‘ โˆถ ๐‘ˆ๐‘– โฅฒ ๐‘ˆ๐‘– be the one-parameter group of diffeomorphisms generated by ๐’—๐‘–. Then๐‘“ โˆ˜ ๐‘“1,๐‘ก = ๐‘“2,๐‘ก โˆ˜ ๐‘“.

Proof sketch. To deduce Corollary 2.2.21 from Theorem 2.2.20 note that for ๐‘ โˆˆ ๐‘ˆ, ๐‘“1,๐‘ก(๐‘)is just the integral curve ๐›พ๐‘(๐‘ก) of ๐’—1 with initial point ๐›พ๐‘(0) = ๐‘.

The notion of ๐‘“-relatedness can be very succinctly expressed in terms of the Lie differ-entiation operation. For ๐œ™ โˆˆ ๐ถโˆž(๐‘ˆ2) let ๐‘“โ‹†๐œ™ be the composition, ๐œ™ โˆ˜ ๐‘“, viewed as a ๐ถโˆžfunction on ๐‘ˆ1, i.e., for ๐‘ โˆˆ ๐‘ˆ1 let ๐‘“โ‹†๐œ™(๐‘) = ๐œ™(๐‘“(๐‘)). Then

๐‘“โ‹†๐ฟ๐’—2๐œ™ = ๐ฟ๐’—1๐‘“โ‹†๐œ™ .

To see this, note that if ๐‘“(๐‘) = ๐‘ž then at the point ๐‘ the right hand side is(๐‘‘๐œ™)๐‘ž โˆ˜ ๐‘‘๐‘“๐‘(๐’—1(๐‘))

by the chain rule and by definition the left hand side is๐‘‘๐œ™๐‘ž(๐’—2(๐‘ž)) .

Moreover, by definition๐’—2(๐‘ž) = ๐‘‘๐‘“๐‘(๐’—1(๐‘))

so the two sides are the same. โ–ก

Another easy consequence of the chain rule is:

Theorem 2.2.22. For ๐‘– = 1, 2, 3, let ๐‘ˆ๐‘– be an open subset of ๐‘๐‘›๐‘– , ๐’—๐‘– a vector field on ๐‘ˆ๐‘–, andfor ๐‘– = 1, 2 let ๐‘“๐‘– โˆถ ๐‘ˆ๐‘– โ†’ ๐‘ˆ๐‘–+1 be a ๐ถโˆž-map. Suppose that ๐’—1 and ๐’—2 are ๐‘“1-related and that ๐’—2and ๐’—3 are ๐‘“2-related. Then ๐’—1 and ๐’—3 are (๐‘“2 โˆ˜ ๐‘“1)-related.

In particular, if ๐‘“1 and ๐‘“2 are diffeomorphisms writing ๐’— โ‰” ๐’—1 we have(๐‘“2)โ‹†(๐‘“1)โ‹†๐’— = (๐‘“2 โˆ˜ ๐‘“1)โ‹†๐’— .

The results we described above have โ€œdualโ€ analogues for one-forms.

Construction 2.2.23. Let ๐‘ˆ โŠ‚ ๐‘๐‘› and ๐‘‰ โŠ‚ ๐‘๐‘š be open, and let ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘‰ be a ๐ถโˆž-map.Given a one-form ๐œ‡ on ๐‘‰ one can define a pullback one-form ๐‘“โ‹†๐œ‡ on ๐‘ˆ by the followingmethod. For ๐‘ โˆˆ ๐‘ˆ, by definition ๐œ‡๐‘“(๐‘) is a linear map

๐œ‡๐‘“(๐‘) โˆถ ๐‘‡๐‘“(๐‘)๐‘๐‘š โ†’ ๐‘and by composing this map with the linear map

๐‘‘๐‘“๐‘ โˆถ ๐‘‡๐‘๐‘๐‘› โ†’ ๐‘‡๐‘“(๐‘)๐‘๐‘›

we get a linear map๐œ‡๐‘“(๐‘) โˆ˜ ๐‘‘๐‘“๐‘ โˆถ ๐‘‡๐‘๐‘๐‘› โ†’ ๐‘ ,

Page 54: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

42 Chapter 2: Differential Forms

i.e., an element ๐œ‡๐‘“(๐‘) โˆ˜ ๐‘‘๐‘“๐‘ of ๐‘‡โ‹†๐‘ ๐‘๐‘›.The pullback one-form ๐‘“โ‹†๐œ‡ is defined by the assignment ๐‘ โ†ฆ (๐œ‡๐‘“(๐‘) โˆ˜ ๐‘‘๐‘“๐‘).

In particular, if ๐œ™โˆถ ๐‘‰ โ†’ ๐‘ is a ๐ถโˆž-function and ๐œ‡ = ๐‘‘๐œ™ then๐œ‡๐‘ž โˆ˜ ๐‘‘๐‘“๐‘ = ๐‘‘๐œ™๐‘ž โˆ˜ ๐‘‘๐‘“๐‘ = ๐‘‘(๐œ™ โˆ˜ ๐‘“)๐‘

i.e.,๐‘“โ‹†๐œ‡ = ๐‘‘๐œ™ โˆ˜ ๐‘“ .

In particular if ๐œ‡ is a one-form of the form ๐œ‡ = ๐‘‘๐œ™, with ๐œ™ โˆˆ ๐ถโˆž(๐‘‰), ๐‘“โ‹†๐œ‡ is ๐ถโˆž. From thisit is easy to deduce:

Theorem 2.2.24. If ๐œ‡ is any ๐ถโˆž one-form on๐‘‰, its pullback ๐‘“โ‹†๐œ” is ๐ถโˆž. (See Exercise 2.2.ii.)

Notice also that the pullback operation on one-forms and the pushforward operationon vector fields are somewhat different in character. The former is defined for all ๐ถโˆž maps,but the latter is only defined for diffeomorphisms.

Exercises for ยง2.2Exercise 2.2.i. Prove the reparameterization result Theorem 2.2.20.

Exercise 2.2.ii. Let๐‘ˆ be an open subset of ๐‘๐‘›,๐‘‰ an open subset of ๐‘๐‘› and ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘‰ a ๐ถ๐‘˜map.(1) Show that for ๐œ™ โˆˆ ๐ถโˆž(๐‘‰) (2.2) can be rewritten

๐‘“โ‹†๐‘‘๐œ™ = ๐‘‘๐‘“โ‹†๐œ™ .(2) Let ๐œ‡ be the one-form

๐œ‡ =๐‘šโˆ‘๐‘–=1๐œ™๐‘–๐‘‘๐‘ฅ๐‘– , ๐œ™๐‘– โˆˆ ๐ถโˆž(๐‘‰)

on ๐‘‰. Show that if ๐‘“ = (๐‘“1,โ€ฆ, ๐‘“๐‘š) then

๐‘“โ‹†๐œ‡ =๐‘šโˆ‘๐‘–=1๐‘“โ‹†๐œ™๐‘– ๐‘‘๐‘“๐‘– .

(3) Show that if ๐œ‡ is ๐ถโˆž and ๐‘“ is ๐ถโˆž, ๐‘“โ‹†๐œ‡ is ๐ถโˆž.

Exercise 2.2.iii. Let ๐’— be a complete vector field on ๐‘ˆ and ๐‘“๐‘ก โˆถ ๐‘ˆ โ†’ ๐‘ˆ, the one parametergroup of diffeomorphisms generated by ๐’—. Show that if ๐œ™ โˆˆ ๐ถ1(๐‘ˆ)

๐ฟ๐’—๐œ™ =๐‘‘๐‘‘๐‘ก๐‘“โ‹†๐‘ก ๐œ™ |๐‘ก=0

.

Exercise 2.2.iv.(1) Let ๐‘ˆ = ๐‘2 and let ๐’— be the vector field, ๐‘ฅ1๐œ•/๐œ•๐‘ฅ2 โˆ’ ๐‘ฅ2๐œ•/๐œ•๐‘ฅ1. Show that the curve

๐‘ก โ†ฆ (๐‘Ÿ cos(๐‘ก + ๐œƒ), ๐‘Ÿ sin(๐‘ก + ๐œƒ)) ,for ๐‘ก โˆˆ ๐‘, is the unique integral curve of ๐’— passing through the point, (๐‘Ÿ cos ๐œƒ, ๐‘Ÿ sin ๐œƒ),at ๐‘ก = 0.

(2) Let ๐‘ˆ = ๐‘๐‘› and let ๐’— be the constant vector field: โˆ‘๐‘›๐‘–=1 ๐‘๐‘–๐œ•/๐œ•๐‘ฅ๐‘–. Show that the curve

๐‘ก โ†ฆ ๐‘Ž + ๐‘ก(๐‘1,โ€ฆ, ๐‘๐‘›) ,for ๐‘ก โˆˆ ๐‘, is the unique integral curve of ๐’— passing through ๐‘Ž โˆˆ ๐‘๐‘› at ๐‘ก = 0.

Page 55: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง2.2 Integral Curves for Vector Fields 43

(3) Let ๐‘ˆ = ๐‘๐‘› and let ๐’— be the vector field, โˆ‘๐‘›๐‘–=1 ๐‘ฅ๐‘–๐œ•/๐œ•๐‘ฅ๐‘–. Show that the curve

๐‘ก โ†ฆ ๐‘’๐‘ก(๐‘Ž1,โ€ฆ, ๐‘Ž๐‘›) ,for ๐‘ก โˆˆ ๐‘, is the unique integral curve of ๐’— passing through ๐‘Ž at ๐‘ก = 0.

Exercise 2.2.v. Show that the following are one-parameter groups of diffeomorphisms:(1) ๐‘“๐‘ก โˆถ ๐‘ โ†’ ๐‘ , ๐‘“๐‘ก(๐‘ฅ) = ๐‘ฅ + ๐‘ก(2) ๐‘“๐‘ก โˆถ ๐‘ โ†’ ๐‘ , ๐‘“๐‘ก(๐‘ฅ) = ๐‘’๐‘ก๐‘ฅ(3) ๐‘“๐‘ก โˆถ ๐‘2 โ†’ ๐‘2 , ๐‘“๐‘ก(๐‘ฅ, ๐‘ฆ) = (๐‘ฅ cos(๐‘ก) โˆ’ ๐‘ฆ sin(๐‘ก), ๐‘ฅ sin(๐‘ก) + ๐‘ฆ cos(๐‘ก)).

Exercise 2.2.vi. Let ๐ดโˆถ ๐‘๐‘› โ†’ ๐‘๐‘› be a linear mapping. Show that the series

exp(๐‘ก๐ด) โ‰”โˆžโˆ‘๐‘›=0

(๐‘ก๐ด)๐‘›๐‘›!= id๐‘› +๐‘ก๐ด +

๐‘ก22!๐ด2 + ๐‘ก

3

3!๐ด3 +โ‹ฏ

converges and defines a one-parameter group of diffeomorphisms of ๐‘๐‘›.

Exercise 2.2.vii.(1) What are the infinitesimal generators of the one-parameter groups in Exercise 2.2.v?(2) Show that the infinitesimal generator of the one-parameter group in Exercise 2.2.vi is

the vector fieldโˆ‘1โ‰ค๐‘–,๐‘—โ‰ค๐‘›๐‘Ž๐‘–,๐‘—๐‘ฅ๐‘—๐œ•๐œ•๐‘ฅ๐‘–

where (๐‘Ž๐‘–,๐‘—) is the defining matrix of ๐ด.

Exercise 2.2.viii. Let ๐’— be the vector field on ๐‘ given by ๐‘ฅ2 ๐‘‘๐‘‘๐‘ฅ . Show that the curve

๐‘ฅ(๐‘ก) = ๐‘Ž๐‘Ž โˆ’ ๐‘Ž๐‘ก

is an integral curve of ๐’— with initial point ๐‘ฅ(0) = ๐‘Ž. Conclude that for ๐‘Ž > 0 the curve

๐‘ฅ(๐‘ก) = ๐‘Ž1 โˆ’ ๐‘Ž๐‘ก

, 0 < ๐‘ก < 1๐‘Ž

is a maximal integral curve. (In particular, conclude that ๐’— is not complete.)

Exercise 2.2.ix. Let ๐‘ˆ and ๐‘‰ be open subsets of ๐‘๐‘› and ๐‘“โˆถ ๐‘ˆ โฅฒ ๐‘‰ a diffeomorphism. If๐’˜is a vector field on ๐‘‰, define the pullback of ๐’˜ to ๐‘ˆ to be the vector field

๐‘“โ‹†๐’˜ โ‰” (๐‘“โˆ’1โ‹† ๐’˜) .Show that if ๐œ™ is a ๐ถโˆž function on ๐‘‰

๐‘“โ‹†๐ฟ๐’˜๐œ™ = ๐ฟ๐‘“โ‹†๐’˜๐‘“โ‹†๐œ™ .Hint: Equation (2.2.25).

Exercise 2.2.x. Let ๐‘ˆ be an open subset of ๐‘๐‘› and ๐’— and ๐’˜ vector fields on ๐‘ˆ. Suppose ๐’— isthe infinitesimal generator of a one-parameter group of diffeomorphisms

๐‘“๐‘ก โˆถ ๐‘ˆ โฅฒ ๐‘ˆ , โˆ’โˆž < ๐‘ก < โˆž .Let ๐’˜๐‘ก = ๐‘“โ‹†๐‘ก ๐’˜. Show that for ๐œ™ โˆˆ ๐ถโˆž(๐‘ˆ) we have

๐ฟ[๐’—,๐’˜]๐œ™ = ๐ฟ๏ฟฝ๏ฟฝ๐œ™ ,where

๏ฟฝ๏ฟฝ = ๐‘‘๐‘‘๐‘ก๐‘“โ‹†๐‘ก ๐’˜ |

๐‘ก=0.

Page 56: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

44 Chapter 2: Differential Forms

Hint: Differentiate the identity๐‘“โ‹†๐‘ก ๐ฟ๐’˜๐œ™ = ๐ฟ๐’˜๐‘ก๐‘“

โ‹†๐‘ก ๐œ™

with respect to ๐‘ก and show that at ๐‘ก = 0 the derivative of the left hand side is ๐ฟ๐’—๐ฟ๐’˜๐œ™ byExercise 2.2.iii, and the derivative of the right hand side is

๐ฟ๏ฟฝ๏ฟฝ + ๐ฟ๐’˜(๐ฟ๐’—๐œ™) .

Exercise 2.2.xi. Conclude from Exercise 2.2.x that

(2.2.25) [๐’—, ๐’˜] = ๐‘‘๐‘‘๐‘ก๐‘“โ‹†๐‘ก ๐’˜ |

๐‘ก=0.

2.3. Differential ๐‘˜-forms

One-forms are the bottom tier in a pyramid of objects whose ๐‘˜th tier is the space of ๐‘˜-forms. More explicitly, given ๐‘ โˆˆ ๐‘๐‘› we can, as in Section 1.5, form the ๐‘˜th exterior powers

๐›ฌ๐‘˜(๐‘‡โ‹†๐‘ ๐‘๐‘›) , ๐‘˜ = 1, 2, 3,โ€ฆ, ๐‘›of the vector space ๐‘‡โ‹†๐‘ ๐‘๐‘›, and since

(2.3.1) ๐›ฌ1(๐‘‡โ‹†๐‘ ๐‘๐‘›) = ๐‘‡โ‹†๐‘ ๐‘๐‘›

one can think of a one-form as a function which takes its value at ๐‘ in the space (2.3.1). Thisleads to an obvious generalization.

Definition 2.3.2. Let ๐‘ˆ be an open subset of ๐‘๐‘›. A ๐‘˜-form ๐œ” on ๐‘ˆ is a function whichassigns to each point ๐‘ โˆˆ ๐‘ˆ an element ๐œ”๐‘ โˆˆ ๐›ฌ๐‘˜(๐‘‡โ‹†๐‘ ๐‘๐‘›).

The wedge product operation gives us a way to construct lots of examples of such ob-jects.

Example 2.3.3. Let ๐œ”1,โ€ฆ, ๐œ”๐‘˜ be one-forms. Then ๐œ”1 โˆงโ‹ฏ โˆง ๐œ”๐‘˜ is the ๐‘˜-form whose valueat ๐‘ is the wedge product(2.3.4) (๐œ”1 โˆงโ‹ฏ โˆง ๐œ”๐‘˜)๐‘ โ‰” (๐œ”1)๐‘ โˆงโ‹ฏ โˆง (๐œ”๐‘˜)๐‘ .

Notice that since (๐œ”๐‘–)๐‘ is in ๐›ฌ1(๐‘‡โ‹†๐‘ ๐‘๐‘›) the wedge product (2.3.4) makes sense and is anelement of ๐›ฌ๐‘˜(๐‘‡โ‹†๐‘ ๐‘๐‘›).

Example 2.3.5. Let ๐‘“1,โ€ฆ, ๐‘“๐‘˜ be a real-valued ๐ถโˆž functions on ๐‘ˆ. Letting ๐œ”๐‘– = ๐‘‘๐‘“๐‘– we getfrom (2.3.4) a ๐‘˜-form

๐‘‘๐‘“1 โˆงโ‹ฏ โˆง ๐‘‘๐‘“๐‘˜whose value at ๐‘ is the wedge product(2.3.6) (๐‘‘๐‘“1)๐‘ โˆงโ‹ฏ โˆง (๐‘‘๐‘“๐‘˜)๐‘ .

Since (๐‘‘๐‘ฅ1)๐‘,โ€ฆ, (๐‘‘๐‘ฅ๐‘›)๐‘ are a basis of ๐‘‡โ‹†๐‘ ๐‘๐‘›, the wedge products

(2.3.7) (๐‘‘๐‘ฅ๐‘–1)๐‘ โˆงโ‹ฏ โˆง (๐‘‘๐‘ฅ1๐‘˜)๐‘ , 1 โ‰ค ๐‘–1 < โ‹ฏ < ๐‘–๐‘˜ โ‰ค ๐‘›

are a basis of๐›ฌ๐‘˜(๐‘‡โ‹†๐‘ ). To keep our multi-index notation from getting out of hand, we denotethese basis vectors by (๐‘‘๐‘ฅ๐ผ)๐‘, where ๐ผ = (๐‘–1,โ€ฆ, ๐‘–๐‘˜) and the multi-indices ๐ผ range over multi-indices of length ๐‘˜ which are strictly increasing. Since these wedge products are a basis of๐›ฌ๐‘˜(๐‘‡โ‹†๐‘ ๐‘๐‘›), every element of ๐›ฌ๐‘˜(๐‘‡โ‹†๐‘ ๐‘๐‘›) can be written uniquely as a sum

โˆ‘๐ผ๐‘๐ผ(๐‘‘๐‘ฅ๐ผ)๐‘ , ๐‘๐ผ โˆˆ ๐‘

Page 57: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง2.3 Differential ๐‘˜-forms 45

and every ๐‘˜-form ๐œ” on ๐‘ˆ can be written uniquely as a sum

(2.3.8) ๐œ” = โˆ‘๐ผ๐‘“๐ผ๐‘‘๐‘ฅ๐ผ

where ๐‘‘๐‘ฅ๐ผ is the ๐‘˜-form ๐‘‘๐‘ฅ๐‘–1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘–๐‘˜ , and ๐‘“๐ผ is a real-valued function ๐‘“๐ผ โˆถ ๐‘ˆ โ†’ ๐‘.Definition 2.3.9. The ๐‘˜-form (2.3.8) is of class ๐ถ๐‘Ÿ if each function ๐‘“๐ผ is in ๐ถ๐‘Ÿ(๐‘ˆ).

Henceforth we assume, unless otherwise stated, that all the ๐‘˜-forms we consider are ofclass ๐ถโˆž. We denote the set of ๐‘˜-forms of class ๐ถโˆž on ๐‘ˆ by ๐›บ๐‘˜(๐‘ˆ).

We will conclude this section by discussing a few simple operations on ๐‘˜-forms. Let ๐‘ˆbe an open subset of ๐‘๐‘›.(1) Given a function ๐‘“ โˆˆ ๐ถโˆž(๐‘ˆ) and a ๐‘˜-form ๐œ” โˆˆ ๐›บ๐‘˜(๐‘ˆ) we define ๐‘“๐œ” โˆˆ ๐›บ๐‘˜(๐‘ˆ) to be the๐‘˜-form defined by

๐‘ โ†ฆ ๐‘“(๐‘)๐œ”๐‘ .(2) Given ๐œ”1, ๐œ”2 โˆˆ ๐›บ๐‘˜(๐‘ˆ), we define ๐œ”1 + ๐œ”2 โˆˆ ๐›บ๐‘˜(๐‘ˆ) to be the ๐‘˜-form

๐‘ โ†ฆ (๐œ”1)๐‘ + (๐œ”2)๐‘ .

(Notice that this sum makes sense since each summand is in ๐›ฌ๐‘˜(๐‘‡โ‹†๐‘ ๐‘๐‘›).)(3) Given๐œ”1 โˆˆ ๐›บ๐‘˜1(๐‘ˆ) and๐œ”2 โˆˆ ๐›บ๐‘˜2(๐‘ˆ)wedefine theirwedge product,๐œ”1โˆง๐œ”2 โˆˆ ๐›บ๐‘˜1+๐‘˜2(๐‘ˆ)

to be the (๐‘˜1 + ๐‘˜2)-form๐‘ โ†ฆ (๐œ”1)๐‘ โˆง (๐œ”2)๐‘ .

We recall that ๐›ฌ0(๐‘‡โ‹†๐‘ ๐‘๐‘›) = ๐‘, so a zero-form is an ๐‘-valued function and a zero formof class ๐ถโˆž is a ๐ถโˆž function, i.e., ๐›บ0(๐‘ˆ) = ๐ถโˆž(๐‘ˆ).The addition and multiplication by functions operations naturally give the sets ๐›บ๐‘˜(๐‘ˆ)

the structures of๐‘-vector spacesโ€”we always regard๐›บ๐‘˜(๐‘ˆ) as a vector space in thismanner.A fundamental operation on forms is the exterior differention operation which asso-

ciates to a function ๐‘“ โˆˆ ๐ถโˆž(๐‘ˆ) the 1-form ๐‘‘๐‘“. It is clear from the identity (2.2.3) that ๐‘‘๐‘“is a 1-form of class ๐ถโˆž, so the ๐‘‘-operation can be viewed as a map

๐‘‘โˆถ ๐›บ0(๐‘ˆ) โ†’ ๐›บ1(๐‘ˆ) .In the next section we show that an analogue of this map exists for every ๐›บ๐‘˜(๐‘ˆ).

Exercises for ยง2.3Exercise 2.3.i. Let ๐œ” โˆˆ ๐›บ2(๐‘4) be the 2-form ๐‘‘๐‘ฅ1 โˆง ๐‘‘๐‘ฅ2 + ๐‘‘๐‘ฅ3 โˆง ๐‘‘๐‘ฅ4. Compute ๐œ” โˆง ๐œ”.Exercise 2.3.ii. Let ๐œ”1, ๐œ”2, ๐œ”3 โˆˆ ๐›บ1(๐‘3) be the 1-forms

๐œ”1 = ๐‘ฅ2๐‘‘๐‘ฅ3 โˆ’ ๐‘ฅ3๐‘‘๐‘ฅ2 ,๐œ”2 = ๐‘ฅ3๐‘‘๐‘ฅ1 โˆ’ ๐‘ฅ1๐‘‘๐‘ฅ3 ,๐œ”3 = ๐‘ฅ1๐‘‘๐‘ฅ2 โˆ’ ๐‘ฅ2๐‘‘๐‘ฅ1 .

Compute the following.(1) ๐œ”1 โˆง ๐œ”2.(2) ๐œ”2 โˆง ๐œ”3.(3) ๐œ”3 โˆง ๐œ”1.(4) ๐œ”1 โˆง ๐œ”2 โˆง ๐œ”3.Exercise 2.3.iii. Let ๐‘ˆ be an open subset of ๐‘๐‘› and ๐‘“1,โ€ฆ, ๐‘“๐‘› โˆˆ ๐ถโˆž(๐‘ˆ). Show that

๐‘‘๐‘“1 โˆงโ‹ฏ โˆง ๐‘‘๐‘“๐‘› = det[๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘—]๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› .

Page 58: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

46 Chapter 2: Differential Forms

Exercise 2.3.iv. Let ๐‘ˆ be an open subset of ๐‘๐‘›. Show that every (๐‘› โˆ’ 1)-form ๐œ” โˆˆ ๐›บ๐‘›โˆ’1(๐‘ˆ)can be written uniquely as a sum

๐‘›โˆ‘๐‘–=1๐‘“๐‘–๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘– โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› ,

where ๐‘“๐‘– โˆˆ ๐ถโˆž(๐‘ˆ) and ๐‘‘๐‘ฅ๐‘– indicates that ๐‘‘๐‘ฅ๐‘– is to be omitted from the wedge product๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›.

Exercise 2.3.v. Let ๐œ‡ = โˆ‘๐‘›๐‘–=1 ๐‘ฅ๐‘–๐‘‘๐‘ฅ๐‘–. Show that there exists an (๐‘›โˆ’1)-form,๐œ” โˆˆ ๐›บ๐‘›โˆ’1(๐‘๐‘›โˆ–{0})with the property

๐œ‡ โˆง ๐œ” = ๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› .

Exercise 2.3.vi. Let ๐ฝ be the multi-index (๐‘—1,โ€ฆ, ๐‘—๐‘˜) and let ๐‘‘๐‘ฅ๐ฝ = ๐‘‘๐‘ฅ๐‘—1 โˆง โ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘—๐‘˜ . Showthat ๐‘‘๐‘ฅ๐ฝ = 0 if ๐‘—๐‘Ÿ = ๐‘—๐‘  for some ๐‘Ÿ โ‰  ๐‘  and show that if the numbers ๐‘—1,โ€ฆ, ๐‘—๐‘˜ are all distinct,then

๐‘‘๐‘ฅ๐ฝ = (โˆ’1)๐œŽ๐‘‘๐‘ฅ๐ผ ,where ๐ผ = (๐‘–1,โ€ฆ, ๐‘–๐‘˜) is the strictly increasing rearrangement of (๐‘—1,โ€ฆ, ๐‘—๐‘˜) and ๐œŽ is the per-mutation

(๐‘—1,โ€ฆ, ๐‘—๐‘˜) โ†ฆ (๐‘–1,โ€ฆ, ๐‘–๐‘˜) .

Exercise 2.3.vii. Let ๐ผ be a strictly increasingmulti-index of length ๐‘˜ and ๐ฝ a strictly increas-ing multi-index of length โ„“. What can one say about the wedge product ๐‘‘๐‘ฅ๐ผ โˆง ๐‘‘๐‘ฅ๐ฝ?

2.4. Exterior differentiation

Let๐‘ˆ be an open subset of ๐‘๐‘›. In this section we define an exterior differentiation oper-ation

(2.4.1) ๐‘‘โˆถ ๐›บ๐‘˜(๐‘ˆ) โ†’ ๐›บ๐‘˜+1(๐‘ˆ) .

This operation is the fundamental operation in ๐‘›-dimensional vector calculus.For ๐‘˜ = 0 we already defined the operation (2.4.1) in ยง2.1. Before defining it for ๐‘˜ > 0,

we list some properties that we require to this operation to satisfy.

Properties 2.4.2 (desired properties of exterior differentiation). Let๐‘ˆ be an open subset of๐‘๐‘›.(1) For ๐œ”1 and ๐œ”2 in ๐›บ๐‘˜(๐‘ˆ), we have

๐‘‘(๐œ”1 + ๐œ”2) = ๐‘‘๐œ”1 + ๐‘‘๐œ”2 .

(2) For ๐œ”1 โˆˆ ๐›บ๐‘˜(๐‘ˆ) and ๐œ”2 โˆˆ ๐›บโ„“(๐‘ˆ) we have

(2.4.3) ๐‘‘(๐œ”1 โˆง ๐œ”2) = ๐‘‘๐œ”1 โˆง ๐œ”2 + (โˆ’1)๐‘˜๐œ”1 โˆง ๐‘‘๐œ”2 .

(3) For all ๐œ” โˆˆ ๐›บ๐‘˜(๐‘ˆ) we have

(2.4.4) ๐‘‘(๐‘‘๐œ”) = 0

Let is point out a few consequences of these properties.

Lemma 2.4.5. Let ๐‘ˆ be an open subset of ๐‘๐‘›. For any functions ๐‘“1,โ€ฆ, ๐‘“๐‘˜ โˆˆ ๐ถโˆž(๐‘ˆ) we have

๐‘‘(๐‘‘๐‘“1 โˆงโ‹ฏ โˆง ๐‘‘๐‘“๐‘˜) = 0 .

Page 59: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง2.4 Exterior differentiation 47

Proof. We prove this by induction on ๐‘˜. For the base case note that by (3)(2.4.6) ๐‘‘(๐‘‘๐‘“1) = 0for every function ๐‘“1 โˆˆ ๐ถโˆž(๐‘ˆ).

For the induction step, suppose that we know the result for ๐‘˜ โˆ’ 1 functions and thatwe are given functions ๐‘“1,โ€ฆ, ๐‘“๐‘˜ โˆˆ ๐ถโˆž(๐‘ˆ). Let ๐œ‡ = ๐‘‘๐‘“2 โˆง โ‹ฏ โˆง ๐‘‘๐‘“๐‘˜. Then by the inductionhypothesis ๐‘‘๐œ‡ = 0 Combining (2.4.3) with (2.4.6) we see that

๐‘‘(๐‘‘๐‘“1 โˆง ๐‘‘๐‘“2 โˆงโ‹ฏ โˆง ๐‘‘๐‘“๐‘˜) = ๐‘‘(๐‘‘๐‘“1 โˆง ๐œ‡)= ๐‘‘(๐‘‘๐‘“1) โˆง ๐œ‡ + (โˆ’1) ๐‘‘๐‘“1 โˆง ๐‘‘๐œ‡= 0 . โ–ก

Example 2.4.7. As a special case of Lemma 2.4.5, given a multi-index ๐ผ = (๐‘–1,โ€ฆ, ๐‘–๐‘˜) with1 โ‰ค ๐‘–๐‘Ÿ โ‰ค ๐‘› we have(2.4.8) ๐‘‘(๐‘‘๐‘ฅ๐ผ) = ๐‘‘(๐‘‘๐‘ฅ๐‘–1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘–๐‘˜) = 0 .

Recall that every ๐‘˜-form ๐œ” โˆˆ ๐›บ๐‘˜(๐‘ˆ) can be written uniquely as a sum

๐œ” = โˆ‘๐ผ๐‘“๐ผ๐‘‘๐‘ฅ๐ผ , ๐‘“๐ผ โˆˆ ๐ถโˆž(๐‘ˆ)

where the multi-indices ๐ผ are strictly increasing. Thus by (2.4.3) and (2.4.8)

(2.4.9) ๐‘‘๐œ” = โˆ‘๐ผ๐‘‘๐‘“๐ผ โˆง ๐‘‘๐‘ฅ๐ผ .

This shows that if there exists an operator ๐‘‘โˆถ ๐›บโˆ—(๐‘ˆ) โ†’ ๐›บโˆ—+1(๐‘ˆ)with Properties 2.4.2, then๐‘‘ is necessarily given by the formula (2.4.9). Hence all we have to show is that the operatordefined by this equation (2.4.9) has these properties.

Proposition 2.4.10. Let ๐‘ˆ be an open subset of ๐‘๐‘›. There is a unique operator ๐‘‘โˆถ ๐›บโˆ—(๐‘ˆ) โ†’๐›บโˆ—+1(๐‘ˆ) satisfying Properties 2.4.2.Proof. The property (1) is obvious.

To verify (2) we first note that for ๐ผ strictly increasing equation (2.4.8) is a special caseof equation (2.4.9) (take ๐‘“๐ผ = 1 and ๐‘“๐ฝ = 0 for ๐ฝ โ‰  ๐ผ). Moreover, if ๐ผ is not strictly increasingit is either repeating, in which case ๐‘‘๐‘ฅ๐ผ = 0, or non-repeating in which case there exists apermuation ๐œŽ โˆˆ ๐‘†๐‘˜ such that ๐ผ๐œŽ is strictly increasing. Moreover,(2.4.11) ๐‘‘๐‘ฅ๐ผ = (โˆ’1)๐œŽ๐‘‘๐‘ฅ๐ผ๐œŽ .Hence (2.4.9) implies (2.4.8) for all multi-indices ๐ผ. The same argument shows that for anysum โˆ‘๐ผ ๐‘“๐ผ๐‘‘๐‘ฅ๐ผ over multi-indices ๐ผ of length ๐‘˜, we have

(2.4.12) ๐‘‘(โˆ‘๐ผ ๐‘“๐ผ๐‘‘๐‘ฅ๐ผ) = โˆ‘๐ผ๐‘‘๐‘“๐ผ โˆง ๐‘‘๐‘ฅ๐ผ .

(As above we can ignore the repeatingmulti-indices ๐‘‘๐‘ฅ๐ผ = 0 if ๐ผ is repeating, and by (2.4.11)we can replace the non-repeating multi-indices by strictly increasing multi-indices.)

Suppose now that ๐œ”1 โˆˆ ๐›บ๐‘˜(๐‘ˆ) and ๐œ”2 โˆˆ ๐›บโ„“(๐‘ˆ). Write ๐œ”1 โ‰” โˆ‘๐ผ ๐‘“๐ผ๐‘‘๐‘ฅ๐ผ and ๐œ”2 โ‰”โˆ‘๐ฝ ๐‘”๐ฝ๐‘‘๐‘ฅ๐ฝ, where ๐‘“๐ผ, ๐‘”๐ฝ โˆˆ ๐ถโˆž(๐‘ˆ). We see that the wedge product ๐œ”1 โˆง ๐œ”2 is given by

(2.4.13) ๐œ”1 โˆง ๐œ”2 = โˆ‘๐ผ,๐ฝ๐‘“๐ผ๐‘”๐ฝ๐‘‘๐‘ฅ๐ผ โˆง ๐‘‘๐‘ฅ๐ฝ ,

and by equation (2.4.12)

(2.4.14) ๐‘‘(๐œ”1 โˆง ๐œ”2) = โˆ‘๐ผ,๐ฝ๐‘‘(๐‘“๐ผ๐‘”๐ฝ) โˆง ๐‘‘๐‘ฅ๐ผ โˆง ๐‘‘๐‘ฅ๐ฝ .

Page 60: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

48 Chapter 2: Differential Forms

(Notice that if ๐ผ = (๐‘–1,โ€ฆ, ๐‘–๐‘˜) and ๐ฝ = (๐‘—๐‘–,โ€ฆ, ๐‘–โ„“), we have ๐‘‘๐‘ฅ๐ผ โˆง ๐‘‘๐‘ฅ๐ฝ = ๐‘‘๐‘ฅ๐พ, where ๐พ โ‰”(๐‘–1,โ€ฆ, ๐‘–๐‘˜, ๐‘—1,โ€ฆ, ๐‘—โ„“). Even if ๐ผ and ๐ฝ are strictly increasing, ๐พ is not necessarily strictly in-creasing. However, in deducing (2.4.14) from (2.4.13) we have observed that this does notmatter.)

Now note that by equation (2.2.8)

๐‘‘(๐‘“๐ผ๐‘”๐ฝ) = ๐‘”๐ฝ๐‘‘๐‘“๐ผ + ๐‘“๐ผ๐‘‘๐‘”๐ฝ ,

and by the wedge product identities of ยง1.6,

๐‘‘๐‘”๐ฝ โˆง ๐‘‘๐‘ฅ๐ผ = ๐‘‘๐‘”๐ฝ โˆง ๐‘‘๐‘ฅ๐‘–1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘–๐‘˜ = (โˆ’1)๐‘˜๐‘‘๐‘ฅ๐ผ โˆง ๐‘‘๐‘”๐ฝ ,

so the sum (2.4.14) can be rewritten:

โˆ‘๐ผ,๐ฝ๐‘‘๐‘“๐ผ โˆง ๐‘‘๐‘ฅ๐ผ โˆง ๐‘”๐ฝ๐‘‘๐‘ฅ๐ฝ + (โˆ’1)๐‘˜โˆ‘

๐ผ,๐ฝ๐‘“๐ผ๐‘‘๐‘ฅ๐ผ โˆง ๐‘‘๐‘”๐ฝ โˆง ๐‘‘๐‘ฅ๐ฝ ,

or

(โˆ‘๐ผ๐‘‘๐‘“๐ผ โˆง ๐‘‘๐‘ฅ๐ผ) โˆง (โˆ‘

๐ฝ๐‘”๐ฝ๐‘‘๐‘ฅ๐ฝ) + (โˆ’1)๐‘˜(โˆ‘

๐ฝ๐‘‘๐‘”๐ฝ โˆง ๐‘‘๐‘ฅ๐ฝ) โˆง (โˆ‘

๐ผ๐‘‘๐‘“๐ผ โˆง ๐‘‘๐‘ฅ๐ผ) ,

or, finally,๐‘‘๐œ”1 โˆง ๐œ”2 + (โˆ’1)๐‘˜๐œ”1 โˆง ๐‘‘๐œ”2 .

Thus the the operator ๐‘‘ defined by equation (2.4.9) has (2).Let is now check that ๐‘‘ satisfies (3). If ๐œ” = โˆ‘๐ผ ๐‘“๐ผ๐‘‘๐‘ฅ๐ผ, where ๐‘“๐ผ โˆˆ ๐ถโˆž(๐‘ˆ), then by

definition, ๐‘‘๐œ” = โˆ‘๐ผ ๐‘‘๐‘“๐ผ โˆง ๐‘‘๐‘ฅ๐ผ and by (2.4.8) and (2.4.3)

๐‘‘(๐‘‘๐œ”) = โˆ‘๐ผ๐‘‘(๐‘‘๐‘“๐ผ) โˆง ๐‘‘๐‘ฅ๐ผ ,

so it suffices to check that ๐‘‘(๐‘‘๐‘“๐ผ) = 0, i.e., it suffices to check (2.4.6) for zero forms ๐‘“ โˆˆ๐ถโˆž(๐‘ˆ). However, by (2.2.3) we have

๐‘‘๐‘“ =๐‘›โˆ‘๐‘—=1

๐œ•๐‘“๐œ•๐‘ฅ๐‘—๐‘‘๐‘ฅ๐‘—

so by equation (2.4.9)

๐‘‘(๐‘‘๐‘“) =๐‘›โˆ‘๐‘—=1๐‘‘( ๐œ•๐‘“๐œ•๐‘ฅ๐‘—)๐‘‘๐‘ฅ๐‘— =

๐‘›โˆ‘๐‘—=1(๐‘›โˆ‘๐‘–=1

๐œ•2๐‘“๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘—๐‘‘๐‘ฅ๐‘–) โˆง ๐‘‘๐‘ฅ๐‘—

= โˆ‘1โ‰ค๐‘–,๐‘—โ‰ค๐‘›

๐œ•2๐‘“๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘—๐‘‘๐‘ฅ๐‘– โˆง ๐‘‘๐‘ฅ๐‘— .

Notice, however, that in this sum, ๐‘‘๐‘ฅ๐‘– โˆง ๐‘‘๐‘ฅ๐‘— = โˆ’๐‘‘๐‘ฅ๐‘— โˆง ๐‘‘๐‘ฅ๐‘– and

๐œ•2๐‘“๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘—= ๐œ•2๐‘“๐œ•๐‘ฅ๐‘—๐œ•๐‘ฅ๐‘–

so the (๐‘–, ๐‘—) term cancels the (๐‘—, ๐‘–) term, and the total sum is zero. โ–ก

Definition 2.4.15. Let ๐‘ˆ be an open subset of ๐‘๐‘›. A ๐‘˜-form ๐œ” โˆˆ ๐›บ๐‘˜(๐‘ˆ) is closed if ๐‘‘๐œ” = 0and is exact if ๐œ” = ๐‘‘๐œ‡ for some ๐œ‡ โˆˆ ๐›บ๐‘˜โˆ’1(๐‘ˆ).

Page 61: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง2.4 Exterior differentiation 49

By (3) every exact form is closed, but the converse is not true even for 1-forms (seeExercise 2.1.iii). In fact it is a very interesting (and hard) question to determine if an openset ๐‘ˆ has the following property: For ๐‘˜ > 0 every closed ๐‘˜-form is exact.2

Some examples of spaces with this property are described in the exercises at the end ofยง2.6. We also sketch below a proof of the following result (and ask you to fill in the details).

Lemma 2.4.16 (Poincarรฉ lemma). If ๐œ” is a closed form on ๐‘ˆ of degree ๐‘˜ > 0, then for everypoint ๐‘ โˆˆ ๐‘ˆ, there exists a neighborhood of ๐‘ on which ๐œ” is exact.

Proof. See Exercises 2.4.v and 2.4.vi. โ–กExercises for ยง2.4

Exercise 2.4.i. Compute the exterior derivatives of the following differential forms.(1) ๐‘ฅ1๐‘‘๐‘ฅ2 โˆง ๐‘‘๐‘ฅ3(2) ๐‘ฅ1๐‘‘๐‘ฅ2 โˆ’ ๐‘ฅ2๐‘‘๐‘ฅ1(3) ๐‘’โˆ’๐‘“๐‘‘๐‘“ where ๐‘“ = โˆ‘๐‘›๐‘–=1 ๐‘ฅ2๐‘–(4) โˆ‘๐‘›๐‘–=1 ๐‘ฅ๐‘–๐‘‘๐‘ฅ๐‘–(5) โˆ‘๐‘›๐‘–=1(โˆ’1)๐‘–๐‘ฅ๐‘–๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘– โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›Exercise 2.4.ii. Solve the equation ๐‘‘๐œ‡ = ๐œ” for ๐œ‡ โˆˆ ๐›บ1(๐‘3), where ๐œ” is the 2-form:(1) ๐‘‘๐‘ฅ2 โˆง ๐‘‘๐‘ฅ3(2) ๐‘ฅ2๐‘‘๐‘ฅ2 โˆง ๐‘‘๐‘ฅ3(3) (๐‘ฅ21 + ๐‘ฅ22)๐‘‘๐‘ฅ1 โˆง ๐‘‘๐‘ฅ2(4) cos(๐‘ฅ1)๐‘‘๐‘ฅ1 โˆง ๐‘‘๐‘ฅ3Exercise 2.4.iii. Let ๐‘ˆ be an open subset of ๐‘๐‘›.(1) Show that if ๐œ‡ โˆˆ ๐›บ๐‘˜(๐‘ˆ) is exact and ๐œ” โˆˆ ๐›บโ„“(๐‘ˆ) is closed then ๐œ‡ โˆง ๐œ” is exact.

Hint: Equation (2.4.3).(2) In particular, ๐‘‘๐‘ฅ1 is exact, so if ๐œ” โˆˆ ๐›บโ„“(๐‘ˆ) is closed ๐‘‘๐‘ฅ1 โˆง ๐œ” = ๐‘‘๐œ‡. What is ๐œ‡?Exercise 2.4.iv. Let ๐‘„ be the rectangle (๐‘Ž1, ๐‘1) ร— โ‹ฏ ร— (๐‘Ž๐‘›, ๐‘๐‘›). Show that if ๐œ” is in ๐›บ๐‘›(๐‘„),then ๐œ” is exact.

Hint: Let ๐œ” = ๐‘“๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› with ๐‘“ โˆˆ ๐ถโˆž(๐‘„) and let ๐‘” be the function

๐‘”(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) = โˆซ๐‘ฅ1

๐‘Ž1๐‘“(๐‘ก, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›)๐‘‘๐‘ก .

Show that ๐œ” = ๐‘‘(๐‘”๐‘‘๐‘ฅ2 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›).Exercise 2.4.v. Let ๐‘ˆ be an open subset of ๐‘๐‘›โˆ’1, ๐ด โŠ‚ ๐‘ an open interval and (๐‘ฅ, ๐‘ก) productcoordinates on ๐‘ˆ ร— ๐ด. We say that a form ๐œ‡ โˆˆ ๐›บโ„“(๐‘ˆ ร— ๐ด) is reduced if ๐œ‡ can be written as asum(2.4.17) ๐œ‡ = โˆ‘

๐ผ๐‘“๐ผ(๐‘ฅ, ๐‘ก)๐‘‘๐‘ฅ๐ผ ,

(i.e., with no terms involving ๐‘‘๐‘ก).(1) Show that every form, ๐œ” โˆˆ ๐›บ๐‘˜(๐‘ˆ ร— ๐ด) can be written uniquely as a sum:(2.4.18) ๐œ” = ๐‘‘๐‘ก โˆง ๐›ผ + ๐›ฝ

where ๐›ผ and ๐›ฝ are reduced.

2For ๐‘˜ = 0, ๐‘‘๐‘“ = 0 does not imply that ๐‘“ is exact. In fact โ€œexactnessโ€ does not make much sense for zeroforms since there are not any โ€œ(โˆ’1)-formsโ€. However, if ๐‘“ โˆˆ ๐ถโˆž(๐‘ˆ) and ๐‘‘๐‘“ = 0 then ๐‘“ is constant on connectedcomponents of ๐‘ˆ (see Exercise 2.2.iii).

Page 62: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

50 Chapter 2: Differential Forms

(2) Let ๐œ‡ be the reduced form (2.4.17) and let๐‘‘๐œ‡๐‘‘๐‘ก= โˆ‘ ๐‘‘๐‘‘๐‘ก๐‘“๐ผ(๐‘ฅ, ๐‘ก)๐‘‘๐‘ฅ๐ผ

and

๐‘‘๐‘ˆ๐œ‡ = โˆ‘๐ผ(๐‘›โˆ‘๐‘–=1

๐œ•๐œ•๐‘ฅ๐‘–๐‘“๐ผ(๐‘ฅ, ๐‘ก)๐‘‘๐‘ฅ๐‘–) โˆง ๐‘‘๐‘ฅ๐ผ .

Show that๐‘‘๐œ‡ = ๐‘‘๐‘ก โˆง ๐‘‘๐œ‡

๐‘‘๐‘ก+ ๐‘‘๐‘ˆ๐œ‡ .

(3) Let ๐œ” be the form (2.4.18). Show that

๐‘‘๐œ” = โˆ’๐‘‘๐‘ก โˆง ๐‘‘๐‘ˆ๐›ผ + ๐‘‘๐‘ก โˆง๐‘‘๐›ฝ๐‘‘๐‘ก+ ๐‘‘๐‘ˆ๐›ฝ

and conclude that ๐œ” is closed if and only if

(2.4.19) {๐‘‘๐›ฝ๐‘‘๐‘ก = ๐‘‘๐‘ˆ๐›ผ๐‘‘๐‘ˆ๐›ฝ = 0 .

(4) Let ๐›ผ be a reduced (๐‘˜ โˆ’ 1)-form. Show that there exists a reduced (๐‘˜ โˆ’ 1)-form ๐œˆ suchthat

(2.4.20) ๐‘‘๐œˆ๐‘‘๐‘ก= ๐›ผ .

Hint: Let ๐›ผ = โˆ‘๐ผ ๐‘“๐ผ(๐‘ฅ, ๐‘ก)๐‘‘๐‘ฅ๐ผ and ๐œˆ = โˆ‘๐‘”๐ผ(๐‘ฅ, ๐‘ก)๐‘‘๐‘ฅ๐ผ. The equation (2.4.20) reducesto the system of equations

(2.4.21) ๐‘‘๐‘‘๐‘ก๐‘”๐ผ(๐‘ฅ, ๐‘ก) = ๐‘“๐ผ(๐‘ฅ, ๐‘ก) .

Let ๐‘ be a point on the interval, ๐ด, and using calculus show that equation (2.4.21) has aunique solution, ๐‘”๐ผ(๐‘ฅ, ๐‘ก), with ๐‘”๐ผ(๐‘ฅ, ๐‘) = 0.

(5) Show that if ๐œ” is the form (2.4.18) and ๐œˆ a solution of (2.4.20) then the form

(2.4.22) ๐œ” โˆ’ ๐‘‘๐œˆis reduced.

(6) Let๐›พ = โˆ‘โ„Ž๐ผ(๐‘ฅ, ๐‘ก)๐‘‘๐‘ฅ๐ผ

be a reduced ๐‘˜-form. Deduce from (2.4.19) that if ๐›พ is closed then ๐‘‘๐›พ๐‘‘๐‘ก = 0 and ๐‘‘๐‘ˆ๐›พ = 0.Conclude that โ„Ž๐ผ(๐‘ฅ, ๐‘ก) = โ„Ž๐ผ(๐‘ฅ) and that

๐›พ = โˆ‘๐ผโ„Ž๐ผ(๐‘ฅ)๐‘‘๐‘ฅ๐ผ

is effectively a closed ๐‘˜-form on๐‘ˆ. Prove that if every closed ๐‘˜-form on๐‘ˆ is exact, thenevery closed ๐‘˜-form on ๐‘ˆ ร— ๐ด is exact.

Hint: Let ๐œ” be a closed ๐‘˜-form on ๐‘ˆ ร— ๐ด and let ๐›พ be the form (2.4.22).

Exercise 2.4.vi. Let ๐‘„ โŠ‚ ๐‘๐‘› be an open rectangle. Show that every closed form on ๐‘„ ofdegree ๐‘˜ > 0 is exact.

Hint: Let ๐‘„ = (๐‘Ž1, ๐‘1) ร— โ‹ฏ ร— (๐‘Ž๐‘›, ๐‘๐‘›). Prove this assertion by induction, at the ๐‘›th stageof the induction letting ๐‘ˆ = (๐‘Ž1, ๐‘1) ร— โ‹ฏ ร— (๐‘Ž๐‘›โˆ’1, ๐‘๐‘›โˆ’1) and ๐ด = (๐‘Ž๐‘›, ๐‘๐‘›).

Page 63: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง2.5 The interior product operation 51

2.5. The interior product operation

In ยง2.1 we explained how to pair a one-form ๐œ” and a vector field ๐’— to get a function ๐œ„๐’—๐œ”.This pairing operation generalizes.

Definition 2.5.1. Let ๐‘ˆ be an open subset of ๐‘๐‘›, ๐’— a vector field on ๐‘ˆ, and ๐œ” โˆˆ ๐›บ๐‘˜(๐‘ˆ)Theinterior product of ๐’— with ๐œ” is (๐‘˜ โˆ’ 1)-form ๐œ„๐’—๐œ” on ๐‘ˆ defined by declaring the value of ๐œ„๐’—๐œ”value at ๐‘ โˆˆ ๐‘ˆ to be the interior product(2.5.2) ๐œ„๐’—(๐‘)๐œ”๐‘ .

Note that ๐’—(๐‘) is in๐‘‡๐‘๐‘๐‘› and๐œ”๐‘ in๐›ฌ๐‘˜(๐‘‡โ‹†๐‘ ๐‘๐‘›), so by definition of interior product (see ยง1.7),the expression (2.5.2) is an element of ๐›ฌ๐‘˜โˆ’1(๐‘‡โ‹†๐‘ ๐‘๐‘›).

From the properties of interior product on vector spaces which we discussed in ยง1.7,one gets analogous properties for this interior product on forms. We list these properties,leaving their verification as an easy exercise.

Properties 2.5.3. Let๐‘ˆ be an open subset of๐‘๐‘›, ๐’— and๐’˜ vector fields on๐‘ˆ, ๐œ”1 and ๐œ”2 both๐‘˜-forms on ๐‘ˆ, and ๐œ” a ๐‘˜-form and ๐œ‡ an โ„“-form on ๐‘ˆ.(1) Linearity in the form: we have

๐œ„๐’—(๐œ”1 + ๐œ”2) = ๐œ„๐’—๐œ”1 + ๐œ„๐’—๐œ”2 .(2) Linearity in the vector field: we have

๐œ„๐’—+๐’˜๐œ” = ๐œ„๐’—๐œ” + ๐œ„๐’˜๐œ” .(3) Derivation property: we have

๐œ„๐’—(๐œ” โˆง ๐œ‡) = ๐œ„๐’—๐œ” โˆง ๐œ‡ + (โˆ’1)๐‘˜๐œ” โˆง ๐œ„๐’—๐œ‡(4) The interior product satisfies the identity

๐œ„๐’—(๐œ„๐’˜๐œ”) = โˆ’๐œ„๐’˜(๐œ„๐’—๐œ”) .(5) As a special case of (4), the interior product satisfies the identity

๐œ„๐’—(๐œ„๐’—๐œ”) = 0 .(6) Moreover, if ๐œ” is decomposable, i.e., is a wedge product of one-forms

๐œ” = ๐œ‡1 โˆงโ‹ฏ โˆง ๐œ‡๐‘˜ ,then

๐œ„๐’—๐œ” =๐‘˜โˆ‘๐‘Ÿ=1(โˆ’1)๐‘Ÿโˆ’1๐œ„๐’—(๐œ‡๐‘Ÿ)๐œ‡1 โˆงโ‹ฏ โˆง ๏ฟฝ๏ฟฝ๐‘Ÿ โˆงโ‹ฏ โˆง ๐œ‡๐‘˜ .

We also leave for you to prove the following two assertions, both of which are specialcases of (6).

Example 2.5.4. If ๐’— = ๐œ•/๐œ•๐‘ฅ๐‘Ÿ and ๐œ” = ๐‘‘๐‘ฅ๐ผ = ๐‘‘๐‘ฅ๐‘–1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘–๐‘˜ then

(2.5.5) ๐œ„๐’—๐œ” =๐‘˜โˆ‘๐‘–=1(โˆ’1)๐‘–โˆ’1๐›ฟ๐‘–,๐‘–๐‘Ÿ๐‘‘๐‘ฅ๐ผ๐‘Ÿ

where

๐›ฟ๐‘–,๐‘–๐‘Ÿ โ‰” {1, ๐‘– = ๐‘–๐‘Ÿ0, ๐‘– โ‰  ๐‘–๐‘Ÿ .

and ๐ผ๐‘Ÿ = (๐‘–1,โ€ฆ, ๐šค๐‘Ÿ,โ€ฆ, ๐‘–๐‘˜).

Page 64: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

52 Chapter 2: Differential Forms

Example 2.5.6. If ๐’— = โˆ‘๐‘›๐‘–=1 ๐‘“๐‘– ๐œ•/๐œ•๐‘ฅ๐‘– and ๐œ” = ๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› then

(2.5.7) ๐œ„๐’—๐œ” =๐‘›โˆ‘๐‘Ÿ=1(โˆ’1)๐‘Ÿโˆ’1๐‘“๐‘Ÿ ๐‘‘๐‘ฅ1 โˆงโ‹ฏ๐‘‘๐‘ฅ๐‘Ÿโ‹ฏโˆง ๐‘‘๐‘ฅ๐‘› .

By combining exterior differentiation with the interior product operation one gets an-other basic operation of vector fields on forms: the Lie differentiation operation. For zero-forms, i.e., for๐ถโˆž functions, we defined this operation by the formula (2.1.16). For ๐‘˜-formswe define it by a slightly more complicated formula.Definition 2.5.8. Let ๐‘ˆ be an open subset of ๐‘๐‘›, ๐’— a vector field on ๐‘ˆ, and ๐œ” โˆˆ ๐›บ๐‘˜(๐‘ˆ). TheLie derivative of ๐œ” with respect to ๐’— is the ๐‘˜-form(2.5.9) ๐ฟ๐’—๐œ” โ‰” ๐œ„๐’—(๐‘‘๐œ”) + ๐‘‘(๐œ„๐’—๐œ”) .

Notice that for zero-forms the second summand is zero, so (2.5.9) and (2.1.16) agree.Properties 2.5.10. Let ๐‘ˆ be an open subset of ๐‘๐‘›, ๐’— a vector field on ๐‘ˆ, ๐œ” โˆˆ ๐›บ๐‘˜(๐‘ˆ), and๐œ‡ โˆˆ ๐›บโ„“(๐‘ˆ). The Lie derivative enjoys the following properties:(1) Commutativity with exterior differentiation: we have(2.5.11) ๐‘‘(๐ฟ๐’—๐œ”) = ๐ฟ๐’—(๐‘‘๐œ”) .(2) Interaction with wedge products: we have(2.5.12) ๐ฟ๐’—(๐œ” โˆง ๐œ‡) = ๐ฟ๐’—๐œ” โˆง ๐œ‡ + ๐œ” โˆง ๐ฟ๐’—๐œ‡

From Properties 2.5.10 it is fairly easy to get an explicit formula for ๐ฟ๐’—๐œ”. Namely let ๐œ”be the ๐‘˜-form

๐œ” = โˆ‘๐ผ๐‘“๐ผ๐‘‘๐‘ฅ๐ผ , ๐‘“๐ผ โˆˆ ๐ถโˆž(๐‘ˆ)

and ๐’— the vector field

๐’— =๐‘›โˆ‘๐‘–=1๐‘”๐‘–๐œ•๐œ•๐‘ฅ๐‘–

, ๐‘”๐‘– โˆˆ ๐ถโˆž(๐‘ˆ) .

By equation (2.5.12)๐ฟ๐’—(๐‘“๐ผ๐‘‘๐‘ฅ๐ผ) = (๐ฟ๐’—๐‘“๐ผ)๐‘‘๐‘ฅ๐ผ + ๐‘“๐ผ(๐ฟ๐’—๐‘‘๐‘ฅ๐ผ)

and

๐ฟ๐’—๐‘‘๐‘ฅ๐ผ =๐‘˜โˆ‘๐‘Ÿ=1๐‘‘๐‘ฅ๐‘–1 โˆงโ‹ฏ โˆง ๐ฟ๐’—๐‘‘๐‘ฅ๐‘–๐‘Ÿ โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘–๐‘˜ ,

and by equation (2.5.11)๐ฟ๐’—๐‘‘๐‘ฅ๐‘–๐‘Ÿ = ๐‘‘๐ฟ๐’—๐‘ฅ๐‘–๐‘Ÿ

so to compute ๐ฟ๐’—๐œ” one is reduced to computing ๐ฟ๐’—๐‘ฅ๐‘–๐‘Ÿ and ๐ฟ๐’—๐‘“๐ผ.However by equation (2.5.12)

๐ฟ๐’—๐‘ฅ๐‘–๐‘Ÿ = ๐‘”๐‘–๐‘Ÿand

๐ฟ๐’—๐‘“๐ผ =๐‘›โˆ‘๐‘–=1๐‘”๐‘–๐œ•๐‘“๐ผ๐œ•๐‘ฅ๐‘–

.

We leave the verification of Properties 2.5.10 as exercises, and also ask you to prove (by themethod of computation that we have just sketched) the following divergence formula.Lemma 2.5.13. Let๐‘ˆ โŠ‚ ๐‘๐‘› be open, let ๐‘”1,โ€ฆ, ๐‘”๐‘› โˆˆ ๐ถโˆž(๐‘ˆ), and set ๐’— โ‰” โˆ‘๐‘›๐‘–=1 ๐‘”๐‘– ๐œ•/๐œ•๐‘ฅ๐‘–. Then

(2.5.14) ๐ฟ๐’—(๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›) =๐‘›โˆ‘๐‘–=1(๐œ•๐‘”๐‘–๐œ•๐‘ฅ๐‘–)๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› .

Page 65: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง2.5 The interior product operation 53

Exercises for ยง2.5Exercise 2.5.i. Verify the Properties 2.5.3 (1)โ€“(6).

Exercise 2.5.ii. Show that if ๐œ” is the ๐‘˜-form ๐‘‘๐‘ฅ๐ผ and ๐’— the vector field ๐œ•/๐œ•๐‘ฅ๐‘Ÿ, then ๐œ„๐’—๐œ” isgiven by equation (2.5.5).

Exercise 2.5.iii. Show that if๐œ” is the ๐‘›-form๐‘‘๐‘ฅ1โˆงโ‹ฏโˆง๐‘‘๐‘ฅ๐‘› and ๐’— the vector fieldโˆ‘๐‘›๐‘–=1 ๐‘“๐‘–๐œ•/๐œ•๐‘ฅ๐‘–,then ๐œ„๐’—๐œ” is given by equation (2.5.7).

Exercise 2.5.iv. Let ๐‘ˆ be an open subset of ๐‘๐‘› and ๐’— a ๐ถโˆž vector field on ๐‘ˆ. Show that for๐œ” โˆˆ ๐›บ๐‘˜(๐‘ˆ)

๐‘‘๐ฟ๐’—๐œ” = ๐ฟ๐’—๐‘‘๐œ”and

๐œ„๐’—(๐ฟ๐’—๐œ”) = ๐ฟ๐’—(๐œ„๐’—๐œ”) .Hint: Deduce the first of these identities from the identity ๐‘‘(๐‘‘๐œ”) = 0 and the second

from the identity ๐œ„๐’—(๐œ„๐’—๐œ”) = 0.

Exercise 2.5.v. Given ๐œ”๐‘– โˆˆ ๐›บ๐‘˜๐‘–(๐‘ˆ), for ๐‘– = 1, 2 show that๐ฟ๐’—(๐œ”1 โˆง ๐œ”2) = ๐ฟ๐’—๐œ”1 โˆง ๐œ”2 + ๐œ”1 โˆง ๐ฟ๐’—๐œ”2 .

Hint: Plug ๐œ” = ๐œ”1 โˆง ๐œ”2 into equation (2.5.9) and use equation (2.4.3) and the derivationproperty of the interior product to evaluate the resulting expression.

Exercise 2.5.vi. Let ๐’—1 and ๐’—2 be vector fields on๐‘ˆ and let๐’˜ be their Lie bracket. Show thatfor ๐œ” โˆˆ ๐›บ๐‘˜(๐‘ˆ)

๐ฟ๐’˜๐œ” = ๐ฟ๐’—1(๐ฟ๐’—2๐œ”) โˆ’ ๐ฟ๐’—2(๐ฟ๐’—1๐œ”) .Hint: By definition this is true for zero-forms and by equation (2.5.11) for exact one-

forms. Now use the fact that every form is a sum of wedge products of zero-forms andone-forms and the fact that ๐ฟ๐’— satisfies the product identity (2.5.12).

Exercise 2.5.vii. Prove the divergence formula (2.5.14).

Exercise 2.5.viii.(1) Let ๐œ” = ๐›บ๐‘˜(๐‘๐‘›) be the form

๐œ” = โˆ‘๐ผ๐‘“๐ผ(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›)๐‘‘๐‘ฅ๐ผ

and ๐’— the vector field ๐œ•/๐œ•๐‘ฅ๐‘›. Show that

๐ฟ๐’—๐œ” = โˆ‘๐œ•๐œ•๐‘ฅ๐‘›๐‘“๐ผ(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›)๐‘‘๐‘ฅ๐ผ .

(2) Suppose ๐œ„๐’—๐œ” = ๐ฟ๐’—๐œ” = 0. Show that ๐œ” only depends on ๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›โˆ’1 and ๐‘‘๐‘ฅ1,โ€ฆ, ๐‘‘๐‘ฅ๐‘›โˆ’1,i.e., is effectively a ๐‘˜-form on ๐‘๐‘›โˆ’1.

(3) Suppose ๐œ„๐’—๐œ” = ๐‘‘๐œ” = 0. Show that ๐œ” is effectively a closed ๐‘˜-form on ๐‘๐‘›โˆ’1.(4) Use these results to give another proof of the Poincarรฉ lemma for๐‘๐‘›. Prove by induction

on ๐‘› that every closed form on ๐‘๐‘› is exact.Hints:

โ€ข Let ๐œ” be the form in part (1) and let

๐‘”๐ผ(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) = โˆซ๐‘ฅ๐‘›

0๐‘“๐ผ(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›โˆ’1, ๐‘ก)๐‘‘๐‘ก .

Show that if ๐œˆ = โˆ‘๐ผ ๐‘”๐ผ๐‘‘๐‘ฅ๐ผ, then ๐ฟ๐’—๐œˆ = ๐œ”.

Page 66: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

54 Chapter 2: Differential Forms

โ€ข Conclude that(2.5.15) ๐œ” โˆ’ ๐‘‘๐œ„๐’—๐œˆ = ๐œ„๐’— ๐‘‘๐œˆ .

โ€ข Suppose ๐‘‘๐œ” = 0. Conclude from equation (2.5.15) and (5) of Properties 2.5.3 thatthe form ๐›ฝ = ๐œ„๐’—๐‘‘๐œˆ satisfies ๐‘‘๐›ฝ = ๐œ„(๐’—)๐›ฝ = 0.

โ€ข By part (3), ๐›ฝ is effectively a closed form on ๐‘๐‘›โˆ’1, and by induction, ๐›ฝ = ๐‘‘๐›ผ. Thusby equation (2.5.15)

๐œ” = ๐‘‘๐œ„๐’—๐œˆ + ๐‘‘๐›ผ .

2.6. The pullback operation on forms

Let๐‘ˆ be an open subset of๐‘๐‘›,๐‘‰ an open subset of๐‘๐‘š and๐‘“โˆถ ๐‘ˆ โ†’ ๐‘‰ a๐ถโˆžmap. Thenfor ๐‘ โˆˆ ๐‘ˆ and the derivative of ๐‘“ at ๐‘

๐‘‘๐‘“๐‘ โˆถ ๐‘‡๐‘๐‘๐‘› โ†’ ๐‘‡๐‘“(๐‘)๐‘๐‘š

is a linear map, so (as explained in ยง1.7) we get from a pullback map

(2.6.1) ๐‘‘๐‘“โ‹†๐‘ โ‰” (๐‘‘๐‘“๐‘)โ‹† โˆถ ๐›ฌ๐‘˜(๐‘‡โ‹†๐‘“(๐‘)๐‘๐‘š) โ†’ ๐›ฌ๐‘˜(๐‘‡โ‹†๐‘ ๐‘๐‘›) .In particular, let ๐œ” be a ๐‘˜-form on ๐‘‰. Then at ๐‘“(๐‘) โˆˆ ๐‘‰, ๐œ” takes the value

๐œ”๐‘“(๐‘) โˆˆ ๐›ฌ๐‘˜(๐‘‡โ‹†๐‘ž ๐‘๐‘š) ,so we can apply to it the operation (2.6.1), and this gives us an element:

(2.6.2) ๐‘‘๐‘“โ‹†๐‘ ๐œ”๐‘“(๐‘) โˆˆ ๐›ฌ๐‘˜(๐‘‡โ‹†๐‘ ๐‘๐‘›) .In fact we can do this for every point ๐‘ โˆˆ ๐‘ˆ, and the assignment

(2.6.3) ๐‘ โ†ฆ (๐‘‘๐‘“๐‘)โ‹†๐œ”๐‘“(๐‘)defines a ๐‘˜-form on ๐‘ˆ, which we denote by ๐‘“โ‹†๐œ”. We call ๐‘“โ‹†๐œ” the pullback of ๐œ” along themap ๐‘“. A few of its basic properties are described below.

Properties 2.6.4. Let ๐‘ˆ be an open subset of ๐‘๐‘›, ๐‘‰ an open subset of ๐‘๐‘š and ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘‰ a๐ถโˆž map.(1) Let ๐œ™ be a zero-form, i.e., a function ๐œ™ โˆˆ ๐ถโˆž(๐‘‰). Since

๐›ฌ0(๐‘‡โ‹†๐‘ ) = ๐›ฌ0(๐‘‡โ‹†๐‘“(๐‘)) = ๐‘the map (2.6.1) is just the identity map of ๐‘ onto ๐‘ when ๐‘˜ = 0. Hence for zero-forms

(2.6.5) (๐‘“โ‹†๐œ™)(๐‘) = ๐œ™(๐‘“(๐‘)) ,that is, ๐‘“โ‹†๐œ™ is just the composite function, ๐œ™ โˆ˜ ๐‘“ โˆˆ ๐ถโˆž(๐‘ˆ).

(2) Let ๐œ™ โˆˆ ๐›บ0(๐‘ˆ) and let ๐œ‡ โˆˆ ๐›บ1(๐‘‰) be the 1-form ๐œ‡ = ๐‘‘๐œ™. By the chain rule (2.6.2)unwinds to:

(2.6.6) (๐‘‘๐‘“๐‘)โ‹†๐‘‘๐œ™๐‘ž = (๐‘‘๐œ™)๐‘ž โˆ˜ ๐‘‘๐‘“๐‘ = ๐‘‘(๐œ™ โˆ˜ ๐‘“)๐‘and hence by (2.6.5) we have

(2.6.7) ๐‘“โ‹† ๐‘‘๐œ™ = ๐‘‘๐‘“โ‹†๐œ™ .(3) If ๐œ”1, ๐œ”2 โˆˆ ๐›บ๐‘˜(๐‘‰) from equation (2.6.2) we see that

(๐‘‘๐‘“๐‘)โ‹†(๐œ”1 + ๐œ”2)๐‘ž = (๐‘‘๐‘“๐‘)โ‹†(๐œ”1)๐‘ž + (๐‘‘๐‘“๐‘)โ‹†(๐œ”2)๐‘ž ,and hence by eq:2.5.3 we have

๐‘“โ‹†(๐œ”1 + ๐œ”2) = ๐‘“โ‹†๐œ”1 + ๐‘“โ‹†๐œ”2 .

Page 67: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง2.6 The pullback operation on forms 55

(4) We observed in ยง1.7 that the operation (2.6.1) commutes with wedge-product, hence if๐œ”1 โˆˆ ๐›บ๐‘˜(๐‘‰) and ๐œ”2 โˆˆ ๐›บโ„“(๐‘‰)

๐‘‘๐‘“โ‹†๐‘ (๐œ”1)๐‘ž โˆง (๐œ”2)๐‘ž = ๐‘‘๐‘“โ‹†๐‘ (๐œ”1)๐‘ž โˆง ๐‘‘๐‘“โ‹†๐‘ (๐œ”2)๐‘ž .In other words

(2.6.8) ๐‘“โ‹†๐œ”1 โˆง ๐œ”2 = ๐‘“โ‹†๐œ”1 โˆง ๐‘“โ‹†๐œ”2 .(5) Let๐‘Š be an open subset of ๐‘๐‘˜ and ๐‘”โˆถ ๐‘‰ โ†’ ๐‘Š a ๐ถโˆž map. Given a point ๐‘ โˆˆ ๐‘ˆ, let๐‘ž = ๐‘“(๐‘) and ๐‘ค = ๐‘”(๐‘ž). Then the composition of the map

(๐‘‘๐‘“๐‘)โ‹† โˆถ ๐›ฌ๐‘˜(๐‘‡โ‹†๐‘ž ) โ†’ ๐›ฌ๐‘˜(๐‘‡โ‹†๐‘ )and the map

(๐‘‘๐‘”๐‘ž)โ‹† โˆถ ๐›ฌ๐‘˜(๐‘‡โ‹†๐‘ค) โ†’ ๐›ฌ๐‘˜(๐‘‡โ‹†๐‘ž )is the map

(๐‘‘๐‘”๐‘ž โˆ˜ ๐‘‘๐‘“๐‘)โ‹† โˆถ ๐›ฌ๐‘˜(๐‘‡โ‹†๐‘ค) โ†’ ๐›ฌ๐‘˜(๐‘‡โ‹†๐‘ )by formula (1.7.5). However, by the chain rule

(๐‘‘๐‘”๐‘ž) โˆ˜ (๐‘‘๐‘“)๐‘ = ๐‘‘(๐‘” โˆ˜ ๐‘“)๐‘so this composition is the map

๐‘‘(๐‘” โˆ˜ ๐‘“)โ‹†๐‘ โˆถ ๐›ฌ๐‘˜(๐‘‡โ‹†๐‘ค) โ†’ ๐›ฌ๐‘˜(๐‘‡โ‹†๐‘ ) .

Thus if ๐œ” โˆˆ ๐›บ๐‘˜(๐‘Š)๐‘“โ‹†(๐‘”โ‹†๐œ”) = (๐‘” โˆ˜ ๐‘“)โ‹†๐œ” .

Let us see what the pullback operation looks like in coordinates. Using multi-indexnotation we can express every ๐‘˜-form ๐œ” โˆˆ ๐›บ๐‘˜(๐‘‰) as a sum over multi-indices of length ๐‘˜(2.6.9) ๐œ” = โˆ‘

๐ผ๐œ™๐ผ๐‘‘๐‘ฅ๐ผ ,

the coefficient ๐œ™๐ผ of ๐‘‘๐‘ฅ๐ผ being in ๐ถโˆž(๐‘‰). Hence by (2.6.5)

๐‘“โ‹†๐œ” = โˆ‘๐‘“โ‹†๐œ™๐ผ๐‘“โ‹†(๐‘‘๐‘ฅ๐ผ)where ๐‘“โ‹†๐œ™๐ผ is the function of ๐œ™ โˆ˜ ๐‘“.

What about ๐‘“โ‹†๐‘‘๐‘ฅ๐ผ? If ๐ผ is the multi-index, (๐‘–1,โ€ฆ, ๐‘–๐‘˜), then by definition๐‘‘๐‘ฅ๐ผ = ๐‘‘๐‘ฅ๐‘–1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘–๐‘˜

so๐‘“โ‹†(๐‘‘๐‘ฅ๐ผ) = ๐‘“โ‹†(๐‘‘๐‘ฅ๐‘–1) โˆง โ‹ฏ โˆง ๐‘“

โ‹†(๐‘‘๐‘ฅ๐‘–๐‘˜)by (2.6.8), and by (2.6.7), we have

๐‘“โ‹†๐‘‘๐‘ฅ๐‘– = ๐‘‘๐‘“โ‹†๐‘ฅ๐‘– = ๐‘‘๐‘“๐‘–where ๐‘“๐‘– is the ๐‘–th coordinate function of the map ๐‘“. Thus, setting

๐‘‘๐‘“๐ผ โ‰” ๐‘‘๐‘“๐‘–1 โˆงโ‹ฏ โˆง ๐‘‘๐‘“๐‘–๐‘˜ ,we see that for each multi-index ๐ผ we have(2.6.10) ๐‘“โ‹†(๐‘‘๐‘ฅ๐ผ) = ๐‘‘๐‘“๐ผ ,and for the pullback of the form (2.6.9)

(2.6.11) ๐‘“โ‹†๐œ” = โˆ‘๐ผ๐‘“โ‹†๐œ™๐ผ ๐‘‘๐‘“๐ผ .

Page 68: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

56 Chapter 2: Differential Forms

We will use this formula to prove that pullback commutes with exterior differentiation:(2.6.12) ๐‘‘(๐‘“โ‹†๐œ”) = ๐‘“โ‹†(๐‘‘๐œ”) .To prove this we recall that by (2.3.6) we have ๐‘‘(๐‘‘๐‘“๐ผ) = 0, hence by (2.3.1) and (2.6.10) wehave

๐‘‘(๐‘“โ‹†๐œ”) = โˆ‘๐ผ๐‘‘(๐‘“โ‹†๐œ™๐ผ) โˆง ๐‘‘๐‘“๐ผ = โˆ‘

๐ผ๐‘“โ‹†(๐‘‘๐œ™๐ผ) โˆง ๐‘“โ‹†(๐‘‘๐‘ฅ๐ผ)

= ๐‘“โ‹†โˆ‘๐ผ๐‘‘๐œ™๐ผ โˆง ๐‘‘๐‘ฅ๐ผ = ๐‘“โ‹†(๐‘‘๐œ”) .

A special case of formula (2.6.10) will be needed in Chapter 4: Let ๐‘ˆ and ๐‘‰ be opensubsets of ๐‘๐‘› and let ๐œ” = ๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›. Then by (2.6.10) we have

๐‘“โ‹†๐œ”๐‘ = (๐‘‘๐‘“1)๐‘ โˆงโ‹ฏ โˆง (๐‘‘๐‘“๐‘›)๐‘for all ๐‘ โˆˆ ๐‘ˆ. However,

(๐‘‘๐‘“๐‘–)๐‘ = โˆ‘๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘—(๐‘)(๐‘‘๐‘ฅ๐‘—)๐‘

and hence by formula (1.7.10)

๐‘“โ‹†๐œ”๐‘ = det[๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘—(๐‘)] (๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›)๐‘ .

In other words

(2.6.13) ๐‘“โ‹†(๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›) = det[๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘—]๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› .

In Exercise 2.6.iv and equation (2.6.6) we outline the proof of an important topologicalproperty of the pullback operation.

Definition 2.6.14. Let ๐‘ˆ be an open subset of ๐‘๐‘›, ๐‘‰ an open subset of ๐‘๐‘š, ๐ด โŠ‚ ๐‘ an openinterval containing 0 and 1 and ๐‘“0, ๐‘“1 โˆถ ๐‘ˆ โ†’ ๐‘‰ two ๐ถโˆž maps. A ๐ถโˆž map ๐นโˆถ ๐‘ˆร—๐ด โ†’ ๐‘‰ isa ๐ถโˆž homotopy between ๐‘“0 and ๐‘“1 if ๐น(๐‘ฅ, 0) = ๐‘“0(๐‘ฅ) and ๐น(๐‘ฅ, 1) = ๐‘“1(๐‘ฅ).

If there exists a homotopy between ๐‘“0 and ๐‘“1, we say that ๐‘“0 and ๐‘“1 are homotopic andwrite ๐‘“0 โ‰ƒ ๐‘“1.

Intuitively, ๐‘“0 and ๐‘“1 are homotopic if there exists a family of ๐ถโˆž maps ๐‘“๐‘ก โˆถ ๐‘ˆ โ†’ ๐‘‰,where ๐‘“๐‘ก(๐‘ฅ) = ๐น(๐‘ฅ, ๐‘ก), which โ€œsmoothly deform ๐‘“0 into ๐‘“1โ€. In Exercise 2.6.iv and equa-tion (2.6.6) you will be asked to verify that for ๐‘“0 and ๐‘“1 to be homotopic they have tosatisfy the following criteria.

Theorem 2.6.15. Let๐‘ˆ be an open subset of ๐‘๐‘›,๐‘‰ an open subset of ๐‘๐‘š, and ๐‘“0, ๐‘“1 โˆถ ๐‘ˆ โ†’ ๐‘‰two ๐ถโˆž maps. If ๐‘“0 and ๐‘“1 are homotopic then for every closed form ๐œ” โˆˆ ๐›บ๐‘˜(๐‘‰) the form๐‘“โ‹†1 ๐œ” โˆ’ ๐‘“โ‹†0 ๐œ” is exact.

This theorem is closely related to the Poincarรฉ lemma, and, in fact, one gets from ita slightly stronger version of the Poincarรฉ lemma than that described in Exercise 2.3.ivand equation (2.3.7).

Definition 2.6.16. An open subset ๐‘ˆ of ๐‘๐‘› is contractible if, for some point ๐‘0 โˆˆ ๐‘ˆ, theidentity map id๐‘ˆ โˆถ ๐‘ˆ โ†’ ๐‘ˆ is homotopic to the constant map

๐‘“0 โˆถ ๐‘ˆ โ†’ ๐‘ˆ , ๐‘“0(๐‘) = ๐‘0at ๐‘0.

Page 69: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง2.6 The pullback operation on forms 57

From Theorem 2.6.15 it is easy to see that the Poincarรฉ lemma holds for contractableopen subsets of๐‘๐‘›. If๐‘ˆ is contractable every closed ๐‘˜-form on๐‘ˆ of degree ๐‘˜ > 0 is exact. Tosee this, note that if ๐œ” โˆˆ ๐›บ๐‘˜(๐‘ˆ), then for the identity map idโ‹†๐‘ˆ ๐œ” = ๐œ” and if ๐‘“ is the constantmap at a point of ๐‘ˆ, then ๐‘“โ‹†๐œ” = 0.

Exercises for ยง2.6Exercise 2.6.i. Let ๐‘“โˆถ ๐‘3 โ†’ ๐‘3 be the map

๐‘“(๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3) = (๐‘ฅ1๐‘ฅ2, ๐‘ฅ2๐‘ฅ23 , ๐‘ฅ33) .Compute the pullback, ๐‘“โ‹†๐œ” for the following forms.(1) ๐œ” = ๐‘ฅ2๐‘‘๐‘ฅ3(2) ๐œ” = ๐‘ฅ1๐‘‘๐‘ฅ1 โˆง ๐‘‘๐‘ฅ3(3) ๐œ” = ๐‘ฅ1๐‘‘๐‘ฅ1 โˆง ๐‘‘๐‘ฅ2 โˆง ๐‘‘๐‘ฅ3Exercise 2.6.ii. Let ๐‘“โˆถ ๐‘2 โ†’ ๐‘3 be the map

๐‘“(๐‘ฅ1, ๐‘ฅ2) = (๐‘ฅ21 , ๐‘ฅ22 , ๐‘ฅ1๐‘ฅ2) .Complete the pullback, ๐‘“โ‹†๐œ”, for the following forms.(1) ๐œ” = ๐‘ฅ2๐‘‘๐‘ฅ2 + ๐‘ฅ3๐‘‘๐‘ฅ3(2) ๐œ” = ๐‘ฅ1๐‘‘๐‘ฅ2 โˆง ๐‘‘๐‘ฅ3(3) ๐œ” = ๐‘‘๐‘ฅ1 โˆง ๐‘‘๐‘ฅ2 โˆง ๐‘‘๐‘ฅ3Exercise 2.6.iii. Let ๐‘ˆ be an open subset of ๐‘๐‘›, ๐‘‰ an open subset of ๐‘๐‘š, ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘‰ a ๐ถโˆžmap and ๐›พโˆถ [๐‘Ž, ๐‘] โ†’ ๐‘ˆ a ๐ถโˆž curve. Show that for ๐œ” โˆˆ ๐›บ1(๐‘‰)

โˆซ๐›พ๐‘“โ‹†๐œ” = โˆซ

๐›พ1๐œ”

where ๐›พ1 โˆถ [๐‘Ž, ๐‘] โ†’ ๐‘‰ is the curve, ๐›พ1(๐‘ก) = ๐‘“(๐›พ(๐‘ก)). (See Exercise 2.2.viii.)

Exercise 2.6.iv. Let ๐‘ˆ be an open subset of ๐‘๐‘›, ๐ด โŠ‚ ๐‘ an open interval containing thepoints, 0 and 1, and (๐‘ฅ, ๐‘ก) product coordinates on ๐‘ˆ ร— ๐ด. Recall from Exercise 2.3.v that aform ๐œ‡ โˆˆ ๐›บโ„“(๐‘ˆ ร— ๐ด) is reduced if it can be written as a sum

๐œ‡ = โˆ‘๐ผ๐‘“๐ผ(๐‘ฅ, ๐‘ก)๐‘‘๐‘ฅ๐ผ

(i.e., none of the summands involve ๐‘‘๐‘ก). For a reduced form ๐œ‡, let ๐‘„๐œ‡ โˆˆ ๐›บโ„“(๐‘ˆ) be the form

(2.6.17) ๐‘„๐œ‡ โ‰” (โˆ‘๐ผโˆซ1

0๐‘“๐ผ(๐‘ฅ, ๐‘ก)๐‘‘๐‘ก)๐‘‘๐‘ฅ๐ผ

and let ๐œ‡1, ๐œ‡2 โˆˆ ๐›บโ„“(๐‘ˆ), be the forms

๐œ‡0 = โˆ‘๐ผ๐‘“๐ผ(๐‘ฅ, 0)๐‘‘๐‘ฅ๐ผ

and๐œ‡1 = โˆ‘๐‘“๐ผ(๐‘ฅ, 1)๐‘‘๐‘ฅ๐ผ .

Now recall from Exercise 2.4.v that every form ๐œ” โˆˆ ๐›บ๐‘˜(๐‘ˆ ร— ๐ด) can be written uniquely as asum(2.6.18) ๐œ” = ๐‘‘๐‘ก โˆง ๐›ผ + ๐›ฝwhere ๐›ผ and ๐›ฝ are reduced.(1) Prove:

Page 70: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

58 Chapter 2: Differential Forms

Theorem 2.6.19. If the form (2.6.18) is closed then

(2.6.20) ๐›ฝ1 โˆ’ ๐›ฝ0 = ๐‘‘๐‘„๐›ผ .

Hint: Equation (2.4.19).Let ๐œ„0 and ๐œ„1 be themaps of๐‘ˆ into๐‘ˆร—๐ด defined by ๐œ„0(๐‘ฅ) = (๐‘ฅ, 0)and ๐œ„1(๐‘ฅ) = (๐‘ฅ, 1). Show that (2.6.20) can be rewritten

(2.6.21) ๐œ„โ‹†1๐œ” โˆ’ ๐œ„โ‹†0๐œ” = ๐‘‘๐‘„๐›ผ .

Exercise 2.6.v. Let๐‘‰ be an open subset of ๐‘๐‘š and ๐‘“0, ๐‘“1 โˆถ ๐‘ˆ โ†’ ๐‘‰ be ๐ถโˆž maps. Suppose ๐‘“0and ๐‘“1 are homotopic. Show that for every closed form, ๐œ‡ โˆˆ ๐›บ๐‘˜(๐‘‰), ๐‘“โ‹†1 ๐œ‡ โˆ’ ๐‘“โ‹†0 ๐œ‡ is exact.

Hint: Let ๐นโˆถ ๐‘ˆร—๐ด โ†’ ๐‘‰ be a homotopy between ๐‘“0 and ๐‘“1 and let ๐œ” = ๐นโ‹†๐œ‡. Show that๐œ” is closed and that ๐‘“โ‹†0 ๐œ‡ = ๐œ„โ‹†0๐œ” and ๐‘“โ‹†1 ๐œ‡ = ๐œ„โ‹†1๐œ”. Conclude from equation (2.6.21)that

๐‘“โ‹†1 ๐œ‡ โˆ’ ๐‘“โ‹†0 ๐œ‡ = ๐‘‘๐‘„๐›ผ

where ๐œ” = ๐‘‘๐‘ก โˆง ๐›ผ + ๐›ฝ and ๐›ผ and ๐›ฝ are reduced.

Exercise 2.6.vi. Show that if ๐‘ˆ โŠ‚ ๐‘๐‘› is a contractable open set, then the Poincarรฉ lemmaholds: every closed form of degree ๐‘˜ > 0 is exact.

Exercise 2.6.vii. An open subset, ๐‘ˆ, of ๐‘๐‘› is said to be star-shaped if there exists a point๐‘0 โˆˆ ๐‘ˆ, with the property that for every point ๐‘ โˆˆ ๐‘ˆ, the line segment,

{ ๐‘ก๐‘ + (1 โˆ’ ๐‘ก)๐‘0 | 0 โ‰ค ๐‘ก โ‰ค 1 } ,

joining ๐‘ to ๐‘0 is contained in ๐‘ˆ. Show that if ๐‘ˆ is star-shaped it is contractable.

Exercise 2.6.viii. Show that the following open sets are star-shaped.(1) The open unit ball

{ ๐‘ฅ โˆˆ ๐‘๐‘› | |๐‘ฅ| < 1 } .(2) The open rectangle, ๐ผ1 ร—โ‹ฏ ร— ๐ผ๐‘›, where each ๐ผ๐‘˜ is an open subinterval of ๐‘.(3) ๐‘๐‘› itself.(4) Product sets

๐‘ˆ1 ร— ๐‘ˆ2 โŠ‚ ๐‘๐‘› โ‰… ๐‘๐‘›1 ร— ๐‘๐‘›2

where ๐‘ˆ๐‘– is a star-shaped open set in ๐‘๐‘›๐‘– .

Exercise 2.6.ix. Let ๐‘ˆ be an open subset of ๐‘๐‘›, ๐‘“๐‘ก โˆถ ๐‘ˆ โ†’ ๐‘ˆ, ๐‘ก โˆˆ ๐‘, a one-parameter groupof diffeomorphisms and ๐‘ฃ its infinitesimal generator. Given ๐œ” โˆˆ ๐›บ๐‘˜(๐‘ˆ) show that at ๐‘ก = 0

(2.6.22) ๐‘‘๐‘‘๐‘ก๐‘“โ‹†๐‘ก ๐œ” = ๐ฟ๐’—๐œ” .

Here is a sketch of a proof:(1) Let ๐›พ(๐‘ก) be the curve, ๐›พ(๐‘ก) = ๐‘“๐‘ก(๐‘), and let ๐œ™ be a zero-form, i.e., an element of ๐ถโˆž(๐‘ˆ).

Show that๐‘“โ‹†๐‘ก ๐œ™(๐‘) = ๐œ™(๐›พ(๐‘ก))

and by differentiating this identity at ๐‘ก = 0 conclude that (2.6.22) holds for zero-forms.(2) Show that if (2.6.22) holds for ๐œ” it holds for ๐‘‘๐œ”.

Hint: Differentiate the identity

๐‘“โ‹†๐‘ก ๐‘‘๐œ” = ๐‘‘๐‘“โ‹†๐‘ก ๐œ”

at ๐‘ก = 0.

Page 71: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง2.7 Divergence, curl, and gradient 59

(3) Show that if (2.6.22) holds for ๐œ”1 and ๐œ”2 it holds for ๐œ”1 โˆง ๐œ”2.Hint: Differentiate the identity

๐‘“โ‹†๐‘ก (๐œ”1 โˆง ๐œ”2) = ๐‘“โ‹†๐‘ก ๐œ”1 โˆง ๐‘“โ‹†๐‘ก ๐œ”2at ๐‘ก = 0.

(4) Deduce (2.6.22) from (1)โ€“(3).Hint: Every ๐‘˜-form is a sum of wedge products of zero-forms and exact one-forms.

Exercise 2.6.x. In Exercise 2.6.ix show that for all ๐‘ก

(2.6.23) ๐‘‘๐‘‘๐‘ก๐‘“โ‹†๐‘ก ๐œ” = ๐‘“โ‹†๐‘ก ๐ฟ๐’—๐œ” = ๐ฟ๐’—๐‘“โ‹†๐‘ก ๐œ” .

Hint: By the definition of a one-parameter group, ๐‘“๐‘ +๐‘ก = ๐‘“๐‘  โˆ˜ ๐‘“๐‘ก = ๐‘“๐‘Ÿ โˆ˜ ๐‘“๐‘ , hence:๐‘“โ‹†๐‘ +๐‘ก๐œ” = ๐‘“โ‹†๐‘ก (๐‘“โ‹†๐‘  ๐œ”) = ๐‘“โ‹†๐‘  (๐‘“โ‹†๐‘ก ๐œ”) .

Prove the first assertion by differentiating the first of these identities with respect to ๐‘  andthen setting ๐‘  = 0, and prove the second assertion by doing the same for the second of theseidentities.

In particular conclude that๐‘“โ‹†๐‘ก ๐ฟ๐’—๐œ” = ๐ฟ๐’—๐‘“โ‹†๐‘ก ๐œ” .

Exercise 2.6.xi.(1) By massaging the result above show that

๐‘‘๐‘‘๐‘ก๐‘“โ‹†๐‘ก ๐œ” = ๐‘‘๐‘„๐‘ก๐œ” + ๐‘„๐‘ก๐‘‘๐œ”

where๐‘„๐‘ก๐œ” = ๐‘“โ‹†๐‘ก ๐œ„๐’—๐œ” .

Hint: Equation (2.5.9).(2) Let

๐‘„๐œ” = โˆซ1

0๐‘“โ‹†๐‘ก ๐œ„๐’—๐œ”๐‘‘๐‘ก .

Prove the homotopy identity

๐‘“โ‹†1 ๐œ” โˆ’ ๐‘“โ‹†0 ๐œ” = ๐‘‘๐‘„๐œ” + ๐‘„๐‘‘๐œ” .

Exercise 2.6.xii. Let๐‘ˆ be an open subset of ๐‘๐‘›, ๐‘‰ an open subset of ๐‘๐‘š, ๐’— a vector field on๐‘ˆ, ๐’˜ a vector field on ๐‘‰ and ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘‰ a ๐ถโˆž map. Show that if ๐’— and ๐’˜ are ๐‘“-related

๐œ„๐’—๐‘“โ‹†๐œ” = ๐‘“โ‹†๐œ„๐’˜๐œ” .

2.7. Divergence, curl, and gradient

The basic operations in 3-dimensional vector calculus: gradient, curl and divergenceare, by definition, operations on vector fields. As we see below these operations are closelyrelated to the operations

(2.7.1) ๐‘‘โˆถ ๐›บ๐‘˜(๐‘3) โ†’ ๐›บ๐‘˜+1(๐‘3)in degrees ๐‘˜ = 0, 1, 2. However, only the gradient and divergence generalize to ๐‘› dimensions.(They are essentially the ๐‘‘-operations in degrees zero and ๐‘› โˆ’ 1.) And, unfortunately, thereis no simple description in terms of vector fields for the other ๐‘‘-operations. This is one ofthe main reasons why an adequate theory of vector calculus in ๐‘›-dimensions forces on onethe differential form approach that we have developed in this chapter.

Page 72: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

60 Chapter 2: Differential Forms

Even in three dimensions, however, there is a good reason for replacing the gradient,divergence, and curl by the three operations (2.7.1). A problem that physicists spend a lot oftime worrying about is the problem of general covariance: formulating the laws of physics insuch a way that they admit as large a set of symmetries as possible, and frequently these for-mulations involve differential forms. An example is Maxwellโ€™s equations, the fundamentallaws of electromagnetism. These are usually expressed as identities involving div and curl.However, as we explain below, there is an alternative formulation of Maxwellโ€™s equationsbased on the operations (2.7.1), and from the point of view of general covariance, this for-mulation is much more satisfactory: the only symmetries of ๐‘3 which preserve div and curlare translations and otations, whereas the operations (2.7.1) admit all diffeomorphisms of๐‘3 as symmetries.

To describe how the gradient, divergence, and curl are related to the operations (2.7.1)we first note that there are two ways of converting vector fields into forms.

The first makes use of the natural inner product ๐ต(๐‘ฃ, ๐‘ค) = โˆ‘๐‘ฃ๐‘–๐‘ค๐‘– on ๐‘๐‘›. From thisinner product one gets by Exercise 1.2.ix a bijective linear map

๐ฟโˆถ ๐‘๐‘› โฅฒ (๐‘๐‘›)โ‹†

with the defining property: ๐ฟ(๐‘ฃ) = โ„“ if and only if โ„“(๐‘ค) = ๐ต(๐‘ฃ, ๐‘ค). Via the identification(2.1.2) ๐ต and ๐ฟ can be transferred to ๐‘‡๐‘๐‘๐‘›, giving one an inner product ๐ต๐‘ on ๐‘‡๐‘๐‘๐‘› and abijective linear map

๐ฟ๐‘ โˆถ ๐‘‡๐‘๐‘๐‘› โฅฒ ๐‘‡โ‹†๐‘ ๐‘๐‘› .Hence if we are given a vector field ๐’— on ๐‘ˆ we can convert it into a 1-form ๐’—โ™ฏ by setting(2.7.2) ๐’—โ™ฏ(๐‘) โ‰” ๐ฟ๐‘๐’—(๐‘)and this sets up a bijective correspondence between vector fields and 1-forms.

For instance๐’— = ๐œ•๐œ•๐‘ฅ๐‘–โŸบ ๐’—โ™ฏ = ๐‘‘๐‘ฅ๐‘– ,

(see Exercise 2.7.iii) and, more generally,

(2.7.3) ๐’— =๐‘›โˆ‘๐‘–=1๐‘“๐‘–๐œ•๐œ•๐‘ฅ๐‘–โŸบ ๐’—โ™ฏ =

๐‘›โˆ‘๐‘–=1๐‘“๐‘–๐‘‘๐‘ฅ๐‘– .

Example 2.7.4. In particular if๐‘“ is a๐ถโˆž function on๐‘ˆ โŠ‚ ๐‘๐‘› the gradient of๐‘“ is the vectorfield

grad(๐‘“) โ‰”๐‘›โˆ‘๐‘–=1

๐œ•๐‘“๐œ•๐‘ฅ๐‘–

,

and this gets converted by (2.7.5) into the 1-form ๐‘‘๐‘“. Thus the gradient operation in vectorcalculus is basically just the exeterior derivative operation ๐‘‘โˆถ ๐›บ0(๐‘ˆ) โ†’ ๐›บ1(๐‘ˆ).

The second way of converting vector fields into forms is via the interior product oper-ation. Namely let๐›บ be the ๐‘›-form ๐‘‘๐‘ฅ1 โˆงโ‹ฏโˆง ๐‘‘๐‘ฅ๐‘›. Given an open subset ๐‘ˆ of ๐‘๐‘› and a ๐ถโˆžvector field

(2.7.5) ๐’— =๐‘›โˆ‘๐‘–=1๐‘“๐‘–๐œ•๐œ•๐‘ฅ๐‘–

on ๐‘ˆ the interior product of ๐‘ฃ with ๐›บ is the (๐‘› โˆ’ 1)-form

(2.7.6) ๐œ„๐’—๐›บ =๐‘›โˆ‘๐‘Ÿ=1(โˆ’1)๐‘Ÿโˆ’1๐‘“๐‘Ÿ๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘Ÿโ‹ฏโˆง ๐‘‘๐‘ฅ๐‘› .

Page 73: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง2.7 Divergence, curl, and gradient 61

Moreover, every (๐‘› โˆ’ 1)-form can be written uniquely as such a sum, so (2.7.5) and (2.7.6)set up a bijective correspondence between vector fields and (๐‘› โˆ’ 1)-forms. Under this corre-spondence the ๐‘‘-operation gets converted into an operation on vector fields

๐’— โ†ฆ ๐‘‘๐œ„๐’—๐›บ .Moreover, by (2.5.9)

๐‘‘๐œ„๐’—๐›บ = ๐ฟ๐’—๐›บand by (2.5.14)

๐ฟ๐’—๐›บ = div(๐’—)๐›บwhere

(2.7.7) div(๐’—) =๐‘›โˆ‘๐‘–=1

๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘–

.

In other words, this correspondence between (๐‘› โˆ’ 1)-forms and vector fields converts the๐‘‘-operation into the divergence operation (2.7.7) on vector fields.

Notice that divergence and gradient are well-defined as vector calculus operations in ๐‘›dimensions, even though one usually thinks of them as operations in 3-dimensional vectorcalculus. The curl operation, however, is intrinsically a 3-dimensional vector calculus oper-ation. To define it we note that by (2.7.6) every 2-form ๐œ‡ on an open subset ๐‘ˆ โŠ‚ ๐‘3 can bewritten uniquely as an interior product,(2.7.8) ๐œ‡ = ๐œ„๐’˜๐‘‘๐‘ฅ1 โˆง ๐‘‘๐‘ฅ2 โˆง ๐‘‘๐‘ฅ3 ,for some vector field ๐’˜, and the left-hand side of this formula determines ๐’˜ uniquely.

Definition 2.7.9. Let๐‘ˆ be an open subset of ๐‘3 and ๐’— a vector field on๐‘ˆ. From ๐’— we get by(2.7.3) a 1-form ๐’—โ™ฏ, and hence by (2.7.8) a vector field ๐’˜ satisfying

๐‘‘๐’—โ™ฏ = ๐œ„๐’˜๐‘‘๐‘ฅ1 โˆง ๐‘‘๐‘ฅ2 โˆง ๐‘‘๐‘ฅ3 .The curl of ๐’— is the vector field

curl(๐’—) โ‰” ๐’˜ .

We leave for you to check that this definition coincides with the definition one finds incalculus books. More explicitly we leave for you to check that if ๐’— is the vector field

๐’— = ๐‘“1๐œ•๐œ•๐‘ฅ1+ ๐‘“2๐œ•๐œ•๐‘ฅ2+ ๐‘“3๐œ•๐œ•๐‘ฅ3

thencurl(๐’—) = ๐‘”1

๐œ•๐œ•๐‘ฅ1+ ๐‘”2๐œ•๐œ•๐‘ฅ2+ ๐‘”3๐œ•๐œ•๐‘ฅ3

where

๐‘”1 =๐œ•๐‘“2๐œ•๐‘ฅ3โˆ’ ๐œ•๐‘“3๐œ•๐‘ฅ2

๐‘”2 =๐œ•๐‘“3๐œ•๐‘ฅ1โˆ’ ๐œ•๐‘“1๐œ•๐‘ฅ3

(2.7.10)

๐‘”3 =๐œ•๐‘“1๐œ•๐‘ฅ2โˆ’ ๐œ•๐‘“2๐œ•๐‘ฅ1

.

To summarize: the gradient, curl, and divergence operations in 3-dimensions are basi-cally just the three operations (2.7.1). The gradient operation is the operation (2.7.1) in de-gree zero, curl is the operation (2.7.1) in degree one, and divergence is the operation (2.7.1)

Page 74: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

62 Chapter 2: Differential Forms

in degree two. However, to define gradient we had to assign an inner product ๐ต๐‘ to the tan-gent space ๐‘‡๐‘๐‘๐‘› for each ๐‘ โˆˆ ๐‘ˆ; to define divergence we had to equip ๐‘ˆ with the 3-form๐›บ and to define curl, the most complicated of these three operations, we needed the innerproducts ๐ต๐‘ and the form ๐›บ. This is why diffeomorphisms preserve the three operations(2.7.1) but do not preserve gradient, curl, and divergence. The additional structures whichone needs to define grad, curl and div are only preserved by translations and rotations.

Maxwellโ€™s equations and differential formsWe conclude this section by showing how Maxwellโ€™s equations, which are usually for-

mulated in terms of divergence and curl, can be reset into โ€œformโ€ language. The discussionbelow is an abbreviated version of [5, ยง1.20].

Maxwellโ€™s equations assert:div(๐’—๐ธ) = ๐‘ž(2.7.11)

curl(๐’—๐ธ) = โˆ’๐œ•๐œ•๐‘ก๐’—๐‘€(2.7.12)

div(๐’—๐‘€) = 0(2.7.13)

๐‘2 curl(๐’—๐‘€) = ๐’˜ +๐œ•๐œ•๐‘ก๐’—๐ธ(2.7.14)

where ๐’—๐ธ and ๐’—๐‘€ are the electric andmagnetic fields, ๐‘ž is the scalar charge density,๐’˜ is thecurrent density and ๐‘ is the velocity of light. (To simplify (2.7.15) slightly we assume thatour units of spaceโ€“time are chosen so that ๐‘ = 1.) As above let๐›บ = ๐‘‘๐‘ฅ1 โˆง ๐‘‘๐‘ฅ2 โˆง ๐‘‘๐‘ฅ3 and let

๐œ‡๐ธ = ๐œ„(๐’—๐ธ)๐›บand

๐œ‡๐‘€ = ๐œ„(๐’—๐‘€)๐›บ .We can then rewrite equations (2.7.11) and (2.7.13) in the form(2.7.11โ€ฒ) ๐‘‘๐œ‡๐ธ = ๐‘ž๐›บand(2.7.13โ€ฒ) ๐‘‘๐œ‡๐‘€ = 0 .

What about (2.7.12) and (2.7.14)?We leave the following โ€œformโ€ versions of these equa-tions as an exercise:

(2.7.12โ€ฒ) ๐‘‘๐’—โ™ฏ๐ธ = โˆ’๐œ•๐œ•๐‘ก๐œ‡๐‘€

and

(2.7.14โ€ฒ) ๐‘‘๐’—โ™ฏ๐‘€ = ๐œ„๐’˜๐›บ +๐œ•๐œ•๐‘ก๐œ‡๐ธ

where the 1-forms, ๐’—โ™ฏ๐ธ and ๐’—โ™ฏ๐‘€, are obtained from ๐’—๐ธ and ๐’—๐‘€ by the operation (2.7.2).

These equations can be written more compactly as differential form identities in 3 + 1dimensions. Let ๐œ”๐‘€ and ๐œ”๐ธ be the 2-forms

๐œ”๐‘€ = ๐œ‡๐‘€ โˆ’ ๐’—โ™ฏ๐ธ โˆง ๐‘‘๐‘ก

and(2.7.15) ๐œ”๐ธ = ๐œ‡๐ธ โˆ’ ๐’—

โ™ฏ๐‘€ โˆง ๐‘‘๐‘ก

and let ๐›ฌ be the 3-form๐›ฌ โ‰” ๐‘ž๐›บ + ๐œ„๐’˜๐›บ โˆง ๐‘‘๐‘ก .

Page 75: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง2.8 Symplectic geometry & classical mechanics 63

We will leave for you to show that the four equations (2.7.11)โ€“(2.7.14) are equivalentto two elegant and compact (3 + 1)-dimensional identities

๐‘‘๐œ”๐‘€ = 0and

๐‘‘๐œ”๐ธ = ๐›ฌ .

Exercises for ยง2.7Exercise 2.7.i. Verify that the curl operation is given in coordinates by equation (2.7.10).

Exercise 2.7.ii. Verify thatMaxwellโ€™s equations (2.7.11) and (2.7.12) become the equations (2.7.13)and (2.7.14) when rewritten in differential form notation.

Exercise 2.7.iii. Show that in (3+1)-dimensionsMaxwellโ€™s equations take the form of equa-tions (2.7.10) and (2.7.11).

Exercise 2.7.iv. Let ๐‘ˆ be an open subset of ๐‘3 and ๐’— a vector field on ๐‘ˆ. Show that if ๐’— isthe gradient of a function, its curl has to be zero.

Exercise 2.7.v. If ๐‘ˆ is simply connected prove the converse: If the curl of ๐’— vanishes, ๐’— isthe gradient of a function.

Exercise 2.7.vi. Let ๐’˜ = curl(๐’—). Show that the divergence of ๐’˜ is zero.

Exercise 2.7.vii. Is the converse to Exercise 2.7.vi true? Suppose the divergence of๐’˜ is zero.Is ๐’˜ = curl(๐’—) for some vector field ๐’—?

2.8. Symplectic geometry & classical mechanics

In this section we describe some other applications of the theory of differential formsto physics. Before describing these applications, however, we say a few words about the geo-metric ideas that are involved.

Definition 2.8.1. Let ๐‘ฅ1,โ€ฆ, ๐‘ฅ2๐‘› be the standard coordinate functions on ๐‘2๐‘› and for ๐‘– =1,โ€ฆ, ๐‘› let ๐‘ฆ๐‘– โ‰” ๐‘ฅ๐‘›+๐‘–. The two-form

๐œ” โ‰”๐‘›โˆ‘๐‘–=1๐‘‘๐‘ฅ๐‘– โˆง ๐‘‘๐‘ฆ๐‘– =

๐‘›โˆ‘๐‘–=1๐‘‘๐‘ฅ๐‘– โˆง ๐‘‘๐‘ฅ๐‘›+๐‘–

is called the Darboux form on ๐‘2๐‘›.From the identity

(2.8.2) ๐œ” = โˆ’๐‘‘ (โˆ‘๐‘›๐‘–=1 ๐‘ฆ๐‘–๐‘‘๐‘ฅ๐‘–) .it follows that ๐œ” is exact. Moreover computing the ๐‘›-fold wedge product of ๐œ” with itself weget

๐œ”๐‘› = (๐‘›โˆ‘๐‘–๐‘–=1๐‘‘๐‘ฅ๐‘–1 โˆง ๐‘‘๐‘ฆ๐‘–1) โˆงโ‹ฏ โˆง(

๐‘›โˆ‘๐‘–๐‘›=1๐‘‘๐‘ฅ๐‘–๐‘› โˆง ๐‘‘๐‘ฆ๐‘–๐‘›)

= โˆ‘๐‘–1,โ€ฆ,๐‘–๐‘›๐‘‘๐‘ฅ๐‘–1 โˆง ๐‘‘๐‘ฆ๐‘–1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘–๐‘› โˆง ๐‘‘๐‘ฆ๐‘–๐‘› .

We can simplify this sum by noting that if the multi-index ๐ผ = (๐‘–1,โ€ฆ, ๐‘–๐‘›) is repeating, thewedge product(2.8.3) ๐‘‘๐‘ฅ๐‘–1 โˆง ๐‘‘๐‘ฆ๐‘–1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘–๐‘› โˆง ๐‘‘๐‘ฅ๐‘–๐‘›

Page 76: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

64 Chapter 2: Differential Forms

involves two repeating ๐‘‘๐‘ฅ๐‘–๐‘— and hence is zero, and if ๐ผ is non-repeating we can permute thefactors and rewrite (2.8.3) in the form

๐‘‘๐‘ฅ1 โˆง ๐‘‘๐‘ฆ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› โˆง ๐‘‘๐‘ฆ๐‘› .(See Exercise 1.6.v.)

Hence since these are exactly ๐‘›! non-repeating multi-indices

๐œ”๐‘› = ๐‘›!๐‘‘๐‘ฅ1 โˆง ๐‘‘๐‘ฆ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› โˆง ๐‘‘๐‘ฆ๐‘› ,i.e.,

(2.8.4) 1๐‘›!๐œ”๐‘› = ๐›บ

where

(2.8.5) ๐›บ = ๐‘‘๐‘ฅ1 โˆง ๐‘‘๐‘ฆ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› โˆง ๐‘‘๐‘ฆ๐‘›is the symplectic volume form on ๐‘2๐‘›.

Definition 2.8.6. Let ๐‘ˆ and ๐‘‰ be open subsets of ๐‘2๐‘›. A diffeomorphism ๐‘“โˆถ ๐‘ˆ โฅฒ ๐‘‰ is asymplectic diffeomorphism or symplectomorphism if ๐‘“โ‹†๐œ” = ๐œ”, where ๐œ” denotes the Dar-boux form on ๐‘2๐‘›.

Definition 2.8.7. Let ๐‘ˆ be an open subset of ๐‘2๐‘›, let(2.8.8) ๐‘“๐‘ก โˆถ ๐‘ˆ โฅฒ ๐‘ˆ , โˆ’โˆž < ๐‘ก < โˆžbe a one-parameter group of diffeomorphisms of ๐‘ˆ, and ๐’— be the vector field generating(2.8.8) We say that ๐’— is a symplectic vector field if the diffeomorphisms (2.8.8) are symplec-tomorphisms, i.e., for all ๐‘ก we have ๐‘“โ‹†๐‘ก ๐œ” = ๐œ”.

Let us see what such vector fields have to look like. Note that by (2.6.23)

(2.8.9) ๐‘‘๐‘‘๐‘ก๐‘“โ‹†๐‘ก ๐œ” = ๐‘“โ‹†๐‘ก ๐ฟ๐’—๐œ” ,

hence if ๐‘“โ‹†๐‘ก ๐œ” = ๐œ” for all ๐‘ก, the left hand side of (2.8.9) is zero, so

๐‘“โ‹†๐‘ก ๐ฟ๐’—๐œ” = 0 .In particular, for ๐‘ก = 0, ๐‘“๐‘ก is the identity map so ๐‘“โ‹†๐‘ก ๐ฟ๐’—๐œ” = ๐ฟ๐’—๐œ” = 0. Conversely, if ๐ฟ๐’—๐œ” = 0,then ๐‘“โ‹†๐‘ก ๐ฟ๐’—๐œ” = 0 so by (2.8.9) ๐‘“โ‹†๐‘ก ๐œ” does not depend on ๐‘ก. However, since ๐‘“โ‹†๐‘ก ๐œ” = ๐œ” for ๐‘ก = 0we conclude that ๐‘“โ‹†๐‘ก ๐œ” = ๐œ” for all ๐‘ก. To summarize, we have proved:

Theorem 2.8.10. Let ๐‘“๐‘ก โˆถ ๐‘ˆ โ†’ ๐‘ˆ be a one-parameter group of diffeomorphisms and ๐’— theinfinitesmal generator of this group. Then ๐’— is symplectic of and only if ๐ฟ๐’—๐œ” = 0.

There is an equivalent formulation of Theorem 2.8.10 in terms of the interior product๐œ„๐’—๐œ”. By (2.5.9)

๐ฟ๐’—๐œ” = ๐‘‘๐œ„๐’—๐œ” + ๐œ„๐’— ๐‘‘๐œ” .But by (2.8.2) we have ๐‘‘๐œ” = 0, so

๐ฟ๐’—๐œ” = ๐‘‘๐œ„๐’—๐œ” .Thus we have shown:

Theorem 2.8.11. A vector field ๐’— on an open subset of ๐‘2๐‘› is symplectic if and only if the form๐œ„๐’—๐œ” is closed.

Page 77: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง2.8 Symplectic geometry & classical mechanics 65

Let๐‘ˆ be an open subset of ๐‘2๐‘› and ๐’— a vector field on๐‘ˆ. If ๐œ„๐’—๐œ” is not only closed but isexact we say that ๐’— is a Hamiltonian vector field. In other words, ๐’— is Hamiltonian if(2.8.12) ๐œ„๐’—๐œ” = ๐‘‘๐ปfor some ๐ถโˆž function๐ป โˆˆ ๐ถโˆž(๐‘ˆ).

Let is see what this condition looks like in coordinates. Let

(2.8.13) ๐’— =๐‘›โˆ‘๐‘–=1(๐‘“๐‘–๐œ•๐œ•๐‘ฅ๐‘–+ ๐‘”๐‘–๐œ•๐œ•๐‘ฆ๐‘–) .

Then๐œ„๐’—๐œ” = โˆ‘

1โ‰ค๐‘–,๐‘—โ‰ค๐‘›๐‘“๐‘– ๐œ„๐œ•/๐œ•๐‘ฅ๐‘–(๐‘‘๐‘ฅ๐‘— โˆง ๐‘‘๐‘ฆ๐‘—) + โˆ‘

1โ‰ค๐‘–,๐‘—โ‰ค๐‘›๐‘”๐‘– ๐œ„๐œ•/๐œ•๐‘ฆ๐‘–(๐‘‘๐‘ฅ๐‘— โˆง ๐‘‘๐‘ฆ๐‘–) .

But

๐œ„๐œ•/๐œ•๐‘ฅ๐‘–๐‘‘๐‘ฅ๐‘— = {1, ๐‘– = ๐‘—0, ๐‘– โ‰  ๐‘—

and๐œ„๐œ•/๐œ•๐‘ฅ๐‘–๐‘‘๐‘ฆ๐‘— = 0

so the first summand above is โˆ‘๐‘›๐‘–=1 ๐‘“๐‘– ๐‘‘๐‘ฆ๐‘–, and a similar argument shows that the secondsummand is โˆ’โˆ‘๐‘›๐‘–=1 ๐‘”๐‘–๐‘‘๐‘ฅ๐‘–.

Hence if ๐’— is the vector field (2.8.13), then

(2.8.14) ๐œ„๐’—๐œ” =๐‘›โˆ‘๐‘–=1(๐‘“๐‘– ๐‘‘๐‘ฆ๐‘– โˆ’ ๐‘”๐‘–๐‘‘๐‘ฅ๐‘–) .

Thus since

๐‘‘๐ป =๐‘›โˆ‘๐‘–=1(๐œ•๐ป๐œ•๐‘ฅ๐‘–๐‘‘๐‘ฅ๐‘– +๐œ•๐ป๐œ•๐‘ฆ๐‘–๐‘‘๐‘ฆ๐‘–)

we get from (2.8.12)โ€“(2.8.14)

๐‘“๐‘– =๐œ•๐ป๐œ•๐‘ฆ๐‘–

and ๐‘”๐‘– = โˆ’๐œ•๐ป๐œ•๐‘ฅ๐‘–

so ๐’— has the form:

(2.8.15) ๐’— =๐‘›โˆ‘๐‘–=1(๐œ•๐ป๐œ•๐‘ฆ๐‘–๐œ•๐œ•๐‘ฅ๐‘–โˆ’ ๐œ•๐ป๐œ•๐‘ฅ๐‘–๐œ•๐œ•๐‘ฆ๐‘–) .

In particular if ๐›พ(๐‘ก) = (๐‘ฅ(๐‘ก), ๐‘ฆ(๐‘ก)) is an integral curve of ๐’— it has to satisfy the system ofdifferential equations

(2.8.16){{{{{{{

๐‘‘๐‘ฅ๐‘–๐‘‘๐‘ก= ๐œ•๐ป๐œ•๐‘ฆ๐‘–(๐‘ฅ(๐‘ก), ๐‘ฆ(๐‘ก))

๐‘‘๐‘ฆ๐‘–๐‘‘๐‘ก= โˆ’๐œ•๐ป๐œ•๐‘ฅ๐‘–(๐‘ฅ(๐‘ก), ๐‘ฆ(๐‘ก)) .

The formulas (2.8.13) and (2.8.14) exhibit an important property of the Darboux form ๐œ”.Every one-form on ๐‘ˆ can be written uniquely as a sum

๐‘›โˆ‘๐‘–=1(๐‘“๐‘– ๐‘‘๐‘ฆ๐‘– โˆ’ ๐‘”๐‘–๐‘‘๐‘ฅ๐‘–)

with ๐‘“๐‘– and ๐‘”๐‘– in ๐ถโˆž(๐‘ˆ) and hence (2.8.13) and (2.8.14) imply:

Theorem 2.8.17. The map ๐’— โ†ฆ ๐œ„๐’—๐œ” defines a bijective between vector field and one-forms.

Page 78: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

66 Chapter 2: Differential Forms

In particular, for every ๐ถโˆž function๐ป, we get by correspondence a unique vector field๐’— = ๐’—๐ป with the property (2.8.12). We next note that by (1.7.9)

๐ฟ๐’—๐ป = ๐œ„๐’— ๐‘‘๐ป = ๐œ„๐’—(๐œ„๐’—๐œ”) = 0 .Thus(2.8.18) ๐ฟ๐’—๐ป = 0i.e.,๐ป is an integral ofmotion of the vector field ๐’—. In particular, if the function๐ปโˆถ ๐‘ˆ โ†’ ๐‘ isproper, then by Theorem 2.2.12 the vector field, ๐’—, is complete and hence by Theorem 2.8.10generates a one-parameter group of symplectomorphisms.

Remark 2.8.19. If the one-parameter group (2.8.8) is a group of symplectomorphisms, then๐‘“โ‹†๐‘ก ๐œ”๐‘› = ๐‘“โ‹†๐‘ก ๐œ” โˆงโ‹ฏ โˆง ๐‘“โ‹†๐‘ก ๐œ” = ๐œ”๐‘›, so by (2.8.4)(2.8.20) ๐‘“โ‹†๐‘ก ๐›บ = ๐›บ ,where ๐›บ is the symplectic volume form (2.8.5).

Application 2.8.21. The application we want to make of these ideas concerns the descrip-tion, inNewtonianmechanics, of a physical system consisting of๐‘ interacting point-masses.The configuration space of such a system is

๐‘๐‘› = ๐‘3 ร—โ‹ฏ ร— ๐‘3 ,where there are ๐‘ copies of ๐‘3 in the product, with position coordinates ๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘› andthe phase space is ๐‘2๐‘› with position coordinates ๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘› and momentum coordinates,๐‘ฆ1,โ€ฆ, ๐‘ฆ๐‘›. The kinetic energy of this system is a quadratic function of the momentum co-ordinates

12

๐‘›โˆ‘๐‘–=1

1๐‘š๐‘–๐‘ฆ2๐‘– ,

and for simplicity we assume that the potential energy is a function ๐‘‰(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) of theposition coordinates alone, i.e., it does not depend on themomenta and is time-independentas well. Let

(2.8.22) ๐ป = 12

๐‘›โˆ‘๐‘–=1

1๐‘š๐‘–๐‘ฆ2๐‘– + ๐‘‰(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›)

be the total energy of the system.

We now show that Newtonโ€™s second law of motion in classical mechanics reduces to theassertion.

Proposition 2.8.23. The trajectories in phase space of the system above are just the integralcurves of the Hamiltonian vector field ๐’—๐ป.Proof. For the function (2.8.22) the equations (2.8.16) become

{{{{{{{{{

๐‘‘๐‘ฅ๐‘–๐‘‘๐‘ก= 1๐‘š๐‘–๐‘ฆ๐‘–

๐‘‘๐‘ฆ๐‘–๐‘‘๐‘ก= โˆ’ ๐œ•๐‘‰๐œ•๐‘ฅ๐‘–

.

The first set of equation are essentially just the definitions of momentum, however, if weplug them into the second set of equations we get

(2.8.24) ๐‘š๐‘–๐‘‘2๐‘ฅ๐‘–๐‘‘๐‘ก2= โˆ’๐œ•๐‘‰๐œ•๐‘ฅ๐‘–

Page 79: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง2.8 Symplectic geometry & classical mechanics 67

and interpreting the term on the right as the force exerted on the ๐‘–th point-mass and theterm on the left as mass times acceleration this equation becomes Newtonโ€™s second law. โ–ก

In classical mechanics the equations (2.8.16) are known as the Hamiltonโ€“Jacobi equa-tions. For a more detailed account of their role in classical mechanics we highly recommend[1]. Historically these equations came up for the first time, not in Newtonian mechanics,but in geometric optics and a brief description of their origins there and of their relation toMaxwellโ€™s equations can be found in [5].

We conclude this chapter bymentioning a few implications of the Hamiltonian descrip-tion (2.8.16) of Newtonโ€™s equations (2.8.24).(1) Conservation of energy: By (2.8.18) the energy function (2.8.22) is constant along the

integral curves of ๐’—, hence the energy of the system (2.8.16) does notchange in time.(2) Noetherโ€™s principle: Let ๐›พ๐‘ก โˆถ ๐‘2๐‘› โ†’ ๐‘2๐‘› be a one-parameter group of diffeomorphisms of

phase space and ๐’˜ its infinitesimal generator. Then (๐›พ๐‘ก)๐‘กโˆˆ๐‘ is a symmetry of the systemabove if each ๐›พ๐‘ก preserves the function (2.8.22) and the vector field ๐’˜ is Hamiltonian.The Hamiltonian condition means that

๐œ„๐’˜๐œ” = ๐‘‘๐บfor some ๐ถโˆž function ๐บ, and what Noetherโ€™s principle asserts is that this function is anintegral of motion of the system (2.8.16), i.e., satisfies ๐ฟ๐’—๐บ = 0. In other words statedmore succinctly: symmetries of the system (2.8.16) give rise to integrals of motion.

(3) Poincarรฉ recurrence: An important theorem of Poincarรฉ asserts that if the function

๐ปโˆถ ๐‘2๐‘› โ†’ ๐‘defined by (2.8.22) is proper then every trajectory of the system (2.8.16) returns arbi-trarily close to its initial position at some positive time ๐‘ก0, and, in fact, does this not justonce but does so infinitely often. We sketch a proof of this theorem, using (2.8.20), inthe next chapter.

Exercises for ยง2.8Exercise 2.8.i. Let ๐’—๐ป be the vector field (2.8.15). Prove that div(๐’—๐ป) = 0.

Exercise 2.8.ii. Let ๐‘ˆ be an open subset of ๐‘๐‘š, ๐‘“๐‘ก โˆถ ๐‘ˆ โ†’ ๐‘ˆ a one-parameter group ofdiffeomorphisms of ๐‘ˆ and ๐’— the infinitesmal generator of this group. Show that if ๐›ผ is a ๐‘˜-form on ๐‘ˆ then ๐‘“โ‹†๐‘ก ๐›ผ = ๐›ผ for all ๐‘ก if and only if ๐ฟ๐’—๐›ผ = 0 (i.e., generalize to arbitrary ๐‘˜-formsthe result we proved above for the Darboux form).

Exercise 2.8.iii (the harmonic oscillator). Let๐ป be the functionโˆ‘๐‘›๐‘–=1๐‘š๐‘–(๐‘ฅ2๐‘– +๐‘ฆ2๐‘– )where the๐‘š๐‘–โ€™s are positive constants.(1) Compute the integral curves of ๐’—๐ป.(2) Poincarรฉ recurrence: Show that if (๐‘ฅ(๐‘ก), ๐‘ฆ(๐‘ก)) is an integral curvewith initial point (๐‘ฅ0, ๐‘ฆ0) โ‰”(๐‘ฅ(0), ๐‘ฆ(0)) and ๐‘ˆ an arbitrarily small neighborhood of (๐‘ฅ0, ๐‘ฆ0), then for every ๐‘ > 0there exists a ๐‘ก > ๐‘ such that (๐‘ฅ(๐‘ก), ๐‘ฆ(๐‘ก)) โˆˆ ๐‘ˆ.

Exercise 2.8.iv. Let ๐‘ˆ be an open subset of ๐‘2๐‘› and let๐ป1, ๐ป2 โˆˆ ๐ถโˆž(๐‘ˆ). Show that

[๐’—๐ป1 , ๐’—๐ป2] = ๐’—๐ปwhere

(2.8.25) ๐ป =๐‘›โˆ‘๐‘–=1

๐œ•๐ป1๐œ•๐‘ฅ๐‘–๐œ•๐ป2๐œ•๐‘ฆ๐‘–โˆ’ ๐œ•๐ป2๐œ•๐‘ฅ๐‘–๐œ•๐ป1๐œ•๐‘ฆ๐‘–

.

Page 80: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

68 Chapter 2: Differential Forms

Exercise 2.8.v. The expression (2.8.25) is known as the Poisson bracket of๐ป1 and๐ป2, de-noted by {๐ป1, ๐ป2}. Show that it is anti-symmetric

{๐ป1, ๐ป2} = โˆ’{๐ป2, ๐ป1}and satisfies the Jacobi identity

0 = {๐ป1, {๐ป2, ๐ป3}} + {๐ป2, {๐ป3, ๐ป1}} + {๐ป3, {๐ป1, ๐ป2}} .Exercise 2.8.vi. Show that

{๐ป1, ๐ป2} = ๐ฟ๐’—๐ป1๐ป2 = โˆ’๐ฟ๐’—๐ป2๐ป1 .

Exercise 2.8.vii. Prove that the following three properties are equivalent.(1) {๐ป1, ๐ป2} = 0.(2) ๐ป1 is an integral of motion of ๐’—2.(3) ๐ป2 is an integral of motion of ๐’—1.Exercise 2.8.viii. Verify Noetherโ€™s principle.

Exercise 2.8.ix (conservation of linearmomentum). Suppose the potential๐‘‰ in equation (2.8.22)is invariant under the one-parameter group of translations

๐‘‡๐‘ก(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) = (๐‘ฅ1 + ๐‘ก,โ€ฆ, ๐‘ฅ๐‘› + ๐‘ก) .(1) Show that the function (2.8.22) is invariant under the group of diffeomorphisms

๐›พ๐‘ก(๐‘ฅ, ๐‘ฆ) = (๐‘‡๐‘ก๐‘ฅ, ๐‘ฆ) .(2) Show that the infinitesmal generator of this group is the Hamiltonian vector field ๐’—๐บ

where ๐บ = โˆ‘๐‘›๐‘–=1 ๐‘ฆ๐‘–.(3) Conclude from Noetherโ€™s principle that this function is an integral of the vector field๐’—๐ป, i.e., that โ€œtotal linear momentโ€ is conserved.

(4) Show that โ€œtotal linear momentumโ€ is conserved if ๐‘‰ is the Coulomb potential

โˆ‘๐‘–โ‰ ๐‘—

๐‘š๐‘–|๐‘ฅ๐‘– โˆ’ ๐‘ฅ๐‘—|

.

Exercise 2.8.x. Let ๐‘…๐‘–๐‘ก โˆถ ๐‘2๐‘› โ†’ ๐‘2๐‘› be the rotation which fixes the variables, (๐‘ฅ๐‘˜, ๐‘ฆ๐‘˜), ๐‘˜ โ‰  ๐‘–and rotates (๐‘ฅ๐‘–, ๐‘ฆ๐‘–) by the angle, ๐‘ก:

๐‘…๐‘–๐‘ก(๐‘ฅ๐‘–, ๐‘ฆ๐‘–) = (cos ๐‘ก ๐‘ฅ๐‘– + sin ๐‘ก ๐‘ฆ๐‘– ,โˆ’ sin ๐‘ก ๐‘ฅ๐‘– + cos ๐‘ก ๐‘ฆ๐‘–) .(1) Show that ๐‘…๐‘–๐‘ก, โˆ’โˆž < ๐‘ก < โˆž, is a one-parameter group of symplectomorphisms.(2) Show that its generator is the Hamiltonian vector field, ๐’—๐ป๐‘– , where๐ป๐‘– = (๐‘ฅ2๐‘– + ๐‘ฆ2๐‘– )/2.(3) Let๐ป be the harmonic oscillator Hamiltonian from Exercise 2.8.iii. Show that the ๐‘…๐‘—๐‘ก โ€™s

preserve๐ป.(4) What does Noetherโ€™s principle tell one about the classical mechanical system with en-

ergy function๐ป?Exercise 2.8.xi. Show that if๐‘ˆ is an open subset of๐‘2๐‘› and ๐’— is a symplectic vector field on๐‘ˆthen for every point ๐‘0 โˆˆ ๐‘ˆ there exists a neighborhood๐‘ˆ0 of ๐‘0 onwhich ๐’— is Hamiltonian.

Exercise 2.8.xii. Deduce from Exercises 2.8.iv and 2.8.xi that if ๐’—1 and ๐’—2 are symplecticvector fields on an open subset ๐‘ˆ of ๐‘2๐‘› their Lie bracket [๐’—1, ๐’—2] is a Hamiltonian vectorfield.

Exercise 2.8.xiii. Let ๐›ผ = โˆ‘๐‘›๐‘–=1 ๐‘ฆ๐‘–๐‘‘๐‘ฅ๐‘–.(1) Show that ๐œ” = โˆ’๐‘‘๐›ผ.

Page 81: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง2.8 Symplectic geometry & classical mechanics 69

(2) Show that if ๐›ผ1 is any one-form on ๐‘2๐‘› with the property ๐œ” = โˆ’๐‘‘๐›ผ1, then๐›ผ = ๐›ผ1 + ๐‘‘๐น

for some ๐ถโˆž function ๐น.(3) Show that ๐›ผ = ๐œ„๐’˜๐œ” where ๐’˜ is the vector field

๐’˜ โ‰” โˆ’๐‘›โˆ‘๐‘–=1๐‘ฆ๐‘–๐œ•๐œ•๐‘ฆ๐‘–

.

Exercise 2.8.xiv. Let ๐‘ˆ be an open subset of ๐‘2๐‘› and ๐’— a vector field on ๐‘ˆ. Show that ๐’— hasthe property, ๐ฟ๐’—๐›ผ = 0, if and only if

๐œ„๐’—๐œ” = ๐‘‘๐œ„๐’—๐›ผ .In particular conclude that if ๐ฟ๐’—๐›ผ = 0 then ๐‘ฃ is Hamiltonian.

Hint: Equation (2.8.2).

Exercise 2.8.xv. Let๐ป be the function

(2.8.26) ๐ป(๐‘ฅ, ๐‘ฆ) =๐‘›โˆ‘๐‘–=1๐‘“๐‘–(๐‘ฅ)๐‘ฆ๐‘– ,

where the ๐‘“๐‘–โ€™s are ๐ถโˆž functions on ๐‘๐‘›. Show that(2.8.27) ๐ฟ๐’—๐ป๐›ผ = 0 .

Exercise 2.8.xvi. Conversely show that if ๐ป is any ๐ถโˆž function on ๐‘2๐‘› satisfying equa-tion (2.8.27) it has to be a function of the form (2.8.26).Hints:(1) Let ๐’— be a vector field on ๐‘2๐‘› satisfying ๐ฟ๐’—๐›ผ = 0. By equation (2.8.16) we have ๐’— = ๐’—๐ป,

where๐ป = ๐œ„๐’—๐›ผ.(2) Show that๐ป has to satisfy the equation

๐‘›โˆ‘๐‘–=1๐‘ฆ๐‘–๐œ•๐ป๐œ•๐‘ฆ๐‘–= ๐ป .

(3) Conclude that if๐ป๐‘Ÿ = ๐œ•๐ป๐œ•๐‘ฆ๐‘Ÿ then๐ป๐‘Ÿ has to satisfy the equation๐‘›โˆ‘๐‘–=1๐‘ฆ๐‘–๐œ•๐œ•๐‘ฆ๐‘–๐ป๐‘Ÿ = 0 .

(4) Conclude that๐ป๐‘Ÿ has to be constant along the rays (๐‘ฅ, ๐‘ก๐‘ฆ), for 0 โ‰ค ๐‘ก < โˆž.(5) Conclude finally that๐ป๐‘Ÿ has to be a function of ๐‘ฅ alone, i.e., does not depend on ๐‘ฆ.Exercise 2.8.xvii. Show that if ๐’—๐‘๐‘› is a vector field

๐‘›โˆ‘๐‘–=1๐‘“๐‘–(๐‘ฅ)๐œ•๐œ•๐‘ฅ๐‘–

on configuration space there is a unique lift of ๐’—๐‘๐‘› to phase space

๐’— =๐‘›โˆ‘๐‘–=1๐‘“๐‘–(๐‘ฅ)๐œ•๐œ•๐‘ฅ๐‘–+ ๐‘”๐‘–(๐‘ฅ, ๐‘ฆ)

๐œ•๐œ•๐‘ฆ๐‘–

satisfying ๐ฟ๐’—๐›ผ = 0.

Page 82: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

Page 83: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

CHAPTER 3

Integration of Forms

3.1. Introduction

The change of variables formula asserts that if ๐‘ˆ and ๐‘‰ are open subsets of ๐‘๐‘› and๐‘“โˆถ ๐‘ˆ โ†’ ๐‘‰ a๐ถ1 diffeomorphism then, for every continuous function๐œ™โˆถ ๐‘‰ โ†’ ๐‘ the integral

โˆซ๐‘‰๐œ™(๐‘ฆ)๐‘‘๐‘ฆ

exists if and only if the integral

โˆซ๐‘ˆ(๐œ™ โˆ˜ ๐‘“)(๐‘ฅ) |det๐ท๐‘“(๐‘ฅ)|๐‘‘๐‘ฅ

exists, and if these integrals exist they are equal. Proofs of this can be found in [10] or [12].This chapter contains an alternative proof of this result. This proof is due to Peter Lax. Ourversion of his proof in ยง 3.5 below makes use of the theory of differential forms; but, asLax shows in the article [8] (which we strongly recommend as collateral reading for thiscourse), references to differential forms can be avoided, and the proof described in ยง3.5 canbe couched entirely in the language of elementary multivariable calculus.

The virtue of Laxโ€™s proof is that is allows one to prove a version of the change of variablestheorem for other mappings besides diffeomorphisms, and involves a topological invariant,the degree of a map, which is itself quite interesting. Some properties of this invariant, andsome topological applications of the change of variables formula will be discussed in ยง3.6of these notes.

Remark 3.1.1. The proof we are about to describe is somewhat simpler and more transpar-ent if we assume that ๐‘“ is a ๐ถโˆž diffeomorphism. Weโ€™ll henceforth make this assumption.

3.2. The Poincarรฉ lemma for compactly supported forms on rectangles

Definition 3.2.1. Let ๐œˆ be a ๐‘˜-form on ๐‘๐‘›. We define the support of ๐œˆ bysupp(๐œˆ) โ‰” { ๐‘ฅ โˆˆ ๐‘๐‘› | ๐œˆ๐‘ฅ โ‰  0 } ,

and we say that ๐œˆ is compactly supported if supp(๐œˆ) is compact.We will denote by ๐›บ๐‘˜๐‘ (๐‘๐‘›) the set of all ๐ถโˆž ๐‘˜-forms which are compactly supported,

and if๐‘ˆ is an open subset of ๐‘๐‘›, we will denote by๐›บ๐‘˜๐‘ (๐‘ˆ) the set of all compactly supported๐‘˜-forms whose support is contained in ๐‘ˆ.

Let ๐œ” = ๐‘“๐‘‘๐‘ฅ1 โˆงโ‹ฏโˆง ๐‘‘๐‘ฅ๐‘› be a compactly supported ๐‘›-form with ๐‘“ โˆˆ ๐ถโˆž0 (๐‘๐‘›). We willdefine the integral of ๐œ” over ๐‘๐‘›:

โˆซ๐‘๐‘›๐œ”

to be the usual integral of ๐‘“ over ๐‘๐‘›

โˆซ๐‘๐‘›๐‘“๐‘‘๐‘ฅ .

71

Page 84: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

72 Chapter 3: Integration of Forms

(Since ๐‘“ is ๐ถโˆž and compactly supported this integral is well-defined.)Now let ๐‘„ be the rectangle

[๐‘Ž1, ๐‘1] ร— โ‹ฏ ร— [๐‘Ž๐‘›, ๐‘๐‘›] .The Poincarรฉ lemma for rectangles asserts:

Theorem3.2.2 (Poincarรฉ lemma for rectangles). Let๐œ” be a compactly supported ๐‘›-formwithsupp(๐œ”) โŠ‚ int(๐‘„). Then the following assertions are equivalent.(1) โˆซ๐œ” = 0.(2) There exists a compactly supported (๐‘› โˆ’ 1)-form ๐œ‡ with supp(๐œ‡) โŠ‚ int(๐‘„) satisfying ๐‘‘๐œ‡ =๐œ”.

We will first prove that (2)โ‡’(1).

Proof that (2)โ‡’(1). Let

๐œ‡ =๐‘›โˆ‘๐‘–=1๐‘“๐‘– ๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘– โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› ,

(the โ€œhatโ€ over the ๐‘‘๐‘ฅ๐‘– meaning that ๐‘‘๐‘ฅ๐‘– has to be omitted from the wedge product). Then

๐‘‘๐œ‡ =๐‘›โˆ‘๐‘–=1(โˆ’1)๐‘–โˆ’1 ๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘–๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› ,

and to show that the integral of ๐‘‘๐œ‡ is zero it suffices to show that each of the integrals

(3.2.2)๐‘– โˆซ๐‘๐‘›๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘–๐‘‘๐‘ฅ

is zero. By Fubini we can compute (3.2.2)๐‘– by first integrating with respect to the variable,๐‘ฅ๐‘–, and then with respect to the remaining variables. But

โˆซ ๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘–๐‘‘๐‘ฅ๐‘– = ๐‘“(๐‘ฅ)|

๐‘ฅ๐‘–=๐‘๐‘–

๐‘ฅ๐‘–=๐‘Ž๐‘–= 0

since ๐‘“๐‘– is supported on ๐‘ˆ. โ–ก

We will prove that (1)โ‡’(2) by proving a somewhat stronger result. Let ๐‘ˆ be an opensubset of ๐‘๐‘š. Weโ€™ll say that ๐‘ˆ has property ๐‘ƒ if every form ๐œ” โˆˆ ๐›บ๐‘š๐‘ (๐‘ˆ) such that โˆซ๐‘ˆ ๐œ” = 0we have ๐œ” โˆˆ ๐‘‘๐›บ๐‘šโˆ’1๐‘ (๐‘ˆ). We will prove:

Theorem 3.2.3. Let ๐‘ˆ be an open subset of ๐‘๐‘›โˆ’1 and ๐ด โŠ‚ ๐‘ an open interval. Then if ๐‘ˆ hasproperty ๐‘ƒ, ๐‘ˆ ร— ๐ด does as well.

Remark 3.2.4. It is very easy to see that the open interval ๐ด itself has property ๐‘ƒ. (SeeExercise 3.2.i below.) Hence it follows by induction from Theorem 3.2.3 that

int๐‘„ = ๐ด1 ร—โ‹ฏ ร— ๐ด๐‘› , ๐ด๐‘– = (๐‘Ž๐‘–, ๐‘๐‘–)has property ๐‘ƒ, and this proves โ€œ(1)โ‡’(2)โ€.

Proof of Theorem 3.2.3. Let (๐‘ฅ, ๐‘ก) = (๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›โˆ’1, ๐‘ก) be product coordinates on๐‘ˆร—๐ด. Given๐œ” โˆˆ ๐›บ๐‘›๐‘ (๐‘ˆร—๐ด)we can express๐œ” as a wedge product, ๐‘‘๐‘กโˆง๐›ผwith ๐›ผ = ๐‘“(๐‘ฅ, ๐‘ก) ๐‘‘๐‘ฅ1โˆงโ‹ฏโˆง๐‘‘๐‘ฅ๐‘›โˆ’1and ๐‘“ โˆˆ ๐ถโˆž0 (๐‘ˆ ร— ๐ด). Let ๐œƒ โˆˆ ๐›บ๐‘›โˆ’1๐‘ (๐‘ˆ) be the form

(3.2.5) ๐œƒ = (โˆซ๐ด๐‘“(๐‘ฅ, ๐‘ก)๐‘‘๐‘ก) ๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›โˆ’1 .

Page 85: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง3.2 The Poincarรฉ lemma for compactly supported forms on rectangles 73

Thenโˆซ๐‘๐‘›โˆ’1๐œƒ = โˆซ๐‘๐‘›๐‘“(๐‘ฅ, ๐‘ก)๐‘‘๐‘ฅ๐‘‘๐‘ก = โˆซ

๐‘๐‘›๐œ”

so if the integral of ๐œ” is zero, the integral of ๐œƒ is zero. Hence since ๐‘ˆ has property ๐‘ƒ, ๐œƒ = ๐‘‘๐œˆfor some ๐œˆ โˆˆ ๐›บ๐‘›โˆ’2๐‘ (๐‘ˆ). Let ๐œŒ โˆˆ ๐ถโˆž(๐‘) be a bump function which is supported on ๐ด andwhose integral over ๐ด is 1. Setting

๐œ… = โˆ’๐œŒ(๐‘ก)๐‘‘๐‘ก โˆง ๐œˆwe have

๐‘‘๐œ… = ๐œŒ(๐‘ก)๐‘‘๐‘ก โˆง ๐‘‘๐œˆ = ๐œŒ(๐‘ก)๐‘‘๐‘ก โˆง ๐œƒ ,and hence

๐œ” โˆ’ ๐‘‘๐œ… = ๐‘‘๐‘ก โˆง (๐›ผ โˆ’ ๐œŒ(๐‘ก)๐œƒ)= ๐‘‘๐‘ก โˆง ๐‘ข(๐‘ฅ, ๐‘ก)๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›โˆ’1

where๐‘ข(๐‘ฅ, ๐‘ก) = ๐‘“(๐‘ฅ, ๐‘ก) โˆ’ ๐œŒ(๐‘ก) โˆซ

๐ด๐‘“(๐‘ฅ, ๐‘ก)๐‘‘๐‘ก

by (3.2.5). Thus

(3.2.6) โˆซ๐‘ข(๐‘ฅ, ๐‘ก) ๐‘‘๐‘ก = 0 .

Let ๐‘Ž and ๐‘ be the end points of ๐ด and let

(3.2.7) ๐‘ฃ(๐‘ฅ, ๐‘ก) = โˆซ๐‘ก

๐‘Ž๐‘ข(๐‘ฅ, ๐‘ ) ๐‘‘๐‘  .

By equation (3.2.6) ๐‘ฃ(๐‘Ž, ๐‘ฅ) = ๐‘ฃ(๐‘, ๐‘ฅ) = 0, so ๐‘ฃ is in ๐ถโˆž0 (๐‘ˆ ร— ๐ด) and by (3.2.7), ๐œ•๐‘ฃ/๐œ•๐‘ก = ๐‘ข.Hence if we let ๐›พ be the form, ๐‘ฃ(๐‘ฅ, ๐‘ก) ๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›โˆ’1, we have:

๐‘‘๐›พ = ๐‘‘๐‘ก โˆง ๐‘ข(๐‘ฅ, ๐‘ก) ๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›โˆ’1 = ๐œ” โˆ’ ๐‘‘๐œ…and

๐œ” = ๐‘‘(๐›พ + ๐œ…) .Since ๐›พ and ๐œ… are both in๐›บ๐‘›โˆ’1๐‘ (๐‘ˆ ร—๐ด) this proves that ๐œ” is in ๐‘‘๐›บ๐‘›โˆ’1๐‘ (๐‘ˆ ร—๐ด) and hence

that ๐‘ˆ ร— ๐ด has property ๐‘ƒ. โ–ก

Exercises for ยง3.2Exercise 3.2.i. Let ๐‘“โˆถ ๐‘ โ†’ ๐‘ be a compactly supported function of class ๐ถ๐‘Ÿ with supporton the interval (๐‘Ž, ๐‘). Show that the following are equivalent.

(1) โˆซ๐‘๐‘Ž ๐‘“(๐‘ฅ)๐‘‘๐‘ฅ = 0.(2) There exists a function ๐‘”โˆถ ๐‘ โ†’ ๐‘ of class ๐ถ๐‘Ÿ+1 with support on (๐‘Ž, ๐‘) with ๐‘‘๐‘”๐‘‘๐‘ฅ = ๐‘“.

Hint: Show that the function

๐‘”(๐‘ฅ) = โˆซ๐‘ฅ

๐‘Ž๐‘“(๐‘ )๐‘‘๐‘ 

is compactly supported.

Exercise 3.2.ii. Let ๐‘“ = ๐‘“(๐‘ฅ, ๐‘ฆ) be a compactly supported function on ๐‘๐‘˜ ร— ๐‘โ„“ with theproperty that the partial derivatives

๐œ•๐‘“๐œ•๐‘ฅ๐‘–(๐‘ฅ, ๐‘ฆ) , for ๐‘– = 1,โ€ฆ, ๐‘˜ ,

Page 86: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

74 Chapter 3: Integration of Forms

exist and are continuous as functions of ๐‘ฅ and ๐‘ฆ. Prove the following โ€œdifferentiation underthe integral signโ€ theorem (which we implicitly used in our proof of Theorem 3.2.3).

Theorem 3.2.8. The function ๐‘”(๐‘ฅ) โ‰” โˆซ๐‘โ„“ ๐‘“(๐‘ฅ, ๐‘ฆ)๐‘‘๐‘ฆ is of class ๐ถ1 and๐œ•๐‘”๐œ•๐‘ฅ๐‘–(๐‘ฅ) = โˆซ ๐œ•๐‘“

๐œ•๐‘ฅ๐‘–(๐‘ฅ, ๐‘ฆ)๐‘‘๐‘ฆ .

Hints: For ๐‘ฆ fixed and โ„Ž โˆˆ ๐‘๐‘˜,๐‘“(๐‘ฅ + โ„Ž, ๐‘ฆ) โˆ’ ๐‘“(๐‘ฅ, ๐‘ฆ) = ๐ท๐‘ฅ๐‘“(๐‘, ๐‘ฆ)โ„Ž

for some point ๐‘ on the line segment joining ๐‘ฅ to ๐‘ฅ+โ„Ž. Using the fact that๐ท๐‘ฅ๐‘“ is continuousas a function of ๐‘ฅ and ๐‘ฆ and compactly supported, conclude the following.

Lemma 3.2.9. Given ๐œ€ > 0 there exists a ๐›ฟ > 0 such that for |โ„Ž| โ‰ค ๐›ฟ|๐‘“(๐‘ฅ + โ„Ž, ๐‘ฆ) โˆ’ ๐‘“(๐‘ฅ, ๐‘ฆ) โˆ’ ๐ท๐‘ฅ๐‘“(๐‘ฅ, ๐‘ฆ)โ„Ž| โ‰ค ๐œ€|โ„Ž| .

Now let ๐‘„ โŠ‚ ๐‘โ„“ be a rectangle with supp(๐‘“) โŠ‚ ๐‘๐‘˜ ร— ๐‘„ and show that

|๐‘”(๐‘ฅ + โ„Ž) โˆ’ ๐‘”(๐‘ฅ) โˆ’ (โˆซ๐ท๐‘ฅ๐‘“(๐‘ฅ, ๐‘ฆ) ๐‘‘๐‘ฆ) โ„Ž| โ‰ค ๐œ€ vol(๐‘„)|โ„Ž| .

Conclude that ๐‘” is differentiable at ๐‘ฅ and that its derivative is

โˆซ๐ท๐‘ฅ๐‘“(๐‘ฅ, ๐‘ฆ)๐‘‘๐‘ฆ .

Exercise 3.2.iii. Let ๐‘“โˆถ ๐‘๐‘˜ร—๐‘โ„“ โ†’ ๐‘ be a compactly supported continuous function. Provethe following theorem.

Theorem 3.2.10. If all the partial derivatives of ๐‘“(๐‘ฅ, ๐‘ฆ) with respect to ๐‘ฅ of order โ‰ค ๐‘Ÿ existand are continuous as functions of ๐‘ฅ and ๐‘ฆ the function

๐‘”(๐‘ฅ) = โˆซ๐‘“(๐‘ฅ, ๐‘ฆ)๐‘‘๐‘ฆ

is of class ๐ถ๐‘Ÿ.Exercise 3.2.iv. Let๐‘ˆ be an open subset of ๐‘๐‘›โˆ’1,๐ด โŠ‚ ๐‘ an open interval and (๐‘ฅ, ๐‘ก) productcoordinates on ๐‘ˆ ร— ๐ด. Recall from Exercise 2.3.v that every form ๐œ” โˆˆ ๐›บ๐‘˜(๐‘ˆ ร— ๐ด) can bewritten uniquely as a sum ๐œ” = ๐‘‘๐‘ก โˆง ๐›ผ + ๐›ฝ where ๐›ผ and ๐›ฝ are reduced, i.e., do not contain afactor of ๐‘‘๐‘ก.(1) Show that if ๐œ” is compactly supported on ๐‘ˆ ร— ๐ด then so are ๐›ผ and ๐›ฝ.(2) Let ๐›ผ = โˆ‘๐ผ ๐‘“๐ผ(๐‘ฅ, ๐‘ก)๐‘‘๐‘ฅ๐ผ. Show that the form

(3.2.11) ๐œƒ = โˆ‘๐ผ(โˆซ๐ด๐‘“๐ผ(๐‘ฅ, ๐‘ก) ๐‘‘๐‘ก) ๐‘‘๐‘ฅ๐ผ

is in ๐›บ๐‘˜โˆ’1๐‘ (๐‘ˆ).(3) Show that if ๐‘‘๐œ” = 0, then ๐‘‘๐œƒ = 0.

Hint: By equation (3.2.11),

๐‘‘๐œƒ = โˆ‘๐ผ,๐‘–(โˆซ๐ด

๐œ•๐‘“๐ผ๐œ•๐‘ฅ๐‘–(๐‘ฅ, ๐‘ก) ๐‘‘๐‘ก) ๐‘‘๐‘ฅ๐‘– โˆง ๐‘‘๐‘ฅ๐ผ = โˆซ

๐ด(๐‘‘๐‘ˆ๐›ผ) ๐‘‘๐‘ก

and by equation (2.4.19) we have ๐‘‘๐‘ˆ๐›ผ =๐‘‘๐›ฝ๐‘‘๐‘ก .

Exercise 3.2.v. In Exercise 3.2.iv, show that if ๐œƒ is in ๐‘‘๐›บ๐‘˜โˆ’2๐‘ (๐‘ˆ) then ๐œ” is in ๐‘‘๐›บ๐‘˜โˆ’1๐‘ (๐‘ˆ ร— ๐ด)as follows.

Page 87: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง3.2 The Poincarรฉ lemma for compactly supported forms on rectangles 75

(1) Let ๐œƒ = ๐‘‘๐œˆ, with ๐œˆ โˆˆ ๐›บ๐‘˜โˆ’2๐‘ (๐‘ˆ) and let๐œŒ โˆˆ ๐ถโˆž(๐‘) be a bump functionwhich is supportedon ๐ด and whose integral over ๐ด is one. Setting ๐‘˜ = โˆ’๐œŒ(๐‘ก)๐‘‘๐‘ก โˆง ๐œˆ show that

๐œ” โˆ’ ๐‘‘๐œ… = ๐‘‘๐‘ก โˆง (๐›ผ โˆ’ ๐œŒ(๐‘ก)๐œƒ) + ๐›ฝ= ๐‘‘๐‘ก โˆง (โˆ‘๐ผ ๐‘ข๐ผ(๐‘ฅ, ๐‘ก)๐‘‘๐‘ฅ๐ผ) + ๐›ฝ ,

where

๐‘ข๐ผ(๐‘ฅ, ๐‘ก) = ๐‘“๐ผ(๐‘ฅ, ๐‘ก) โˆ’ ๐œŒ(๐‘ก) โˆซ๐ด๐‘“๐ผ(๐‘ฅ, ๐‘ก)๐‘‘๐‘ก .

(2) Let ๐‘Ž and ๐‘ be the end points of ๐ด and let

๐‘ฃ๐ผ(๐‘ฅ, ๐‘ก) = โˆซ๐‘ก

๐‘Ž๐‘ข๐ผ(๐‘ฅ, ๐‘ก) ๐‘‘๐‘ก .

Show that the form โˆ‘๐ผ ๐‘ฃ๐ผ(๐‘ฅ, ๐‘ก) ๐‘‘๐‘ฅ๐ผ is in ๐›บ๐‘˜โˆ’1๐‘ (๐‘ˆ ร— ๐ด) and that

๐‘‘๐›พ = ๐œ” โˆ’ ๐‘‘๐œ… โˆ’ ๐›ฝ + ๐‘‘๐‘ˆ๐›พ .

(3) Conclude that the form ๐œ” โˆ’ ๐‘‘(๐œ… + ๐›พ) is reduced.(4) Prove that if ๐œ† โˆˆ ๐›บ๐‘˜๐‘ (๐‘ˆ ร— ๐ด) is reduced and ๐‘‘๐œ† = 0 then ๐œ† = 0.

Hint: Let ๐œ† = โˆ‘๐ผ ๐‘”๐ผ(๐‘ฅ, ๐‘ก) ๐‘‘๐‘ฅ๐ผ. Show that ๐‘‘๐œ† = 0 โ‡’ ๐œ•๐œ•๐‘ก๐‘”๐ผ(๐‘ฅ, ๐‘ก) = 0 and exploit thefact that for fixed ๐‘ฅ, ๐‘”๐ผ(๐‘ฅ, ๐‘ก) is compactly supported in ๐‘ก.

Exercise 3.2.vi. Let๐‘ˆ be an open subset of๐‘๐‘š.We say that๐‘ˆ has property๐‘ƒ๐‘˜, for 1 โ‰ค ๐‘˜ < ๐‘š,if every closed ๐‘˜-form ๐œ” โˆˆ ๐›บ๐‘˜๐‘ (๐‘ˆ) is in ๐‘‘๐›บ๐‘˜โˆ’1๐‘ (๐‘ˆ). Prove that if the open set ๐‘ˆ โŠ‚ ๐‘๐‘›โˆ’1 inExercise 3.2.iv has property ๐‘ƒ๐‘˜โˆ’1 then ๐‘ˆ ร— ๐ด has property ๐‘ƒ๐‘˜.

Exercise 3.2.vii. Show that if ๐‘„ is the rectangle [๐‘Ž1, ๐‘1] ร— โ‹ฏ ร— [๐‘Ž๐‘›, ๐‘๐‘›] and ๐‘ˆ = int๐‘„ then๐‘ˆ has property ๐‘ƒ๐‘˜.

Exercise 3.2.viii. Let๐‡๐‘› be the half-space

(3.2.12) ๐‡๐‘› โ‰” { (๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) โˆˆ ๐‘๐‘› | ๐‘ฅ1 โ‰ค 0 }

and let ๐œ” โˆˆ ๐›บ๐‘›๐‘ (๐‘๐‘›) be the ๐‘›-form ๐œ” โ‰” ๐‘“๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› with ๐‘“ โˆˆ ๐ถโˆž0 (๐‘๐‘›). Define

(3.2.13) โˆซ๐‡๐‘›๐œ” โ‰” โˆซ

๐‡๐‘›๐‘“(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›)๐‘‘๐‘ฅ1โ‹ฏ๐‘‘๐‘ฅ๐‘›

where the right hand side is the usual Riemann integral of ๐‘“ over ๐‡๐‘›. (This integral makessense since ๐‘“ is compactly supported.) Show that if ๐œ” = ๐‘‘๐œ‡ for some ๐œ‡ โˆˆ ๐›บ๐‘›โˆ’1๐‘ (๐‘๐‘›) then

(3.2.14) โˆซ๐‡๐‘›๐œ” = โˆซ๐‘๐‘›โˆ’1๐œ„โ‹†๐œ‡

where ๐œ„ โˆถ ๐‘๐‘›โˆ’1 โ†’ ๐‘๐‘› is the inclusion map

(๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) โ†ฆ (0, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) .

Hint: Let ๐œ‡ = โˆ‘๐‘– ๐‘“๐‘– ๐‘‘๐‘ฅ1 โˆง โ‹ฏ๐‘‘๐‘ฅ๐‘–โ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›. Mimicking the โ€œ(2)โ‡’(1)โ€ part of the proofof Theorem 3.2.2 show that the integral (3.2.13) is the integral over ๐‘๐‘›โˆ’1 of the function

โˆซ0

โˆ’โˆž

๐œ•๐‘“1๐œ•๐‘ฅ1(๐‘ฅ1, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›)๐‘‘๐‘ฅ1 .

Page 88: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

76 Chapter 3: Integration of Forms

3.3. The Poincarรฉ lemma for compactly supported forms on open subsets of ๐‘๐‘›

In this section we will generalize Theorem 3.2.2 to arbitrary connected open subsets of๐‘๐‘›.Theorem3.3.1 (Poincarรฉ lemma for compactly supported forms). Let๐‘ˆ be a connected opensubset of ๐‘๐‘› and let ๐œ” be a compactly supported ๐‘›-form with supp(๐œ”) โŠ‚ ๐‘ˆ. The the followingassertions are equivalent:(1) โˆซ๐‘๐‘› ๐œ” = 0.(2) There exists a compactly supported (๐‘› โˆ’ 1)-form ๐œ‡ with supp ๐œ‡ โŠ‚ ๐‘ˆ and ๐œ” = ๐‘‘๐œ‡.Proof that (2)โ‡’(1). The support of ๐œ‡ is contained in a large rectangle, so the integral of ๐‘‘๐œ‡is zero by Theorem 3.2.2. โ–กProof that (1)โ‡’(2). Let ๐œ”1 and ๐œ”2 be compactly supported ๐‘›-forms with support in ๐‘ˆ. Wewill write

๐œ”1 โˆผ ๐œ”2as shorthand notation for the statement: There exists a compactly supported (๐‘› โˆ’ 1)-form,๐œ‡, with support in ๐‘ˆ and with ๐œ”1 โˆ’ ๐œ”2 = ๐‘‘๐œ‡. We will prove that (1)โ‡’(2) by proving anequivalent statement: Fix a rectangle, ๐‘„0 โŠ‚ ๐‘ˆ and an ๐‘›-form, ๐œ”0, with supp๐œ”0 โŠ‚ ๐‘„0 andintegral equal to one.

Theorem 3.3.2. If ๐œ” is a compactly supported ๐‘›-form with supp(๐œ”) โŠ‚ ๐‘ˆ and ๐‘ = โˆซ๐œ” then๐œ” โˆผ ๐‘๐œ”0.

Thus in particular if ๐‘ = 0, Theorem 3.3.2 says that ๐œ” โˆผ 0 proving that (1)โ‡’(2). โ–กTo prove Theorem 3.3.2 let ๐‘„๐‘– โŠ‚ ๐‘ˆ, ๐‘– = 1, 2, 3,โ€ฆ, be a collection of rectangles with

๐‘ˆ = โ‹ƒโˆž๐‘–=1 int(๐‘„๐‘–) and let ๐œ™๐‘– be a partition of unity with supp(๐œ™๐‘–) โŠ‚ int(๐‘„๐‘–). Replacing ๐œ”by the finite sum โˆ‘๐‘š๐‘–=1 ๐œ™๐‘–๐œ” for ๐‘š large, it suffices to prove Theorem 3.3.2 for each of thesummands ๐œ™๐‘–๐œ”. In other words we can assume that supp(๐œ”) is contained in one of the openrectangles int(๐‘„๐‘–). Denote this rectangle by ๐‘„. We claim that one can join ๐‘„0 to ๐‘„ by asequence of rectangles as in the figure below.

๏ฟฝ

๏ฟฝ0

Figure 3.3.1. A sequence of rectangles joining the rectangles ๐‘„0 and ๐‘„

Lemma3.3.3. There exists a sequence of rectangles๐‘…0,โ€ฆ, ๐‘…๐‘+1 such that๐‘…0 = ๐‘„0,๐‘…๐‘+1 = ๐‘„and int(๐‘…๐‘–) โˆฉ int(๐‘…๐‘–+1) is nonempty.Proof. Denote by ๐ด the set of points, ๐‘ฅ โˆˆ ๐‘ˆ, for which there exists a sequence of rectangles,๐‘…๐‘–, ๐‘– = 0,โ€ฆ,๐‘ + 1 with ๐‘…0 = ๐‘„0, with ๐‘ฅ โˆˆ int๐‘…๐‘+1 and with int๐‘…๐‘– โˆฉ int๐‘…๐‘–+1 nonempty.It is clear that this set is open and that its complement is open; so, by the connectivity of ๐‘ˆ,๐‘ˆ = ๐ด. โ–ก

Page 89: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง3.4 The degree of a differentiable mapping 77

To prove Theorem 3.3.2 with supp๐œ” โŠ‚ ๐‘„, select, for each ๐‘–, a compactly supported๐‘›-form ๐œˆ๐‘– with supp(๐œˆ๐‘–) โŠ‚ int(๐‘…๐‘–) โˆฉ int(๐‘…๐‘–+1) and with โˆซ ๐œˆ๐‘– = 1. The difference, ๐œˆ๐‘– โˆ’ ๐œˆ๐‘–+1is supported in int๐‘…๐‘–+1, and its integral is zero. So by Theorem 3.2.2, ๐œˆ๐‘– โˆผ ๐œˆ๐‘–+1. Similarly,๐œ”0 โˆผ ๐œˆ0 and, setting ๐‘ โ‰” โˆซ๐œ”, we have ๐œ” โˆผ ๐‘๐œˆ๐‘. Thus

๐‘๐œ”0 โˆผ ๐‘๐œˆ0 โˆผ โ‹ฏ โˆผ ๐‘๐œˆ๐‘ = ๐œ”proving the theorem.

3.4. The degree of a differentiable mapping

Definition 3.4.1. Let๐‘ˆ and๐‘‰ be open subsets of๐‘๐‘› and๐‘๐‘˜. A continuous map ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘‰,is proper if for every compact subset ๐พ โŠ‚ ๐‘‰, the preimage ๐‘“โˆ’1(๐พ) is compact in ๐‘ˆ.

Proper mappings have a number of nice properties which will be investigated in theexercises below. One obvious property is that if ๐‘“ is a ๐ถโˆž mapping and ๐œ” is a compactlysupported ๐‘˜-form with support on ๐‘‰, ๐‘“โ‹†๐œ” is a compactly supported ๐‘˜-form with supporton ๐‘ˆ. Our goal in this section is to show that if ๐‘ˆ and ๐‘‰ are connected open subsets of ๐‘๐‘›and๐‘“โˆถ ๐‘ˆ โ†’ ๐‘‰ is a proper๐ถโˆžmapping then there exists a topological invariant of๐‘“, whichwe will call its degree (and denote by deg(๐‘“)), such that the โ€œchange of variablesโ€ formula:

(3.4.2) โˆซ๐‘ˆ๐‘“โ‹†๐œ” = deg(๐‘“) โˆซ

๐‘‰๐œ”

holds for all ๐œ” โˆˆ ๐›บ๐‘›๐‘ (๐‘‰).Before we prove this assertion letโ€™s see what this formula says in coordinates. If

๐œ” = ๐œ™(๐‘ฆ)๐‘‘๐‘ฆ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฆ๐‘›then at ๐‘ฅ โˆˆ ๐‘ˆ

๐‘“โ‹†๐œ” = (๐œ™ โˆ˜ ๐‘“)(๐‘ฅ) det(๐ท๐‘“(๐‘ฅ))๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› .Hence, in coordinates, equation (3.4.2) takes the form

(3.4.3) โˆซ๐‘‰๐œ™(๐‘ฆ)๐‘‘๐‘ฆ = deg(๐‘“) โˆซ

๐‘ˆ๐œ™ โˆ˜ ๐‘“(๐‘ฅ) det(๐ท๐‘“(๐‘ฅ))๐‘‘๐‘ฅ .

Proof of equation (3.4.2). Let ๐œ”0 be a compactly-supported ๐‘›-form with supp(๐œ”0) โŠ‚ ๐‘‰ andwith โˆซ๐œ”0 = 1. If we set deg๐‘“ โ‰” โˆซ๐‘ˆ ๐‘“

โ‹†๐œ”0 then (3.4.2) clearly holds for ๐œ”0. We will provethat (3.4.2) holds for every compactly supported ๐‘›-form ๐œ” with supp(๐œ”) โŠ‚ ๐‘‰. Let ๐‘ โ‰” โˆซ๐‘‰ ๐œ”.Then by Theorem 3.3.1 ๐œ” โˆ’ ๐‘๐œ”0 = ๐‘‘๐œ‡, where ๐œ‡ is a compactly supported (๐‘› โˆ’ 1)-form withsupp ๐œ‡ โŠ‚ ๐‘‰. Hence

๐‘“โ‹†๐œ” โˆ’ ๐‘๐‘“โ‹†๐œ”0 = ๐‘“โ‹†๐‘‘๐œ‡ = ๐‘‘๐‘“โ‹†๐œ‡ ,and by part (1) of Theorem 3.3.1

โˆซ๐‘ˆ๐‘“โ‹†๐œ” = ๐‘โˆซ๐‘“โ‹†๐œ”0 = deg(๐‘“) โˆซ

๐‘‰๐œ” . โ–ก

We will show in ยง3.6 that the degree of ๐‘“ is always an integer and explain why it is aโ€œtopologicalโ€ invariant of ๐‘“.

Proposition 3.4.4. For the moment, however, weโ€™ll content ourselves with pointing out a sim-ple but useful property of this invariant. Let ๐‘ˆ, ๐‘‰ and๐‘Š be connected open subsets of ๐‘๐‘› and๐‘“โˆถ ๐‘ˆ โ†’ ๐‘‰ and ๐‘”โˆถ ๐‘‰ โ†’ ๐‘Š proper ๐ถโˆž maps. Then

(3.4.5) deg(๐‘” โˆ˜ ๐‘“) = deg(๐‘”) deg(๐‘“) .

Page 90: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

78 Chapter 3: Integration of Forms

Proof. Let ๐œ” be a compactly supported ๐‘›-form with support on๐‘Š. Then

(๐‘” โˆ˜ ๐‘“)โ‹†๐œ” = ๐‘”โ‹†๐‘“โ‹†๐œ” ;so

โˆซ๐‘ˆ(๐‘” โˆ˜ ๐‘“)โ‹†๐œ” = โˆซ

๐‘ˆ๐‘”โ‹†(๐‘“โ‹†๐œ”) = deg(๐‘”) โˆซ

๐‘‰๐‘“โ‹†๐œ”

= deg(๐‘”) deg(๐‘“) โˆซ๐‘Š๐œ” . โ–ก

From this multiplicative property it is easy to deduce the following result (which wewill need in the next section).

Theorem 3.4.6. Let ๐ด be a non-singular ๐‘› ร— ๐‘›matrix and ๐‘“๐ด โˆถ ๐‘๐‘› โ†’ ๐‘๐‘› the linear mappingassociated with ๐ด. Then deg(๐‘“๐ด) = +1 if det๐ด is positive and โˆ’1 if det๐ด is negative.

A proof of this result is outlined in Exercises 3.4.v to 3.4.ix below.

Exercises for ยง3.4Exercise 3.4.i. Let๐‘ˆ be an open subset of ๐‘๐‘› and (๐œ™๐‘–)๐‘–โ‰ฅ1 be a partition of unity on๐‘ˆ. Showthat the mapping ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘ defined by

๐‘“ โ‰”โˆžโˆ‘๐‘˜=1๐‘˜๐œ™๐‘˜

is a proper ๐ถโˆž mapping.

Exercise 3.4.ii. Let ๐‘ˆ and ๐‘‰ be open subsets of ๐‘๐‘› and ๐‘๐‘˜ and let ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘‰ be a propercontinuous mapping. Prove:

Theorem 3.4.7. If ๐ต is a compact subset of ๐‘‰ and ๐ด = ๐‘“โˆ’1(๐ต) then for every open subset ๐‘ˆ0with ๐ด โŠ‚ ๐‘ˆ0 โŠ‚ ๐‘ˆ, there exists an open subset ๐‘‰0 with ๐ต โŠ‚ ๐‘‰0 โŠ‚ ๐‘‰ and ๐‘“โˆ’1(๐‘‰0) โŠ‚ ๐‘ˆ0.

Hint: Let ๐ถ be a compact subset of ๐‘‰ with ๐ต โŠ‚ int๐ถ. Then the set๐‘Š = ๐‘“โˆ’1(๐ถ) โˆ– ๐‘ˆ0 iscompact; so its image ๐‘“(๐‘Š) is compact. Show that ๐‘“(๐‘Š) and ๐ต are disjoint and let

๐‘‰0 = int๐ถ โˆ– ๐‘“(๐‘Š) .

Exercise 3.4.iii. Show that if ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘‰ is a proper continuous mapping and๐‘‹ is a closedsubset of ๐‘ˆ, then ๐‘“(๐‘‹) is closed.

Hint: Let๐‘ˆ0 = ๐‘ˆโˆ’๐‘‹. Show that if ๐‘ is in๐‘‰โˆ–๐‘“(๐‘‹), then ๐‘“โˆ’1(๐‘) is contained in๐‘ˆ0 andconclude from Exercise 3.4.ii that there exists a neighborhood ๐‘‰0 of ๐‘ such that ๐‘“โˆ’1(๐‘‰0) iscontained in ๐‘ˆ0. Conclude that ๐‘‰0 and ๐‘“(๐‘‹) are disjoint.

Exercise 3.4.iv. Let ๐‘“โˆถ ๐‘๐‘› โ†’ ๐‘๐‘› be the translation ๐‘“(๐‘ฅ) = ๐‘ฅ + ๐‘Ž. Show that deg(๐‘“) = 1.Hint: Let ๐œ“โˆถ ๐‘ โ†’ ๐‘ be a compactly supported ๐ถโˆž function. For ๐‘Ž โˆˆ ๐‘, the identity

(3.4.8) โˆซ๐‘๐œ“(๐‘ก) ๐‘‘๐‘ก = โˆซ

๐‘๐œ“(๐‘ก โˆ’ ๐‘Ž) ๐‘‘๐‘ก

is easy to prove by elementary calculus, and this identity proves the assertion above in di-mension one. Now let

(3.4.9) ๐œ™(๐‘ฅ) = ๐œ“(๐‘ฅ1)โ‹ฏ๐œ“(๐‘ฅ๐‘›)and compute the right and left sides of equation (3.4.3) by Fubiniโ€™s theorem.

Page 91: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง3.4 The degree of a differentiable mapping 79

Exercise 3.4.v. Let ๐œŽ be a permutation of the numbers, 1,โ€ฆ, ๐‘› and let ๐‘“๐œŽ โˆถ ๐‘๐‘› โ†’ ๐‘๐‘› be thediffeomorphism, ๐‘“๐œŽ(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) = (๐‘ฅ๐œŽ(1),โ€ฆ, ๐‘ฅ๐œŽ(๐‘›)). Prove that deg๐‘“๐œŽ = (โˆ’1)๐œŽ.

Hint: Let ๐œ™ be the function (3.4.9). Show that if ๐œ” = ๐œ™(๐‘ฅ) ๐‘‘๐‘ฅ1 โˆงโ‹ฏโˆง ๐‘‘๐‘ฅ๐‘›, then we have๐‘“โ‹†๐œ” = (โˆ’1)๐œŽ๐œ”.Exercise 3.4.vi. Let ๐‘“โˆถ ๐‘๐‘› โ†’ ๐‘๐‘› be the mapping

๐‘“(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) = (๐‘ฅ1 + ๐œ†๐‘ฅ2, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›).Prove that deg(๐‘“) = 1.

Hint: Let ๐œ” = ๐œ™(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) ๐‘‘๐‘ฅ1 โˆง โ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› where ๐œ™โˆถ ๐‘๐‘› โ†’ ๐‘ is compactly supportedand of class ๐ถโˆž. Show that

โˆซ๐‘“โ‹†๐œ” = โˆซ๐œ™(๐‘ฅ1 + ๐œ†๐‘ฅ2, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) ๐‘‘๐‘ฅ1โ‹ฏ๐‘‘๐‘ฅ๐‘›and evaluate the integral on the right by Fubiniโ€™s theorem; i.e., by first integrating with re-spect to the ๐‘ฅ1 variable and then with respect to the remaining variables. Note that by equa-tion (3.4.8)

โˆซ๐‘“(๐‘ฅ1 + ๐œ†๐‘ฅ2, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) ๐‘‘๐‘ฅ1 = โˆซ๐‘“(๐‘ฅ1, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) ๐‘‘๐‘ฅ1 .

Exercise 3.4.vii. Let ๐‘“โˆถ ๐‘๐‘› โ†’ ๐‘๐‘› be the mapping๐‘“(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) = (๐œ†๐‘ฅ1, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›)

with ๐œ† โ‰  0. Show that deg๐‘“ = +1 if ๐œ† is positive and โˆ’1 if ๐œ† is negative.Hint: In dimension 1 this is easy to prove by elementary calculus techniques. Prove it

in ๐‘‘-dimensions by the same trick as in the previous exercise.

Exercise 3.4.viii.(1) Let ๐‘’1,โ€ฆ, ๐‘’๐‘› be the standard basis vectors of ๐‘๐‘› and ๐ด, ๐ต and ๐ถ the linear mappings

defined by

๐ด๐‘’๐‘– = {๐‘’1, ๐‘– = 1โˆ‘๐‘›๐‘—=1 ๐‘Ž๐‘—,๐‘–๐‘’๐‘—, ๐‘– โ‰  1 ,

๐ต๐‘’๐‘– = {โˆ‘๐‘›๐‘—=1 ๐‘๐‘—๐‘’๐‘—, ๐‘– = 1๐‘’๐‘–, ๐‘– โ‰  1 ,

(3.4.10)

๐ถ๐‘’๐‘– = {๐‘’1, ๐‘– = 1๐‘’๐‘– + ๐‘๐‘–๐‘’1, ๐‘– โ‰  1 .

Show that

๐ต๐ด๐ถ๐‘’๐‘– = {โˆ‘๐‘š๐‘—=1 ๐‘๐‘—๐‘’๐‘—, ๐‘– = 1โˆ‘๐‘›๐‘—=1(๐‘Ž๐‘—,๐‘– + ๐‘๐‘–๐‘๐‘—)๐‘’๐‘— + ๐‘๐‘–๐‘1๐‘’1, ๐‘– โ‰  1 .

for ๐‘– > 1.(2) Let ๐ฟโˆถ ๐‘๐‘› โ†’ ๐‘๐‘› be the linear mapping

(3.4.11) ๐ฟ๐‘’๐‘– =๐‘›โˆ‘๐‘—=1โ„“๐‘—,๐‘–๐‘’๐‘— , ๐‘– = 1,โ€ฆ, ๐‘› .

Show that if โ„“1,1 โ‰  0 one can write ๐ฟ as a product, ๐ฟ = ๐ต๐ด๐ถ, where๐ด, ๐ต and๐ถ are linearmappings of the form (3.4.10).

Hint: First solve the equationsโ„“๐‘—,1 = ๐‘๐‘—

Page 92: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

80 Chapter 3: Integration of Forms

for ๐‘— = 1,โ€ฆ, ๐‘›. Next solve the equations

โ„“1,๐‘– = ๐‘1๐‘๐‘–for ๐‘– > 1. Finally, solve the equations

โ„“๐‘—,๐‘– = ๐‘Ž๐‘—,๐‘– + ๐‘๐‘–๐‘๐‘—for ๐‘–, ๐‘— > 1.

(3) Suppose ๐ฟ is invertible. Conclude that ๐ด, ๐ต and ๐ถ are invertible and verify that Theo-rem 3.4.6 holds for ๐ต and ๐ถ using the previous exercises in this section.

(4) Show by an inductive argument that Theorem 3.4.6 holds for ๐ด and conclude from(3.4.5) that it holds for ๐ฟ.

Exercise 3.4.ix. To show that Theorem 3.4.6 holds for an arbitrary linear mapping ๐ฟ of theform (3.4.11) weโ€™ll need to eliminate the assumption: โ„“1,1 โ‰  0. Show that for some ๐‘—, โ„“๐‘—,1 isnonzero, and show how to eliminate this assumption by considering ๐‘“๐œ1,๐‘— โˆ˜ ๐ฟ where ๐œ1,๐‘— isthe transposition 1 โ†” ๐‘—.

Exercise 3.4.x. Here is an alternative proof ofTheorem 3.4.6 which is shorter than the proofoutlined in Exercise 3.4.ix but uses some slightly more sophisticated linear algebra.(1) Prove Theorem 3.4.6 for linear mappings which are orthogonal, i.e., satisfy ๐ฟโŠบ๐ฟ = id๐‘›.

Hints:โ€ข Show that ๐ฟโ‹†(๐‘ฅ21 +โ‹ฏ + ๐‘ฅ2๐‘›) = ๐‘ฅ21 +โ‹ฏ + ๐‘ฅ2๐‘›.โ€ข Show that ๐ฟโ‹†(๐‘‘๐‘ฅ1 โˆง โ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›) is equal to ๐‘‘๐‘ฅ1 โˆง โ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› or โˆ’๐‘‘๐‘ฅ1 โˆง โ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›

depending on whether ๐ฟ is orientation-preserving or orinetation reversing. (SeeExercise 1.2.x.)

โ€ข Let ๐œ“ be as in Exercise 3.4.iv and let ๐œ” be the form

๐œ” = ๐œ“(๐‘ฅ21 +โ‹ฏ + ๐‘ฅ2๐‘›) ๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› .Show that ๐ฟโ‹†๐œ” = ๐œ” if ๐ฟ is orientation-preserving and ๐ฟโ‹†๐œ” = โˆ’๐œ” if ๐ฟ is orientationreversing.

(2) Prove Theorem 3.4.6 for linear mappings which are self-adjoint (satisfy ๐ฟโŠบ = ๐ฟ).Hint: A self-adjoint linear mapping is diagonizable: there exists an intervertible lin-

ear mapping,๐‘€โˆถ ๐‘๐‘› โ†’ ๐‘๐‘› such that

(3.4.12) ๐‘€โˆ’1๐ฟ๐‘€๐‘’๐‘– = ๐œ†๐‘–๐‘’๐‘– , ๐‘– = 1,โ€ฆ, ๐‘› .(3) Prove that every invertible linearmapping, ๐ฟ, can bewritten as a product, ๐ฟ = ๐ต๐ถwhere๐ต is orthogonal and ๐ถ is self-adjoint.

Hints:โ€ข Show that the mapping, ๐ด = ๐ฟโŠบ๐ฟ, is self-adjoint and that it is eigenvalues (the ๐œ†๐‘–โ€™s

in equation (3.4.12)) are positive.โ€ข Show that there exists an invertible self-adjoint linear mapping, ๐ถ, such that ๐ด =๐ถ2 and ๐ด๐ถ = ๐ถ๐ด.

โ€ข Show that the mapping ๐ต = ๐ฟ๐ถโˆ’1 is orthogonal.

3.5. The change of variables formula

Let ๐‘ˆ and ๐‘‰ be connected open subsets of ๐‘๐‘›. If ๐‘“๐‘ˆ โฅฒ ๐‘‰ is a diffeomorphism, thedeterminant of๐ท๐‘“(๐‘ฅ) at ๐‘ฅ โˆˆ ๐‘ˆ is nonzero, and hence, since๐ท๐‘“(๐‘ฅ) is a continuous functionof ๐‘ฅ, its sign is the same at every point. We will say that ๐‘“ is orientation-preserving if thissign is positive and orientation reversing if it is negative. We will prove below:

Page 93: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง3.5 The change of variables formula 81

Theorem 3.5.1. The degree of ๐‘“ is +1 if ๐‘“ is orientation-preserving and โˆ’1 if ๐‘“ is orientationreversing.

We will then use this result to prove the following change of variables formula for dif-feomorphisms.

Theorem 3.5.2. Let ๐œ™โˆถ ๐‘‰ โ†’ ๐‘ be a compactly supported continuous function. Then

(3.5.3) โˆซ๐‘ˆ(๐œ™ โˆ˜ ๐‘“)(๐‘ฅ)|det(๐ท๐‘“(๐‘ฅ))| = โˆซ

๐‘‰๐œ™(๐‘ฆ) ๐‘‘๐‘ฆ .

Proof of Theorem 3.5.1. Given a point ๐‘Ž1 โˆˆ ๐‘ˆ, let ๐‘Ž2 = โˆ’๐‘“(๐‘Ž1) and for ๐‘– = 1, 2 let ๐‘”๐‘– โˆถ ๐‘๐‘› โ†’๐‘๐‘› be the translation, ๐‘”๐‘–(๐‘ฅ) = ๐‘ฅ + ๐‘Ž๐‘–. By equation (3.4.2) and Exercise 3.4.iv the compositediffeomorphism(3.5.4) ๐‘”2 โˆ˜ ๐‘“ โˆ˜ ๐‘”1has the samedegree as๐‘“, so it suffices to prove the theorem for thismapping.Notice howeverthat this mapping maps the origin onto the origin. Hence, replacing ๐‘“ by this mapping, wecan, without loss of generality, assume that 0 is in the domain of ๐‘“ and that ๐‘“(0) = 0.

Next notice that if ๐ดโˆถ ๐‘๐‘› โฅฒ ๐‘๐‘› is a bijective linear mapping the theorem is true for ๐ด(by Exercise 3.4.ix), and hence if we can prove the theorem for๐ดโˆ’1 โˆ˜ ๐‘“, equation (3.4.2) willtell us that the theorem is true for ๐‘“. In particular, letting ๐ด = ๐ท๐‘“(0), we have

๐ท(๐ดโˆ’1 โˆ˜ ๐‘“)(0) = ๐ดโˆ’1๐ท๐‘“(0) = id๐‘›where id๐‘› is the identity mapping. Therefore, replacing ๐‘“ by ๐ดโˆ’1 โˆ˜ ๐‘“, we can assume thatthe mapping ๐‘“ (for which we are attempting to prove Theorem 3.5.1) has the properties:๐‘“(0) = 0 and ๐ท๐‘“(0) = id๐‘›. Let ๐‘”(๐‘ฅ) = ๐‘“(๐‘ฅ) โˆ’ ๐‘ฅ. Then these properties imply that ๐‘”(0) = 0and๐ท๐‘”(0) = 0. โ–ก

Lemma 3.5.5. There exists a ๐›ฟ > 0 such that |๐‘”(๐‘ฅ)| โ‰ค 12 |๐‘ฅ| for |๐‘ฅ| โ‰ค ๐›ฟ.

Proof. Let ๐‘”(๐‘ฅ) = (๐‘”1(๐‘ฅ),โ€ฆ, ๐‘”๐‘›(๐‘ฅ)). Then๐œ•๐‘”๐‘–๐œ•๐‘ฅ๐‘—(0) = 0 ;

so there exists a ๐›ฟ > 0 such that

| ๐œ•๐‘”๐‘–๐œ•๐‘ฅ๐‘—(๐‘ฅ)| โ‰ค 12

for |๐‘ฅ| โ‰ค ๐›ฟ. However, by the mean value theorem,

๐‘”๐‘–(๐‘ฅ) =๐‘›โˆ‘๐‘—=1

๐œ•๐‘”๐‘–๐œ•๐‘ฅ๐‘—(๐‘)๐‘ฅ๐‘—

for ๐‘ = ๐‘ก0๐‘ฅ, 0 < ๐‘ก0 < 1. Thus, for |๐‘ฅ| < ๐›ฟ,

|๐‘”๐‘–(๐‘ฅ)| โ‰ค12

sup |๐‘ฅ๐‘–| =12|๐‘ฅ| ,

so|๐‘”(๐‘ฅ)| = sup |๐‘”๐‘–(๐‘ฅ)| โ‰ค

12|๐‘ฅ| . โ–ก

Let ๐œŒ be a compactly supported ๐ถโˆž function with 0 โ‰ค ๐œŒ โ‰ค 1 and with ๐œŒ(๐‘ฅ) = 0 for|๐‘ฅ| โ‰ฅ ๐›ฟ and ๐œŒ(๐‘ฅ) = 1 for |๐‘ฅ| โ‰ค ๐›ฟ2 and let ๐‘“ โˆถ ๐‘๐‘› โ†’ ๐‘๐‘› be the mapping

๐‘“(๐‘ฅ) โ‰” ๐‘ฅ + ๐œŒ(๐‘ฅ)๐‘”(๐‘ฅ) .

Page 94: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

82 Chapter 3: Integration of Forms

It is clear that(3.5.6) ๐‘“(๐‘ฅ) = ๐‘ฅ for |๐‘ฅ| โ‰ฅ ๐›ฟand, since ๐‘“(๐‘ฅ) = ๐‘ฅ + ๐‘”(๐‘ฅ),

(3.5.7) ๐‘“(๐‘ฅ) = ๐‘“(๐‘ฅ) for |๐‘ฅ| โ‰ค ๐›ฟ2

.

In addition, for all ๐‘ฅ โˆˆ ๐‘๐‘›:

(3.5.8) | ๐‘“(๐‘ฅ)| โ‰ฅ 12|๐‘ฅ| .

Indeed, by (3.5.6), | ๐‘“(๐‘ฅ)| โ‰ฅ |๐‘ฅ| for |๐‘ฅ| โ‰ฅ ๐›ฟ, and for |๐‘ฅ| โ‰ค ๐›ฟ| ๐‘“(๐‘ฅ)| โ‰ฅ |๐‘ฅ| โˆ’ ๐œŒ(๐‘ฅ)|๐‘”(๐‘ฅ)|

โ‰ฅ |๐‘ฅ| โˆ’ |๐‘”(๐‘ฅ)| โ‰ฅ |๐‘ฅ| โˆ’ 12|๐‘ฅ|

= 12|๐‘ฅ|

by Lemma 3.5.5.Now let ๐‘„๐‘Ÿ be the cube ๐‘„๐‘Ÿ โ‰” {๐‘ฅ โˆˆ ๐‘๐‘› | |๐‘ฅ| โ‰ค ๐‘Ÿ }, and let ๐‘„๐‘๐‘Ÿ โ‰” ๐‘๐‘› โˆ– ๐‘„๐‘Ÿ. From (3.5.8)

we easily deduce that

(3.5.9) ๐‘“โˆ’1(๐‘„๐‘Ÿ) โŠ‚ ๐‘„2๐‘Ÿfor all ๐‘Ÿ, and hence that ๐‘“ is proper. Also notice that for ๐‘ฅ โˆˆ ๐‘„๐›ฟ,

| ๐‘“(๐‘ฅ)| โ‰ค |๐‘ฅ| + |๐‘”(๐‘ฅ)| โ‰ค 32|๐‘ฅ|

by Lemma 3.5.5 and hence

(3.5.10) ๐‘“โˆ’1(๐‘„๐‘32 ๐›ฟ) โŠ‚ ๐‘„๐‘๐›ฟ .

We will now prove Theorem 3.5.1.

Proof of Theorem 3.5.1. Since ๐‘“ is a diffeomorphism mapping 0 to 0, it maps a neighbor-hood ๐‘ˆ0 of 0 in ๐‘ˆ diffeomorphically onto a neighborhood ๐‘‰0 of 0 in ๐‘‰, and, by shrinking๐‘ˆ0 if necessary, we can assume that ๐‘ˆ0 is contained in ๐‘„๐›ฟ/2 and ๐‘‰0 contained in ๐‘„๐›ฟ/4. Let ๐œ”be an ๐‘›-form with support in ๐‘‰0 whose integral over ๐‘๐‘› is equal to one. Then ๐‘“โ‹†๐œ” is sup-ported in๐‘ˆ0 and hence in๐‘„๐›ฟ/2. Also by (3.5.9) ๐‘“โ‹†๐œ” is supported in๐‘„๐›ฟ/2.Thus both of theseforms are zero outside ๐‘„๐›ฟ/2. However, on ๐‘„๐›ฟ/2, ๐‘“ = ๐‘“ by (3.5.7), so these forms are equaleverywhere, and hence

deg(๐‘“) = โˆซ๐‘“โ‹†๐œ” = โˆซ ๐‘“โ‹†๐œ” = deg( ๐‘“) .

Next let ๐œ” be a compactly supported ๐‘›-form with support in ๐‘„๐‘3๐›ฟ/2 and with integralequal to one. Then ๐‘“โ‹†๐œ” is supported in๐‘„๐‘๐›ฟ by (3.5.10), and hence since ๐‘“(๐‘ฅ) = ๐‘ฅ on๐‘„๐‘๐›ฟ, wehave ๐‘“โ‹†๐œ” = ๐œ”. Thus

deg( ๐‘“) = โˆซ ๐‘“โ‹†๐œ” = โˆซ๐œ” = 1 .

Putting these two identities together we conclude that deg(๐‘“) = 1. โ–ก

If the function, ๐œ™, in equation (3.5.4) is a ๐ถโˆž function, the identity (3.5.3) is an im-mediate consequence of the result above and the identity (3.4.3). If ๐œ™ is not ๐ถโˆž, but is justcontinuous, we will deduce equation (3.5.4) from the following result.

Page 95: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง3.5 The change of variables formula 83

Theorem 3.5.11. Let ๐‘‰ be an open subset of ๐‘๐‘›. If ๐œ™โˆถ ๐‘๐‘› โ†’ ๐‘ is a continuous function ofcompact support with supp๐œ™ โŠ‚ ๐‘‰; then for every ๐œ€ > 0 there exists a ๐ถโˆž function of compactsupport, ๐œ“โˆถ ๐‘๐‘› โ†’ ๐‘ with supp๐œ“ โŠ‚ ๐‘‰ and

sup |๐œ“(๐‘ฅ) โˆ’ ๐œ™(๐‘ฅ)| < ๐œ€ .Proof. Let ๐ด be the support of ๐œ™ and let ๐‘‘ be the distance in the sup norm from ๐ด to thecomplement of ๐‘‰. Since ๐œ™ is continuous and compactly supported it is uniformly continu-ous; so for every ๐œ€ > 0 there exists a ๐›ฟ > 0 with ๐›ฟ < ๐‘‘2 such that |๐œ™(๐‘ฅ) โˆ’ ๐œ™(๐‘ฆ)| < ๐œ€ when|๐‘ฅ โˆ’ ๐‘ฆ| โ‰ค ๐›ฟ. Now let ๐‘„ be the cube: |๐‘ฅ| < ๐›ฟ and let ๐œŒโˆถ ๐‘๐‘› โ†’ ๐‘ be a non-negative ๐ถโˆžfunction with supp ๐œŒ โŠ‚ ๐‘„ and

(3.5.12) โˆซ๐œŒ(๐‘ฆ)๐‘‘๐‘ฆ = 1 .

Set๐œ“(๐‘ฅ) = โˆซ๐œŒ(๐‘ฆ โˆ’ ๐‘ฅ)๐œ™(๐‘ฆ)๐‘‘๐‘ฆ .

By Theorem 3.2.10 ๐œ“ is a ๐ถโˆž function. Moreover, if ๐ด๐›ฟ is the set of points in ๐‘๐‘‘ whosedistance in the sup norm from ๐ด is โ‰ค ๐›ฟ then for ๐‘ฅ โˆ‰ ๐ด๐›ฟ and ๐‘ฆ โˆˆ ๐ด , |๐‘ฅ โˆ’ ๐‘ฆ| > ๐›ฟ and hence๐œŒ(๐‘ฆ โˆ’ ๐‘ฅ) = 0. Thus for ๐‘ฅ โˆ‰ ๐ด๐›ฟ

โˆซ๐œŒ(๐‘ฆ โˆ’ ๐‘ฅ)๐œ™(๐‘ฆ)๐‘‘๐‘ฆ = โˆซ๐ด๐œŒ(๐‘ฆ โˆ’ ๐‘ฅ)๐œ™(๐‘ฆ)๐‘‘๐‘ฆ = 0 ,

so ๐œ“ is supported on the compact set ๐ด๐›ฟ. Moreover, since ๐›ฟ < ๐‘‘2 , supp๐œ“ is contained in ๐‘‰.Finally note that by (3.5.12) and Exercise 3.4.iv

(3.5.13) โˆซ๐œŒ(๐‘ฆ โˆ’ ๐‘ฅ) ๐‘‘๐‘ฆ = โˆซ๐œŒ(๐‘ฆ) ๐‘‘๐‘ฆ = 1

and hence๐œ™(๐‘ฅ) = โˆซ๐œ™(๐‘ฅ)๐œŒ(๐‘ฆ โˆ’ ๐‘ฅ)๐‘‘๐‘ฆ

so๐œ™(๐‘ฅ) โˆ’ ๐œ“(๐‘ฅ) = โˆซ(๐œ™(๐‘ฅ) โˆ’ ๐œ™(๐‘ฆ))๐œŒ(๐‘ฆ โˆ’ ๐‘ฅ)๐‘‘๐‘ฆ

and|๐œ™(๐‘ฅ) โˆ’ ๐œ“(๐‘ฅ)| โ‰ค โˆซ |๐œ™(๐‘ฅ) โˆ’ ๐œ™(๐‘ฆ)|๐œŒ(๐‘ฆ โˆ’ ๐‘ฅ)๐‘‘๐‘ฆ .

But ๐œŒ(๐‘ฆ โˆ’ ๐‘ฅ) = 0 for |๐‘ฅ โˆ’ ๐‘ฆ| โ‰ฅ ๐›ฟ; and |๐œ™(๐‘ฅ) โˆ’ ๐œ™(๐‘ฆ)| < ๐œ€ for |๐‘ฅ โˆ’ ๐‘ฆ| โ‰ค ๐›ฟ, so the integrand onthe right is less than

๐œ€ โˆซ ๐œŒ(๐‘ฆ โˆ’ ๐‘ฅ) ๐‘‘๐‘ฆ ,

and hence by equation (3.5.13) we have|๐œ™(๐‘ฅ) โˆ’ ๐œ“(๐‘ฅ)| โ‰ค ๐œ€ . โ–ก

To prove the identity (3.5.3), let ๐›พโˆถ ๐‘๐‘› โ†’ ๐‘ be a ๐ถโˆž cut-off function which is one ona neighborhood ๐‘‰1 of the support of ๐œ™ is non-negative, and is compactly supported withsupp ๐›พ โŠ‚ ๐‘‰, and let

๐‘ = โˆซ ๐›พ(๐‘ฆ) ๐‘‘๐‘ฆ .

By Theorem 3.5.11 there exists, for every ๐œ€ > 0, a ๐ถโˆž function ๐œ“, with support on ๐‘‰1 satis-fying

(3.5.14) |๐œ™ โˆ’ ๐œ“| โ‰ค ๐œ€2๐‘

.

Page 96: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

84 Chapter 3: Integration of Forms

Thus

|โˆซ๐‘‰(๐œ™ โˆ’ ๐œ“)(๐‘ฆ)๐‘‘๐‘ฆ| โ‰ค โˆซ

๐‘‰|๐œ™ โˆ’ ๐œ“|(๐‘ฆ)๐‘‘๐‘ฆ

โ‰ค โˆซ๐‘‰๐›พ|๐œ™ โˆ’ ๐œ“|(๐‘ฅ๐‘ฆ)๐‘‘๐‘ฆ

โ‰ค ๐œ€2๐‘โˆซ ๐›พ(๐‘ฆ)๐‘‘๐‘ฆ โ‰ค ๐œ€

2so

(3.5.15) |โˆซ๐‘‰๐œ™(๐‘ฆ) ๐‘‘๐‘ฆ โˆ’ โˆซ

๐‘‰๐œ“(๐‘ฆ) ๐‘‘๐‘ฆ| โ‰ค ๐œ€

2.

Similarly, the expression

|โˆซ๐‘ˆ(๐œ™ โˆ’ ๐œ“) โˆ˜ ๐‘“(๐‘ฅ)|det๐ท๐‘“(๐‘ฅ)| ๐‘‘๐‘ฅ|

is less than or equal to the integral

โˆซ๐‘ˆ(๐›พ โˆ˜ ๐‘“)(๐‘ฅ)|(๐œ™ โˆ’ ๐œ“) โˆ˜ ๐‘“(๐‘ฅ)| |det๐ท๐‘“(๐‘ฅ)| ๐‘‘๐‘ฅ

and by (3.5.14), |(๐œ™ โˆ’ ๐œ“) โˆ˜ ๐‘“(๐‘ฅ)| โ‰ค ๐œ€2๐‘ , so this integral is less than or equal to๐œ€2๐‘โˆซ(๐›พ โˆ˜ ๐‘“)(๐‘ฅ)|det๐ท๐‘“(๐‘ฅ)| ๐‘‘๐‘ฅ

and hence by (3.5.3) is less than or equal to ๐œ€2 . Thus

(3.5.16) |โˆซ๐‘ˆ(๐œ™ โˆ˜ ๐‘“)(๐‘ฅ) | det๐ท๐‘“(๐‘ฅ)|๐‘‘๐‘ฅ โˆ’ โˆซ

๐‘ˆ๐œ“ โˆ˜ ๐‘“(๐‘ฅ)| det๐ท๐‘“(๐‘ฅ)| ๐‘‘๐‘ฅ| โ‰ค ๐œ€

2.

Combining (3.5.15), (3.5.16) and the identity

โˆซ๐‘‰๐œ“(๐‘ฆ) ๐‘‘๐‘ฆ = โˆซ๐œ“ โˆ˜ ๐‘“(๐‘ฅ)|det๐ท๐‘“(๐‘ฅ)| ๐‘‘๐‘ฅ

we get, for all ๐œ€ > 0,

|โˆซ๐‘‰๐œ™(๐‘ฆ) ๐‘‘๐‘ฆ โˆ’ โˆซ

๐‘ˆ(๐œ™ โˆ˜ ๐‘“)(๐‘ฅ)|det๐ท๐‘“(๐‘ฅ)| ๐‘‘๐‘ฅ| โ‰ค ๐œ€

and henceโˆซ๐œ™(๐‘ฆ) ๐‘‘๐‘ฆ = โˆซ(๐œ™ โˆ˜ ๐‘“)(๐‘ฅ)|det๐ท๐‘“(๐‘ฅ)| ๐‘‘๐‘ฅ .

Exercises for ยง3.5Exercise 3.5.i. Let โ„Žโˆถ ๐‘‰ โ†’ ๐‘ be a non-negative continuous function. Show that if theimproper integral

โˆซ๐‘‰โ„Ž(๐‘ฆ)๐‘‘๐‘ฆ

is well-defined, then the improper integral

โˆซ๐‘ˆ(โ„Ž โˆ˜ ๐‘“)(๐‘ฅ)|det๐ท๐‘“(๐‘ฅ)|๐‘‘๐‘ฅ

is well-defined and these two integrals are equal.Hint: If (๐œ™๐‘–)๐‘–โ‰ฅ1 is a partition of unity on ๐‘‰ then ๐œ“๐‘– = ๐œ™๐‘– โˆ˜ ๐‘“ is a partition of unity on ๐‘ˆ

andโˆซ๐œ™๐‘–โ„Ž๐‘‘๐‘ฆ = โˆซ๐œ“๐‘–(โ„Ž โˆ˜ ๐‘“(๐‘ฅ))|det๐ท๐‘“(๐‘ฅ)|๐‘‘๐‘ฅ .

Page 97: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง3.6 Techniques for computing the degree of a mapping 85

Now sum both sides of this identity over ๐‘–.Exercise 3.5.ii. Show that the result above is true without the assumption that โ„Ž is non-negative.

Hint: โ„Ž = โ„Ž+ โˆ’ โ„Žโˆ’, where โ„Ž+ = max(โ„Ž, 0) and โ„Žโˆ’ = max(โˆ’โ„Ž, 0).Exercise 3.5.iii. Show that in equation (3.4.3) one can allow the function ๐œ™ to be a continu-ous compactly supported function rather than a ๐ถโˆž compactly supported function.

Exercise 3.5.iv. Let๐‡๐‘› be the half-space (3.2.12) and๐‘ˆ and๐‘‰ open subsets of ๐‘๐‘›. Suppose๐‘“โˆถ ๐‘ˆ โ†’ ๐‘‰ is an orientation-preserving diffeomorphism mapping ๐‘ˆ โˆฉ ๐‡๐‘› onto ๐‘‰ โˆฉ ๐‡๐‘›.Show that for ๐œ” โˆˆ ๐›บ๐‘›๐‘ (๐‘‰)

(3.5.17) โˆซ๐‘ˆโˆฉ๐‡๐‘›๐‘“โ‹†๐œ” = โˆซ

๐‘‰โˆฉ๐‡๐‘›๐œ” .

Hint: Interpret the left and right hand sides of this formula as improper integrals over๐‘ˆ โˆฉ int(๐‡๐‘›) and ๐‘‰ โˆฉ int(๐‡๐‘›).Exercise 3.5.v. The boundary of๐‡๐‘› is the set

๐œ•๐‡๐‘› โ‰” { (0, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) | (๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) โˆˆ ๐‘๐‘›โˆ’1 }so the map

๐œ„ โˆถ ๐‘๐‘›โˆ’1 โ†’ ๐‡๐‘› , (๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) โ†ฆ (0, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›)in Exercise 3.2.viii maps ๐‘๐‘›โˆ’1 bijectively onto ๐œ•๐‡๐‘›.(1) Show that the map ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘‰ in Exercise 3.5.iv maps ๐‘ˆ โˆฉ ๐œ•๐‡๐‘› onto ๐‘‰ โˆฉ ๐œ•๐‡๐‘›.(2) Let๐‘ˆโ€ฒ = ๐œ„โˆ’1(๐‘ˆ) and๐‘‰โ€ฒ = ๐œ„โˆ’1(๐‘‰). Conclude from (1) that the restriction of๐‘“ to๐‘ˆโˆฉ๐œ•๐‡๐‘›

gives one a diffeomorphism๐‘”โˆถ ๐‘ˆโ€ฒ โ†’ ๐‘‰โ€ฒ

satisfying:๐œ„ โˆ˜ ๐‘” = ๐‘“ โˆ˜ ๐œ„ .

(3) Let ๐œ‡ be in ๐›บ๐‘›โˆ’1๐‘ (๐‘‰). Conclude from equations (3.2.14) and (3.5.17):

โˆซ๐‘ˆโ€ฒ๐‘”โ‹†๐œ„โ‹†๐œ‡ = โˆซ

๐‘‰โ€ฒ๐œ„โ‹†๐œ‡

and in particular show that the diffeomorphism ๐‘”โˆถ ๐‘ˆโ€ฒ โ†’ ๐‘‰โ€ฒ is orientation-preserving.

3.6. Techniques for computing the degree of a mapping

Let ๐‘ˆ and ๐‘‰ be open subsets of ๐‘๐‘› and ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘‰ a proper ๐ถโˆž mapping. In thissectionwewill show how to compute the degree of๐‘“ and, in particular, show that it is alwaysan integer. From this fact we will be able to conclude that the degree of ๐‘“ is a topologicalinvariant of ๐‘“: if we deform ๐‘“ smoothly, its degree doesnโ€™t change.

Definition 3.6.1. A point ๐‘ฅ โˆˆ ๐‘ˆ is a critical point of ๐‘“ if the derivative๐ท๐‘“(๐‘ฅ)โˆถ ๐‘๐‘› โ†’ ๐‘๐‘›

fails to be bijective, i.e., if det(๐ท๐‘“(๐‘ฅ)) = 0.We will denote the set of critical points of ๐‘“ by ๐ถ๐‘“. It is clear from the definition that

this set is a closed subset of๐‘ˆ and hence, by Exercise 3.4.iii,๐‘“(๐ถ๐‘“) is a closed subset of๐‘‰.Wewill call this image the set of critical values of ๐‘“ and the complement of this image the set ofregular values of ๐‘“. Notice that ๐‘‰ โˆ– ๐‘“(๐‘ˆ) is contained in ๐‘“(๐‘ˆ) โˆ– ๐‘“(๐ถ๐‘“), so if a point ๐‘ž โˆˆ ๐‘‰is not in the image of ๐‘“, it is a regular value of ๐‘“ โ€œby defaultโ€, i.e., it contains no points of

Page 98: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

86 Chapter 3: Integration of Forms

๐‘ˆ in the pre-image and hence, a fortiori, contains no critical points in its pre-image. Noticealso that ๐ถ๐‘“ can be quite large. For instance, if ๐‘ โˆˆ ๐‘‰ and ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘‰ is the constant mapwhich maps all of ๐‘ˆ onto ๐‘, then ๐ถ๐‘“ = ๐‘ˆ. However, in this example, ๐‘“(๐ถ๐‘“) = {๐‘}, so the setof regular values of ๐‘“ is ๐‘‰ โˆ– {๐‘}, and hence (in this example) is an open dense subset of ๐‘‰.We will show that this is true in general.Theorem 3.6.2 (Sard). If ๐‘ˆ and ๐‘‰ are open subsets of ๐‘๐‘› and ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘‰ a proper ๐ถโˆž map,the set of regular values of ๐‘“ is an open dense subset of ๐‘‰.

We will defer the proof of this to Section 3.7 and in this section explore some of itsimplications. Picking a regular value ๐‘ž of ๐‘“ we will prove:Theorem 3.6.3. The set ๐‘“โˆ’1(๐‘ž) is a finite set. Moreover, if ๐‘“โˆ’1(๐‘ž) = {๐‘1,โ€ฆ, ๐‘๐‘›} there existconnected open neighborhoods๐‘ˆ๐‘– of ๐‘๐‘– in ๐‘Œ and an open neighborhood๐‘Š of ๐‘ž in๐‘‰ such that:(1) for ๐‘– โ‰  ๐‘— the sets ๐‘ˆ๐‘– and ๐‘ˆ๐‘— are disjoint;(2) ๐‘“โˆ’1(๐‘Š) = ๐‘ˆ1 โˆชโ‹ฏ โˆช ๐‘ˆ๐‘›,(3) ๐‘“maps ๐‘ˆ๐‘– diffeomorphically onto๐‘Š.Proof. If ๐‘ โˆˆ ๐‘“โˆ’1(๐‘ž) then, since ๐‘ž is a regular value, ๐‘ โˆ‰ ๐ถ๐‘“; so

๐ท๐‘“(๐‘)โˆถ ๐‘๐‘› โ†’ ๐‘๐‘›

is bijective. Hence by the inverse function theorem, ๐‘“maps a neighborhood,๐‘ˆ๐‘ of ๐‘ diffeo-morphically onto a neighborhood of ๐‘ž. The open sets

{ ๐‘ˆ๐‘ | ๐‘ โˆˆ ๐‘“โˆ’1(๐‘ž) }are a covering of ๐‘“โˆ’1(๐‘ž); and, since ๐‘“ is proper, ๐‘“โˆ’1(๐‘ž) is compact. Thus we can extract afinite subcovering

{๐‘ˆ๐‘1 ,โ€ฆ,๐‘ˆ๐‘๐‘}and since ๐‘๐‘– is the only point in ๐‘ˆ๐‘๐‘– which maps onto ๐‘ž, we have that ๐‘“โˆ’1(๐‘ž) = {๐‘1,โ€ฆ, ๐‘๐‘}.

Without loss of generality we can assume that the๐‘ˆ๐‘๐‘– โ€™s are disjoint from each other; for,if not, we can replace them by smaller neighborhoods of the ๐‘๐‘–โ€™s which have this property.By Theorem 3.4.7 there exists a connected open neighborhood๐‘Š of ๐‘ž in ๐‘‰ for which

๐‘“โˆ’1(๐‘Š) โŠ‚ ๐‘ˆ๐‘1 โˆชโ‹ฏ โˆช ๐‘ˆ๐‘๐‘ .

To conclude the proof let ๐‘ˆ๐‘– โ‰” ๐‘“โˆ’1(๐‘Š) โˆฉ ๐‘ˆ๐‘๐‘– . โ–ก

The main result of this section is a recipe for computing the degree of ๐‘“ by countingthe number of ๐‘๐‘–โ€™s above, keeping track of orientation.Theorem 3.6.4. For each ๐‘๐‘– โˆˆ ๐‘“โˆ’1(๐‘ž) let ๐œŽ๐‘๐‘– = +1 if ๐‘“โˆถ ๐‘ˆ๐‘– โ†’ ๐‘Š is orientation-preservingand โˆ’1 if ๐‘“โˆถ ๐‘ˆ๐‘– โ†’๐‘Š is orientation reversing. Then

(3.6.5) deg(๐‘“) =๐‘โˆ‘๐‘–=1๐œŽ๐‘๐‘– .

Proof. Let ๐œ” be a compactly supported ๐‘›-form on๐‘Š whose integral is one. Then

deg(๐‘“) = โˆซ๐‘ˆ๐‘“โ‹†๐œ” =

๐‘โˆ‘๐‘–=1โˆซ๐‘ˆ๐‘–๐‘“โ‹†๐œ” .

Since ๐‘“โˆถ ๐‘ˆ๐‘– โ†’๐‘Š is a diffeomorphism

โˆซ๐‘ˆ๐‘–๐‘“โ‹†๐œ” = ยฑโˆซ

๐‘Š๐œ” = {1, ๐‘“ is orientation-preservingโˆ’1, ๐‘“ is not orientation-preserving .

Page 99: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง3.6 Techniques for computing the degree of a mapping 87

Thus deg(๐‘“) is equal to the sum (3.6.5). โ–กAs we pointed out above, a point ๐‘ž โˆˆ ๐‘‰ can qualify as a regular value of ๐‘“ โ€œby defaultโ€,

i.e., by not being in the image of ๐‘“. In this case the recipe (3.6.5) for computing the degreegives โ€œby defaultโ€ the answer zero. Letโ€™s corroborate this directly.Theorem 3.6.6. If ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘‰ is not surjective, then deg(๐‘“) = 0.Proof. By Exercise 3.4.iii, ๐‘‰ โˆ– ๐‘“(๐‘ˆ) is open; so if it is nonempty, there exists a compactlysupported ๐‘›-form ๐œ” with support in ๐‘‰ โˆ– ๐‘“(๐‘ˆ) and with integral equal to one. Since ๐œ” = 0on the image of ๐‘“, ๐‘“โ‹†๐œ” = 0; so

0 = โˆซ๐‘ˆ๐‘“โ‹†๐œ” = deg(๐‘“) โˆซ

๐‘‰๐œ” = deg(๐‘“) . โ–ก

Remark 3.6.7. In applications the contrapositive of Theorem 3.6.6 is much more usefulthan the theorem itself.Theorem 3.6.8. If deg(๐‘“) โ‰  0, then ๐‘“maps ๐‘ˆ surjectively onto ๐‘‰.

In other words if deg(๐‘“) โ‰  0 the equation๐‘“(๐‘ฅ) = ๐‘ฆ

has a solution, ๐‘ฅ โˆˆ ๐‘ˆ for every ๐‘ฆ โˆˆ ๐‘‰.We will now show that the degree of ๐‘“ is a topological invariant of ๐‘“: if we deform ๐‘“ by

a โ€œhomotopyโ€ we do not change its degree. To make this assertion precise, letโ€™s recall whatwe mean by a homotopy between a pair of ๐ถโˆž maps. Let ๐‘ˆ be an open subset of ๐‘๐‘š, ๐‘‰an open subset of ๐‘๐‘›, ๐ด an open subinterval of ๐‘ containing 0 and 1, and ๐‘“1, ๐‘“2 โˆถ ๐‘ˆ โ†’ ๐‘‰a pair of ๐ถโˆž maps. Then a ๐ถโˆž map ๐นโˆถ ๐‘ˆ ร— ๐ด โ†’ ๐‘‰ is a homotopy between ๐‘“0 and ๐‘“1 if๐น(๐‘ฅ, 0) = ๐‘“0(๐‘ฅ) and ๐น(๐‘ฅ, 1) = ๐‘“1(๐‘ฅ). (See Definition 2.6.14.) Suppose now that ๐‘“0 and ๐‘“1 areproper.Definition 3.6.9. A homotopy ๐น between ๐‘“0 and ๐‘“1 is a proper homotopy if the map

๐นโ™ฏ โˆถ ๐‘ˆ ร— ๐ด โ†’ ๐‘‰ ร— ๐ดdefined by (๐‘ฅ, ๐‘ก) โ†ฆ (๐น(๐‘ฅ, ๐‘ก), ๐‘ก) is proper.

Note that if ๐น is a proper homotopy between ๐‘“0 and ๐‘“1, then for every ๐‘ก between 0 and1, the map

๐‘“๐‘ก โˆถ ๐‘ˆ โ†’ ๐‘‰ , ๐‘“๐‘ก(๐‘ฅ) โ‰” ๐น(๐‘ฅ, ๐‘ก)is proper.

Now let ๐‘ˆ and ๐‘‰ be open subsets of ๐‘๐‘›.Theorem 3.6.10. If ๐‘“0 and ๐‘“1 are properly homotopic, then deg(๐‘“0) = deg(๐‘“1).Proof. Let

๐œ” = ๐œ™(๐‘ฆ)๐‘‘๐‘ฆ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฆ๐‘›be a compactly supported ๐‘›-form on ๐‘‰ whose integral over ๐‘‰ is 1. The the degree of ๐‘“๐‘ก isequal to

(3.6.11) โˆซ๐‘ˆ๐œ™(๐น1(๐‘ฅ, ๐‘ก),โ€ฆ, ๐น๐‘›(๐‘ฅ, ๐‘ก)) det๐ท๐‘ฅ๐น(๐‘ฅ, ๐‘ก)๐‘‘๐‘ฅ .

The integrand in (3.6.11) is continuous and for 0 โ‰ค ๐‘ก โ‰ค 1 is supported on a compact subsetof ๐‘ˆ ร— [0, 1], hence (3.6.11) is continuous as a function of ๐‘ก. However, as weโ€™ve just proved,deg(๐‘“๐‘ก) is integer valued so this function is a constant. โ–ก

(For an alternative proof of this result see Exercise 3.6.ix below.)

Page 100: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

88 Chapter 3: Integration of Forms

ApplicationsWeโ€™ll conclude this account of degree theory by describing a couple applications.

Application 3.6.12 (The Brouwer fixed point theorem). Let ๐ต๐‘› be the closed unit ball in๐‘๐‘›:๐ต๐‘› โ‰” { ๐‘ฅ โˆˆ ๐‘๐‘› | โ€–๐‘ฅโ€– โ‰ค 1 } .

Theorem 3.6.13. If ๐‘“โˆถ ๐ต๐‘› โ†’ ๐ต๐‘› is a continuous mapping then ๐‘“ has a fixed point, i.e., mapssome point, ๐‘ฅ0 โˆˆ ๐ต๐‘› onto itself.

The idea of the proof will be to assume that there isnโ€™t a fixed point and show that thisleads to a contradiction. Suppose that for every point ๐‘ฅ โˆˆ ๐ต๐‘› we have ๐‘“(๐‘ฅ) โ‰  ๐‘ฅ. Considerthe ray through ๐‘“(๐‘ฅ) in the direction of ๐‘ฅ:

๐‘“(๐‘ฅ) + ๐‘ (๐‘ฅ โˆ’ ๐‘“(๐‘ฅ)) , ๐‘  โˆˆ [0,โˆž) .This ray intersects the boundary ๐‘†๐‘›โˆ’1 โ‰” ๐œ•๐ต๐‘› in a unique point ๐›พ(๐‘ฅ) (see Figure 3.6.1 below);and one of the exercises at the end of this section will be to show that the mapping ๐›พโˆถ ๐ต๐‘› โ†’๐‘†๐‘›โˆ’1 given by ๐‘ฅ โ†ฆ ๐›พ(๐‘ฅ), is a continuous mapping. Also it is clear from Figure 3.6.1 that๐›พ(๐‘ฅ) = ๐‘ฅ if ๐‘ฅ โˆˆ ๐‘†๐‘›โˆ’1, so we can extend ๐›พ to a continuous mapping of ๐‘๐‘› into ๐‘๐‘› by letting ๐›พbe the identity for โ€–๐‘ฅโ€– โ‰ฅ 1. Note that this extended mapping has the property

โ€–๐›พ(๐‘ฅ)โ€– โ‰ฅ 1for all ๐‘ฅ โˆˆ ๐‘๐‘› and(3.6.14) ๐›พ(๐‘ฅ) = ๐‘ฅfor all โ€–๐‘ฅโ€– โ‰ฅ 1. To get a contradiction weโ€™ll show that ๐›พ can be approximated by a ๐ถโˆž mapwhich has similar properties. For this wewill need the following corollary ofTheorem 3.5.11.

Lemma 3.6.15. Let ๐‘ˆ be an open subset of ๐‘๐‘›, ๐ถ a compact subset of ๐‘ˆ and ๐œ™โˆถ ๐‘ˆ โ†’ ๐‘ acontinuous function which is ๐ถโˆž on the complement of ๐ถ. Then for every ๐œ€ > 0, there exists a๐ถโˆž function ๐œ“โˆถ ๐‘ˆ โ†’ ๐‘, such that ๐œ™ โˆ’ ๐œ“ has compact support and |๐œ™ โˆ’ ๐œ“| < ๐œ€.Proof. Let ๐œŒ be a bump function which is in ๐ถโˆž0 (๐‘ˆ) and is equal to 1 on a neighborhoodof ๐ถ. By Theorem 3.5.11 there exists a function ๐œ“0 โˆˆ ๐ถโˆž0 (๐‘ˆ) such that |๐œŒ๐œ™ โˆ’ ๐œ“0| < ๐œ€. Tocomplete the proof, let ๐œ“(1 โˆ’ ๐œŒ)๐œ™ + ๐œ“0, and note that

๐œ™ โˆ’ ๐œ“ = (1 โˆ’ ๐œŒ)๐œ™ + ๐œŒ๐œ™ โˆ’ (1 โˆ’ ๐œŒ)๐œ™ โˆ’ ๐œ“0= ๐œŒ๐œ™ โˆ’ ๐œ“0 . โ–ก

By applying Lemma 3.6.15 to each of the coordinates of the map ๐›พ, one obtains a ๐ถโˆžmap ๐‘”โˆถ ๐‘๐‘› โ†’ ๐‘๐‘› such that

โ€–๐‘” โˆ’ ๐›พโ€– < ๐œ€ < 1and such that ๐‘” = ๐›พ on the complement of a compact set. However, by (3.6.14), this meansthat ๐‘” is equal to the identity on the complement of a compact set and hence (see Exer-cise 3.6.ix) that ๐‘” is proper and deg(๐‘”) = 1. On the other hand by (3.6.19) and (3.6.14) wehave โ€–๐‘”(๐‘ฅ)โ€– > 1 โˆ’ ๐œ€ for all ๐‘ฅ โˆˆ ๐‘๐‘›, so 0 โˆ‰ im(๐‘”) and hence by Theorem 3.6.4 we havedeg(๐‘”) = 0, which provides the desired contradiction.

Application 3.6.16 (The fundamental theorem of algebra). Let๐‘(๐‘ง) = ๐‘ง๐‘› + ๐‘Ž๐‘›โˆ’1๐‘ง๐‘›โˆ’1 +โ‹ฏ + ๐‘Ž1๐‘ง + ๐‘Ž0

be a polynomial of degree ๐‘› with complex coefficients. If we identify the complex plane๐‚ โ‰” { ๐‘ง = ๐‘ฅ + ๐‘–๐‘ฆ | ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘ }

Page 101: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง3.6 Techniques for computing the degree of a mapping 89

x

๏ฟฝ(๏ฟฝ)

๏ฟฝ(๏ฟฝ)

Figure 3.6.1. Brouwer fixed point theorem

with ๐‘2 via the map ๐‘2 โ†’ ๐‚ given by (๐‘ฅ, ๐‘ฆ) โ†ฆ ๐‘ง = ๐‘ฅ + ๐‘–๐‘ฆ, we can think of ๐‘ as defining amapping

๐‘โˆถ ๐‘2 โ†’ ๐‘2 , ๐‘ง โ†ฆ ๐‘(๐‘ง) .We will prove:

Theorem 3.6.17. The mapping ๐‘โˆถ ๐‘2 โ†’ ๐‘2 is proper and deg(๐‘) = ๐‘›.

Proof. For ๐‘ก โˆˆ ๐‘ let

๐‘๐‘ก(๐‘ง) โ‰” (1 โˆ’ ๐‘ก)๐‘ง๐‘› + ๐‘ก๐‘(๐‘ง) = ๐‘ง๐‘› + ๐‘ก๐‘›โˆ’1โˆ‘๐‘–=0๐‘Ž๐‘–๐‘ง๐‘– .

We will show that the mapping

๐‘”โˆถ ๐‘2 ร— ๐‘ โ†’ ๐‘2 , (๐‘ง, ๐‘ก) โ†ฆ ๐‘๐‘ก(๐‘ง)is a proper homotopy. Let

๐ถ = sup0โ‰ค๐‘–โ‰ค๐‘›โˆ’1|๐‘Ž๐‘–| .

Then for |๐‘ง| โ‰ฅ 1 we have

|๐‘Ž0 +โ‹ฏ + ๐‘Ž๐‘›โˆ’1๐‘ง๐‘›โˆ’1| โ‰ค |๐‘Ž0| + |๐‘Ž1||๐‘ง| + โ‹ฏ + |๐‘Ž๐‘›โˆ’1| |๐‘ง|๐‘›โˆ’1

โ‰ค ๐ถ๐‘›|๐‘ง|๐‘›โˆ’1 ,and hence, for |๐‘ก| โ‰ค ๐‘Ž and |๐‘ง| โ‰ฅ 2๐‘Ž๐ถ๐‘›,

|๐‘๐‘ก(๐‘ง)| โ‰ฅ |๐‘ง|๐‘› โˆ’ ๐‘Ž๐ถ๐‘›|๐‘ง|๐‘›โˆ’1

โ‰ฅ ๐‘Ž๐ถ๐‘›|๐‘ง|๐‘›โˆ’1 .If ๐ด โŠ‚ ๐‚ is compact, then for some ๐‘… > 0, ๐ด is contained in the disk defined by |๐‘ค| โ‰ค ๐‘…,and hence the set

{ ๐‘ง โˆˆ ๐‚ | (๐‘ก, ๐‘๐‘ก(๐‘ง)) โˆˆ [โˆ’๐‘Ž, ๐‘Ž] ร— ๐ด }is contained in the compact set

{ ๐‘ง โˆˆ ๐‚ | ๐‘Ž๐ถ|๐‘ง|๐‘›โˆ’1 โ‰ค ๐‘… } .This shows that ๐‘” is a proper homotopy.

Thus for each ๐‘ก โˆˆ ๐‘, the map ๐‘๐‘ก โˆถ ๐‚ โ†’ ๐‚ is proper and

deg(๐‘๐‘ก) = deg(๐‘1) = deg(๐‘) = deg(๐‘0)However, ๐‘0 โˆถ ๐‚ โ†’ ๐‚ is just the mapping ๐‘ง โ†ฆ ๐‘ง๐‘› and an elementary computation (seeExercises 3.6.v and 3.6.vi below) shows that the degree of this mapping is ๐‘›. โ–ก

Page 102: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

90 Chapter 3: Integration of Forms

In particular for ๐‘› > 0 the degree of ๐‘ is nonzero; so byTheorem 3.6.4 we conclude that๐‘โˆถ ๐‚ โ†’ ๐‚ is surjective and hence has zero in its image.

Theorem 3.6.18 (Fundamental theorem of algebra). Every positive-degree polynomial

๐‘(๐‘ง) = ๐‘ง๐‘› + ๐‘Ž๐‘›โˆ’1๐‘ง๐‘›โˆ’1 +โ‹ฏ + ๐‘Ž0with complex coefficients has a complex root: ๐‘(๐‘ง0) = 0 for some ๐‘ง0 โˆˆ ๐‚.

Exercises for ยง3.6Exercise 3.6.i. Let๐‘Š be a subset of ๐‘๐‘› and let ๐‘Ž(๐‘ฅ), ๐‘(๐‘ฅ) and ๐‘(๐‘ฅ) be real-valued functionson๐‘Š of class ๐ถ๐‘Ÿ. Suppose that for every ๐‘ฅ โˆˆ ๐‘Š the quadratic polynomial

๐‘Ž(๐‘ฅ)๐‘ 2 + ๐‘(๐‘ฅ)๐‘  + ๐‘(๐‘ฅ)

has two distinct real roots, ๐‘ +(๐‘ฅ) and ๐‘ โˆ’(๐‘ฅ), with ๐‘ +(๐‘ฅ) > ๐‘ โˆ’(๐‘ฅ). Prove that ๐‘ + and ๐‘ โˆ’ arefunctions of class ๐ถ๐‘Ÿ.

Hint: What are the roots of the quadratic polynomial: ๐‘Ž๐‘ 2 + ๐‘๐‘  + ๐‘?

Exercise 3.6.ii. Show that the function ๐›พ(๐‘ฅ) defined in Figure 3.6.1 is a continuous surjec-tion ๐ต๐‘› โ†’ ๐‘†2๐‘›โˆ’1.

Hint: ๐›พ(๐‘ฅ) lies on the ray,

๐‘“(๐‘ฅ) + ๐‘ (๐‘ฅ โˆ’ ๐‘“(๐‘ฅ)) , ๐‘  โˆˆ [0,โˆž)

and satisfies โ€–๐›พ(๐‘ฅ)โ€– = 1. Thus

๐›พ(๐‘ฅ) = ๐‘“(๐‘ฅ) + ๐‘ 0(๐‘ฅ โˆ’ ๐‘“(๐‘ฅ)) ,

where ๐‘ 0 is a non-negative root of the quadratic polynomial

โ€–๐‘“(๐‘ฅ) + ๐‘ (๐‘ฅ โˆ’ ๐‘“(๐‘ฅ))โ€–2 โˆ’ 1 .

Argue from Figure 3.6.1 that this polynomial has to have two distinct real roots.

Exercise 3.6.iii. Show that the Brouwer fixed point theorem isnโ€™t true if one replaces theclosed unit ball by the open unit ball.

Hint: Let ๐‘ˆ be the open unit ball (i.e., the interior of ๐ต๐‘›). Show that the map

โ„Žโˆถ ๐‘ˆ โ†’ ๐‘๐‘› , โ„Ž(๐‘ฅ) โ‰” ๐‘ฅ1 โˆ’ โ€–๐‘ฅโ€–2

is a diffeomorphism of ๐‘ˆ onto ๐‘๐‘›, and show that there are lots of mappings of ๐‘๐‘› onto ๐‘๐‘›which do not have fixed points.

Exercise 3.6.iv. Show that the fixed point in the Brouwer theorem doesnโ€™t have to be aninterior point of ๐ต๐‘›, i.e., show that it can lie on the boundary.

Exercise 3.6.v. If we identify ๐‚ with ๐‘2 via the mapping (๐‘ฅ, ๐‘ฆ) โ†ฆ ๐‘ฅ + ๐‘–๐‘ฆ, we can think of a๐‚-linear mapping of ๐‚ into itself, i.e., a mapping of the form

๐‘ง โ†ฆ ๐‘๐‘ง

for a fixed ๐‘ โˆˆ ๐‚, as an ๐‘-linear mapping of ๐‘2 into itself. Show that the determinant of thismapping is |๐‘|2.

Exercise 3.6.vi.

Page 103: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง3.6 Techniques for computing the degree of a mapping 91

(1) Let ๐‘“โˆถ ๐‚ โ†’ ๐‚ be the mapping ๐‘“(๐‘ง) โ‰” ๐‘ง๐‘›. Show that๐ท๐‘“(๐‘ง) is the linear map

๐ท๐‘“(๐‘ง) = ๐‘›๐‘ง๐‘›โˆ’1

given by multiplication by ๐‘›๐‘ง๐‘›โˆ’1.Hint: Argue from first principles. Show that for โ„Ž โˆˆ ๐‚ = ๐‘2

(๐‘ง + โ„Ž)๐‘› โˆ’ ๐‘ง๐‘› โˆ’ ๐‘›๐‘ง๐‘›โˆ’1โ„Ž|โ„Ž|

tends to zero as |โ„Ž| โ†’ 0.(2) Conclude from Exercise 3.6.v that

det(๐ท๐‘“(๐‘ง)) = ๐‘›2|๐‘ง|2๐‘›โˆ’2 .(3) Show that at every point ๐‘ง โˆˆ ๐‚ โˆ– {0}, ๐‘“ is orientation preserving.(4) Show that every point, ๐‘ค โˆˆ ๐‚ โˆ– {0} is a regular value of ๐‘“ and that

๐‘“โˆ’1(๐‘ค) = {๐‘ง1,โ€ฆ, ๐‘ง๐‘›}with ๐œŽ๐‘ง๐‘– = +1.

(5) Conclude that the degree of ๐‘“ is ๐‘›.

Exercise 3.6.vii. Prove that the map ๐‘“ from Exercise 3.6.vi has degree ๐‘› by deducing thisdirectly from the definition of degree.

Hints:โ€ข Show that in polar coordinates, ๐‘“ is the map (๐‘Ÿ, ๐œƒ) โ†ฆ (๐‘Ÿ๐‘›, ๐‘›๐œƒ).โ€ข Let ๐œ” be the 2-form ๐œ” โ‰” ๐‘”(๐‘ฅ2 +๐‘ฆ2)๐‘‘๐‘ฅ โˆง ๐‘‘๐‘ฆ, where ๐‘”(๐‘ก) is a compactly supported๐ถโˆž function of ๐‘ก. Show that in polar coordinates ๐œ” = ๐‘”(๐‘Ÿ2)๐‘Ÿ๐‘‘๐‘Ÿโˆง๐‘‘๐œƒ, and computethe degree of ๐‘“ by computing the integrals of ๐œ” and ๐‘“โ‹†๐œ” in polar coordinates andcomparing them.

Exercise 3.6.viii. Let ๐‘ˆ be an open subset of ๐‘๐‘›, ๐‘‰ an open subset of ๐‘๐‘š, ๐ด an open subin-terval of ๐‘ containing 0 and 1, ๐‘“0, ๐‘“1 โˆถ ๐‘ˆ โ†’ ๐‘‰ a pair of ๐ถโˆž mappings, and ๐นโˆถ ๐‘ˆ ร— ๐ด โ†’ ๐‘‰a homotopy between ๐‘“0 and ๐‘“1.(1) In Exercise 2.4.iv you proved that if ๐œ‡ โˆˆ ๐›บ๐‘˜(๐‘‰) and ๐‘‘๐œ‡ = 0, then(3.6.19) ๐‘“โ‹†0 ๐œ‡ โˆ’ ๐‘“โ‹†1 ๐œ‡ = ๐‘‘๐œˆ

where ๐œˆ is the (๐‘˜ โˆ’ 1)-form ๐‘„๐›ผ in equation (2.6.17). Show (by careful inspection of thedefinition of ๐‘„๐›ผ) that if ๐น is a proper homotopy and ๐œ‡ โˆˆ ๐›บ๐‘˜๐‘ (๐‘‰) then ๐œˆ โˆˆ ๐›บ๐‘˜โˆ’1๐‘ (๐‘ˆ).

(2) Suppose in particular that ๐‘ˆ and ๐‘‰ are open subsets of ๐‘๐‘› and ๐œ‡ is in ๐›บ๐‘›๐‘ (๐‘‰). Deducefrom equation (3.6.19) that

โˆซ๐‘“โ‹†0 ๐œ‡ = โˆซ๐‘“โ‹†1 ๐œ‡

and deduce directly from the definition of degree that degree is a proper homotopyinvariant.

Exercise 3.6.ix. Let ๐‘ˆ be an open connected subset of ๐‘๐‘› and ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘ˆ a proper ๐ถโˆžmap. Prove that if ๐‘“ is equal to the identity on the complement of a compact set ๐ถ, then ๐‘“is proper and deg(๐‘“) = 1.

Hints:โ€ข Show that for every subset ๐ด โŠ‚ ๐‘ˆ, we have ๐‘“โˆ’1(๐ด) โŠ‚ ๐ด โˆช ๐ถ, and conclude from

this that ๐‘“ is proper.โ€ข Use the recipe (1.6.2) to compute deg(๐‘“) with ๐‘ž โˆˆ ๐‘ˆ โˆ– ๐‘“(๐ถ).

Page 104: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

92 Chapter 3: Integration of Forms

Exercise 3.6.x. Let (๐‘Ž๐‘–,๐‘—) be an ๐‘›ร—๐‘›matrix and๐ดโˆถ ๐‘๐‘› โ†’ ๐‘๐‘› the linear mapping associatedwith this matrix. Frobeniusโ€™ Theorem asserts: If the ๐‘Ž๐‘–,๐‘— are non-negative then ๐ด has a non-negative eigenvalue. In other words there exists a ๐‘ฃ โˆˆ ๐‘๐‘› and a ๐œ† โˆˆ ๐‘, ๐œ† โ‰ฅ 0, such that๐ด๐‘ฃ = ๐œ†๐‘ฃ. Deduce this linear algebra result from the Brouwer fixed point theorem.

Hints:โ€ข We can assume that ๐ด is bijective, otherwise 0 is an eigenvalue. Let ๐‘†๐‘›โˆ’1 be the(๐‘› โˆ’ 1)-sphere, defined by |๐‘ฅ| = 1, and ๐‘“โˆถ ๐‘†๐‘›โˆ’1 โ†’ ๐‘†๐‘›โˆ’1 the map,

๐‘“(๐‘ฅ) = ๐ด๐‘ฅโ€–๐ด๐‘ฅโ€–

.

Show that ๐‘“maps the set

๐‘„ โ‰” { (๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) โˆˆ ๐‘†๐‘›โˆ’1 | ๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘› โ‰ฅ 0 }into itself.

โ€ข It is easy to prove that ๐‘„ is homeomorphic to the unit ball ๐ต๐‘›โˆ’1, i.e., that thereexists a continuous map ๐‘”โˆถ ๐‘„ โ†’ ๐ต๐‘›โˆ’1 which is invertible and has a continuousinverse. Without bothering to prove this fact deduce from it Frobeniusโ€™ theorem.

3.7. Appendix: Sardโ€™s theorem

The version of Sardโ€™s theorem stated in ยง3.5 is a corollary of the following more generalresult.

Theorem 3.7.1. Let๐‘ˆ be an open subset of ๐‘๐‘› and ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘๐‘› a ๐ถโˆž map. Then ๐‘๐‘› โˆ–๐‘“(๐ถ๐‘“)is dense in ๐‘๐‘›.

Before undertaking to prove this wewill make a few general comments about this result.

Remark 3.7.2. If (๐‘ˆ๐‘š)๐‘šโ‰ฅ1 are open dense subsets of ๐‘๐‘›, the intersectionโ‹‚๐‘šโ‰ฅ1๐‘ˆ๐‘š is densein ๐‘๐‘›. (This follows from the Baire category theorem; see, for instance, [7, Ch. 6 Thm. 34;11, Thm. 48.2] or Exercise 3.7.iv.)

Remark 3.7.3. If (๐ด๐‘›)๐‘›โ‰ฅ1 is a covering of๐‘ˆ by compact sets,๐‘‚๐‘› โ‰” ๐‘๐‘› โˆ–๐‘“(๐ถ๐‘“ โˆฉ๐ด๐‘›) is open,so if we can prove that it is dense then by Remark 3.7.2 we will have proved Sardโ€™s theorem.Hence since we can always cover ๐‘ˆ by a countable collection of closed cubes, it suffices toprove: for every closed cube ๐ด โŠ‚ ๐‘ˆ, the subspace ๐‘๐‘› โˆ– ๐‘“(๐ถ๐‘“ โˆฉ ๐ด) is dense in ๐‘๐‘›.

Remark 3.7.4. Let ๐‘”โˆถ ๐‘Š โ†’ ๐‘ˆ be a diffeomorphism and let โ„Ž = ๐‘“ โˆ˜ ๐‘”. Then

(3.7.5) ๐‘“(๐ถ๐‘“) = โ„Ž(๐ถโ„Ž)so Sardโ€™s theorem for โ„Ž implies Sardโ€™s theorem for ๐‘“.

We will first prove Sardโ€™s theorem for the set of super-critical points of ๐‘“, the set:

๐ถโ™ฏ๐‘“ โ‰” {๐‘ โˆˆ ๐‘ˆ |๐ท๐‘“(๐‘) = 0 } .

Proposition 3.7.6. Let ๐ด โŠ‚ ๐‘ˆ be a closed cube. Then the open set ๐‘๐‘› โˆ– ๐‘“(๐ด โˆฉ ๐ถโ™ฏ๐‘“) is a densesubset of ๐‘๐‘›.

Weโ€™ll deduce this from the lemma below.

Lemma 3.7.7. Given ๐œ€ > 0 one can cover ๐‘“(๐ด โˆฉ ๐ถโ™ฏ๐‘“) by a finite number of cubes of totalvolume less than ๐œ€.

Page 105: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง3.7 Appendix: Sardโ€™s theorem 93

Proof. Let the length of each of the sides of๐ด be โ„“. Given ๐›ฟ > 0 one can subdivide๐ด into๐‘๐‘›cubes, each of volume (โ„“/๐‘)๐‘›, such that if ๐‘ฅ and ๐‘ฆ are points of any one of these subcubes

(3.7.8) | ๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘—(๐‘ฅ) โˆ’ ๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘—(๐‘ฆ)| < ๐›ฟ .

Let ๐ด1,โ€ฆ,๐ด๐‘š be the cubes in this collection which intersect ๐ถโ™ฏ๐‘“. Then for ๐‘ง0 โˆˆ ๐ด๐‘– โˆฉ ๐ถโ™ฏ๐‘“,

๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘—(๐‘ง0) = 0, so for ๐‘ง โˆˆ ๐ด๐‘– we have

(3.7.9) | ๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘—(๐‘ง)| < ๐›ฟ

by equation (3.7.8). If ๐‘ฅ and ๐‘ฆ are points of ๐ด๐‘– then by the mean value theorem there existsa point ๐‘ง on the line segment joining ๐‘ฅ to ๐‘ฆ such that

๐‘“๐‘–(๐‘ฅ) โˆ’ ๐‘“๐‘–(๐‘ฆ) =๐‘›โˆ‘๐‘—=1

๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘—(๐‘ง)(๐‘ฅ๐‘— โˆ’ ๐‘ฆ๐‘—)

and hence by (3.7.9)

|๐‘“๐‘–(๐‘ฅ) โˆ’ ๐‘“๐‘–(๐‘ฆ)| โ‰ค ๐›ฟ๐‘›โˆ‘๐‘—=1|๐‘ฅ๐‘— โˆ’ ๐‘ฆ๐‘—| โ‰ค ๐‘›๐›ฟ

โ„“๐‘

.

Thus ๐‘“(๐ถ๐‘“ โˆฉ๐ด๐‘–) is contained in a cube ๐ต๐‘– of volume (๐‘› ๐›ฟโ„“๐‘ )๐‘›, and ๐‘“(๐ถ๐‘“ โˆฉ๐ด) is contained in

a union of cubes ๐ต๐‘– of total volume less than

๐‘๐‘›๐‘›๐‘› ๐›ฟ๐‘›โ„“๐‘›๐‘๐‘›= ๐‘›๐‘›๐›ฟ๐‘›โ„“๐‘›

so if we choose ๐›ฟ such that ๐‘›๐‘›๐›ฟ๐‘›โ„“๐‘› < ๐œ€, weโ€™re done. โ–ก

Proof of Proposition 3.7.6. To prove Proposition 3.7.6 we have to show that for every point๐‘ โˆˆ ๐‘๐‘› and neighborhood,๐‘Š of ๐‘, the set๐‘Šโˆ– ๐‘“(๐ถโ™ฏ๐‘“ โˆฉ ๐ด) is nonempty. Suppose

(3.7.10) ๐‘Š โŠ‚ ๐‘“(๐ถโ™ฏ๐‘“ โˆฉ ๐ด) .Without loss of generality we can assume๐‘Š is a cube of volume ๐œ€, but the lemma tells usthat ๐‘“(๐ถโ™ฏ๐‘“ โˆฉ๐ด) can be covered by a finite number of cubes whose total volume is less than ๐œ€,and hence by (3.7.10)๐‘Š can be covered by a finite number of cubes of total volume less than๐œ€, so its volume is less than ๐œ€. This contradiction proves that the inclusion (3.7.10) cannothold. โ–ก

Now we prove Theorem 3.7.1.

Proof of Theorem 3.7.1. Let ๐‘ˆ๐‘–,๐‘— be the subset of ๐‘ˆ where ๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘— โ‰  0. Then

๐‘ˆ = ๐ถโ™ฏ๐‘“ โˆช โ‹ƒ1โ‰ค๐‘–,๐‘—โ‰ค๐‘›๐‘ˆ๐‘–,๐‘— ,

so to prove the theorem it suffices to show that ๐‘๐‘› โˆ– ๐‘“(๐‘ˆ๐‘–,๐‘— โˆฉ ๐ถ๐‘“) is dense in ๐‘๐‘›, i.e., itsuffices to prove the theorem with ๐‘ˆ replaced by ๐‘ˆ๐‘–,๐‘—. Let ๐œŽ๐‘– โˆถ ๐‘๐‘› โฅฒ ๐‘๐‘› be the involutionwhich interchanges ๐‘ฅ1 and ๐‘ฅ๐‘– and leaves the remaining ๐‘ฅ๐‘˜โ€™s fixed. Letting ๐‘“new = ๐œŽ๐‘–๐‘“old๐œŽ๐‘—and ๐‘ˆnew = ๐œŽ๐‘—๐‘ˆold, we have, for ๐‘“ = ๐‘“new and ๐‘ˆ = ๐‘ˆnew

(3.7.11) ๐œ•๐‘“1๐œ•๐‘ฅ1(๐‘) โ‰  0

Page 106: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

94 Chapter 3: Integration of Forms

for all ๐‘ โˆˆ ๐‘ˆ so weโ€™re reduced to proving Theorem 3.7.1 for maps ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘๐‘› having theproperty (3.7.11). Let ๐‘”โˆถ ๐‘ˆ โ†’ ๐‘๐‘› be defined by

(3.7.12) ๐‘”(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) = (๐‘“1(๐‘ฅ), ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) .Then

๐‘”โ‹†๐‘ฅ1 = ๐‘“โ‹†๐‘ฅ1 = ๐‘“1(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›)and

det(๐ท๐‘”) = ๐œ•๐‘“1๐œ•๐‘ฅ1โ‰  0 .

Thus, by the inverse function theorem, ๐‘” is locally a diffeomorphism at every point ๐‘ โˆˆ ๐‘ˆ.This means that if ๐ด is a compact subset of ๐‘ˆ we can cover ๐ด by a finite number of opensubsets ๐‘ˆ๐‘– โŠ‚ ๐‘ˆ such that ๐‘” maps ๐‘ˆ๐‘– diffeomorphically onto an open subset ๐‘Š๐‘– in ๐‘๐‘›. Toconclude the proof of the theorem weโ€™ll show that ๐‘๐‘› โˆ– ๐‘“(๐ถ๐‘“ โˆฉ ๐‘ˆ๐‘– โˆฉ ๐ด) is a dense subset of๐‘๐‘›. Let โ„Žโˆถ ๐‘Š๐‘– โ†’ ๐‘๐‘› be themapโ„Ž = ๐‘“โˆ˜๐‘”โˆ’1. To prove this assertion it suffices byRemark 3.7.4to prove that the set ๐‘๐‘› โˆ– โ„Ž(๐ถโ„Ž) is dense in ๐‘๐‘›. This we will do by induction on ๐‘›. First notethat for ๐‘› = 1, we have ๐ถ๐‘“ = ๐ถ

โ™ฏ๐‘“, so weโ€™ve already proved Theorem 3.7.1 in dimension one.

Now note that by (3.7.12) we have โ„Žโ‹†๐‘ฅ1 = ๐‘ฅ1, i.e., โ„Ž is a mapping of the form

โ„Ž(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) = (๐‘ฅ1, โ„Ž2(๐‘ฅ),โ€ฆ, โ„Ž๐‘›(๐‘ฅ)) .Thus if we let

๐‘Š๐‘ โ‰” { (๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) โˆˆ ๐‘๐‘›โˆ’1 | (๐‘, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) โˆˆ ๐‘Š๐‘– }and let โ„Ž๐‘ โˆถ ๐‘Š๐‘ โ†’ ๐‘๐‘›โˆ’1 be the map

โ„Ž๐‘(๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) = (โ„Ž2(๐‘, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›),โ€ฆ, โ„Ž๐‘›(๐‘, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›)) .Then

det(๐ทโ„Ž๐‘)(๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) = det(๐ทโ„Ž)(๐‘, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) ,and hence

(3.7.13) (๐‘, ๐‘ฅ) โˆˆ ๐‘Š๐‘– โˆฉ ๐ถโ„Ž โŸบ ๐‘ฅ โˆˆ ๐ถโ„Ž๐‘ .Now let ๐‘0 = (๐‘, ๐‘ฅ0) be a point in ๐‘๐‘›. We have to show that every neighborhood ๐‘‰ of ๐‘0contains a point ๐‘ โˆˆ ๐‘๐‘›โˆ–โ„Ž(๐ถโ„Ž). Let๐‘‰๐‘ โŠ‚ ๐‘๐‘›โˆ’1 be the set of points ๐‘ฅ for which (๐‘, ๐‘ฅ) โˆˆ ๐‘‰. Byinduction ๐‘‰๐‘ contains a point ๐‘ฅ โˆˆ ๐‘๐‘›โˆ’1 โˆ– โ„Ž๐‘(๐ถโ„Ž๐‘) and hence ๐‘ = (๐‘, ๐‘ฅ) is in ๐‘‰ by definitionand in ๐‘๐‘› โˆ– โ„Ž(๐ถโ„Ž) by (3.7.13). โ–ก

Exercises for ยง3.7Exercise 3.7.i. What are the set of critical points and the image of the set of critical pointsfor the following maps ๐‘ โ†’ ๐‘?(1) The map ๐‘“1(๐‘ฅ) = (๐‘ฅ2 โˆ’ 1)2.(2) The map ๐‘“2(๐‘ฅ) = sin(๐‘ฅ) + ๐‘ฅ.(3) The map

๐‘“3(๐‘ฅ) = {0, ๐‘ฅ โ‰ค 0๐‘’โˆ’ 1๐‘ฅ , ๐‘ฅ > 0 .

Exercise 3.7.ii (Sardโ€™s theorem for affine maps). Let ๐‘“โˆถ ๐‘๐‘› โ†’ ๐‘๐‘› be an affine map, i.e., amap of the form

๐‘“(๐‘ฅ) = ๐ด(๐‘ฅ) + ๐‘ฅ0where ๐ดโˆถ ๐‘๐‘› โ†’ ๐‘๐‘› is a linear map and ๐‘ฅ0 โˆˆ ๐‘๐‘›. Prove Sardโ€™s theorem for ๐‘“.

Page 107: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง3.7 Appendix: Sardโ€™s theorem 95

Exercise 3.7.iii. Let๐œŒโˆถ ๐‘ โ†’ ๐‘be a๐ถโˆž functionwhich is supported in the interval (โˆ’1/2, 1/2)and has amaximum at the origin. Let (๐‘Ÿ๐‘–)๐‘–โ‰ฅ1 be an enumeration of the rational numbers, andlet ๐‘“โˆถ ๐‘ โ†’ ๐‘ be the map

๐‘“(๐‘ฅ) =โˆžโˆ‘๐‘–=1๐‘Ÿ๐‘–๐œŒ(๐‘ฅ โˆ’ ๐‘–) .

Show that ๐‘“ is a ๐ถโˆž map and show that the image of ๐ถ๐‘“ is dense in ๐‘.The moral of this example: Sardโ€™s theorem says that the complement of ๐ถ๐‘“ is dense in ๐‘,

but ๐ถ๐‘“ can be dense as well.

Exercise 3.7.iv. Prove the assertion made in Remark 3.7.4.Hint: You need to show that for every point ๐‘ โˆˆ ๐‘๐‘› and every neighborhood ๐‘‰ of ๐‘,

๐‘‰โˆฉโ‹‚๐‘›โ‰ฅ1๐‘ˆ๐‘› is nonempty. Construct, by induction, a family of closed balls (๐ต๐‘˜)๐‘˜โ‰ฅ1 such thatโ€ข ๐ต๐‘˜ โŠ‚ ๐‘‰,โ€ข ๐ต๐‘˜+1 โŠ‚ ๐ต๐‘˜,โ€ข ๐ต๐‘˜ โŠ‚ โ‹‚๐‘›โ‰ค๐‘˜๐‘ˆ๐‘›,โ€ข The radius of ๐ต๐‘˜ is less than 1๐‘˜ ,

and show thatโ‹‚๐‘˜โ‰ฅ1 ๐ต๐‘˜ โ‰  โˆ….Exercise 3.7.v. Verify equation (3.7.5).

Page 108: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

Page 109: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

CHAPTER 4

Manifolds & Forms on Manifolds

4.1. Manifolds

Our agenda in this chapter is to extend to manifolds the results of Chapters 2 and 3 andto formulate and prove manifold versions of two of the fundamental theorems of integralcalculus: Stokesโ€™ theorem and the divergence theorem. In this section weโ€™ll define what wemean by the term manifold, however, before we do so, a word of encouragement. Havinghad a course in multivariable calculus, you are already familiar with manifolds, at least intheir one and two-dimensional emanations, as curves and surfaces in ๐‘3, i.e., a manifold isbasically just an ๐‘›-dimensional surface in some high dimensional Euclidean space. Tomakethis definition precise let๐‘‹ be a subset of ๐‘๐‘, ๐‘Œ a subset of ๐‘๐‘› and ๐‘“โˆถ ๐‘‹ โ†’ ๐‘Œ a continuousmap. We recall:

Definition 4.1.1. The map ๐‘“ is a ๐ถโˆž map if for every ๐‘ โˆˆ ๐‘‹, there exists a neighborhood๐‘ˆ๐‘ of ๐‘ in ๐‘๐‘ and a ๐ถโˆž map ๐‘”๐‘ โˆถ ๐‘ˆ๐‘ โ†’ ๐‘๐‘› which coincides with ๐‘“ on ๐‘ˆ๐‘ โˆฉ ๐‘‹.

We also recall:

Theorem 4.1.2. If ๐‘“โˆถ ๐‘‹ โ†’ ๐‘Œ is a ๐ถโˆž map, there exists a neighborhood๐‘ˆ, of๐‘‹ in ๐‘๐‘ and a๐ถโˆž map ๐‘”โˆถ ๐‘ˆ โ†’ ๐‘๐‘› such that ๐‘” coincides with ๐‘“ on๐‘‹.

(A proof of this can be found in Appendix a.)We will say that ๐‘“ is a diffeomorphism if ๐‘“ is a bijection and ๐‘“ and ๐‘“โˆ’1 are both ๐ถโˆž

maps. In particular if ๐‘Œ is an open subset of ๐‘๐‘›,๐‘‹ is an example of an object which we willcall a manifold. More generally:

Definition 4.1.3. Let๐‘ and ๐‘› be nonnegative integers with ๐‘› โ‰ค ๐‘. A subset ๐‘‹ โŠ‚ ๐‘๐‘ is an๐‘›-manifold if for every ๐‘ โˆˆ ๐‘‹ there exists a neighborhood ๐‘‰ of ๐‘ in ๐‘๐‘, an open subset ๐‘ˆin ๐‘๐‘›, and a diffeomorphism ๐œ™โˆถ ๐‘ˆ โฅฒ ๐‘‹ โˆฉ ๐‘‰.

Thus๐‘‹ is an ๐‘›-manifold if, locally near every point ๐‘,๐‘‹ โ€œlooks likeโ€ an open subset of๐‘๐‘›.

Examples 4.1.4.(1) Graphs of functions: Let ๐‘ˆ be an open subset of ๐‘๐‘› and ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘ a ๐ถโˆž function. Its

graph๐›ค๐‘“ = { (๐‘ฅ, ๐‘“(๐‘ฅ)) โˆˆ ๐‘๐‘›+1 | ๐‘ฅ โˆˆ ๐‘ˆ }

is an ๐‘›-manifold in ๐‘๐‘›+1. In fact the map

๐œ™โˆถ ๐‘ˆ โ†’ ๐‘๐‘›+1 , ๐‘ฅ โ†ฆ (๐‘ฅ, ๐‘“(๐‘ฅ))is a diffeomorphism of ๐‘ˆ onto ๐›ค๐‘“. (Itโ€™s clear that ๐œ™ is a ๐ถโˆž map, and it is a diffeomor-phism since its inverse is the map ๐œ‹โˆถ ๐›ค๐‘“ โ†’ ๐‘ˆ given by ๐œ‹(๐‘ฅ, ๐‘ก) โ‰” ๐‘ฅ, which is also clearly๐ถโˆž.)

97

Page 110: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

98 Chapter 4: Manifolds & Forms on Manifolds

(2) Graphs of mappings: More generally if ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘๐‘˜ is a ๐ถโˆž map, its graph ๐›ค๐‘“ is an๐‘›-manifold in ๐‘๐‘›+๐‘˜.

(3) Vector spaces: Let๐‘‰ be an ๐‘›- dimensional vector subspace of ๐‘๐‘, and (๐‘’1,โ€ฆ, ๐‘’๐‘›) a basisof ๐‘‰. Then the linear map

(4.1.5) ๐œ™โˆถ ๐‘๐‘› โ†’ ๐‘‰ , (๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) โ†ฆ๐‘›โˆ‘๐‘–=1๐‘ฅ๐‘–๐‘’๐‘–

is a diffeomorphism of ๐‘๐‘› onto ๐‘‰. Hence every ๐‘›-dimensional vector subspace of ๐‘๐‘is automatically an ๐‘›-dimensional submanifold of ๐‘๐‘. Note, by the way, that if๐‘‰ is any๐‘›-dimensional vector space, not necessarily a subspace of ๐‘๐‘, the map (4.1.5) givesus an identification of ๐‘‰ with ๐‘๐‘›. This means that we can speak of subsets of ๐‘‰ asbeing ๐‘˜-dimensional submanifolds if, via this identification, they get mapped onto ๐‘˜-dimensional submanifolds of ๐‘๐‘›. (This is a trivial, but useful, observation since a lot ofinteresting manifolds occur โ€œin natureโ€ as subsets of some abstract vector space ratherthan explicitly as subsets of some ๐‘๐‘›. An example is the manifold, ๐‘‚(๐‘›), of orthogonal๐‘› ร— ๐‘› matrices. This manifold occurs in nature as a submanifold of the vector space of๐‘› by ๐‘›matrices.)

(4) Affine subspaces of ๐‘๐‘›: These are manifolds of the form ๐‘ + ๐‘‰, where ๐‘‰ is a vector sub-space of ๐‘๐‘ and ๐‘ is a specified point in ๐‘๐‘. In other words, they are diffeomorphiccopies of vector subspaces with respect to the diffeomorphism

๐œ๐‘ โˆถ ๐‘๐‘ โฅฒ ๐‘๐‘ , ๐‘ฅ โ†ฆ ๐‘ + ๐‘ฅ .

If๐‘‹ is an arbitrary submanifold of ๐‘๐‘ its tangent space a point ๐‘ โˆˆ ๐‘‹, is an example ofa manifold of this type. (Weโ€™ll have more to say about tangent spaces in Section 4.2.)

(5) Product manifolds: For ๐‘– = 1, 2, let ๐‘‹๐‘– be an ๐‘›๐‘–-dimensional submanifold of ๐‘๐‘๐‘– . Thenthe Cartesian product of๐‘‹1 and๐‘‹2

๐‘‹1 ร— ๐‘‹2 = { (๐‘ฅ1, ๐‘ฅ2) | ๐‘ฅ๐‘– โˆˆ ๐‘‹๐‘– }is an (๐‘›1 + ๐‘›2)-dimensional submanifold of ๐‘๐‘1+๐‘2 = ๐‘๐‘1 ร— ๐‘๐‘2 .

We will leave for you to verify this fact as an exercise.Hint: For ๐‘๐‘– โˆˆ ๐‘‹๐‘–, ๐‘– = 1, 2, there exists a neighborhood,๐‘‰๐‘–, of ๐‘๐‘– in ๐‘๐‘๐‘– , an open set,

๐‘ˆ๐‘– in ๐‘๐‘›๐‘– , and a diffeomorphism ๐œ™โˆถ ๐‘ˆ๐‘– โ†’ ๐‘‹๐‘– โˆฉ ๐‘‰๐‘–. Let ๐‘ˆ = ๐‘ˆ1 ร— ๐‘ˆ2, ๐‘‰ = ๐‘‰1 ร— ๐‘‰2 and๐‘‹ = ๐‘‹1 ร— ๐‘‹2, and let ๐œ™โˆถ ๐‘ˆ โ†’ ๐‘‹ โˆฉ ๐‘‰ be the product diffeomorphism, (๐œ™(๐‘ž1), ๐œ™2(๐‘ž2)).

(6) The unit ๐‘›-sphere: This is the set of unit vectors in ๐‘๐‘›+1:๐‘†๐‘› = { ๐‘ฅ โˆˆ ๐‘๐‘›+1 | ๐‘ฅ21 +โ‹ฏ + ๐‘ฅ2๐‘›+1 = 1 } .

To show that ๐‘†๐‘› is an ๐‘›-manifold, let๐‘‰ be the open subset of ๐‘๐‘›+1 on which ๐‘ฅ๐‘›+1 ispositive. If๐‘ˆ is the open unit ball in๐‘๐‘› and๐‘“โˆถ ๐‘ˆ โ†’ ๐‘ is the function,๐‘“(๐‘ฅ) = (1โˆ’(๐‘ฅ21 +โ‹ฏ + ๐‘ฅ2๐‘›))1/2, then ๐‘†๐‘› โˆฉ ๐‘‰ is just the graph ๐›ค๐‘“ of ๐‘“. Hence we have a diffeomorphism

๐œ™โˆถ ๐‘ˆ โ†’ ๐‘†๐‘› โˆฉ ๐‘‰ .More generally, if ๐‘ = (๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›+1) is any point on the unit sphere, then ๐‘ฅ๐‘– is nonzerofor some ๐‘–. If ๐‘ฅ๐‘– is positive, then letting ๐œŽ be the transposition, ๐‘– โ†” ๐‘›+1 and๐‘“๐œŽ โˆถ ๐‘๐‘›+1 โ†’๐‘๐‘›+1, the map

๐‘“๐œŽ(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) = (๐‘ฅ๐œŽ(1),โ€ฆ, ๐‘ฅ๐œŽ(๐‘›))one gets a diffeomorphism๐‘“๐œŽโˆ˜๐œ™ of๐‘ˆ onto a neighborhood of๐‘ in ๐‘†๐‘› and if๐‘ฅ๐‘– is negativeone gets such a diffeomorphism by replacing ๐‘“๐œŽ by โˆ’๐‘“๐œŽ. In either case we have shownthat for every point ๐‘ in ๐‘†๐‘›, there is a neighborhood of ๐‘ in ๐‘†๐‘› which is diffeomorphicto ๐‘ˆ.

Page 111: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง4.1 Manifolds 99

(7) The 2-torus: In calculus books this is usually described as the surface of rotation in ๐‘3obtained by taking the unit circle centered at the point, (2, 0), in the (๐‘ฅ1, ๐‘ฅ3) plane androtating it about the ๐‘ฅ3-axis. However, a slightly nicer description of it is as the productmanifold ๐‘†1 ร— ๐‘†1 in ๐‘4. (As an exercise, reconcile these two descriptions.)

Weโ€™ll now turn to an alternative way of looking at manifolds: as solutions of systems ofequations. Let ๐‘ˆ be an open subset of ๐‘๐‘ and ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘๐‘˜ a ๐ถโˆž map.

Definition 4.1.6. A point ๐‘Ž โˆˆ ๐‘๐‘˜ is a regular value of ๐‘“ if for every point ๐‘ โˆˆ ๐‘“โˆ’1(๐‘Ž), themap ๐‘“ is a submersion at ๐‘.

Note that for ๐‘“ to be a submersion at ๐‘, the differential ๐ท๐‘“(๐‘)โˆถ ๐‘๐‘ โ†’ ๐‘๐‘˜ has to besurjective, and hence ๐‘˜ has to be less than or equal to ๐‘. Therefore this notion of regularvalue is interesting only if๐‘ โ‰ฅ ๐‘˜.

Theorem4.1.7. Let ๐‘› โ‰” ๐‘โˆ’๐‘˜. If ๐‘Ž is a regular value of๐‘“, the set๐‘‹ โ‰” ๐‘“โˆ’1(๐‘Ž) is an ๐‘›-manifold.

Proof. Replacing ๐‘“ by ๐œโˆ’๐‘Ž โˆ˜ ๐‘“ we can assume without loss of generality that ๐‘Ž = 0. Let ๐‘ โˆˆ๐‘“โˆ’1(0). Since ๐‘“ is a submersion at ๐‘, the canonical submersion theorem (see Theorem b.16)tells us that there exists a neighborhood ๐‘‚ of 0 in ๐‘๐‘, a neighborhood ๐‘ˆ0, of ๐‘ in ๐‘ˆ and adiffeomorphism ๐‘” โ†’ ๐‘‚ โฅฒ ๐‘ˆ0 such that

(4.1.8) ๐‘“ โˆ˜ ๐‘” = ๐œ‹

where ๐œ‹ is the projection map

๐‘๐‘ = ๐‘๐‘˜ ร— ๐‘๐‘› โ†’ ๐‘๐‘˜ , (๐‘ฅ, ๐‘ฆ) โ†ฆ ๐‘ฅ .

Hence๐œ‹โˆ’1(0) = {0}ร—๐‘๐‘› = ๐‘๐‘› and by equation (4.1.5)), ๐‘”maps๐‘‚โˆฉ๐œ‹โˆ’1(0) diffeomorphicallyonto ๐‘ˆ0 โˆฉ ๐‘“โˆ’1(0). However, ๐‘‚ โˆฉ ๐œ‹โˆ’1(0) is a neighborhood of 0 in ๐‘๐‘› and ๐‘ˆ0 โˆฉ ๐‘“โˆ’1(0) is aneighborhood of๐‘ in๐‘‹, and, as remarked, these two neighborhoods are diffeomorphic. โ–ก

Some examples:

Examples 4.1.9.(1) The ๐‘›-sphere: Let

๐‘“โˆถ ๐‘๐‘›+1 โ†’ ๐‘be the map,

(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›+1) โ†ฆ ๐‘ฅ21 +โ‹ฏ + ๐‘ฅ2๐‘›+1 โˆ’ 1 .Then

๐ท๐‘“(๐‘ฅ) = 2(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›+1)so, if ๐‘ฅ โ‰  0, then ๐‘“ is a submersion at ๐‘ฅ. In particular, ๐‘“ is a submersion at all points ๐‘ฅon the ๐‘›-sphere

๐‘†๐‘› = ๐‘“โˆ’1(0)so the ๐‘›-sphere is an ๐‘›-dimensional submanifold of ๐‘๐‘›+1.

(2) Graphs: Let ๐‘”โˆถ ๐‘๐‘› โ†’ ๐‘๐‘˜ be a ๐ถโˆž map and, as in (2), let

๐›ค๐‘” โ‰” { (๐‘ฅ, ๐‘ฆ) โˆˆ ๐‘๐‘› ร— ๐‘๐‘˜ | ๐‘ฆ = ๐‘”(๐‘ฅ) } .

We claim that ๐›ค๐‘” is an ๐‘›-dimensional submanifold of ๐‘๐‘›+๐‘˜ = ๐‘๐‘› ร— ๐‘๐‘˜.

Page 112: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

100 Chapter 4: Manifolds & Forms on Manifolds

Proof. Let๐‘“โˆถ ๐‘๐‘› ร— ๐‘๐‘˜ โ†’ ๐‘๐‘˜

be the map ๐‘“(๐‘ฅ, ๐‘ฆ) โ‰” ๐‘ฆ โˆ’ ๐‘”(๐‘ฅ). Then

๐ท๐‘“(๐‘ฅ, ๐‘ฆ) = (โˆ’๐ท๐‘”(๐‘ฅ) id๐‘˜)

where id๐‘˜ is the identity map of ๐‘๐‘˜ onto itself. This map is always of rank ๐‘˜. Hence๐›ค๐‘“ = ๐‘“โˆ’1(0) is an ๐‘›-dimensional submanifold of ๐‘๐‘›+๐‘˜. โ–ก

(3) Let M ๐‘› be the set of all ๐‘› ร— ๐‘› matrices and let ๐’ฎ๐‘› be the set of all symmetric ๐‘› ร— ๐‘›matrices, i.e., the set

๐’ฎ๐‘› = {๐ด โˆˆM ๐‘› | ๐ด = ๐ดโŠบ } .The map

๐ด = (๐‘Ž๐‘–,๐‘—) โ†ฆ (๐‘Ž1,1, ๐‘Ž1,2,โ€ฆ, ๐‘Ž1,๐‘›, ๐‘Ž2,1,โ€ฆ, ๐‘Ž2,๐‘›,โ€ฆ)gives us an identification

M ๐‘› โฅฒ ๐‘๐‘›2

and the map

๐ด = (๐‘Ž๐‘–,๐‘—) โ†ฆ (๐‘Ž1,1,โ€ฆ, ๐‘Ž1,๐‘›, ๐‘Ž2,2,โ€ฆ, ๐‘Ž2,๐‘›, ๐‘Ž3,3,โ€ฆ, ๐‘Ž3,๐‘›,โ€ฆ)gives us an identification

๐’ฎ๐‘› โฅฒ ๐‘๐‘›(๐‘›+1)2 .

(Note that if๐ด is a symmetric matrix, then ๐‘Ž๐‘–,๐‘— = ๐‘Ž๐‘—,๐‘–, so this map avoids redundancies.)Let

๐‘‚(๐‘›) = {๐ด โˆˆM ๐‘› | ๐ดโŠบ๐ด = id๐‘› } .This is the set of orthogonal ๐‘› ร— ๐‘›matrices, and we will leave for you as an exercise toshow that itโ€™s an ๐‘›(๐‘› โˆ’ 1)/2-manifold.

Hint: Let ๐‘“โˆถ M ๐‘› โ†’ ๐’ฎ๐‘› be the map ๐‘“(๐ด) = ๐ดโŠบ๐ด โˆ’ id๐‘›. Then

๐‘‚(๐‘›) = ๐‘“โˆ’1(0) .

These examples show that lots of interestingmanifolds arise as zero sets of submersions๐‘“โˆถ ๐‘ˆ โ†’ ๐‘๐‘˜. This is, in fact, not just an accident. We will show that locally every manifoldarises this way. More explicitly let ๐‘‹ โŠ‚ ๐‘๐‘ be an ๐‘›-manifold, ๐‘ a point of ๐‘‹, ๐‘ˆ a neighbor-hood of 0 in ๐‘๐‘›, ๐‘‰ a neighborhood of ๐‘ in ๐‘๐‘ and ๐œ™โˆถ (๐‘ˆ, 0) โฅฒ (๐‘‰ โˆฉ ๐‘‹, ๐‘) a diffeomor-phism. We will for the moment think of ๐œ™ as a ๐ถโˆž map ๐œ™โˆถ ๐‘ˆ โ†’ ๐‘๐‘ whose image happensto lie in๐‘‹.

Lemma 4.1.10. The linear map๐ท๐œ™(0)โˆถ ๐‘๐‘› โ†’ ๐‘๐‘ is injective.

Proof. Since๐œ™โˆ’1 โˆถ ๐‘‰ โˆฉ ๐‘‹ โฅฒ ๐‘ˆ is a diffeomorphism, shrinking๐‘‰ if necessary, we can assumethat there exists a ๐ถโˆž map ๐œ“โˆถ ๐‘‰ โ†’ ๐‘ˆ which coincides with ๐œ™โˆ’1on ๐‘‰ โˆฉ ๐‘‹. Since ๐œ™maps ๐‘ˆonto ๐‘‰ โˆฉ ๐‘‹, ๐œ“ โˆ˜ ๐œ™ = ๐œ™โˆ’1 โˆ˜ ๐œ™ is the identity map on ๐‘ˆ. Therefore,

๐ท(๐œ“ โˆ˜ ๐œ™)(0) = (๐ท๐œ“)(๐‘)๐ท๐œ™(0) = id๐‘›by the chain rule, and hence if๐ท๐œ™(0)๐‘ฃ = 0, it follows from this identity that ๐‘ฃ = 0. โ–ก

Lemma 4.1.10 says that ๐œ™ is an immersion at 0, so by the canonical immersion theorem(see Theorem b.18) there exists a neighborhood ๐‘ˆ0 of 0 in ๐‘ˆ, a neighborhood ๐‘‰๐‘ of ๐‘ in ๐‘‰,and a diffeomorphism

(4.1.11) ๐‘”โˆถ (๐‘‰๐‘, ๐‘) โฅฒ (๐‘ˆ0 ร— ๐‘๐‘โˆ’๐‘›, 0)

Page 113: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง4.1 Manifolds 101

such that ๐‘” โˆ˜ ๐œ™ = ๐œ„, where ๐œ„ is, as in Appendix b, the canonical immersion

(4.1.12) ๐œ„ โˆถ ๐‘ˆ0 โ†’ ๐‘ˆ0 ร— ๐‘๐‘โˆ’๐‘› , ๐‘ฅ โ†ฆ (๐‘ฅ, 0) .By (4.1.11) ๐‘” maps ๐œ™(๐‘ˆ0) diffeomorphically onto ๐œ„(๐‘ˆ0). However, by (4.1.8) and (4.1.11)๐œ„(๐‘ˆ0) is defined by the equations, ๐‘ฅ๐‘– = 0, ๐‘– = ๐‘› + 1,โ€ฆ,๐‘. Hence if ๐‘” = (๐‘”1,โ€ฆ, ๐‘”๐‘) the set,๐œ™(๐‘ˆ0) = ๐‘‰๐‘ โˆฉ ๐‘‹ is defined by the equations

(4.1.13) ๐‘”๐‘– = 0 , ๐‘– = ๐‘› + 1,โ€ฆ,๐‘ .

Let โ„“ = ๐‘ โˆ’ ๐‘›, let๐œ‹โˆถ ๐‘๐‘ = ๐‘๐‘› ร— ๐‘โ„“ โ†’ ๐‘โ„“

be the canonical submersion,

๐œ‹(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘) = (๐‘ฅ๐‘›+1,โ€ฆ, ๐‘ฅ๐‘)and let ๐‘“ = ๐œ‹ โˆ˜ ๐‘”. Since ๐‘” is a diffeomorphism, ๐‘“ is a submersion and (4.1.12) can beinterpreted as saying that

(4.1.14) ๐‘‰๐‘ โˆฉ ๐‘‹ = ๐‘“โˆ’1(0) .Thus to summarize we have proved:

Theorem 4.1.15. Let๐‘‹ be an ๐‘›-dimensional submanifold of ๐‘๐‘ and let โ„“ โ‰” ๐‘โˆ’ ๐‘›. Then forevery ๐‘ โˆˆ ๐‘‹ there exists a neighborhood ๐‘‰๐‘ of ๐‘ in ๐‘๐‘ and a submersion

๐‘“โˆถ (๐‘‰๐‘, ๐‘) โ†’ (๐‘โ„“, 0)such that๐‘‹ โˆฉ ๐‘‰๐‘ is defined by equation (4.1.13).

A nice way of thinking about Theorem 4.1.2 is in terms of the coordinates of the map-ping, ๐‘“. More specifically if ๐‘“ = (๐‘“1,โ€ฆ, ๐‘“๐‘˜) we can think of ๐‘“โˆ’1(๐‘Ž) as being the set ofsolutions of the system of equations

๐‘“๐‘–(๐‘ฅ) = ๐‘Ž๐‘– , ๐‘– = 1,โ€ฆ, ๐‘˜and the condition that ๐‘Ž be a regular value of ๐‘“ can be interpreted as saying that for everysolution ๐‘ of this system of equations the vectors

(๐‘‘๐‘“๐‘–)๐‘ =๐‘›โˆ‘๐‘—=1

๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘—(0)๐‘‘๐‘ฅ๐‘—

in ๐‘‡โ‹†๐‘ ๐‘๐‘› are linearly independent, i.e., the system (4.1.14) is an โ€œindependent system ofdefining equationsโ€ for๐‘‹.

Exercises for ยง4.1Exercise 4.1.i. Show that the set of solutions of the system of equations

{๐‘ฅ21 +โ‹ฏ + ๐‘ฅ2๐‘› = 1๐‘ฅ1 +โ‹ฏ + ๐‘ฅ๐‘› = 0

is an (๐‘› โˆ’ 2)-dimensional submanifold of ๐‘๐‘›.

Exercise 4.1.ii. Let ๐‘†๐‘›โˆ’1 โŠ‚ ๐‘๐‘› be the (๐‘› โˆ’ 1)-sphere and let

๐‘‹๐‘Ž = { ๐‘ฅ โˆˆ ๐‘†๐‘›โˆ’1 | ๐‘ฅ1 +โ‹ฏ + ๐‘ฅ๐‘› = ๐‘Ž } .For what values of ๐‘Ž is๐‘‹๐‘Ž an (๐‘› โˆ’ 2)-dimensional submanifold of ๐‘†๐‘›โˆ’1?

Page 114: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

102 Chapter 4: Manifolds & Forms on Manifolds

Exercise 4.1.iii. Show that if๐‘‹๐‘– is an ๐‘›๐‘–-dimensional submanifold of ๐‘๐‘๐‘– , for ๐‘– = 1, 2, then๐‘‹1 ร— ๐‘‹2 โŠ‚ ๐‘๐‘1 ร— ๐‘๐‘2

is an (๐‘›1 + ๐‘›2)-dimensional submanifold of ๐‘๐‘1 ร— ๐‘๐‘2 .Exercise 4.1.iv. Show that the set

๐‘‹ = { (๐‘ฅ, ๐‘ฃ) โˆˆ ๐‘†๐‘›โˆ’1 ร— ๐‘๐‘› | ๐‘ฅ โ‹… ๐‘ฃ = 0 }is a (2๐‘›โˆ’2)-dimensional submanifold of๐‘๐‘›ร—๐‘๐‘›. (Here ๐‘ฅโ‹…๐‘ฃ โ‰” โˆ‘๐‘›๐‘–=1 ๐‘ฅ๐‘–๐‘ฃ๐‘– is the dot product.)

Exercise 4.1.v. Let ๐‘”โˆถ ๐‘๐‘› โ†’ ๐‘๐‘˜ be a ๐ถโˆž map and let ๐‘‹ = ๐›ค๐‘” be the graph of ๐‘”. Provedirectly that๐‘‹ is an ๐‘›-manifold by proving that the map

๐›พ๐‘” โˆถ ๐‘๐‘› โ†’ ๐‘‹ , ๐‘ฅ โ†ฆ (๐‘ฅ, ๐‘”(๐‘ฅ))is a diffeomorphism.

Exercise 4.1.vi. Prove that the orthogonal group ๐‘‚(๐‘›) is an ๐‘›(๐‘› โˆ’ 1)/2-manifold.Hints:

โ€ข Let ๐‘“โˆถ M ๐‘› โ†’ ๐’ฎ๐‘› be the map๐‘“(๐ด) = ๐ดโŠบ๐ด โˆ’ id๐‘› .

Show that ๐‘‚(๐‘›) = ๐‘“โˆ’1(0).โ€ข Show that

๐‘“(๐ด + ๐œ€๐ต) = ๐ดโŠบ๐ด + ๐œ€(๐ดโŠบ๐ต + ๐ตโŠบ๐ด) + ๐œ€2๐ตโŠบ๐ต โˆ’ id๐‘› .โ€ข Conclude that the derivative of ๐‘“ at ๐ด is the map given by

(4.1.16) ๐ต โ†ฆ ๐ดโŠบ๐ต + ๐ตโŠบ๐ด .โ€ข Let ๐ด be in ๐‘‚(๐‘›). Show that if ๐ถ is in ๐’ฎ๐‘› and ๐ต = ๐ด๐ถ/2 then the map (4.1.16)

maps ๐ต onto ๐ถ.โ€ข Conclude that the derivative of ๐‘“ is surjective at ๐ด.โ€ข Conclude that 0 is a regular value of the mapping ๐‘“.

The next five exercises, which are somewhat more demanding than the exercises above,are an introduction to Grassmannian geometry.

Exercise 4.1.vii.(1) Let ๐‘’1,โ€ฆ, ๐‘’๐‘› be the standard basis of ๐‘๐‘› and let๐‘Š = span(๐‘’๐‘˜+1,โ€ฆ, ๐‘’๐‘›). Prove that if ๐‘‰

is a ๐‘˜-dimensional subspace of ๐‘๐‘› and(4.1.17) ๐‘‰ โˆฉ๐‘Š = 0 ,

then one can find a unique basis of ๐‘‰ of the form

(4.1.18) ๐‘ฃ๐‘– = ๐‘’๐‘– +โ„“โˆ‘๐‘—=1๐‘๐‘–,๐‘—๐‘’๐‘˜+๐‘— , ๐‘– = 1,โ€ฆ, ๐‘˜ ,

where โ„“ = ๐‘› โˆ’ ๐‘˜.(2) Let ๐บ๐‘˜ be the set of ๐‘˜-dimensional subspaces of ๐‘๐‘› having the property (4.1.17) and

let M ๐‘˜,โ„“ be the vector space of ๐‘˜ ร— โ„“ matrices. Show that one gets from the identities(4.1.18) a bijective map:

(4.1.19) ๐›พโˆถ M ๐‘˜,โ„“ โ†’ ๐บ๐‘˜ .Exercise 4.1.viii. Let ๐‘†๐‘› be the vector space of linear mappings of ๐‘๐‘› into itself which areself-adjoint, i.e., have the property ๐ด = ๐ดโŠบ.

Page 115: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง4.1 Manifolds 103

(1) Given a ๐‘˜-dimensional subspace,๐‘‰ of๐‘๐‘› let๐œ‹๐‘‰ โˆถ ๐‘๐‘› โ†’ ๐‘๐‘› be the orthogonal projectionof ๐‘๐‘› onto ๐‘‰. Show that ๐œ‹๐‘‰ is in ๐‘†๐‘› and is of rank ๐‘˜, and show that (๐œ‹๐‘‰)2 = ๐œ‹๐‘‰.

(2) Conversely suppose๐ด is an element of ๐‘†๐‘› which is of rank ๐‘˜ and has the property,๐ด2 =๐ด. Show that if ๐‘‰ is the image of ๐ด in ๐‘๐‘›, then ๐ด = ๐œ‹๐‘‰.

Definition 4.1.20. We call an๐ด โˆˆ ๐‘†๐‘› of the form๐ด = ๐œ‹๐‘‰ above a rank ๐‘˜ projection operator.

Exercise 4.1.ix. Composing the map

๐œŒโˆถ ๐บ๐‘˜ โ†’ ๐‘†๐‘› , ๐‘‰ โ†ฆ ๐œ‹๐‘‰with the map (4.1.19) we get a map

๐œ™โˆถ M ๐‘˜,โ„“ โ†’ ๐‘†๐‘› , ๐œ™ = ๐œŒ โ‹… ๐›พ .Prove that ๐œ™ is ๐ถโˆž.

Hints:โ€ข By Gramโ€“Schmidt one can convert (4.1.18) into an orthonormal basis

๐‘’1,๐ต,โ€ฆ, ๐‘’๐‘›,๐ตof ๐‘‰. Show that the ๐‘’๐‘–,๐ตโ€™s are ๐ถโˆž functions of the matrix ๐ต = (๐‘๐‘–,๐‘—).

โ€ข Show that ๐œ‹๐‘‰ is the linear mapping

๐‘ฃ โ†ฆ๐‘˜โˆ‘๐‘–=1(๐‘ฃ โ‹… ๐‘’๐‘–,๐ต)๐‘’๐‘–,๐ต .

Exercise 4.1.x. Let ๐‘‰0 = span(๐‘’1,โ€ฆ, ๐‘’๐‘˜) and let ๐บ๐‘˜ = ๐œŒ(๐บ๐‘˜). Show that ๐œ™maps a neighbor-hood of ๐‘‰0 in M ๐‘˜,โ„“ diffeomorphically onto a neighborhood of ๐œ‹๐‘‰0 in ๐บ๐‘˜.

Hints: ๐œ‹๐‘‰ is in ๐บ๐‘˜ if and only if ๐‘‰ satisfies (4.1.17). For 1 โ‰ค ๐‘– โ‰ค ๐‘˜ let

๐‘ค๐‘– = ๐œ‹๐‘‰(๐‘’๐‘–) =๐‘˜โˆ‘๐‘—=1๐‘Ž๐‘–,๐‘—๐‘’๐‘— +

โ„“โˆ‘๐‘Ÿ=1๐‘๐‘–,๐‘Ÿ๐‘’๐‘˜+๐‘Ÿ .

โ€ข Show that if the matrix ๐ด = (๐‘Ž๐‘–,๐‘—) is invertible, ๐œ‹๐‘‰ is in ๐บ๐‘˜.โ€ข Let ๐‘‚ โŠ‚ ๐บ๐‘˜ be the set of all ๐œ‹๐‘‰โ€™s for which ๐ด is invertible. Show that ๐œ™โˆ’1 โˆถ ๐‘‚ โ†’

M ๐‘˜,โ„“ is the map๐œ™โˆ’1(๐œ‹๐‘‰) = ๐ต = ๐ดโˆ’1๐ถ

where ๐ถ = [๐‘๐‘–,๐‘—].

Exercise 4.1.xi. Let๐บ(๐‘˜, ๐‘›) โŠ‚ ๐‘†๐‘› be the set of rank ๐‘˜ projection operators. Prove that๐บ(๐‘˜, ๐‘›)is a ๐‘˜โ„“-dimensional submanifold of the Euclidean space ๐‘†๐‘› โ‰… ๐‘

๐‘›(๐‘›+1)2 .

Hints:โ€ข Show that if ๐‘‰ is any ๐‘˜-dimensional subspace of ๐‘๐‘› there exists a linear mapping,๐ด โˆˆ ๐‘‚(๐‘›)mapping ๐‘‰0 to ๐‘‰.

โ€ข Show that ๐œ‹๐‘‰ = ๐ด๐œ‹๐‘‰0๐ดโˆ’1.

โ€ข Let ๐พ๐ด โˆถ ๐‘†๐‘› โ†’ ๐‘†๐‘› be the linear mapping,

๐พ๐ด(๐ต) = ๐ด๐ต๐ดโˆ’1 .Show that

๐พ๐ด โˆ˜ ๐œ™โˆถ M ๐‘˜,โ„“ โ†’ ๐‘†๐‘›maps a neighborhood of ๐‘‰0 in M ๐‘˜,โ„“ diffeomorphically onto a neighborhood of๐œ‹๐‘‰ in ๐บ(๐‘˜, ๐‘›).

Page 116: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

104 Chapter 4: Manifolds & Forms on Manifolds

Remark 4.1.21. Let Gr(๐‘˜, ๐‘›) be the set of all ๐‘˜-dimensional subspaces of ๐‘๐‘›. The identifi-cation of Gr(๐‘˜, ๐‘›) with ๐บ(๐‘˜, ๐‘›) given by ๐‘‰ โ†ฆ ๐œ‹๐‘‰ allows us to restate the result above in theform.

Theorem4.1.22. TheGrassmannianGr(๐‘˜, ๐‘›) of ๐‘˜-dimensional subspaces of๐‘๐‘› is a ๐‘˜โ„“-dimens-ional submanifold of ๐‘†๐‘› โ‰… ๐‘

๐‘›(๐‘›+1)2 .

Exercise 4.1.xii. Show that Gr(๐‘˜, ๐‘›) is a compact submanifold of ๐‘†๐‘›.Hint: Show that itโ€™s closed and bounded.

4.2. Tangent spaces

We recall that a subset ๐‘‹ of ๐‘๐‘ is an ๐‘›-dimensional manifold if for every ๐‘ โˆˆ ๐‘‹ thereexists an open set๐‘ˆ โŠ‚ ๐‘๐‘›, a neighborhood๐‘‰ of๐‘ in๐‘๐‘, and a๐ถโˆž-diffeomorphism๐œ™โˆถ ๐‘ˆ โฅฒ๐‘‹ โˆฉ ๐‘‰.

Definition 4.2.1. We will call ๐œ™ a parametrization of๐‘‹ at ๐‘.

Our goal in this section is to define the notion of the tangent space ๐‘‡๐‘๐‘‹ to ๐‘‹ at ๐‘ anddescribe some of its properties. Before giving our official definitionweโ€™ll discuss some simpleexamples.

Example 4.2.2. Let ๐‘“โˆถ ๐‘ โ†’ ๐‘ be a ๐ถโˆž function and let๐‘‹ = ๐›ค๐‘“ be the graph of ๐‘“.

๏ฟฝ๏ฟฝ

๏ฟฝ

๏ฟฝ

โ„“

๏ฟฝ0

Figure 4.2.1. The tangent line โ„“ to the graph of ๐‘“ at ๐‘0

Then in this figure above the tangent line โ„“ to ๐‘‹ at ๐‘0 = (๐‘ฅ0, ๐‘ฆ0) is defined by theequation

๐‘ฆ โˆ’ ๐‘ฆ0 = ๐‘Ž(๐‘ฅ โˆ’ ๐‘ฅ0)where ๐‘Ž = ๐‘“โ€ฒ(๐‘ฅ0) In other words if ๐‘ is a point on โ„“ then ๐‘ = ๐‘0 + ๐œ†๐‘ฃ0 where ๐‘ฃ0 = (1, ๐‘Ž)and ๐œ† โˆˆ ๐‘. We would, however, like the tangent space to ๐‘‹ at ๐‘0 to be a subspace of thetangent space to ๐‘2 at ๐‘0, i.e., to be the subspace of the space: ๐‘‡๐‘0๐‘

2 = {๐‘0} ร— ๐‘2, and thisweโ€™ll achieve by defining

๐‘‡๐‘0๐‘‹ โ‰” { (๐‘0, ๐œ†๐‘ฃ0) | ๐œ† โˆˆ ๐‘ } .

Page 117: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง4.2 Tangent spaces 105

Example 4.2.3. Let ๐‘†2 be the unit 2-sphere in ๐‘3. The tangent plane to ๐‘†2 at ๐‘0 is usuallydefined to be the plane

{ ๐‘0 + ๐‘ฃ | ๐‘ฃ โˆˆ ๐‘3 and ๐‘ฃ โŸ‚ ๐‘0 } .However, this tangent plane is easily converted into a subspace of๐‘‡๐‘๐‘3 via themap๐‘0+๐‘ฃ โ†ฆ(๐‘0, ๐‘ฃ) and the image of this map

{ (๐‘0, ๐‘ฃ) | ๐‘ฃ โˆˆ ๐‘3 and ๐‘ฃ โŸ‚ ๐‘0 } .will be our definition of ๐‘‡๐‘0๐‘†

2.

Letโ€™s now turn to the general definition. As above let ๐‘‹ be an ๐‘›-dimensional submani-fold of ๐‘๐‘, ๐‘ a point of๐‘‹, ๐‘‰ a neighborhood of ๐‘ in ๐‘๐‘, ๐‘ˆ an open set in ๐‘๐‘› and

๐œ™โˆถ (๐‘ˆ, ๐‘ž) โฅฒ (๐‘‹ โˆฉ ๐‘‰, ๐‘)a parameterization of๐‘‹. We can think of ๐œ™ as a ๐ถโˆž map

๐œ™โˆถ (๐‘ˆ, ๐‘ž) โ†’ (๐‘‰, ๐‘)whose image happens to lie in๐‘‹ โˆฉ ๐‘‰ and we proved in ยง4.1 that its derivative at ๐‘ž

(๐‘‘๐œ™)๐‘ž โˆถ ๐‘‡๐‘ž๐‘๐‘› โ†’ ๐‘‡๐‘๐‘๐‘

is injective.

Definition 4.2.4. The tangent space ๐‘‡๐‘๐‘‹ to๐‘‹ at ๐‘ is the image of the linear map

(๐‘‘๐œ™)๐‘ž โˆถ ๐‘‡๐‘ž๐‘๐‘› โ†’ ๐‘‡๐‘๐‘๐‘ .

In other words, ๐‘ค โˆˆ ๐‘‡๐‘๐‘๐‘ is in ๐‘‡๐‘๐‘‹ if and only if ๐‘ค = ๐‘‘๐œ™๐‘ž(๐‘ฃ) for some ๐‘ฃ โˆˆ ๐‘‡๐‘ž๐‘๐‘›. Moresuccinctly,

(4.2.5) ๐‘‡๐‘๐‘‹ โ‰” (๐‘‘๐œ™๐‘ž)(๐‘‡๐‘ž๐‘๐‘›) .

(Since ๐‘‘๐œ™๐‘ž is injective, ๐‘‡๐‘๐‘‹ is an ๐‘›-dimensional vector subspace of ๐‘‡๐‘๐‘๐‘.)

One problem with this definition is that it appears to depend on the choice of ๐œ™. Toget around this problem, weโ€™ll give an alternative definition of ๐‘‡๐‘๐‘‹. In ยง4.1 we showed thatthere exists a neighborhood ๐‘‰ of ๐‘ in ๐‘๐‘ (which we can without loss of generality take tobe the same as ๐‘‰ above) and a ๐ถโˆž map

(4.2.6) ๐‘“โˆถ (๐‘‰, ๐‘) โ†’ (๐‘๐‘˜, 0) , where ๐‘˜ = ๐‘ โˆ’ ๐‘› ,such that ๐‘‹ โˆฉ ๐‘‰ = ๐‘“โˆ’1(0) and such that ๐‘“ is a submersion at all points of ๐‘‹ โˆฉ ๐‘‰, and inparticular at ๐‘. Thus

๐‘‘๐‘“๐‘ โˆถ ๐‘‡๐‘๐‘๐‘ โ†’ ๐‘‡0๐‘๐‘˜

is surjective, and hence the kernel of ๐‘‘๐‘“๐‘ has dimension ๐‘›. Our alternative definition of๐‘‡๐‘๐‘‹is

(4.2.7) ๐‘‡๐‘๐‘‹ โ‰” ker(๐‘‘๐‘“๐‘) .

Lemma 4.2.8. The spaces (4.2.5) and (4.2.7) are both ๐‘›-dimensional subspaces of ๐‘‡๐‘๐‘๐‘, andwe claim that these spaces are the same.

(Notice that the definition (4.2.7) of ๐‘‡๐‘๐‘‹ does not depend on ๐œ™, so if we can show thatthese spaces are the same, the definitions (4.2.5) and (4.2.7)) will depend neither on ๐œ™ noron ๐‘“.)

Page 118: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

106 Chapter 4: Manifolds & Forms on Manifolds

Proof. Since ๐œ™(๐‘ˆ) is contained in๐‘‹ โˆฉ ๐‘‰ and๐‘‹ โˆฉ ๐‘‰ is contained in ๐‘“โˆ’1(0), ๐‘“ โˆ˜ ๐œ™ = 0, so bythe chain rule(4.2.9) ๐‘‘๐‘“๐‘ โˆ˜ ๐‘‘๐œ™๐‘ž = ๐‘‘(๐‘“ โˆ˜ ๐œ™)๐‘ž = 0 .Hence if ๐‘ฃ โˆˆ ๐‘‡๐‘๐‘๐‘› and ๐‘ค = ๐‘‘๐œ™๐‘ž(๐‘ฃ), ๐‘‘๐‘“๐‘(๐‘ค) = 0. This shows that the space (4.2.5) iscontained in the space (4.2.7). However, these two spaces are ๐‘›-dimensional so they co-incide. โ–ก

From the proof above one can extract a slightly stronger result.

Theorem 4.2.10. Let๐‘Š be an open subset of ๐‘โ„“ and โ„Žโˆถ (๐‘Š, ๐‘ž) โ†’ (๐‘๐‘, ๐‘) a ๐ถโˆž map. Sup-pose โ„Ž(๐‘Š) is contained in๐‘‹. Then the image of the map

๐‘‘โ„Ž๐‘ž โˆถ ๐‘‡๐‘ž๐‘โ„“ โ†’ ๐‘‡๐‘๐‘๐‘

is contained in ๐‘‡๐‘๐‘‹.Proof. Let ๐‘“ be the map (4.2.6). We can assume without loss of generality that โ„Ž(๐‘Š) is con-tained in๐‘‰, and so, by assumption, โ„Ž(๐‘Š) โŠ‚ ๐‘‹โˆฉ๐‘‰. Therefore, as above, ๐‘“โˆ˜โ„Ž = 0, and hence๐‘‘โ„Ž๐‘ž(๐‘‡๐‘ž๐‘โ„“) is contained in the kernel of ๐‘‘๐‘“๐‘. โ–ก

This result will enable us to define the derivative of a mapping between manifolds. Ex-plicitly: Let ๐‘‹ be a submanifold of ๐‘๐‘, ๐‘Œ a submanifold of ๐‘๐‘š, and ๐‘”โˆถ (๐‘‹, ๐‘) โ†’ (๐‘Œ, ๐‘ฆ0)a ๐ถโˆž map. By Definition 4.1.1 there exists a neighborhood ๐‘‚ of ๐‘‹ in ๐‘๐‘ and a ๐ถโˆž map๐‘”โˆถ ๐‘‚ โ†’ ๐‘๐‘š extending to ๐‘”. We will define(4.2.11) (๐‘‘๐‘”)๐‘ โˆถ ๐‘‡๐‘๐‘‹ โ†’ ๐‘‡๐‘ฆ0๐‘Œto be the restriction of the map

(๐‘‘๐‘”)๐‘ โˆถ ๐‘‡๐‘๐‘๐‘ โ†’ ๐‘‡๐‘ฆ0๐‘๐‘š

to ๐‘‡๐‘๐‘‹. There are two obvious problems with this definition:(1) Is the space (๐‘‘๐‘”)๐‘(๐‘‡๐‘๐‘‹) contained in ๐‘‡๐‘ฆ0๐‘Œ?(2) Does the definition depend on ๐‘”?

To show that the answer to (1) is yes and the answer to (2) is no, let๐œ™โˆถ (๐‘ˆ, ๐‘ฅ0) โฅฒ (๐‘‹ โˆฉ ๐‘‰, ๐‘)

be a parametrization of ๐‘‹, and let โ„Ž = ๐‘” โˆ˜ ๐œ™. Since ๐œ™(๐‘ˆ) โŠ‚ ๐‘‹, โ„Ž(๐‘ˆ) โŠ‚ ๐‘Œ and hence byTheorem 4.2.10

๐‘‘โ„Ž๐‘ฅ0(๐‘‡๐‘ฅ0๐‘๐‘›) โŠ‚ ๐‘‡๐‘ฆ0๐‘Œ .

But by the chain rule๐‘‘โ„Ž๐‘ฅ0 = ๐‘‘๐‘”๐‘ โˆ˜ ๐‘‘๐œ™๐‘ฅ0 ,

so by (4.2.5)(๐‘‘๐‘”๐‘)(๐‘‡๐‘๐‘‹) โŠ‚ ๐‘‡๐‘๐‘Œ

and(๐‘‘๐‘”๐‘)(๐‘‡๐‘๐‘‹) = (๐‘‘โ„Ž)๐‘ฅ0(๐‘‡๐‘ฅ0๐‘

๐‘›)Thus the answer to (1) is yes, and since โ„Ž = ๐‘” โˆ˜ ๐œ™ = ๐‘” โˆ˜ ๐œ™, the answer to (2) is no.

From equations (4.2.9) and (4.2.11) one easily deduces:

Theorem 4.2.12 (Chain rule for mappings between manifolds). Let ๐‘ be a submanifold of๐‘โ„“ and ๐œ“โˆถ (๐‘Œ, ๐‘ฆ0) โ†’ (๐‘, ๐‘ง0) a ๐ถโˆž map. Then ๐‘‘๐œ“๐‘ฆ0 โˆ˜ ๐‘‘๐‘”๐‘ = ๐‘‘(๐œ“ โˆ˜ ๐‘”)๐‘.

Wewill next provemanifold versions of the inverse function theorem and the canonicalimmersion and submersion theorems.

Page 119: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง4.2 Tangent spaces 107

Theorem 4.2.13 (Inverse function theorem for manifolds). Let๐‘‹ and๐‘Œ be ๐‘›-manifolds and๐‘“โˆถ ๐‘‹ โ†’ ๐‘Œ a ๐ถโˆž map. Suppose that at ๐‘ โˆˆ ๐‘‹ the map

๐‘‘๐‘“๐‘ โˆถ ๐‘‡๐‘๐‘‹ โ†’ ๐‘‡๐‘ž๐‘Œ , ๐‘ž โ‰” ๐‘“(๐‘) ,

is bijective. Then ๐‘“maps a neighborhood ๐‘ˆ of ๐‘ in ๐‘‹ diffeomorphically onto a neighborhood๐‘‰ of ๐‘ž in ๐‘Œ.

Proof. Let๐‘ˆ and๐‘‰ be open neighborhoods of๐‘ in๐‘‹ and ๐‘ž in๐‘Œ and let๐œ™0 โˆถ (๐‘ˆ0, 0) โ†’ (๐‘ˆ, ๐‘)and ๐œ“0 โˆถ (๐‘‰0, 0) โ†’ (๐‘‰, ๐‘ž) be parametrizations of these neighborhoods. Shrinking ๐‘ˆ0 and ๐‘ˆwe can assume that ๐‘“(๐‘ˆ) โŠ‚ ๐‘‰. Let

๐‘”โˆถ (๐‘ˆ0, ๐‘0) โ†’ (๐‘‰0, ๐‘ž0)

be the map ๐œ“โˆ’10 โˆ˜ ๐‘“ โˆ˜ ๐œ™0. Then ๐œ“0 โˆ˜ ๐‘” = ๐‘“ โˆ˜ ๐œ™, so by the chain rule

(๐‘‘๐œ“0)๐‘ž0 โˆ˜ (๐‘‘๐‘”)๐‘0 = (๐‘‘๐‘“)๐‘ โˆ˜ (๐‘‘๐œ™0)๐‘0 .

Since (๐‘‘๐œ“0)๐‘ž0 and (๐‘‘๐œ™0)๐‘0 are bijective itโ€™s clear from this identity that if ๐‘‘๐‘“๐‘ is bijectivethe same is true for (๐‘‘๐‘”)๐‘0 . Hence by the inverse function theorem for open subsets of ๐‘๐‘›,๐‘” maps a neighborhood of ๐‘0 in ๐‘ˆ0 diffeomorphically onto a neighborhood of ๐‘ž0 in ๐‘‰0.Shrinking๐‘ˆ0 and๐‘‰0 we assume that these neighborhoods are๐‘ˆ0 and๐‘‰0 and hence that ๐‘” isa diffeomorphism. Thus since ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘‰ is the map ๐œ“0 โˆ˜ ๐‘” โˆ˜ ๐œ™โˆ’10 , it is a diffeomorphism aswell. โ–ก

Theorem 4.2.14 (The canonical submersion theorem for manifolds). Let ๐‘‹ and ๐‘Œ be man-ifolds of dimension ๐‘› and๐‘š, where๐‘š < ๐‘›, and let ๐‘“โˆถ ๐‘‹ โ†’ ๐‘Œ be a ๐ถโˆž map. Suppose that at๐‘ โˆˆ ๐‘‹ the map

๐‘‘๐‘“๐‘ โˆถ ๐‘‡๐‘๐‘‹ โ†’ ๐‘‡๐‘ž๐‘Œ , ๐‘ž โ‰” ๐‘“(๐‘) ,is surjective. Then there exists an open neighborhood ๐‘ˆ of ๐‘ in ๐‘‹, and open neighborhood, ๐‘‰of ๐‘“(๐‘ˆ) in ๐‘Œ and parametrizations ๐œ™0 โˆถ (๐‘ˆ0, 0) โ†’ (๐‘ˆ, ๐‘) and ๐œ“0 โˆถ (๐‘‰0, 0) โ†’ (๐‘‰, ๐‘ž) such thatin the square

๐‘ˆ0 ๐‘‰0

๐‘ˆ ๐‘‰

๐œ™0

๐œ“โˆ’10 ๐‘“๐œ™0

๐œ“0

๐‘“

the map ๐œ“โˆ’10 โˆ˜ ๐‘“ โˆ˜ ๐œ™0 is the canonical submersion ๐œ‹.

Proof. Let ๐‘ˆ and ๐‘‰ be open neighborhoods of ๐‘ and ๐‘ž and ๐œ™0 โˆถ (๐‘ˆ0, 0) โ†’ (๐‘ˆ, ๐‘) and๐œ“0 โˆถ (๐‘‰0, 0) โ†’ (๐‘‰, ๐‘ž) be parametrizations of these neighborhoods. Composing ๐œ™0 and ๐œ“0with the translations we can assume that ๐‘0 is the origin in ๐‘๐‘› and ๐‘ž0 the origin in ๐‘๐‘š,and shrinking ๐‘ˆ we can assume ๐‘“(๐‘ˆ) โŠ‚ ๐‘‰. As above let ๐‘”โˆถ (๐‘ˆ0, 0) โ†’ (๐‘‰0, 0) be the map๐œ“โˆ’10 โˆ˜ ๐‘“ โˆ˜ ๐œ™0. By the chain rule

(๐‘‘๐œ“0)0 โˆ˜ (๐‘‘๐‘”)0 = ๐‘‘๐‘“๐‘ โˆ˜ (๐‘‘๐œ™0)0 ,

therefore, since (๐‘‘๐œ“0)0 and (๐‘‘๐œ™0)0 are bijective it follows that (๐‘‘๐‘”)0 is surjective. Hence, byTheorem 4.1.2, we can find an open neighborhood ๐‘ˆ of the origin in ๐‘๐‘› and a diffeomor-phism ๐œ™1 โˆถ (๐‘ˆ1, 0) โฅฒ (๐‘ˆ0, 0) such that ๐‘” โˆ˜ ๐œ™1 is the canonical submersion. Now replace ๐‘ˆ0by ๐‘ˆ1 and ๐œ™0 by ๐œ™0 โˆ˜ ๐œ™1. โ–ก

Page 120: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

108 Chapter 4: Manifolds & Forms on Manifolds

Theorem 4.2.15 (The canonical immersion theorem for manifolds). Let ๐‘‹ and ๐‘Œ be mani-folds of dimension ๐‘› and๐‘š, where ๐‘› < ๐‘š, and ๐‘“โˆถ ๐‘‹ โ†’ ๐‘Œ a ๐ถโˆž map. Suppose that at ๐‘ โˆˆ ๐‘‹the map

๐‘‘๐‘“๐‘ โˆถ ๐‘‡๐‘๐‘‹ โ†’ ๐‘‡๐‘ž๐‘Œ , ๐‘ž = ๐‘“(๐‘)

is injective. Then there exists an open neighborhood ๐‘ˆ of ๐‘ in ๐‘‹, an open neighborhood ๐‘‰ of๐‘“(๐‘ˆ) in ๐‘Œ and parametrizations ๐œ™0 โˆถ (๐‘ˆ0, 0) โ†’ (๐‘ˆ, ๐‘) and ๐œ“0 โˆถ (๐‘‰0, 0) โ†’ (๐‘‰, ๐‘ž) such that inthe square

๐‘ˆ0 ๐‘‰0

๐‘ˆ ๐‘‰

๐œ™0

๐œ“โˆ’10 ๐‘“๐œ™0

๐œ“0

๐‘“

the map ๐œ“โˆ’10 โˆ˜ ๐‘“ โˆ˜ ๐œ™0 is the canonical immersion ๐œ„.

Proof. The proof is identical with the proof of Theorem 4.2.14 except for the last step. In thelast step one converts ๐‘” into the canonical immersion via a map ๐œ“1 โˆถ (๐‘‰1, 0) โ†’ (๐‘‰0, 0) withthe property ๐‘” โˆ˜ ๐œ“1 = ๐œ„ and then replaces ๐œ“0 by ๐œ“0 โˆ˜ ๐œ“1. โ–ก

Exercises for ยง4.2Exercise 4.2.i. What is the tangent space to the quadric

๐‘„ = { (๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) โˆˆ ๐‘๐‘› | ๐‘ฅ๐‘› = ๐‘ฅ21 +โ‹ฏ + ๐‘ฅ2๐‘›โˆ’1 }

at the point (1, 0,โ€ฆ, 0, 1)?

Exercise 4.2.ii. Show that the tangent space to the (๐‘› โˆ’ 1)-sphere ๐‘†๐‘›โˆ’1 at ๐‘ is the space ofvectors (๐‘, ๐‘ฃ) โˆˆ ๐‘‡๐‘๐‘๐‘› satisfying ๐‘ โ‹… ๐‘ฃ = 0.

Exercise 4.2.iii. Let ๐‘“โˆถ ๐‘๐‘› โ†’ ๐‘๐‘˜ be a ๐ถโˆž map and let ๐‘‹ = ๐›ค๐‘“. What is the tangent spaceto๐‘‹ at (๐‘Ž, ๐‘“(๐‘Ž))?

Exercise 4.2.iv. Let ๐œŽโˆถ ๐‘†๐‘›โˆ’1 โ†’ ๐‘†๐‘›โˆ’1 be the antipodal map ๐œŽ(๐‘ฅ) = โˆ’๐‘ฅ. What is the derivativeof ๐œŽ at ๐‘ โˆˆ ๐‘†๐‘›โˆ’1?

Exercise 4.2.v. Let๐‘‹๐‘– โŠ‚ ๐‘๐‘๐‘– , ๐‘– = 1, 2, be an ๐‘›๐‘–-manifold and let ๐‘๐‘– โˆˆ ๐‘‹๐‘–. Define๐‘‹ to be theCartesian product

๐‘‹1 ร— ๐‘‹2 โŠ‚ ๐‘๐‘1 ร— ๐‘๐‘2

and let ๐‘ = (๐‘1, ๐‘2). Show that ๐‘‡๐‘๐‘‹ โ‰… ๐‘‡๐‘1๐‘‹1 โŠ• ๐‘‡๐‘2๐‘‹2.

Exercise 4.2.vi. Let ๐‘‹ โŠ‚ ๐‘๐‘ be an ๐‘›-manifold and for ๐‘– = 1, 2, let ๐œ™๐‘– โˆถ ๐‘ˆ๐‘– โ†’ ๐‘‹ โˆฉ ๐‘‰๐‘– be twoparametrizations. From these parametrizations one gets an overlap diagram

(4.2.16)๐œ™โˆ’11 (๐‘‹ โˆฉ ๐‘‰1 โˆฉ ๐‘‰2) ๐œ™โˆ’12 (๐‘‹ โˆฉ ๐‘‰1 โˆฉ ๐‘‰2)

๐‘‹ โˆฉ ๐‘‰1 โˆฉ ๐‘‰2 .

๐œ™โˆ’12 โˆ˜๐œ™1

๐œ™1 ๐œ™2

Page 121: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง4.3 Vector fields & differential forms on manifolds 109

(1) Let ๐‘ โˆˆ ๐‘‹โˆฉ๐‘‰ and let ๐‘ž๐‘– = ๐œ™โˆ’1๐‘– (๐‘). Derive from the overlap diagram (4.2.16) an overlapdiagram of linear maps

๐‘‡๐‘ž1๐‘๐‘› ๐‘‡๐‘ž2๐‘

๐‘›

๐‘‡๐‘๐‘๐‘ .

๐‘‘(๐œ™โˆ’12 โˆ˜๐œ™1)๐‘ž1

๐‘‘(๐œ™1)๐‘ž1 ๐‘‘(๐œ™2)๐‘ž2

(2) Use overlap diagrams to give another proof that ๐‘‡๐‘๐‘‹ is intrinsically defined.

4.3. Vector fields & differential forms on manifolds

A vector field on an open subset ๐‘ˆ โŠ‚ ๐‘๐‘› is a function ๐’— which assigns to each ๐‘ โˆˆ ๐‘ˆ anelement ๐’—(๐‘) of ๐‘‡๐‘๐‘ˆ, and a ๐‘˜-form is a function ๐œ” which assigns to each ๐‘ โˆˆ ๐‘ˆ an element๐œ”๐‘ of ๐›ฌ๐‘˜(๐‘‡โ‹†๐‘๐‘ˆ). These definitions have obvious generalizations to manifolds:

Definition 4.3.1. Let ๐‘‹ be a manifold. A vector field on ๐‘‹ is a function ๐’— which assigns toeach ๐‘ โˆˆ ๐‘‹ an element ๐’—(๐‘) of ๐‘‡๐‘๐‘‹. A ๐‘˜-form is a function ๐œ” which assigns to each ๐‘ โˆˆ ๐‘‹an element ๐œ”๐‘ of ๐›ฌ๐‘˜(๐‘‡โ‹†๐‘๐‘‹).

Weโ€™ll begin our study of vector fields and ๐‘˜-forms on manifolds by showing that, liketheir counterparts on open subsets of ๐‘๐‘›, they have nice pullback and pushforward proper-ties with respect to mappings. Let๐‘‹ and ๐‘Œ be manifolds and ๐‘“โˆถ ๐‘‹ โ†’ ๐‘Œ a ๐ถโˆž mapping.

Definition 4.3.2. Given a vector field ๐’— on๐‘‹ and a vector field๐’˜ on ๐‘Œ, weโ€™ll say that ๐’— and๐’˜ are ๐‘“-related if for all ๐‘ โˆˆ ๐‘‹ and ๐‘ž = ๐‘“(๐‘) we have

(4.3.3) (๐‘‘๐‘“)๐‘๐’—(๐‘) = ๐’˜(๐‘ž) .

In particular, if ๐‘“ is a diffeomorphism, and weโ€™re given a vector field ๐’— on ๐‘‹ we candefine a vector field ๐’˜ on ๐‘Œ by requiring that for every point ๐‘ž โˆˆ ๐‘Œ, the identity (4.3.3)holds at the point ๐‘ = ๐‘“โˆ’1(๐‘ž). In this case weโ€™ll call ๐’˜ the pushforward of by ๐‘“ and denoteit by๐‘“โ‹†๐’—. Similarly, given a vector field๐’˜ on๐‘Œwe can define a vector field ๐’— on๐‘‹ by applyingthe same construction to the inverse diffeomorphism ๐‘“โˆ’1 โˆถ ๐‘Œ โ†’ ๐‘‹. We will call the vectorfield (๐‘“โˆ’1)โ‹†๐’˜ the pullback of ๐’˜ by ๐‘“ (and also denote it by ๐‘“โ‹†๐’˜).

For differential forms the situation is even nicer. Just as in ยง2.6 we can define the pull-back operation on forms for any ๐ถโˆž map ๐‘“โˆถ ๐‘‹ โ†’ ๐‘Œ. Specifically: Let ๐œ” be a ๐‘˜-form on ๐‘Œ.For every ๐‘ โˆˆ ๐‘‹, and ๐‘ž = ๐‘“(๐‘) the linear map

๐‘‘๐‘“๐‘ โˆถ ๐‘‡๐‘๐‘‹ โ†’ ๐‘‡๐‘ž๐‘Œinduces by (1.8.2)a pullback map

(๐‘‘๐‘“๐‘)โ‹† โˆถ ๐›ฌ๐‘˜(๐‘‡โ‹†๐‘ž ๐‘Œ) โ†’ ๐›ฌ๐‘˜(๐‘‡โ‹†๐‘๐‘‹)and, as in ยง2.6, weโ€™ll define the pullback ๐‘“โ‹†๐œ” of ๐œ” to๐‘‹ by defining it at ๐‘ by the identity

(๐‘“โ‹†๐œ”)(๐‘) = (๐‘‘๐‘“๐‘)โ‹†๐œ”(๐‘ž) .The following results about these operations are proved in exactly the same way as in

ยง2.6.

Proposition 4.3.4. Let ๐‘‹, ๐‘Œ, and ๐‘ be manifolds and ๐‘“โˆถ ๐‘‹ โ†’ ๐‘Œ and ๐‘”โˆถ ๐‘Œ โ†’ ๐‘ ๐ถโˆž maps.Then if ๐œ” is a ๐‘˜-form on ๐‘

๐‘“โ‹†(๐‘”โ‹†๐œ”) = (๐‘” โˆ˜ ๐‘“)โ‹†๐œ” .

Page 122: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

110 Chapter 4: Manifolds & Forms on Manifolds

If ๐’— is a vector field on๐‘‹ and ๐‘“ and ๐‘” are diffeomorphisms, then(4.3.5) (๐‘” โˆ˜ ๐‘“)โ‹†๐‘ฃ = ๐‘”โ‹†(๐‘“โ‹†๐‘ฃ) .

Our first application of these identities will be to definewhat onemeans by a โ€œ๐ถโˆž vectorfieldโ€ and a โ€œ๐ถโˆž ๐‘˜-formโ€.

Definition4.3.6. Let๐‘‹be an๐‘›-manifold and๐‘ˆ anopen subset of๐‘‹.The set๐‘ˆ is a parametriz-able open set if there exists an open set ๐‘ˆ0 in ๐‘๐‘› and a diffeomorphism ๐œ™0 โˆถ ๐‘ˆ0 โ†’ ๐‘ˆ.

In other words,๐‘ˆ is parametrizable if there exists a parametrization having๐‘ˆ as its im-age. (Note that๐‘‹ being a manifold means that every point is contained in a parametrizableopen set.)

Now let ๐‘ˆ โŠ‚ ๐‘‹ be a parametrizable open set and ๐œ™0 โˆถ ๐‘ˆ0 โ†’ ๐‘ˆ a parametrization of ๐‘ˆ.

Definition 4.3.7. A ๐‘˜-form ๐œ” on ๐‘ˆ is ๐ถโˆž or smooth if ๐œ™โ‹†0๐œ” is a ๐ถโˆž.

This definition appears to depend on the choice of the parametrization ๐œ™, but we claimit does not. To see this let ๐œ™1 โˆถ ๐‘ˆ1 โ†’ ๐‘ˆ be another parametrization of ๐‘ˆ and let

๐œ“โˆถ ๐‘ˆ0 โ†’ ๐‘ˆ1be the composite map ๐œ™โˆ’10 โˆ˜ ๐œ™0. Then ๐œ™0 = ๐œ™1 โˆ˜ ๐œ“ and hence by Proposition 4.3.4

๐œ™โ‹†0๐œ” = ๐œ“โ‹†๐œ™โ‹†1๐œ” ,so by (2.5.11) ๐œ™โ‹†0๐œ” is ๐ถโˆž if ๐œ™โ‹†1๐œ” is ๐ถโˆž. The same argument applied to ๐œ“โˆ’1 shows that ๐œ™โ‹†1๐œ”is ๐ถโˆž if ๐œ™โ‹†0๐œ” is ๐ถโˆž.

The notion of โ€œ๐ถโˆžโ€ for vector fields is defined similarly:

Definition 4.3.8. A vector field ๐’— on ๐‘ˆ is smooth, or simply ๐ถโˆž, if ๐œ™โ‹†0๐’— is ๐ถโˆž.

By Proposition 4.3.4 ๐œ™โ‹†0๐’— = ๐œ“โ‹†๐œ™โ‹†1๐’—, so, as above, this definition is independent of thechoice of parametrization.

We now globalize these definitions.

Definition 4.3.9. A ๐‘˜-form ๐œ” on ๐‘‹ is ๐ถโˆž if, for every point ๐‘ โˆˆ ๐‘‹, ๐œ” is ๐ถโˆž on a neigh-borhood of ๐‘. Similarly, a vector field ๐’— on ๐‘‹ is ๐ถโˆž if, for every point ๐‘ โˆˆ ๐‘‹, ๐’— is ๐ถโˆž on aneighborhood of๐‘.

We will also use the identities (4.3.5) and (4.3.18) to prove the following two results.

Proposition 4.3.10. Let๐‘‹ and ๐‘Œ be manifolds and ๐‘“โˆถ ๐‘‹ โ†’ ๐‘Œ a ๐ถโˆž map. Then if ๐œ” is a ๐ถโˆž๐‘˜-form on ๐‘Œ, the pullback ๐‘“โ‹†๐œ” is a ๐ถโˆž ๐‘˜-form on๐‘‹.

Proof. For ๐‘ โˆˆ ๐‘‹ and ๐‘ž = ๐‘“(๐‘) let ๐œ™0 โˆถ ๐‘ˆ0 โ†’ ๐‘ˆ and ๐œ“0 โˆถ ๐‘‰0 โ†’ ๐‘‰ be parametrizations with๐‘ โˆˆ ๐‘ˆ and ๐‘ž โˆˆ ๐‘‰. Shrinking ๐‘ˆ if necessary we can assume that ๐‘“(๐‘ˆ) โŠ‚ ๐‘‰. Let ๐‘”โˆถ ๐‘ˆ0 โ†’ ๐‘‰0be the map ๐‘” = ๐œ“โˆ’10 โˆ˜ ๐‘“ โˆ˜ ๐œ™0. Then ๐œ“0 โˆ˜ ๐‘” = ๐‘“ โˆ˜ ๐œ™0, so ๐‘”โ‹†๐œ“โ‹†0 ๐œ” = ๐œ™โ‹†0๐‘“โ‹†๐œ”. Since ๐œ” is ๐ถโˆž, wesee that ๐œ“โ‹†0 ๐œ” is ๐ถโˆž, so by equation (2.6.11) we have ๐‘”โ‹†๐œ“โ‹†0 ๐œ” is ๐ถโˆž, and hence ๐œ™โ‹†0๐‘“โ‹†๐œ” is ๐ถโˆž.Thus by definition ๐‘“โ‹†๐œ” is ๐ถโˆž on ๐‘ˆ. โ–ก

By exactly the same argument one proves.

Proposition 4.3.11. If ๐’˜ is a ๐ถโˆž vector field on ๐‘Œ and ๐‘“ is a diffeomorphism, then ๐‘“โ‹†๐’˜ is a๐ถโˆž vector field on๐‘‹.

Notation 4.3.12.(1) Weโ€™ll denote the space of ๐ถโˆž ๐‘˜-forms on๐‘‹ by ๐›บ๐‘˜(๐‘‹) .

Page 123: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง4.3 Vector fields & differential forms on manifolds 111

(2) For ๐œ” โˆˆ ๐›บ๐‘˜(๐‘‹) weโ€™ll define the support of ๐œ” bysupp(๐œ”) โ‰” { ๐‘ โˆˆ ๐‘‹ | ๐œ”(๐‘) โ‰  0 }

and weโ€™ll denote by ๐›บ๐‘˜๐‘ (๐‘‹) โŠ‚ ๐›บ๐‘˜(๐‘‹) the space of compactly supported ๐‘˜-forms.(3) For a vector field ๐’— on๐‘‹ weโ€™ll define the support of ๐’— to be the set

supp(๐’—) โ‰” { ๐‘ โˆˆ ๐‘‹ | ๐’—(๐‘) โ‰  0 } .We will now review some of the results about vector fields and the differential forms

that we proved in Chapter 2 and show that they have analogues for manifolds.

Integral curvesLet ๐ผ โŠ‚ ๐‘ be an open interval and ๐›พโˆถ ๐ผ โ†’ ๐‘‹ a ๐ถโˆž curve. For ๐‘ก0 โˆˆ ๐ผ we will call

๏ฟฝ๏ฟฝ = (๐‘ก0, 1) โˆˆ ๐‘‡๐‘ก0๐‘ the unit vector in ๐‘‡๐‘ก0๐‘ and if ๐‘ = ๐›พ(๐‘ก0) we will call the vector๐‘‘๐›พ๐‘ก0(๏ฟฝ๏ฟฝ) โˆˆ ๐‘‡๐‘๐‘‹

the tangent vector to ๐›พ at ๐‘. If ๐’— is a vector field on ๐‘‹ we will say that ๐›พ is an integral curveof ๐’— if for all ๐‘ก0 โˆˆ ๐ผ

๐’—(๐›พ(๐‘ก0)) = ๐‘‘๐›พ๐‘ก0(๏ฟฝ๏ฟฝ) .Proposition 4.3.13. Let ๐‘‹ and ๐‘Œ be manifolds and ๐‘“โˆถ ๐‘‹ โ†’ ๐‘Œ a ๐ถโˆž map. If ๐’— and ๐’˜ arevector fields on ๐‘‹ and ๐‘Œ which are ๐‘“-related, then integral curves of ๐’— get mapped by ๐‘“ ontointegral curves of ๐’˜.Proof. If the curve ๐›พโˆถ ๐ผ โ†’ ๐‘‹ is an integral curve of ๐’— we have to show that ๐‘“ โˆ˜ ๐›พโˆถ ๐ผ โ†’ ๐‘Œ isan integral curve of ๐’˜. If ๐›พ(๐‘ก) = ๐‘ and ๐‘ž = ๐‘“(๐‘) then by the chain rule

๐’˜(๐‘ž) = ๐‘‘๐‘“๐‘(๐’—(๐‘)) = ๐‘‘๐‘“๐‘(๐‘‘๐›พ๐‘ก(๏ฟฝ๏ฟฝ))= ๐‘‘(๐‘“ โˆ˜ ๐›พ)๐‘ก(๏ฟฝ๏ฟฝ) . โ–ก

From this result it follows that the local existence, uniqueness and โ€œsmooth dependenceon initial dataโ€ results about vector fields that we described in ยง2.1 are true for vector fieldson manifolds. More explicitly, let ๐‘ˆ be a parametrizable open subset of ๐‘‹ and ๐œ™โˆถ ๐‘ˆ0 โ†’ ๐‘ˆa parametrization. Since๐‘ˆ0 is an open subset of ๐‘๐‘› these results are true for the vector field๐’˜ = ๐œ™โ‹†0๐’— and hence since ๐’˜ and ๐’— are ๐œ™0-related they are true for ๐’—. In particular:

Proposition 4.3.14 (local existence). For every ๐‘ โˆˆ ๐‘ˆ there exists an integral curve ๐›พ(๐‘ก)defined for โˆ’๐œ€ < ๐‘ก < ๐œ€, of ๐’— with ๐›พ(0) = ๐‘.Proposition 4.3.15 (local uniqueness). For ๐‘– = 1, 2, let ๐›พ๐‘– โˆถ ๐ผ๐‘– โ†’ ๐‘ˆ be integral curves of ๐’—and let ๐ผ = ๐ผ1 โˆฉ ๐ผ2. Suppose ๐›พ2(๐‘ก) = ๐›พ1(๐‘ก) for some ๐‘ก โˆˆ ๐ผ. Then there exists a unique integralcurve, ๐›พโˆถ ๐ผ1 โˆช ๐ผ2 โ†’ ๐‘ˆ with ๐›พ = ๐›พ1 on ๐ผ1 and ๐›พ = ๐›พ2 on ๐ผ2.Proposition 4.3.16 (smooth dependence on initial data). For every ๐‘ โˆˆ ๐‘ˆ, there exists aneighborhood ๐‘‚ of ๐‘ in ๐‘ˆ, an interval (โˆ’๐œ€, ๐œ€) and a ๐ถโˆž map โ„Žโˆถ ๐‘‚ ร— (โˆ’๐œ€, ๐œ€) โ†’ ๐‘ˆ such thatfor every ๐‘ โˆˆ ๐‘‚ the curve

๐›พ๐‘(๐‘ก) = โ„Ž(๐‘, ๐‘ก) , โˆ’ ๐œ€ < ๐‘ก < ๐œ€ ,is an integral curve of ๐’— with ๐›พ๐‘(0) = ๐‘.

As in Chapter 2 we will say that ๐’— is complete if, for every ๐‘ โˆˆ ๐‘‹ there exists an integralcurve ๐›พ(๐‘ก) defined for โˆ’โˆž < ๐‘ก < โˆž, with ๐›พ(0) = ๐‘. In Chapter 2 we showed that one simplecriterium for a vector field to be complete is that it be compactly supported. We will provethat the same is true for manifolds.

Theorem 4.3.17. If๐‘‹ is compact or, more generally, if ๐’— is compactly supported, ๐’— is complete.

Page 124: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

112 Chapter 4: Manifolds & Forms on Manifolds

Proof. Itโ€™s not hard to prove this by the same argument that we used to prove this theoremfor vector fields on ๐‘๐‘›, but weโ€™ll give a simpler proof that derives this directly from the ๐‘๐‘›result. Suppose๐‘‹ is a submanifold of ๐‘๐‘. Then for ๐‘ โˆˆ ๐‘‹,

๐‘‡๐‘๐‘‹ โŠ‚ ๐‘‡๐‘๐‘๐‘ = { (๐‘, ๐‘ฃ) | ๐‘ฃ โˆˆ ๐‘๐‘ } ,

so ๐’—(๐‘) can be regarded as a pair (๐‘, ๐’—(๐‘)), where ๐’—(๐‘) is in ๐‘๐‘. Let

(4.3.18) ๐‘“๐’— โˆถ ๐‘‹ โ†’ ๐‘๐‘

be the map ๐‘“๐’—(๐‘) = ๐‘ฃ(๐‘). It is easy to check that ๐’— is ๐ถโˆž if and only if ๐‘“๐’— is ๐ถโˆž. (SeeExercise 4.3.xi.) Hence (see Appendix b) there exists a neighborhood, ๐‘‚ of ๐‘‹ and a map๐‘”โˆถ โ†’ ๐‘๐‘ extending ๐‘“๐’—. Thus the vector field ๐’˜ on ๐‘‚ defined by ๐’˜(๐‘ž) = (๐‘ž, ๐‘”(๐‘ž)) extendsthe vector field ๐’— to๐‘‚. In other words if ๐œ„ โˆถ ๐‘‹ โ†ช ๐‘‚ is the inclusionmap ๐’— and๐’˜ are ๐œ„-related.Thus by Proposition 4.3.13 the integral curves of ๐’— are just integral curves of ๐’˜ that arecontained in๐‘‹.

Suppose now that ๐’— is compactly supported. Then there exists a function ๐œŒ โˆˆ ๐ถโˆž0 (๐‘‚)which is 1 on the support of ๐’—, so, replacing ๐’˜ by ๐œŒ๐’˜, we can assume that ๐’˜ is compactlysupported. Thus ๐’˜ is complete. Let ๐›พ(๐‘ก), defined for โˆ’โˆž < ๐‘ก < โˆž, be an integral curve of๐’˜. We will prove that if ๐›พ(0) โˆˆ ๐‘‹, then this curve is an integral curve of ๐’—. We first observe:

Lemma 4.3.19. The set of points ๐‘ก โˆˆ ๐‘ for which ๐›พ(๐‘ก) โˆˆ ๐‘‹ is both open and closed.

Proof of Lemma 4.3.19. If ๐‘ โˆ‰ supp(๐’—) then ๐’˜(๐‘) = 0 so if ๐›พ(๐‘ก) = ๐‘, ๐›พ(๐‘ก) is the constantcurve ๐›พ = ๐‘, and thereโ€™s nothing to prove. Thus we are reduced to showing that the set

(4.3.20) { ๐‘ก โˆˆ ๐‘ | ๐›พ(๐‘ก) โˆˆ supp(๐’—) }

is both open and closed. Since supp(๐’—) is compact this set is clearly closed. To show that itโ€™sopen suppose ๐›พ(๐‘ก0) โˆˆ supp(๐’—). By local existence there exist an interval (โˆ’๐œ€ + ๐‘ก0, ๐œ€ + ๐‘ก0) andan integral curve ๐›พ1(๐‘ก) of ๐’— defined on this interval and taking the value ๐›พ1(๐‘ก0) = ๐›พ(๐‘ก0) at ๐‘.However since ๐’— and๐’˜ are ๐œ„-related ๐›พ1 is also an integral curve of๐’˜ and so it has to coincidewith ๐›พ on the interval (โˆ’๐œ€ + ๐‘ก0, ๐œ€ + ๐‘ก0). In particular, for ๐‘ก on this interval ๐›พ(๐‘ก) โˆˆ supp(๐’—) sothe set (4.3.20) is open. โ–ก

To conclude the proof of Theorem 4.3.17 we note that since ๐‘ is connected it followsthat if ๐›พ(๐‘ก0) โˆˆ ๐‘‹ for some ๐‘ก0 โˆˆ ๐‘ then ๐›พ(๐‘ก) โˆˆ ๐‘‹ for all ๐‘ก โˆˆ ๐‘, and hence ๐›พ is an integral curveof ๐’—. Thus in particular every integral curve of ๐’— exists for all time, so ๐’— is complete. โ–ก

Since๐’˜ is complete it generates a one-parameter group of diffeomorphisms๐‘”๐‘ก โˆถ ๐‘‚ โฅฒ ๐‘‚,defined for โˆ’โˆž < ๐‘ก < โˆž, having the property that the curve

๐‘”๐‘ก(๐‘) = ๐›พ๐‘(๐‘ก) , โˆ’โˆž < ๐‘ก < โˆž

is the unique integral curve of ๐’˜ with initial point ๐›พ๐‘(0) = ๐‘. But if ๐‘ โˆˆ ๐‘‹ this curve is anintegral curve of ๐’—, so the restriction

๐‘“๐‘ก = ๐‘”๐‘ก|๐‘‹is a one-parameter group of diffeomorphisms of ๐‘‹ with theproperty that for ๐‘ โˆˆ ๐‘‹ thecurve

๐‘“๐‘ก(๐‘) = ๐›พ๐‘(๐‘ก) , โˆ’โˆž < ๐‘ก < โˆžis the unique integral curve of ๐’— with initial point ๐›พ๐‘(0) = ๐‘.

Page 125: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง4.3 Vector fields & differential forms on manifolds 113

The exterior differentiation operationLet ๐œ” be a๐ถโˆž ๐‘˜-form on๐‘‹ and๐‘ˆ โŠ‚ ๐‘‹ a parametrizable open set. Given a parametriza-

tion ๐œ™0 โˆถ ๐‘ˆ0 โ†’ ๐‘ˆ we define the exterior derivative ๐‘‘๐œ” of ๐œ” on๐‘‹ by the formula(4.3.21) ๐‘‘๐œ” = (๐œ™โˆ’10 )โ‹†๐‘‘๐œ™โ‹†0๐œ” .(Notice that since๐‘ˆ0 is an open subset of ๐‘๐‘› and ๐œ™โ‹†0๐œ” a ๐‘˜-form on๐‘ˆ0, the โ€œ๐‘‘โ€ on the right iswell-defined.) We claim that this definition does not depend on the choice of parametriza-tion. To see this let ๐œ™1 โˆถ ๐‘ˆ1 โ†’ ๐‘ˆ be another parametrization of ๐‘ˆ and let ๐œ“โˆถ ๐‘ˆ0 โ†’ ๐‘ˆ1 bethe diffeomorphism ๐œ™โˆ’11 โˆ˜ ๐œ™0. Then ๐œ™0 = ๐œ™1 โˆ˜ ๐œ“ and hence

๐‘‘๐œ™โ‹†0๐œ” = ๐‘‘๐œ“โ‹†๐œ™โ‹†1๐œ” = ๐œ“โ‹†๐‘‘๐œ™โ‹†1๐œ”= ๐œ™โ‹†0 (๐œ™โˆ’11 )โ‹†๐‘‘๐œ™โ‹†1๐œ”

so(๐œ™โˆ’10 )โ‹†๐‘‘๐œ™โ‹†0๐œ” = (๐œ™โˆ’11 )โ‹†๐‘‘๐œ™โ‹†1๐œ”

as claimed. We can, therefore, define the exterior derivative ๐‘‘๐œ” globally by defining it to beequal to (4.3.21) on every parametrizable open set.

Itโ€™s easy to see from the definition (4.3.21) that this exterior differentiation operationinherits from the exterior differentiation operation on open subsets of ๐‘๐‘› the properties(2.4.3) and (2.4.4) and that for zero forms, i.e.,๐ถโˆž functions๐‘“โˆถ ๐‘‹ โ†’ ๐‘, ๐‘‘๐‘“ is the โ€œintrinsicโ€๐‘‘๐‘“ defined in Section 2.1, i.e., for ๐‘ โˆˆ ๐‘‹, ๐‘‘๐‘“๐‘ is the derivative of ๐‘“

๐‘‘๐‘“๐‘ โˆถ ๐‘‡๐‘๐‘‹ โ†’ ๐‘

viewed as an element of ๐›ฌ1(๐‘‡โ‹†๐‘๐‘‹). Letโ€™s check that it also has the property (2.6.12).

Theorem 4.3.22. Let๐‘‹ and ๐‘Œ be manifolds and ๐‘“โˆถ ๐‘‹ โ†’ ๐‘Œ a ๐ถโˆž map. Then for ๐œ” โˆˆ ๐›บ๐‘˜(๐‘Œ)we have

๐‘“โ‹†(๐‘‘๐œ”) = ๐‘‘(๐‘“โ‹†๐œ”) .

Proof. For every ๐‘ โˆˆ ๐‘‹ weโ€™ll check that this equality holds in a neighborhood of ๐‘. Let๐‘ž = ๐‘“(๐‘) and let ๐‘ˆ and ๐‘‰ be parametrizable neighborhoods of ๐‘ and ๐‘ž. Shrinking ๐‘ˆ ifnecessary we can assume ๐‘“(๐‘ˆ) โŠ‚ ๐‘‰. Given parametrizations

๐œ™โˆถ ๐‘ˆ0 โ†’ ๐‘ˆand

๐œ“โˆถ ๐‘‰0 โ†’ ๐‘‰we get by composition a map

๐‘”โˆถ ๐‘ˆ0 โ†’ ๐‘‰0 , ๐‘” = ๐œ“โˆ’1 โˆ˜ ๐‘“ โˆ˜ ๐œ™with the property ๐œ“ โˆ˜ ๐‘” = ๐‘“ โˆ˜ ๐œ™. Thus

๐œ™โ‹†๐‘‘(๐‘“โ‹†๐œ”) = ๐‘‘๐œ™โ‹†๐‘“โ‹†๐œ” (by definition of ๐‘‘)= ๐‘‘(๐‘“ โˆ˜ ๐œ™)โ‹†๐œ”= ๐‘‘(๐œ“ โˆ˜ ๐‘”)โ‹†๐œ”= ๐‘‘๐‘”โ‹†(๐œ“โ‹†๐œ”)= ๐‘”โ‹†๐‘‘๐œ™โ‹†๐œ” (by (2.6.12))= ๐‘”โ‹†๐œ“โ‹†๐‘‘๐œ” (by definition of ๐‘‘)= ๐œ™โ‹†๐‘“โ‹†๐‘‘๐œ” .

Hence ๐‘‘๐‘“โ‹†๐œ” = ๐‘“โ‹†๐‘‘๐œ”. โ–ก

Page 126: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

114 Chapter 4: Manifolds & Forms on Manifolds

The interior product and Lie derivative operationGiven a ๐‘˜-form ๐œ” โˆˆ ๐›บ๐‘˜(๐‘‹) and a ๐ถโˆž vector field ๐’— we will define the interior product

(4.3.23) ๐œ„๐’—๐œ” โˆˆ ๐›บ๐‘˜โˆ’1(๐‘‹) ,as in ยง2.5, by setting

(๐œ„๐’—๐œ”)๐‘ = ๐œ„๐’—(๐‘)๐œ”๐‘and the Lie derivative ๐ฟ๐’—๐œ” โˆˆ ๐›บ๐‘˜(๐‘‹) by setting

(4.3.24) ๐ฟ๐’—๐œ” โ‰” ๐œ„๐’—๐‘‘๐œ” + ๐‘‘๐œ„๐’—๐œ” .Itโ€™s easily checked that these operations satisfy Properties 2.5.3 and Properties 2.5.10 (since,just as in ยง2.5, these identities are deduced from the definitions (4.3.23) and (4.3.3) by purelyformal manipulations). Moreover, if ๐’— is complete and

๐‘“๐‘ก โˆถ ๐‘‹ โ†’ ๐‘‹ , โˆ’โˆž < ๐‘ก < โˆžis the one-parameter group of diffeomorphisms of ๐‘‹ generated by ๐’— the Lie derivative op-eration can be defined by the alternative recipe

(4.3.25) ๐ฟ๐’—๐œ” =๐‘‘๐‘‘๐‘ก๐‘“โ‹†๐‘ก ๐œ”|๐‘ก=0

as in (2.6.22). (Just as in ยง2.6 one proves this by showing that the operation (4.3.25) hassatisfies Properties 2.5.10 and hence that it agrees with the operation (4.3.24) provided thetwo operations agree on zero-forms.)

Exercises for ยง4.3Exercise 4.3.i. Let๐‘‹ โŠ‚ ๐‘3 be the paraboloid defined by ๐‘ฅ3 = ๐‘ฅ21 +๐‘ฅ22 and let๐’˜ be the vectorfield

๐’˜ โ‰” ๐‘ฅ1๐œ•๐œ•๐‘ฅ1+ ๐‘ฅ2๐œ•๐œ•๐‘ฅ2+ 2๐‘ฅ3๐œ•๐œ•๐‘ฅ3

.

(1) Show that ๐’˜ is tangent to๐‘‹ and hence defines by restriction a vector field ๐’— on๐‘‹.(2) What are the integral curves of ๐’—?

Exercise 4.3.ii. Let ๐‘†2 be the unit 2-sphere, ๐‘ฅ21 + ๐‘ฅ22 + ๐‘ฅ23 = 1, in ๐‘3 and let ๐’˜ be the vectorfield

๐’˜ โ‰” ๐‘ฅ1๐œ•๐œ•๐‘ฅ2โˆ’ ๐‘ฅ2๐œ•๐œ•๐‘ฅ1

.

(1) Show that ๐’˜ is tangent to ๐‘†2, and hence by restriction defines a vector field ๐’— on ๐‘†2.(2) What are the integral curves of ๐’—?

Exercise 4.3.iii. As in Exercise 4.3.ii let ๐‘†2 be the unit 2-sphere in๐‘3 and let๐’˜ be the vectorfield

๐’˜ โ‰” ๐œ•๐œ•๐‘ฅ3โˆ’ ๐‘ฅ3 (๐‘ฅ1

๐œ•๐œ•๐‘ฅ1+ ๐‘ฅ2๐œ•๐œ•๐‘ฅ2+ ๐‘ฅ3๐œ•๐œ•๐‘ฅ3)

(1) Show that ๐’˜ is tangent to ๐‘†2 and hence by restriction defines a vector field ๐’— on ๐‘†2.(2) What do its integral curves look like?

Exercise 4.3.iv. Let ๐‘†1 be the unit circle, ๐‘ฅ21 + ๐‘ฅ22 = 1, in ๐‘2 and let ๐‘‹ = ๐‘†1 ร— ๐‘†1 in ๐‘4 withdefining equations

๐‘“1 = ๐‘ฅ21 + ๐‘ฅ22 โˆ’ 1 = 0๐‘“2 = ๐‘ฅ23 + ๐‘ฅ24 โˆ’ 1 = 0 .

Page 127: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง4.3 Vector fields & differential forms on manifolds 115

(1) Show that the vector field

๐’˜ โ‰” ๐‘ฅ1๐œ•๐œ•๐‘ฅ2โˆ’ ๐‘ฅ2๐œ•๐œ•๐‘ฅ1+ ๐œ†(๐‘ฅ4

๐œ•๐œ•๐‘ฅ3โˆ’ ๐‘ฅ3๐œ•๐œ•๐‘ฅ4) ,

๐œ† โˆˆ ๐‘, is tangent to๐‘‹ and hence defines by restriction a vector field ๐’— on๐‘‹.(2) What are the integral curves of ๐’—?(3) Show that ๐ฟ๐’˜๐‘“๐‘– = 0.Exercise 4.3.v. For the vector field ๐’— in Exercise 4.3.iv, describe the one-parameter groupof diffeomorphisms it generates.

Exercise 4.3.vi. Let๐‘‹ and ๐’—be as in Exercise 4.3.i and let๐‘“โˆถ ๐‘2 โ†’ ๐‘‹be themap๐‘“(๐‘ฅ1, ๐‘ฅ2) =(๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ21 + ๐‘ฅ22). Show that if ๐’– is the vector field,

๐’– โ‰” ๐‘ฅ1๐œ•๐œ•๐‘ฅ1+ ๐‘ฅ2๐œ•๐œ•๐‘ฅ2

,

then ๐‘“โ‹†๐’– = ๐’—.

Exercise 4.3.vii. Let๐‘‹ be a submanifold of๐‘‹ in ๐‘๐‘ and let ๐’— and๐’˜ be the vector fields on๐‘‹ and ๐‘ˆ. Denoting by ๐œ„ the inclusion map of ๐‘‹ into ๐‘ˆ, show that ๐’— and ๐’˜ are ๐œ„-related ifand only if ๐’˜ is tangent to๐‘‹ and its restriction to๐‘‹ is ๐’—.

Exercise 4.3.viii. Let๐‘‹ be a submanifold of ๐‘๐‘ and ๐‘ˆ an open subset of ๐‘๐‘ containing๐‘‹,and let ๐’— and ๐’˜ be the vector fields on ๐‘‹ and ๐‘ˆ. Denoting by ๐œ„ the inclusion map of ๐‘‹ into๐‘ˆ, show that ๐’— and ๐’˜ are ๐œ„-related if and only if ๐’˜ is tangent to๐‘‹ and its restriction to๐‘‹ is๐’—.Exercise 4.3.ix. An elementary result in number theory asserts:

Theorem 4.3.26. A number ๐œ† โˆˆ ๐‘ is irrational if and only if the set{๐‘š + ๐œ†๐‘› |๐‘š, ๐‘› โˆˆ ๐™ }

is a dense subset of ๐‘.Let ๐’— be the vector field in Exercise 4.3.iv. Using Theorem 4.3.26 prove that if ๐œ† is irra-

tional then for every integral curve ๐›พ(๐‘ก), defined for โˆ’โˆž < ๐‘ก < โˆž, of ๐’— the set of points onthis curve is a dense subset of๐‘‹.Exercise 4.3.x. Let ๐‘‹ be an ๐‘›-dimensional submanifold of ๐‘๐‘. Prove that a vector field ๐’—on๐‘‹ is ๐ถโˆž if and only if the map (4.3.18) is ๐ถโˆž.

Hint: Let๐‘ˆ be a parametrizable open subset of๐‘‹ and ๐œ™โˆถ ๐‘ˆ0 โ†’ ๐‘ˆ a parametrization of๐‘ˆ. Composing ๐œ™ with the inclusion map ๐œ„ โˆถ ๐‘‹ โ†’ ๐‘๐‘ one gets a map ๐œ„ โˆ˜ ๐œ™โˆถ ๐‘ˆ โ†’ ๐‘๐‘. Showthat if

๐œ™โ‹†๐’— = โˆ‘๐‘ฃ๐‘–๐œ•๐œ•๐‘ฅ๐‘—

then๐œ™โ‹†๐‘“๐‘– = โˆ‘

๐œ•๐œ™๐‘–๐œ•๐‘ฅ๐‘—๐‘ฃ๐‘—

where ๐‘“1,โ€ฆ, ๐‘“๐‘ are the coordinates of the map ๐‘“๐’— and ๐œ™1,โ€ฆ, ๐œ™๐‘ the coordinates of ๐œ„ โˆ˜ ๐œ™.Exercise 4.3.xi. Let ๐’— be a vector field on๐‘‹ and let ๐œ™โˆถ ๐‘‹ โ†’ ๐‘ be a ๐ถโˆž function. Show thatif the function

๐ฟ๐’—๐œ™ = ๐œ„๐’—๐‘‘๐œ™is zero ๐œ™ is constant along integral curves of ๐’—.

Page 128: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

116 Chapter 4: Manifolds & Forms on Manifolds

Exercise 4.3.xii. Suppose that ๐œ™โˆถ ๐‘‹ โ†’ ๐‘ is proper. Show that if ๐ฟ๐’—๐œ™ = 0, ๐’— is complete.Hint: For ๐‘ โˆˆ ๐‘‹ let ๐‘Ž = ๐œ™(๐‘). By assumption, ๐œ™โˆ’1(๐‘Ž) is compact. Let ๐œŒ โˆˆ ๐ถโˆž0 (๐‘‹) be a

โ€œbumpโ€ function which is one on ๐œ™โˆ’1(๐‘Ž) and let๐’˜ be the vector field ๐œŒ๐’—. By Theorem 4.3.17,๐’˜ is complete and since

๐ฟ๐’˜๐œ™ = ๐œ„๐œŒ๐’—๐‘‘๐œ™ = ๐œŒ๐œ„๐’—๐‘‘๐œ™ = 0๐œ™ is constant along integral curves of ๐’˜. Let ๐›พ(๐‘ก), โˆ’โˆž < ๐‘ก < โˆž, be the integral curve of ๐’˜with initial point ๐›พ(0) = ๐‘. Show that ๐›พ is an integral curve of ๐’—.

4.4. Orientations

The last part of Chapter 4 will be devoted to the โ€œintegral calculusโ€ of forms on mani-folds. In particularwewill provemanifold versions of two basic theorems of integral calculuson ๐‘๐‘›, Stokesโ€™ theorem and the divergence theorem, and also develop a manifold versionof degree theory. However, to extend the integral calculus to manifolds without getting in-volved in horrendously technical โ€œorientationโ€ issues we will confine ourselves to a specialclass of manifolds: orientable manifolds. The goal of this section will be to explain what thisterm means.

Definition 4.4.1. Let๐‘‹ be an ๐‘›-manifold. An orientation of๐‘‹ is a rule for assigning to each๐‘ โˆˆ ๐‘‹ an orientation of ๐‘‡๐‘๐‘‹.

Thus by Definition 1.9.3 one can think of an orientation as a โ€œlabelingโ€ rule which, forevery๐‘ โˆˆ ๐‘‹, labels one of the two components of the set๐›ฌ๐‘›(๐‘‡โ‹†๐‘๐‘‹)โˆ–{0} by๐›ฌ๐‘›(๐‘‡โ‹†๐‘๐‘‹)+, whichweโ€™ll henceforth call the โ€œplusโ€ part of ๐›ฌ๐‘›(๐‘‡โ‹†๐‘๐‘‹), and the other component by ๐›ฌ๐‘›(๐‘‡โ‹†๐‘๐‘‹)โˆ’,which weโ€™ll henceforth call the โ€œminusโ€ part of ๐›ฌ๐‘›(๐‘‡โ‹†๐‘๐‘‹).

Definition 4.4.2. An orientation of a manifold ๐‘‹ is smooth, or simply ๐ถโˆž, if for every๐‘ โˆˆ ๐‘‹, there exists a neighborhood๐‘ˆ of ๐‘ and a non-vanishing ๐‘›-form ๐œ” โˆˆ ๐›บ๐‘›(๐‘ˆ)with theproperty

๐œ”๐‘ž โˆˆ ๐›ฌ๐‘›(๐‘‡โ‹†๐‘ž ๐‘‹)+for every ๐‘ž โˆˆ ๐‘ˆ.

Remark 4.4.3. If weโ€™re given an orientation of ๐‘‹ we can define another orientation by as-signing to each ๐‘ โˆˆ ๐‘‹ the opposite orientation to the orientation we already assigned, i.e.,by switching the labels on ๐›ฌ๐‘›(๐‘‡โ‹†๐‘ )+ and ๐›ฌ๐‘›(๐‘‡โ‹†๐‘ )โˆ’. We will call this the reversed orientationof๐‘‹. We will leave for you to check as an exercise that if๐‘‹ is connected and equipped witha smooth orientation, the only smooth orientations of ๐‘‹ are the given orientation and itsreversed orientation.

Hint: Given any smooth orientation of๐‘‹ the set of points where it agrees with the givenorientation is open, and the set of points where it does not is also open. Therefore one ofthese two sets has to be empty.

Note that if๐œ” โˆˆ ๐›บ๐‘›(๐‘‹) is a non-vanishing ๐‘›-form one gets from๐œ” a smooth orientationof๐‘‹ by requiring that the โ€œlabeling ruleโ€ above satisfy

๐œ”๐‘ โˆˆ ๐›ฌ๐‘›(๐‘‡โ‹†๐‘๐‘‹)+for every ๐‘ โˆˆ ๐‘‹. If ๐œ” has this property we will call ๐œ” a volume form. Itโ€™s clear from this defi-nition that if๐œ”1 and๐œ”2 are volume forms on๐‘‹ then๐œ”2 = ๐‘“2,1๐œ”1 where๐‘“2,1 is an everywherepositive ๐ถโˆž function.

Example 4.4.4. Let ๐‘ˆ be an open subset ๐‘๐‘›. We will usually assign to ๐‘ˆ its standard orien-tation, by which we will mean the orientation defined by the ๐‘›-form ๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›.

Page 129: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง4.4 Orientations 117

Example 4.4.5. Let ๐‘“โˆถ ๐‘๐‘ โ†’ ๐‘๐‘˜ be a ๐ถโˆž map. If zero is a regular value of ๐‘“, the set๐‘‹ โ‰” ๐‘“โˆ’1(0) is a submanifold of๐‘๐‘ of dimension ๐‘› โ‰” ๐‘โˆ’๐‘˜ (byTheorem 4.2.13). Moreover,for ๐‘ โˆˆ ๐‘‹, ๐‘‡๐‘๐‘‹ is the kernel of the surjective map

๐‘‘๐‘“๐‘ โˆถ ๐‘‡๐‘๐‘๐‘ โ†’ ๐‘‡0๐‘๐‘˜

so we get from ๐‘‘๐‘“๐‘ a bijective linear map

(4.4.6) ๐‘‡๐‘๐‘๐‘/๐‘‡๐‘๐‘‹ โ†’ ๐‘‡0๐‘๐‘˜ .

As explained inExample 4.4.4,๐‘‡๐‘๐‘๐‘ and๐‘‡0๐‘๐‘˜ have โ€œstandardโ€ orientations, hence if werequire that the map (4.4.6) be orientation preserving, this gives ๐‘‡๐‘๐‘๐‘/๐‘‡๐‘๐‘‹ an orientationand, by Theorem 1.9.9, gives ๐‘‡๐‘๐‘‹ an orientation. Itโ€™s intuitively clear that since ๐‘‘๐‘“๐‘ variessmoothly with respect to ๐‘ this orientation does as well; however, this fact requires a proof,and weโ€™ll supply a sketch of such a proof in the exercises.

Example 4.4.7. A special case of Example 4.4.5 is the ๐‘›-sphere๐‘†๐‘› = { (๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›+1) โˆˆ ๐‘๐‘›+1 | ๐‘ฅ21 +โ‹ฏ + ๐‘ฅ2๐‘›+1 = 1 } ,

which acquires an orientation from its defining map ๐‘“โˆถ ๐‘๐‘›+1 โ†’ ๐‘ given by

๐‘“(๐‘ฅ) โ‰” ๐‘ฅ21 +โ‹ฏ + ๐‘ฅ2๐‘›+1 โˆ’ 1 .

Example 4.4.8. Let ๐‘‹ be an oriented submanifold of ๐‘๐‘. For every ๐‘ โˆˆ ๐‘‹, ๐‘‡๐‘๐‘‹ sits inside๐‘‡๐‘๐‘๐‘ as a vector subspace, hence, via the identification ๐‘‡๐‘๐‘๐‘ โ‰… ๐‘๐‘, one can think of ๐‘‡๐‘๐‘‹as a vector subspace of ๐‘๐‘. In particular from the standard Euclidean inner product on ๐‘๐‘one gets, by restricting this inner product to vectors in ๐‘‡๐‘๐‘‹, an inner product

๐ต๐‘ โˆถ ๐‘‡๐‘๐‘‹ ร— ๐‘‡๐‘๐‘‹ โ†’ ๐‘

on ๐‘‡๐‘๐‘‹. Let ๐œŽ๐‘ be the volume element in ๐›ฌ๐‘›(๐‘‡โ‹†๐‘๐‘‹) associated with ๐ต๐‘ (see Exercise 1.9.x)and let ๐œŽ = ๐œŽ๐‘‹ be the non-vanishing ๐‘›-form on๐‘‹ defined by the assignment

๐‘ โ†ฆ ๐œŽ๐‘ .In the exercises at the end of this section weโ€™ll sketch a proof of the following.

Theorem 4.4.9. The form ๐œŽ๐‘‹ is ๐ถโˆž and hence, in particular, is a volume form. (We will callthis form the Riemannian volume form.)

Example 4.4.10 (Mรถbius strip). The Mรถbius strip is a surface in ๐‘3 which is not orientable.It is obtained from the rectangle

๐‘… โ‰” [0, 1] ร— (โˆ’1, 1) = { (๐‘ฅ, ๐‘ฆ) โˆˆ ๐‘2 | 0 โ‰ค ๐‘ฅ โ‰ค 1 and โˆ’ 1 < ๐‘ฆ < 1 }by gluing the ends together in the wrong way, i.e., by gluing (1, ๐‘ฆ) to (0, โˆ’๐‘ฆ). It is easy to seethat theMรถbius strip cannot be oriented by taking the standard orientation at ๐‘ = (1, 0) andmoving it along the line (๐‘ก, 0), 0 โ‰ค ๐‘ก โ‰ค 1 to the point (0, 0) (which is also the point ๐‘ afterwe have glued the ends of the rectangle together).

Weโ€™ll next investigate the โ€œcompatibilityโ€ question for diffeomorphisms between ori-ented manifolds. Let ๐‘‹ and ๐‘Œ be ๐‘›-manifolds and ๐‘“โˆถ ๐‘‹ โฅฒ ๐‘Œ a diffeomorphism. Supposeboth of these manifolds are equipped with orientations. We will say that ๐‘“ is orientationpreserving if for all ๐‘ โˆˆ ๐‘‹ and ๐‘ž = ๐‘“(๐‘), the linear map

๐‘‘๐‘“๐‘ โˆถ ๐‘‡๐‘๐‘‹ โ†’ ๐‘‡๐‘ž๐‘Œ

Page 130: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

118 Chapter 4: Manifolds & Forms on Manifolds

is orientation preserving. Itโ€™s clear that if ๐œ” is a volume form on ๐‘Œ then ๐‘“ is orientationpreserving if and only if ๐‘“โ‹†๐œ” is a volume form on ๐‘‹, and from (1.9.5) and the chain ruleone easily deduces the following theorem.

Theorem 4.4.11. If ๐‘ is an oriented ๐‘›-manifold and ๐‘”โˆถ ๐‘Œ โ†’ ๐‘ a diffeomorphism, then ifboth ๐‘“ and ๐‘” are orientation preserving, so is ๐‘” โˆ˜ ๐‘“.

If ๐‘“โˆถ ๐‘‹ โฅฒ ๐‘Œ is a diffeomorphism then the set of points ๐‘ โˆˆ ๐‘‹ at which the linear map

๐‘‘๐‘“๐‘ โˆถ ๐‘‡๐‘๐‘‹ โ†’ ๐‘‡๐‘ž๐‘Œ , ๐‘ž = ๐‘“(๐‘) ,

is orientation preserving is open, and the set of points at which is orientation reversing isopen as well. Hence if ๐‘‹ is connected, ๐‘‘๐‘“๐‘ has to be orientation preserving at all points ororientation reversing at all points. In the latter case weโ€™ll say that ๐‘“ is orientation reversing.

If ๐‘ˆ is a parametrizable open subset of๐‘‹ and ๐œ™โˆถ ๐‘ˆ0 โ†’ ๐‘ˆ a parametrization of ๐‘ˆ weโ€™llsay that this parametrization is an oriented parametrization if ๐œ™ is orientation preservingwith respect to the standard orientation of ๐‘ˆ0 and the given orientation on ๐‘ˆ. Notice thatif this parametrization isnโ€™t oriented we can convert it into one that is by replacing everyconnected component ๐‘‰0 of ๐‘ˆ0 on which ๐œ™ isnโ€™t orientation preserving by the open set

(4.4.12) ๐‘‰โ™ฏ0 = { (๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) โˆˆ ๐‘๐‘› | (๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›โˆ’1, โˆ’๐‘ฅ๐‘›) โˆˆ ๐‘‰0 }

and replacing ๐œ™ by the map

(4.4.13) ๐œ“(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) = ๐œ™(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›โˆ’1, โˆ’๐‘ฅ๐‘›) .

If ๐œ™๐‘– โˆถ ๐‘ˆ๐‘– โ†’ ๐‘ˆ, ๐‘– = 0, 1, are oriented parametrizations of ๐‘ˆ and ๐œ“โˆถ ๐‘ˆ0 โ†’ ๐‘ˆ1 is thediffeomorphism ๐œ™โˆ’11 โˆ˜ ๐œ™0, then by the theorem above ๐œ“ is orientation preserving or in otherwords

(4.4.14) det(๐œ•๐œ“๐‘–๐œ•๐‘ฅ๐‘—) > 0

at every point on ๐‘ˆ0.Weโ€™ll conclude this section by discussing some orientation issues which will come up

when we discuss Stokesโ€™ theorem and the divergence theorem in ยง4.6. First a definition.

Definition 4.4.15. An open subset๐ท of๐‘‹ is a smooth domain if(1) The boundary ๐œ•๐ท is an (๐‘› โˆ’ 1)-dimensional submanifold of๐‘‹, and(2) The boundary of๐ท coincides with the boundary of the closure of๐ท.

Examples 4.4.16.(1) The ๐‘›-ball, ๐‘ฅ21 +โ‹ฏ + ๐‘ฅ2๐‘› < 1, whose boundary is the sphere, ๐‘ฅ21 +โ‹ฏ + ๐‘ฅ2๐‘› = 1.(2) The ๐‘›-dimensional annulus,

1 < ๐‘ฅ21 +โ‹ฏ + ๐‘ฅ2๐‘› < 2

whose boundary consists of the union of the two spheres

{๐‘ฅ21 +โ‹ฏ + ๐‘ฅ2๐‘› = 1๐‘ฅ21 +โ‹ฏ + ๐‘ฅ2๐‘› = 2 .

(3) Let ๐‘†๐‘›โˆ’1 be the unit sphere, ๐‘ฅ21 +โ‹ฏ+ ๐‘ฅ22 = 1 and let๐ท = ๐‘๐‘› โˆ– ๐‘†๐‘›โˆ’1. Then the boundaryof๐ท is ๐‘†๐‘›โˆ’1 but๐ท is not a smooth domain since the boundary of its closure is empty.

Page 131: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง4.4 Orientations 119

(4) The simplest example of a smooth domain is the half-space

๐‡๐‘› = { (๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) โˆˆ ๐‘๐‘› | ๐‘ฅ1 < 0 }whose boundary

๐œ•๐‡๐‘› = { (๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) โˆˆ ๐‘๐‘› | ๐‘ฅ1 = 0 }we can identify with ๐‘๐‘›โˆ’1 via the map ๐‘๐‘›โˆ’1 โ†’ ๐œ•๐‡๐‘› given by

(๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) โ†ฆ (0, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) .

We will show that every bounded domain looks locally like this example.

Theorem 4.4.17. Let๐ท be a smooth domain and ๐‘ a boundary point of๐ท. Then there existsa neighborhood ๐‘ˆ of ๐‘ in ๐‘‹, an open set ๐‘ˆ0 in ๐‘๐‘›, and a diffeomorphism ๐œ“โˆถ ๐‘ˆ0 โฅฒ ๐‘ˆ suchthat ๐œ“maps ๐‘ˆ0 โˆฉ ๐‡๐‘› onto ๐‘ˆ โˆฉ ๐ท.

Proof. Let ๐‘ โ‰” ๐œ•๐ท. First we prove the following lemma.

Lemma4.4.18. For every๐‘ โˆˆ ๐‘ there exists an open set๐‘ˆ in๐‘‹ containing๐‘ and a parametriza-tion

๐œ“โˆถ ๐‘ˆ0 โ†’ ๐‘ˆof ๐‘ˆ with the property

(4.4.19) ๐œ“(๐‘ˆ0 โˆฉ ๐œ•๐‡๐‘›) = ๐‘ˆ โˆฉ ๐‘ .

Proof. Since ๐‘‹ is locally diffeomorphic at ๐‘ to an open subset of ๐‘๐‘› so it suffices to provethis assertion for ๐‘‹ = ๐‘๐‘›. However, if ๐‘ is an (๐‘› โˆ’ 1)-dimensional submanifold of ๐‘๐‘› thenbyTheorem 4.2.15 there exists, for every ๐‘ โˆˆ ๐‘, a neighborhood๐‘ˆ of ๐‘ in๐‘๐‘› and a function๐œ™ โˆˆ ๐ถโˆž(๐‘ˆ) with the properties

(4.4.20) ๐‘ฅ โˆˆ ๐‘ˆ โˆฉ ๐‘ โŸบ ๐œ™(๐‘ฅ) = 0and

(4.4.21) ๐‘‘๐œ™๐‘ โ‰  0 .Without loss of generality we can assume by equation (4.4.21) that

๐œ•๐œ™๐œ•๐‘ฅ1(๐‘) โ‰  0 .

Hence if ๐œŒโˆถ ๐‘ˆ โ†’ ๐‘๐‘› is the map

(4.4.22) ๐œŒ(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) โ‰” (๐œ™(๐‘ฅ), ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›)(๐‘‘๐œŒ)๐‘ is bijective, and hence ๐œŒ is locally a diffeomorphism at ๐‘. Shrinking๐‘ˆ we can assumethat ๐œŒ is a diffeomorphism of๐‘ˆ onto an open set๐‘ˆ0. By (4.4.20) and (4.4.22) ๐œŒmaps๐‘ˆโˆฉ๐‘onto ๐‘ˆ0 โˆฉ ๐œ•๐‡๐‘› hence if we take ๐œ“ to be ๐œŒโˆ’1, it will have the property (4.4.19). โ–ก

We will now prove Theorem 4.4.9. Without loss of generality we can assume that theopen set ๐‘ˆ0 in Lemma 4.4.18 is an open ball with center at ๐‘ž โˆˆ ๐œ•๐‡๐‘› and that the diffeomor-phism ๐œ“maps ๐‘ž to ๐‘. Thus for ๐œ“โˆ’1(๐‘ˆ โˆฉ ๐ท) there are three possibilities:(i) ๐œ“โˆ’1(๐‘ˆ โˆฉ ๐ท) = (๐‘๐‘› โˆ’ ๐œ•๐‡๐‘›) โˆฉ ๐‘ˆ0.(ii) ๐œ“โˆ’1(๐‘ˆ โˆฉ ๐ท) = (๐‘๐‘› โˆ’ ๐‡๐‘›) โˆฉ ๐‘ˆ0.(iii) ๐œ“โˆ’1(๐‘ˆ โˆฉ ๐ท) = ๐‡๐‘› โˆฉ ๐‘ˆ0.However, (i) is excluded by the second hypothesis in Definition 4.4.15 and if (ii) occurs wecan rectify the situation by composing ๐œ™ with the map (๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) โ†ฆ (โˆ’๐‘ฅ1, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›). โ–ก

Page 132: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

120 Chapter 4: Manifolds & Forms on Manifolds

Definition4.4.23. Wewill call an open set๐‘ˆwith the properties above a๐ท-adapted parame-trizable open set.

We will now show that if๐‘‹ is oriented and๐ท โŠ‚ ๐‘‹ is a smooth domain then the bound-ary ๐‘ โ‰” ๐œ•๐ท of๐ท acquires from๐‘‹ a natural orientation. To see this we first observe:

Lemma 4.4.24. The diffeomorphism ๐œ“โˆถ ๐‘ˆ0 โฅฒ ๐‘ˆ in Theorem 4.4.17 can be chosen to beorientation preserving.

Proof. If it is not, then by replacing ๐œ“ with the diffeomorphism๐œ“โ™ฏ(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) โ‰” ๐œ“(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›โˆ’1, โˆ’๐‘ฅ๐‘›) ,

we get a ๐ท-adapted parametrization of ๐‘ˆ which is orientation preserving. (See (4.4.12)โ€“(4.4.13).) โ–ก

Let๐‘‰0 = ๐‘ˆ0โˆฉ๐‘๐‘›โˆ’1 be the boundary of๐‘ˆ0โˆฉ๐‡๐‘›. The restriction of๐œ“ to๐‘‰0 is a diffeomor-phism of ๐‘‰0 onto๐‘ˆโˆฉ๐‘, and we will orient๐‘ˆโˆฉ๐‘ by requiring that this map be an orientedparametrization. To show that this is an โ€œintrinsicโ€ definition, i.e., does not depend on thechoice of ๐œ“. Weโ€™ll prove:

Theorem4.4.25. If๐œ“๐‘– โˆถ ๐‘ˆ๐‘– โ†’ ๐‘ˆ, ๐‘– = 0, 1, are oriented parametrizations of๐‘ˆwith the property๐œ“๐‘– โˆถ ๐‘ˆ๐‘– โˆฉ ๐‡๐‘› โ†’ ๐‘ˆ โˆฉ ๐ท

the restrictions of ๐œ“๐‘– to ๐‘ˆ๐‘– โˆฉ ๐‘๐‘›โˆ’1 induce compatible orientations on ๐‘ˆ โˆฉ ๐‘‹.

Proof. To prove this we have to prove that the map ๐œ™โˆ’11 โˆ˜ ๐œ™0, restricted to ๐‘ˆ โˆฉ ๐œ•๐‡๐‘› is anorientation preserving diffeomorphism of๐‘ˆ0 โˆฉ๐‘๐‘›โˆ’1 onto๐‘ˆ1 โˆฉ๐‘๐‘›โˆ’1. Thus we have to provethe following:

Proposition 4.4.26. Let ๐‘ˆ0 and ๐‘ˆ1 be open subsets of ๐‘๐‘› and ๐‘“โˆถ ๐‘ˆ0 โ†’ ๐‘ˆ1 an orientationpreserving diffeomorphism which maps ๐‘ˆ0 โˆฉ ๐‡๐‘› onto ๐‘ˆ1 โˆฉ ๐‡๐‘›. Then the restriction ๐‘” of ๐‘“ tothe boundary ๐‘ˆ0 โˆฉ ๐‘๐‘›โˆ’1 of ๐‘ˆ0 โˆฉ ๐‡๐‘› is an orientation preserving diffeomorphism

๐‘”โˆถ ๐‘ˆ0 โˆฉ ๐‘๐‘›โˆ’1 โฅฒ ๐‘ˆ1 โˆฉ ๐‘๐‘›โˆ’1 .Let ๐‘“(๐‘ฅ) = (๐‘“1(๐‘ฅ),โ€ฆ, ๐‘“๐‘›(๐‘ฅ)). By assumption ๐‘“1(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) is less than zero if ๐‘ฅ1 is less

than zero and equal to zero if ๐‘ฅ1 is equal to zero, hence

(4.4.27) ๐œ•๐‘“1๐œ•๐‘ฅ1(0, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) โ‰ฅ 0

and๐œ•๐‘“1๐œ•๐‘ฅ๐‘–(0, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) = 0

for ๐‘– > 1Moreover, since ๐‘” is the restriction of ๐‘“ to the set ๐‘ฅ1 = 0๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘—(0, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) =

๐œ•๐‘”๐‘–๐œ•๐‘ฅ๐‘—(๐‘ฅ2,โ€ฆ, ๐‘ฅ1)

for ๐‘–, ๐‘— โ‰ฅ 2. Thus on the set defined by ๐‘ฅ1 = 0 we have

(4.4.28) det(๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘—) = ๐œ•๐‘“1๐œ•๐‘ฅ1

det(๐œ•๐‘”๐‘–๐œ•๐‘ฅ๐‘—) .

Since ๐‘“ is orientation preserving the left hand side of equation (4.4.28) is positive at allpoints (0, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) โˆˆ ๐‘ˆ0 โˆฉ ๐‘๐‘›โˆ’1 hence by (4.4.27) the same is true for ๐œ•๐‘“1๐œ•๐‘ฅ1 and det ( ๐œ•๐‘”๐‘–๐œ•๐‘ฅ๐‘— ).Thus ๐‘” is orientation preserving. โ–ก

Page 133: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง4.4 Orientations 121

Remark 4.4.29. For an alternative proof of this result see Exercise 3.2.viii andExercise 3.6.iv.

Wewill noworient the boundary of๐ท by requiring that for every๐ท-adapted parametriz-able open set๐‘ˆ the orientation of๐‘ coincides with the orientation of๐‘ˆโˆฉ๐‘ that we describedabove.Wewill conclude this discussion of orientations by proving a global version of Propo-sition 4.4.26.

Proposition 4.4.30. For ๐‘– = 1, 2, let ๐‘‹๐‘– be an oriented manifold, ๐ท๐‘– โŠ‚ ๐‘‹๐‘– a smooth domainand๐‘๐‘– โ‰” ๐œ•๐ท๐‘– its boundary. Then if ๐‘“ is an orientation preserving diffeomorphism of (๐‘‹1, ๐ท1)onto (๐‘‹2, ๐ท2) the restriction ๐‘” of ๐‘“ to ๐‘1 is an orientation preserving diffeomorphism of ๐‘1onto ๐‘2.

Proof. Let๐‘ˆbe anopen subset of๐‘‹1 and๐œ™โˆถ ๐‘ˆ0 โ†’ ๐‘ˆ an oriented๐ท1-compatible parametriza-tion of๐‘ˆ.Then if๐‘‰ = ๐‘“(๐‘ˆ) themap๐‘“๐œ™โˆถ ๐‘ˆ โ†’ ๐‘‰ is an oriented๐ท2-compatible parametriza-tion of ๐‘‰ and hence ๐‘”โˆถ ๐‘ˆ โˆฉ ๐‘1 โ†’ ๐‘‰ โˆฉ ๐‘2 is orientation preserving. โ–ก

Exercises for ยง4.4Exercise 4.4.i. Let ๐‘‰ be an oriented ๐‘›-dimensional vector space, ๐ต an inner product on ๐‘‰and ๐‘’1,โ€ฆ, ๐‘’๐‘› โˆˆ ๐‘‰ an oriented orthonormal basis. Given vectors ๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘› โˆˆ ๐‘‰, show that if

(4.4.31) ๐‘๐‘–,๐‘— = ๐ต(๐‘ฃ๐‘–, ๐‘ฃ๐‘—)and

๐‘ฃ๐‘– =๐‘›โˆ‘๐‘—=1๐‘Ž๐‘—,๐‘–๐‘’๐‘— ,

the matrices ๐€ = (๐‘Ž๐‘–,๐‘—) and ๐ = (๐‘๐‘–,๐‘—) satisfy the identity:

๐ = ๐€โŠบ๐€and conclude that det(๐) = det(๐€)2. (In particular conclude that det(๐) > 0.)

Exercise 4.4.ii. Let ๐‘‰ and๐‘Š be oriented ๐‘›-dimensional vector spaces. Suppose that eachof these spaces is equipped with an inner product, and let ๐‘’1,โ€ฆ, ๐‘’๐‘› โˆˆ ๐‘‰ and ๐‘“1,โ€ฆ, ๐‘“๐‘› โˆˆ ๐‘Šbe oriented orthonormal bases. Show that if ๐ดโˆถ ๐‘Š โ†’ ๐‘‰ is an orientation preserving linearmapping and ๐ด๐‘“๐‘– = ๐‘ฃ๐‘– then

๐ดโ‹† vol๐‘‰ = (det(๐‘๐‘–,๐‘—))12 vol๐‘Š

where vol๐‘‰ = ๐‘’โ‹†1 โˆงโ‹ฏ โˆง ๐‘’โ‹†๐‘› , vol๐‘Š = ๐‘“โ‹†1 โˆงโ‹ฏ โˆง ๐‘“โ‹†๐‘› and (๐‘๐‘–,๐‘—) is the matrix (4.4.31).

Exercise 4.4.iii. Let ๐‘‹ be an oriented ๐‘›-dimensional submanifold of ๐‘๐‘›, ๐‘ˆ an open subsetof ๐‘‹, ๐‘ˆ0 an open subset of ๐‘๐‘›, and ๐œ™โˆถ ๐‘ˆ0 โ†’ ๐‘ˆ an oriented parametrization. Let ๐œ™1,โ€ฆ, ๐œ™๐‘be the coordinates of the map

๐‘ˆ0 โ†’ ๐‘ˆ โ†ช ๐‘๐‘ .the second map being the inclusion map. Show that if ๐œŽ is the Riemannian volume form on๐‘‹ then

๐œ™โ‹†๐œŽ = (det(๐œ™๐‘–,๐‘—))12 ๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›

where

(4.4.32) ๐œ™๐‘–,๐‘— =๐‘โˆ‘๐‘˜=1

๐œ•๐œ™๐‘˜๐œ•๐‘ฅ๐‘–๐œ•๐œ™๐‘˜๐œ•๐‘ฅ๐‘—

for 1 โ‰ค ๐‘–, ๐‘— โ‰ค ๐‘› .

Conclude that ๐œŽ is a smooth ๐‘›-form and hence that it is a volume form.

Page 134: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

122 Chapter 4: Manifolds & Forms on Manifolds

Hint: For ๐‘ โˆˆ ๐‘ˆ0 and ๐‘ž = ๐œ™(๐‘) apply Exercise 4.4.ii with ๐‘‰ = ๐‘‡๐‘ž๐‘‹,๐‘Š = ๐‘‡๐‘๐‘๐‘›, ๐ด =(๐‘‘๐œ™)๐‘ and ๐‘ฃ๐‘– = (๐‘‘๐œ™)๐‘ ( ๐œ•๐œ•๐‘ฅ๐‘– )๐‘.

Exercise 4.4.iv. Given a ๐ถโˆž function ๐‘“โˆถ ๐‘ โ†’ ๐‘, its graph

๐‘‹ โ‰” ๐›ค๐‘“ = { (๐‘ฅ, ๐‘“(๐‘ฅ)) โˆˆ ๐‘ ร— ๐‘ | ๐‘ฅ โˆˆ ๐‘ }

is a submanifold of ๐‘2 and๐œ™โˆถ ๐‘ โ†’ ๐‘‹ , ๐‘ฅ โ†ฆ (๐‘ฅ, ๐‘“(๐‘ฅ))

is a diffeomorphism. Orient ๐‘‹ by requiring that ๐œ™ be orientation preserving and show thatif ๐œŽ is the Riemannian volume form on๐‘‹ then

๐œ™โ‹†๐œŽ = (1 + (๐‘‘๐‘“๐‘‘๐‘ฅ)2)12

๐‘‘๐‘ฅ .

Hint: Exercise 4.4.iii

Exercise 4.4.v. Given a๐ถโˆž function๐‘“โˆถ ๐‘๐‘› โ†’ ๐‘ the graph ๐›ค๐‘“ of๐‘“ is a submanifold of๐‘๐‘›+1and

(4.4.33) ๐œ™โˆถ ๐‘๐‘› โ†’ ๐‘‹ , ๐‘ฅ โ†ฆ (๐‘ฅ, ๐‘“(๐‘ฅ))is a diffeomorphism. Orient ๐‘‹ by requiring that ๐œ™ is orientation preserving and show thatif ๐œŽ is the Riemannian volume form on๐‘‹ then

๐œ™โ‹†๐œŽ = (1 +๐‘›โˆ‘๐‘–=1( ๐œ•๐‘“๐œ•๐‘ฅ๐‘–)2)12

๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› .

Hints:โ€ข Let ๐‘ฃ = (๐‘1,โ€ฆ, ๐‘๐‘›) โˆˆ ๐‘๐‘›. Show that if ๐ถโˆถ ๐‘๐‘› โ†’ ๐‘ is the linear mapping defined

by the matrix (๐‘๐‘–๐‘๐‘—) then ๐ถ๐‘ฃ = (โˆ‘๐‘›๐‘–=1 ๐‘2๐‘– )๐‘ฃ and ๐ถ๐‘ค = 0 if ๐‘ค โ‹… ๐‘ฃ = 0 .

โ€ข Conclude that the eigenvalues of ๐ถ are ๐œ†1 = โˆ‘ ๐‘2๐‘– and ๐œ†2 = โ‹ฏ = ๐œ†๐‘› = 0.โ€ข Show that the determinant of ๐ผ + ๐ถ is 1 + โˆ‘๐‘›๐‘–=1 ๐‘2๐‘– .โ€ข Compute the determinant of the matrix (4.4.32) where ๐œ™ is the mapping (4.4.33).

Exercise 4.4.vi. Let ๐‘‰ be an oriented๐‘-dimensional vector space and โ„“๐‘– โˆˆ ๐‘‰โ‹†, ๐‘– = 1,โ€ฆ, ๐‘˜,๐‘˜ linearly independent vectors in ๐‘‰โ‹†. Define

๐ฟโˆถ ๐‘‰ โ†’ ๐‘๐‘˜

to be the map ๐‘ฃ โ†ฆ (โ„“1(๐‘ฃ),โ€ฆ, โ„“๐‘˜(๐‘ฃ)).(1) Show that ๐ฟ is surjective and that the kernel๐‘Š of ๐ฟ is of dimension ๐‘› = ๐‘ โˆ’ ๐‘˜.(2) Show that one gets from this mapping a bijective linear mapping

(4.4.34) ๐‘‰/๐‘Š โ†’ ๐‘๐‘˜

and hence from the standard orientation on ๐‘๐‘˜ an induced orientation on๐‘‰/๐‘Š and on๐‘Š.

Hint: Exercise 1.2.viii and Theorem 1.9.9.(3) Let ๐œ” be an element of ๐›ฌ๐‘(๐‘‰โ‹†). Show that there exists a ๐œ‡ โˆˆ ๐›ฌ๐‘›(๐‘‰โ‹†) with the property

(4.4.35) โ„“1 โˆงโ‹ฏ โˆง โ„“๐‘˜ โˆง ๐œ‡ = ๐œ” .Hint:Choose an oriented basis, ๐‘’1,โ€ฆ, ๐‘’๐‘ of๐‘‰ such that๐œ” = ๐‘’โ‹†1 โˆงโ‹ฏโˆง๐‘’โ‹†๐‘ and โ„“๐‘– = ๐‘’โ‹†๐‘–

for ๐‘– = 1,โ€ฆ, ๐‘˜, and let ๐œ‡ = ๐‘’โ‹†๐‘–+1 โˆงโ‹ฏ โˆง ๐‘’โ‹†๐‘.

Page 135: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง4.4 Orientations 123

(4) Show that if ๐œˆ is an element of ๐›ฌ๐‘›(๐‘‰โ‹†) with the property

โ„“1 โˆงโ‹ฏ โˆง โ„“๐‘˜ โˆง ๐œˆ = 0then there exist elements, ๐œˆ๐‘–, of ๐›ฌ๐‘›โˆ’1(๐‘‰โ‹†) such that

๐œˆ = โˆ‘โ„“๐‘– โˆง ๐œˆ๐‘– .Hint: Same hint as in part (3).

(5) Show that if ๐œ‡1 and ๐œ‡2 are elements of๐›ฌ๐‘›(๐‘‰โ‹†)with the property (4.4.35) and ๐œ„ โˆถ ๐‘Š โ†’ ๐‘‰is the inclusion map then ๐œ„โ‹†๐œ‡1 = ๐œ„โ‹†๐œ‡2.

Hint: Let ๐œˆ = ๐œ‡1 โˆ’ ๐œ‡2. Conclude from part (4) that ๐œ„โ‹†๐œˆ = 0.(6) Conclude that if ๐œ‡ is an element of ๐›ฌ๐‘›(๐‘‰โ‹†) satisfying (4.4.35) the element, ๐œŽ = ๐œ„โ‹†๐œ‡, of๐›ฌ๐‘›(๐‘Šโ‹†) is intrinsically defined independent of the choice of ๐œ‡.

(7) Show that ๐œŽ lies in ๐›ฌ๐‘›(๐‘Šโ‹†)+.

Exercise 4.4.vii. Let ๐‘ˆ be an open subset of ๐‘๐‘ and ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘๐‘˜ a ๐ถโˆž map. If zero is aregular value of ๐‘“, the set,๐‘‹ = ๐‘“โˆ’1(0) is a manifold of dimension ๐‘› = ๐‘โˆ’๐‘˜. Show that thismanifold has a natural smooth orientation.

Some suggestions:โ€ข Let ๐‘“ = (๐‘“1,โ€ฆ, ๐‘“๐‘˜) and let

๐‘‘๐‘“1 โˆงโ‹ฏ โˆง ๐‘‘๐‘“๐‘˜ = โˆ‘๐‘“๐ผ๐‘‘๐‘ฅ๐ผsummed over multi-indices which are strictly increasing. Show that for every ๐‘ โˆˆ๐‘‹ ๐‘“๐ผ(๐‘) โ‰  0 for some multi-index, ๐ผ = (๐‘–1,โ€ฆ, ๐‘–๐‘˜), 1 โ‰ค ๐‘–1 < โ‹ฏ < ๐‘–๐‘˜ โ‰ค ๐‘.

โ€ข Let ๐ฝ = (๐‘—1,โ€ฆ, ๐‘—๐‘›), 1 โ‰ค ๐‘—1 < โ‹ฏ < ๐‘—๐‘› โ‰ค ๐‘ be the complementary multi-index to ๐ผ,i.e., ๐‘—๐‘Ÿ โ‰  ๐‘–๐‘  for all ๐‘Ÿ and ๐‘ . Show that

๐‘‘๐‘“1 โˆงโ‹ฏ โˆง ๐‘‘๐‘“๐‘˜ โˆง ๐‘‘๐‘ฅ๐ฝ = ยฑ๐‘“๐ผ๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘and conclude that the ๐‘›-form

๐œ‡ = ยฑ 1๐‘“๐ผ๐‘‘๐‘ฅ๐ฝ

is a ๐ถโˆž ๐‘›-form on a neighborhood of ๐‘ in ๐‘ˆ and has the property:

๐‘‘๐‘“1 โˆงโ‹ฏ โˆง ๐‘‘๐‘“๐‘˜ โˆง ๐œ‡ = ๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘ .

โ€ข Let ๐œ„ โˆถ ๐‘‹ โ†’ ๐‘ˆ be the inclusion map. Show that the assignment

๐‘ โ†ฆ (๐œ„โ‹†๐œ‡)๐‘defines an intrinsic nowhere vanishing ๐‘›-form ๐œŽ โˆˆ ๐›บ๐‘›(๐‘‹) on๐‘‹.

โ€ข Show that the orientation of ๐‘‹ defined by ๐œŽ coincides with the orientation thatwe described earlier in this section.

Exercise 4.4.viii. Let ๐‘†๐‘› be the ๐‘›-sphere and ๐œ„ โˆถ ๐‘†๐‘› โ†’ ๐‘๐‘›+1 the inclusion map. Show thatif ๐œ” โˆˆ ๐›บ๐‘›(๐‘๐‘›+1) is the ๐‘›-form ๐œ” = โˆ‘๐‘›+1๐‘–=1 (โˆ’1)๐‘–โˆ’1๐‘ฅ๐‘–๐‘‘๐‘ฅ1 โˆง โ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘– โˆง โ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›+1, the ๐‘›-form๐œ„โ‹†๐œ” โˆˆ ๐›บ๐‘›(๐‘†๐‘›) is the Riemannian volume form.

Exercise 4.4.ix. Let ๐‘†๐‘›+1 be the (๐‘› + 1)-sphere and let

๐‘†๐‘›+1+ = { (๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›+2) โˆˆ ๐‘†๐‘›+1 | ๐‘ฅ1 < 0 }be the lower hemisphere in ๐‘†๐‘›+1.(1) Prove that ๐‘†๐‘›+1+ is a smooth domain.(2) Show that the boundary of ๐‘†๐‘›+1+ is ๐‘†๐‘›.

Page 136: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

124 Chapter 4: Manifolds & Forms on Manifolds

(3) Show that the boundary orientation of ๐‘†๐‘› agrees with the orientation of ๐‘†๐‘› in Exer-cise 4.4.viii.

4.5. Integration of forms on manifolds

In this section we will show how to integrate differential forms over manifolds. In whatfollows ๐‘‹ will be an oriented ๐‘›-manifold and๐‘Š an open subset of ๐‘‹, and our goal will beto make sense of the integral

(4.5.1) โˆซ๐‘Š๐œ”

where๐œ” is a compactly supported ๐‘›-form.Weโ€™ll begin by showing how to define this integralwhen the support of๐œ” is contained in a parametrizable open set๐‘ˆ. Let๐‘ˆ0 be an open subsetof ๐‘๐‘› and ๐œ™0 โˆถ ๐‘ˆ0 โ†’ ๐‘ˆ a parametrization. As we noted in ยง4.4 we can assume without lossof generality that this parametrization is oriented. Making this assumption, weโ€™ll define

(4.5.2) โˆซ๐‘Š๐œ” = โˆซ๐‘Š0๐œ™โ‹†0๐œ”

where๐‘Š0 = ๐œ™โˆ’10 (๐‘ˆ โˆฉ ๐‘Š). Notice that if ๐œ™โ‹†๐œ” = ๐‘“๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›, then, by assumption, ๐‘“ isin ๐ถโˆž0 (๐‘ˆ0). Hence since

โˆซ๐‘Š0๐œ™โ‹†0๐œ” = โˆซ

๐‘Š0๐‘“๐‘‘๐‘ฅ1โ€ฆ๐‘‘๐‘ฅ๐‘›

and since ๐‘“ is a bounded continuous function and is compactly supported the Riemannintegral on the right is well-defined. (See Appendix b.) Moreover, if ๐œ™1 โˆถ ๐‘ˆ1 โ†’ ๐‘ˆ is anotheroriented parametrization of ๐‘ˆ and ๐œ“โˆถ ๐‘ˆ0 โ†’ ๐‘ˆ1 is the map ๐œ“ = ๐œ™โˆ’11 โˆ˜ ๐œ™0 then ๐œ™0 = ๐œ™1 โˆ˜ ๐œ“,so by Proposition 4.3.4

๐œ™โ‹†0๐œ” = ๐œ“โ‹†๐œ™โ‹†1๐œ” .Moreover, by (4.3.18) ๐œ“ is orientation preserving. Therefore since

๐‘Š1 = ๐œ“(๐‘Š0) = ๐œ™โˆ’11 (๐‘ˆ โˆฉ๐‘Š)

Theorem 3.5.2 tells us that

(4.5.3) โˆซ๐‘Š1๐œ™โ‹†1๐œ” = โˆซ

๐‘Š0๐œ™โ‹†0๐œ” .

Thus the definition (4.5.2) is a legitimate definition. It does not depend on the parametriza-tion that we use to define the integral on the right. From the usual additivity propertiesof the Riemann integral one gets analogous properties for the integral (4.5.2). Namely for๐œ”1, ๐œ”2 โˆˆ ๐›บ๐‘›๐‘ (๐‘ˆ),

(4.5.4) โˆซ๐‘Š(๐œ”1 + ๐œ”2) = โˆซ

๐‘Š๐œ”1 + โˆซ

๐‘Š๐œ”2

and for ๐œ” โˆˆ ๐›บ๐‘›๐‘ (๐‘ˆ) and ๐‘ โˆˆ ๐‘

โˆซ๐‘Š๐‘๐œ” = ๐‘โˆซ

๐‘Š๐œ” .

We will next show how to define the integral (4.5.1) for any compactly supported ๐‘›-form. This we will do in more or less the same way that we defined improper Riemann inte-grals in Appendix b: by using partitions of unity. Weโ€™ll begin by deriving from the partitionof unity theorem in Appendix b a manifold version of this theorem.

Page 137: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง4.5 Integration of forms on manifolds 125

Theorem 4.5.5. Let(4.5.6) U = {๐‘ˆ๐›ผ}๐›ผโˆˆ๐ผbe a covering of ๐‘‹ be open subsets. Then there exists a family of functions ๐œŒ๐‘– โˆˆ ๐ถโˆž0 (๐‘‹), for๐‘– โ‰ฅ 1, with the properties(1) ๐œŒ๐‘– โ‰ฅ 0.(2) For every compact set ๐ถ โŠ‚ ๐‘‹ there exists a positive integer๐‘ such that if ๐‘– > ๐‘ we have

supp(๐œŒ๐‘–) โˆฉ ๐ถ = โˆ….(3) โˆ‘โˆž๐‘–=1 ๐œŒ๐‘– = 1.(4) For every ๐‘– โ‰ฅ 1 there exists an index ๐›ผ โˆˆ ๐ผ such that supp(๐œŒ๐‘–) โŠ‚ ๐‘ˆ๐›ผ.

Remark 4.5.7. Conditions (1)โ€“(3) say that the ๐œŒ๐‘–โ€™s are a partition of unity and (4) says thatthis partition of unity is subordinate to the covering (4.5.5).

Proof. For each ๐‘ โˆˆ ๐‘‹ and for some ๐‘ˆ๐›ผ containing a ๐‘ choose an open set ๐‘‚๐‘ in ๐‘๐‘ with๐‘ โˆˆ ๐‘‚๐‘ and with

(4.5.8) ๐‘‚๐‘ โˆฉ ๐‘‹ โŠ‚ ๐‘ˆ๐›ผ .Let ๐‘‚ โ‰” โ‹ƒ๐‘โˆˆ๐‘‹ ๐‘‚๐‘ and let ๐œŒ๐‘– โˆˆ ๐ถโˆž0 (๐‘‚), for ๐‘– โ‰ฅ 1, be a partition of unity subordinate to

the covering of ๐‘‚ by the ๐‘‚๐‘โ€™s. By (4.5.8) the restriction ๐œŒ๐‘– of ๐œŒ๐‘– to ๐‘‹ has compact supportand it is clear that the ๐œŒ๐‘–โ€™s inherit from the ๐œŒ๐‘–โ€™s the properties (1)โ€“(4). โ–ก

Now let the covering (4.5.6) be any covering of ๐‘‹ by parametrizable open sets and let๐œŒ๐‘– โˆˆ ๐ถโˆž0 (๐‘‹), for ๐‘– โ‰ฅ 1 be a partition of unity subordinate to this covering. Given ๐œ” โˆˆ ๐›บ๐‘›๐‘ (๐‘‹)we will define the integral of ๐œ” over๐‘Š by the sum

(4.5.9)โˆžโˆ‘๐‘–=1โˆซ๐‘Š๐œŒ๐‘–๐œ” .

Note that since each ๐œŒ๐‘– is supported in some ๐‘ˆ๐›ผ the individual summands in this sum arewell-defined and since the support of ๐œ” is compact all but finitely many of these summandsare zero by part (2) of Theorem 4.5.5. Hence the sum itself is well-defined. Letโ€™s show thatthis sum does not depend on the choice of U and the ๐œŒ๐‘–โ€™s. Let Uโ€ฒ be another covering of๐‘‹by parametrizable open sets and (๐œŒโ€ฒ๐‘— )๐‘—โ‰ฅ1 a partition of unity subordinate to Uโ€ฒ. Then

(4.5.10)โˆžโˆ‘๐‘—=1โˆซ๐‘Š๐œŒโ€ฒ๐‘—๐œ” =

โˆžโˆ‘๐‘—=1โˆซ๐‘Š

โˆžโˆ‘๐‘–=1๐œŒโ€ฒ๐‘—๐œŒ๐‘–๐œ” =

โˆžโˆ‘๐‘—=1(โˆžโˆ‘๐‘–=1โˆซ๐‘Š๐œŒโ€ฒ๐‘—๐œŒ๐‘–๐œ”)

by equation (4.5.4). Interchanging the orders of summation and resuming with respect tothe ๐‘—โ€™s this sum becomes

โˆžโˆ‘๐‘–=1โˆซ๐‘Š

โˆžโˆ‘๐‘—=1๐œŒโ€ฒ๐‘—๐œŒ๐‘–๐œ”

orโˆžโˆ‘๐‘–=1โˆซ๐‘Š๐œŒ๐‘–๐œ” .

Henceโˆžโˆ‘๐‘–=1โˆซ๐‘Š๐œŒโ€ฒ๐‘—๐œ” =

โˆžโˆ‘๐‘–=1โˆซ๐‘Š๐œŒ๐‘–๐œ” ,

so the two sums are the same.From equations (4.5.4) and (4.5.9) one easily deduces:

Page 138: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

126 Chapter 4: Manifolds & Forms on Manifolds

Proposition 4.5.11. For ๐œ”1, ๐œ”2 โˆˆ ๐›บ๐‘›๐‘ (๐‘‹),

โˆซ๐‘Š๐œ”1 + ๐œ”2 = โˆซ

๐‘Š๐œ”1 + โˆซ

๐‘Š๐œ”2

and for ๐œ” โˆˆ ๐›บ๐‘›๐‘ (๐‘‹) and ๐‘ โˆˆ ๐‘โˆซ๐‘Š๐‘๐œ” = ๐‘โˆซ

๐‘Š๐œ” .

The definition of the integral (4.5.1) depends on the choice of an orientation of ๐‘‹, butitโ€™s easy to see how it depends on this choice. We pointed out in Section 4.4 that if ๐‘‹ isconnected, there is just one way to orient it smoothly other than by its given orientation,namely by reversing the orientation of ๐‘‡๐‘๐‘‹ at each point ๐‘ and itโ€™s clear from the definitions(4.5.2) and (4.5.9) that the effect of doing this is to change the sign of the integral, i.e., tochange โˆซ๐‘‹ ๐œ” to โˆ’โˆซ๐‘‹ ๐œ”.

In the definition of the integral (4.5.1) we have allowed๐‘Š to be an arbitrary open subsetof๐‘‹ but required ๐œ” to be compactly supported. This integral is also well-defined if we allow๐œ” to be an arbitrary element of ๐›บ๐‘›(๐‘‹) but require the closure of๐‘Š in ๐‘‹ to be compact. Tosee this, note that under this assumption the sum (4.5.8) is still a finite sum, so the definitionof the integral still makes sense, and the double sum on the right side of (4.5.10) is still afinite sum so itโ€™s still true that the definition of the integral does not depend on the choiceof partitions of unity. In particular if the closure of๐‘Š in ๐‘‹ is compact we will define thevolume of๐‘Š to be the integral,

vol(๐‘Š) = โˆซ๐‘Š๐œŽvol ,

where ๐œŽvol is the Riemannian volume form and if๐‘‹ itself is compact weโ€™ll define its volumeto be the integral

vol(๐‘‹) = โˆซ๐‘‹๐œŽvol .

Weโ€™ll next prove a manifold version of the change of variables formula (3.5.3).

Theorem 4.5.12 (change of variables formula). Let ๐‘‹โ€ฒ and ๐‘‹ be oriented ๐‘›-manifolds and๐‘“โˆถ ๐‘‹โ€ฒ โ†’ ๐‘‹ an orientation preserving diffeomorphism. If ๐‘Š is an open subset of ๐‘‹ and๐‘Šโ€ฒ โ‰” ๐‘“โˆ’1(๐‘Š), then

(4.5.13) โˆซ๐‘Šโ€ฒ๐‘“โ‹†๐œ” = โˆซ

๐‘Š๐œ”

for all ๐œ” โˆˆ ๐›บ๐‘›๐‘ (๐‘‹).

Proof. By (4.5.9) the integrand of the integral above is a finite sum of ๐ถโˆž forms, each ofwhich is supported on a parametrizable open subset, so we can assume that ๐œ” itself as thisproperty. Let๐‘‰ be a parametrizable open set containing the support of๐œ” and let ๐œ™0 โˆถ ๐‘ˆ โฅฒ ๐‘‰be an oriented parameterization of ๐‘‰. Since ๐‘“ is a diffeomorphism its inverse exists and isa diffeomorphism of๐‘‹ onto๐‘‹1. Let ๐‘‰โ€ฒ โ‰” ๐‘“โˆ’1(๐‘‰) and ๐œ™โ€ฒ0 โ‰” ๐‘“โˆ’1 โˆ˜ ๐œ™0. Then ๐œ™โ€ฒ0 โˆถ ๐‘ˆ โฅฒ ๐‘‰โ€ฒ isan oriented parameterization of ๐‘‰โ€ฒ. Moreover, ๐‘“ โˆ˜ ๐œ™โ€ฒ0 = ๐œ™0 so if๐‘Š0 = ๐œ™โˆ’10 (๐‘Š) we have

๐‘Š0 = (๐œ™โ€ฒ0)โˆ’1(๐‘“โˆ’1(๐‘Š)) = (๐œ™โ€ฒ0)โˆ’1(๐‘Šโ€ฒ)and by the chain rule we have

๐œ™โ‹†0๐œ” = (๐‘“ โˆ˜ ๐œ™โ€ฒ0)โ‹†๐œ” = (๐œ™โ€ฒ0)โ‹†๐‘“โ‹†๐œ”hence

โˆซ๐‘Š๐œ” = โˆซ๐‘Š0๐œ™โ‹†0๐œ” = โˆซ

๐‘Š0(๐œ™โ€ฒ0)โ‹†(๐‘“โ‹†๐œ”) = โˆซ

๐‘Šโ€ฒ๐‘“โ‹†๐œ” . โ–ก

Page 139: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง4.5 Integration of forms on manifolds 127

As an exercise, show that if ๐‘“โˆถ ๐‘‹โ€ฒ โ†’ ๐‘‹ is orientation reversing

(4.5.14) โˆซ๐‘Šโ€ฒ๐‘“โ‹†๐œ” = โˆ’โˆซ

๐‘Š๐œ” .

Weโ€™ll conclude this discussion of โ€œintegral calculus on manifoldsโ€ by proving a prelim-inary version of Stokesโ€™ theorem.

Theorem 4.5.15. If ๐œ‡ is in ๐›บ๐‘›โˆ’1๐‘ (๐‘‹) then

โˆซ๐‘‹๐‘‘๐œ‡ = 0 .

Proof. Let (๐œŒ๐‘–)๐‘–โ‰ฅ1 be a partition of unity with the property that each ๐œŒ๐‘– is supported in aparametrizable open set ๐‘ˆ๐‘– = ๐‘ˆ. Replacing ๐œ‡ by ๐œŒ๐‘–๐œ‡ it suffices to prove the theorem for๐œ‡ โˆˆ ๐›บ๐‘›โˆ’1๐‘ (๐‘ˆ). Let ๐œ™โˆถ ๐‘ˆ0 โ†’ ๐‘ˆ be an oriented parametrization of ๐‘ˆ. Then

โˆซ๐‘ˆ๐‘‘๐œ‡ = โˆซ

๐‘ˆ0๐œ™โ‹†๐‘‘๐œ‡ = โˆซ

๐‘ˆ0๐‘‘(๐œ™โ‹†๐œ‡) = 0

by Theorem 3.3.1. โ–ก

Exercises for ยง4.5Exercise 4.5.i. Let๐‘“โˆถ ๐‘๐‘› โ†’ ๐‘ be a๐ถโˆž function.Orient the graph๐‘‹ โ‰” ๐›ค๐‘“ of๐‘“ by requiringthat the diffeomorphism

๐œ™โˆถ ๐‘๐‘› โ†’ ๐‘‹ , ๐‘ฅ โ†ฆ (๐‘ฅ, ๐‘“(๐‘ฅ))be orientation preserving. Given a bounded open set ๐‘ˆ in ๐‘๐‘› compute the Riemannianvolume of the image

๐‘‹๐‘ˆ = ๐œ™(๐‘ˆ)of ๐‘ˆ in๐‘‹ as an integral over ๐‘ˆ.

Hint: Exercise 4.4.v.

Exercise 4.5.ii. Evaluate this integral for the open subset ๐‘‹๐‘ˆ of the paraboloid defined by๐‘ฅ3 = ๐‘ฅ21 + ๐‘ฅ22 , where ๐‘ˆ is the disk ๐‘ฅ21 + ๐‘ฅ22 < 2.

Exercise 4.5.iii. In Exercise 4.5.i let ๐œ„ โˆถ ๐‘‹ โ†ช ๐‘๐‘›+1 be the inclusion map of๐‘‹ onto ๐‘๐‘›+1.(1) If ๐œ” โˆˆ ๐›บ๐‘›(๐‘๐‘›+1) is the ๐‘›-form ๐‘ฅ๐‘›+1๐‘‘๐‘ฅ1 โˆง โ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›, what is the integral of ๐œ„โ‹†๐œ” over the

set๐‘‹๐‘ˆ? Express this integral as an integral over ๐‘ˆ.(2) Same question for ๐œ” = ๐‘ฅ2๐‘›+1๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›.(3) Same question for ๐œ” = ๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›.

Exercise 4.5.iv. Let ๐‘“โˆถ ๐‘๐‘› โ†’ (0, +โˆž) be a positive๐ถโˆž function,๐‘ˆ a bounded open subsetof ๐‘๐‘›, and๐‘Š the open set of ๐‘๐‘›+1 defined by the inequalities

0 < ๐‘ฅ๐‘›+1 < ๐‘“(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›)and the condition (๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) โˆˆ ๐‘ˆ.(1) Express the integral of the (๐‘› + 1)-form ๐œ” = ๐‘ฅ๐‘›+1๐‘‘๐‘ฅ1 โˆงโ‹ฏโˆง๐‘‘๐‘ฅ๐‘›+1 over๐‘Š as an integral

over ๐‘ˆ.(2) Same question for ๐œ” = ๐‘ฅ2๐‘›+1๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›+1.(3) Same question for ๐œ” = ๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›.

Exercise 4.5.v. Integrate the โ€œRiemannian areaโ€ form๐‘ฅ1๐‘‘๐‘ฅ2 โˆง ๐‘‘๐‘ฅ3 + ๐‘ฅ2๐‘‘๐‘ฅ3 โˆง ๐‘‘๐‘ฅ1 + ๐‘ฅ3๐‘‘๐‘ฅ1 โˆง ๐‘‘๐‘ฅ2

over the unit 2-sphere ๐‘†2. (See Exercise 4.4.viii.)

Page 140: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

128 Chapter 4: Manifolds & Forms on Manifolds

Hint: An easier problem: Using polar coordinates integrate ๐œ” = ๐‘ฅ3๐‘‘๐‘ฅ1 โˆง ๐‘‘๐‘ฅ2 over thehemisphere defined by ๐‘ฅ3 = โˆš1 โˆ’ ๐‘ฅ21 โˆ’ ๐‘ฅ22 , where ๐‘ฅ21 + ๐‘ฅ22 < 1.

Exercise 4.5.vi. Let ๐›ผ be the one-formโˆ‘๐‘›๐‘–=1 ๐‘ฆ๐‘–๐‘‘๐‘ฅ๐‘– in equation (2.8.2) and let ๐›พ(๐‘ก), 0 โ‰ค ๐‘ก โ‰ค 1,be a trajectory of the Hamiltonian vector field (2.8.2). What is the integral of ๐›ผ over ๐›พ(๐‘ก)?

4.6. Stokesโ€™ theorem & the divergence theorem

Let๐‘‹ be an oriented ๐‘›-manifold and๐ท โŠ‚ ๐‘‹ a smooth domain. We showed in ยง4.4 that๐œ•๐ท acquires from ๐ท a natural orientation. Hence if ๐œ„ โˆถ ๐œ•๐ท โ†’ ๐‘‹ is the inclusion map and ๐œ‡is in ๐›บ๐‘›โˆ’1๐‘ (๐‘‹), the integral

โˆซ๐œ•๐ท๐œ„โ‹†๐œ‡

is well-defined. We will prove:

Theorem 4.6.1 (Stokesโ€™ theorem). For ๐œ‡ โˆˆ ๐›บ๐‘˜โˆ’1๐‘ (๐‘‹) we have

(4.6.2) โˆซ๐œ•๐ท๐œ„โ‹†๐œ‡ = โˆซ

๐ท๐‘‘๐œ‡ .

Proof. Let (๐œŒ๐‘–)๐‘–โ‰ฅ1 be a partition of unity such that for each ๐‘–, the support of ๐œŒ๐‘– is containedin a parametrizable open set ๐‘ˆ๐‘– = ๐‘ˆ of one of the following three types:(a) ๐‘ˆ โŠ‚ int(๐ท).(b) ๐‘ˆ โŠ‚ ext(๐ท).(c) There exists an open subset ๐‘ˆ0 of ๐‘๐‘› and an oriented๐ท-adapted parametrization

๐œ™โˆถ ๐‘ˆ0 โฅฒ ๐‘ˆ .

Replacing ๐œ‡ by the finite sum โˆ‘โˆž๐‘–=1 ๐œŒ๐‘–๐œ‡ it suffices to prove (4.6.2) for each ๐œŒ๐‘–๐œ‡ separately. Inother words we can assume that the support of ๐œ‡ itself is contained in a parametrizable openset ๐‘ˆ of type (a), (b), or (c). But if ๐‘ˆ is of type (a)

โˆซ๐ท๐‘‘๐œ‡ = โˆซ

๐‘ˆ๐‘‘๐œ‡ = โˆซ

๐‘‹๐‘‘๐œ‡

and ๐œ„โ‹†๐œ‡ = 0. Hence the left hand side of equation (4.6.2) is zero and, by Theorem 4.5.15,the right hand side is as well. If ๐‘ˆ is of type (b) the situation is even simpler: ๐œ„โ‹†๐œ‡ is zeroand the restriction of ๐œ‡ to๐ท is zero, so both sides of equation (4.6.2) are automatically zero.Thus one is reduced to proving (4.6.2) when๐‘ˆ is an open subset of type (c). In this case therestriction of the map (4.6.2) to ๐‘ˆ0 โˆฉ ๐œ•๐‡๐‘› is an orientation preserving diffeomorphism

(4.6.3) ๐œ“โˆถ ๐‘ˆ0 โˆฉ ๐œ•๐‡๐‘› โ†’ ๐‘ˆ โˆฉ ๐‘

and

(4.6.4) ๐œ„๐‘ โˆ˜ ๐œ“ = ๐œ™ โˆ˜ ๐œ„๐‘๐‘›โˆ’1

where the maps ๐œ„ = ๐œ„๐‘ and๐œ„๐‘๐‘›โˆ’1 โˆถ ๐‘๐‘›โˆ’1 โ†ช ๐‘๐‘›

are the inclusionmaps of๐‘ into๐‘‹ and ๐œ•๐‡๐‘› into๐‘๐‘›. (Here weโ€™re identifying ๐œ•๐‡๐‘› with๐‘๐‘›โˆ’1.)Thus

โˆซ๐ท๐‘‘๐œ‡ = โˆซ

๐‡๐‘›๐œ™โ‹†๐‘‘๐œ‡ = โˆซ

๐‡๐‘›๐‘‘๐œ™โ‹†๐œ‡

Page 141: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง4.6 Stokesโ€™ theorem & the divergence theorem 129

and by (4.6.4)

โˆซ๐‘๐œ„โ‹†๐‘๐œ‡ = โˆซ

๐‘๐‘›โˆ’1๐œ“โ‹†๐œ„โ‹†๐‘๐œ‡

= โˆซ๐‘๐‘›โˆ’1๐œ„โ‹†๐‘๐‘›โˆ’1๐œ™โ‹†๐œ‡

= โˆซ๐œ•๐‡๐‘›๐œ„โ‹†๐‘๐‘›โˆ’1๐œ™โ‹†๐œ‡ .

Thus it suffices to prove Stokesโ€™ theoremwith ๐œ‡ replaced by ๐œ™โ‹†๐œ‡, or, in other words, to proveStokesโ€™ theorem for๐‡๐‘›; and this we will now do.

Theorem 4.6.5 (Stokesโ€™ theorem for๐‡๐‘›). Let

๐œ‡ =๐‘›โˆ‘๐‘–=1(โˆ’1)๐‘–โˆ’1๐‘“๐‘–๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘– โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› .

Then

๐‘‘๐œ‡ =๐‘›โˆ‘๐‘–=1

๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘–๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›

and

โˆซ๐‡๐‘›๐‘‘๐œ‡ =

๐‘›โˆ‘๐‘–=1โˆซ๐‡๐‘›๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘–๐‘‘๐‘ฅ1โ‹ฏ๐‘‘๐‘ฅ๐‘› .

We will compute each of these summands as an iterated integral doing the integrationwith respect to ๐‘‘๐‘ฅ๐‘– first. For ๐‘– > 1 the ๐‘‘๐‘ฅ๐‘– integration ranges over the interval โˆ’โˆž < ๐‘ฅ๐‘– < โˆžand hence since ๐‘“๐‘– is compactly supported

โˆซโˆž

โˆ’โˆž

๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘–๐‘‘๐‘ฅ๐‘– = ๐‘“๐‘–(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘–,โ€ฆ, ๐‘ฅ๐‘›)|

๐‘ฅ๐‘–=+โˆž

๐‘ฅ๐‘–=โˆ’โˆž= 0 .

On the other hand the ๐‘‘๐‘ฅ1 integration ranges over the interval โˆ’โˆž < ๐‘ฅ1 < 0 and

โˆซ0

โˆ’โˆž

๐œ•๐‘“1๐œ•๐‘ฅ1๐‘‘๐‘ฅ1 = ๐‘“(0, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) .

Thus integrating with respect to the remaining variables we get

(4.6.6) โˆซ๐‡๐‘›๐‘‘๐œ‡ = โˆซ

๐‘๐‘›โˆ’1๐‘“(0, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) ๐‘‘๐‘ฅ2 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› .

On the other hand, since ๐œ„โ‹†๐‘๐‘›โˆ’1๐‘ฅ1 = 0 and ๐œ„โ‹†๐‘๐‘›โˆ’1 ๐‘ฅ๐‘– = ๐‘ฅ๐‘– for ๐‘– > 1,๐œ„โ‹†๐‘๐‘›โˆ’1๐œ‡ = ๐‘“1(0, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) ๐‘‘๐‘ฅ2 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›

so

(4.6.7) โˆซ๐‘๐‘›โˆ’1๐œ„โ‹†๐‘๐‘›โˆ’1๐œ‡ = โˆซ

๐‘๐‘›โˆ’1๐‘“(0, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) ๐‘‘๐‘ฅ2 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› .

Hence the two sides, (4.6.6) and (4.6.7), of Stokesโ€™ theorem are equal. โ–ก

One important variant of Stokesโ€™ theorem is the divergence theorem: Let ๐œ” be in๐›บ๐‘›๐‘ (๐‘‹)and let ๐’— be a vector field on๐‘‹. Then

๐ฟ๐’—๐œ” = ๐œ„๐’—๐‘‘๐œ” + ๐‘‘๐œ„๐’—๐œ” = ๐‘‘๐œ„๐’—๐œ” ,hence, denoting by ๐œ„๐‘ the inclusion map of ๐‘ into ๐‘‹ we get from Stokesโ€™ theorem, with๐œ‡ = ๐œ„๐’—๐œ”:

Page 142: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

130 Chapter 4: Manifolds & Forms on Manifolds

Theorem 4.6.8 (divergence theorem for manifolds).

โˆซ๐ท๐ฟ๐’—๐œ” = โˆซ

๐‘๐œ„โ‹†๐‘(๐œ„๐’—๐œ”) .

If ๐ท is an open domain in ๐‘๐‘› this reduces to the usual divergence theorem of multi-variable calculus. Namely if ๐œ” = ๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› and ๐’— = โˆ‘

๐‘›๐‘–=1 ๐‘ฃ๐‘–

๐œ•๐œ•๐‘ฅ๐‘–

then by (2.5.14)

๐ฟ๐’—๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› = div(๐’—) ๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›where

div(๐’—) =๐‘›โˆ‘๐‘–=1

๐œ•๐‘ฃ๐‘–๐œ•๐‘ฅ๐‘–.

Thus if ๐‘ = ๐œ•๐ท and ๐œ„๐‘ is the inclusion ๐‘ โ†ช ๐‘๐‘›,

(4.6.9) โˆซ๐ท

div(๐’—)๐‘‘๐‘ฅ = โˆซ๐‘๐œ„โ‹†๐‘(๐œ„๐’—๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›) .

The right hand side of this identity can be interpreted as the โ€œfluxโ€ of the vector field ๐’—through the boundary of๐ท. To see this let ๐‘“โˆถ ๐‘๐‘› โ†’ ๐‘ be a ๐ถโˆž defining function for๐ท, i.e.,a function with the properties

๐‘ โˆˆ ๐ท โŸบ ๐‘“(๐‘) < 0and ๐‘‘๐‘“๐‘ โ‰  0 if ๐‘ โˆˆ ๐œ•๐ท. This second condition says that zero is a regular value of ๐‘“ andhence that ๐‘ โ‰” ๐œ•๐ท is defined by the non-degenerate equation:

(4.6.10) ๐‘ โˆˆ ๐‘ โŸบ ๐‘“(๐‘) = 0 .Let ๐’˜ be the vector field

๐’˜ โ‰” (๐‘›โˆ‘๐‘–=1( ๐œ•๐‘“๐œ•๐‘ฅ๐‘–)2)โˆ’1 ๐‘›โˆ‘๐‘–=1

๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘–๐œ•๐œ•๐‘ฅ๐‘–

.

In view of (4.6.10), this vector field is well-defined on a neighborhood ๐‘ˆ of ๐‘ and satisfies

๐œ„๐’˜๐‘‘๐‘“ = 1 .Now note that since ๐‘‘๐‘“ โˆง ๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› = 0

0 = ๐œ„๐’˜(๐‘‘๐‘“ โˆง ๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›)= (๐œ„๐’˜๐‘‘๐‘“)๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› โˆ’ ๐‘‘๐‘“ โˆง ๐œ„๐’˜๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›= ๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› โˆ’ ๐‘‘๐‘“ โˆง ๐œ„๐’˜๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› ,

hence letting ๐œˆ be the (๐‘› โˆ’ 1)-form ๐œ„๐’˜๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› we get the identity

(4.6.11) ๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› = ๐‘‘๐‘“ โˆง ๐œˆand by applying the operation ๐œ„๐’— to both sides of (4.6.11) the identity

(4.6.12) ๐œ„๐’—๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› = (๐ฟ๐’—๐‘“)๐œˆ โˆ’ ๐‘‘๐‘“ โˆง ๐œ„๐’—๐œˆ .Let ๐œˆ๐‘ = ๐œ„โ‹†๐‘๐œˆ be the restriction of ๐œˆ to ๐‘. Since ๐œ„โ‹†๐‘ = 0, ๐œ„โ‹†๐‘๐‘‘๐‘“ = 0 and hence by (4.6.12)

๐œ„โ‹†๐‘(๐œ„๐’—๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›) = ๐œ„โ‹†๐‘(๐ฟ๐’—๐‘“)๐œˆ๐‘ ,

and the formula (4.6.9) now takes the form

(4.6.13) โˆซ๐ท

div(๐’—)๐‘‘๐‘ฅ = โˆซ๐‘๐ฟ๐’—๐‘“๐œˆ๐‘

Page 143: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง4.6 Stokesโ€™ theorem & the divergence theorem 131

where the term on the right is by definition the flux of ๐’— through ๐‘. In calculus books thisis written in a slightly different form. Letting

๐œŽ๐‘ = (๐‘›โˆ‘๐‘–=1( ๐œ•๐‘“๐œ•๐‘ฅ๐‘–)2)12

๐œˆ๐‘

and letting

๏ฟฝ๏ฟฝ โ‰” (๐‘›โˆ‘๐‘–=1( ๐œ•๐‘“๐œ•๐‘ฅ๐‘–)2)โˆ’ 12( ๐œ•๐‘“๐œ•๐‘ฅ1,โ€ฆ, ๐œ•๐‘“๐œ•๐‘ฅ๐‘›)

and ๐‘ฃ โ‰” (๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘›) we have๐ฟ๐’—๐œˆ๐‘ = (๏ฟฝ๏ฟฝ โ‹… ๐‘ฃ)๐œŽ๐‘

and hence

(4.6.14) โˆซ๐ท

div(๐’—)๐‘‘๐‘ฅ = โˆซ๐‘(๏ฟฝ๏ฟฝ โ‹… ๐‘ฃ)๐œŽ๐‘ .

In three dimensions ๐œŽ๐‘ is just the standard โ€œinfinitesimal element of areaโ€ on the surface ๐‘and ๐‘›๐‘ the unit outward normal to ๐‘ at ๐‘, so this version of the divergence theorem is theversion one finds in most calculus books.

As an application of Stokesโ€™ theorem, weโ€™ll give a very short alternative proof of theBrouwer fixed point theorem. As we explained in ยง3.6 the proof of this theorem basicallycomes down to proving the following theorem.

Theorem 4.6.15. Let ๐ต๐‘› be the closed unit ball in ๐‘๐‘› and ๐‘†๐‘›โˆ’1 its boundary. Then the identitymap id๐‘†๐‘›โˆ’1 on ๐‘†๐‘›โˆ’1 cannot be extended to a ๐ถโˆž map ๐‘“โˆถ ๐ต๐‘› โ†’ ๐‘†๐‘›โˆ’1.

Proof. Suppose that ๐‘“ is such a map. Then for every (๐‘› โˆ’ 1)-form ๐œ‡ โˆˆ ๐›บ๐‘›โˆ’1(๐‘†๐‘›โˆ’1),

(4.6.16) โˆซ๐ต๐‘›๐‘‘(๐‘“โ‹†๐œ‡) = โˆซ

๐‘†๐‘›โˆ’1(๐œ„๐‘†๐‘›โˆ’1)โ‹†๐‘“โ‹†๐œ‡ .

But๐‘‘(๐‘“โ‹†๐œ‡) = ๐‘“โ‹†(๐‘‘๐œ‡) = 0 since๐œ‡ is an (๐‘›โˆ’1)-form and ๐‘†๐‘›โˆ’1 is an (๐‘›โˆ’1)-manifold, and since๐‘“ is the identity map on ๐‘†๐‘›โˆ’1, (๐œ„๐‘†๐‘›โˆ’1)

โ‹†๐‘“โ‹†๐œ‡ = (๐‘“ โˆ˜ ๐œ„๐‘†๐‘›โˆ’1)โ‹†๐œ‡ = ๐œ‡. Thus for every ๐œ‡ โˆˆ ๐›บ๐‘›โˆ’1(๐‘†๐‘›โˆ’1),equation (4.6.16) says that the integral of ๐œ‡ over ๐‘†๐‘›โˆ’1 is zero. Since there are lots of (๐‘› โˆ’ 1)-forms for which this is not true, this shows that a map ๐‘“ with the property above cannotexist. โ–ก

Exercises for ยง4.6Exercise 4.6.i. Let ๐ต๐‘› be the open unit ball in ๐‘๐‘› and ๐‘†๐‘›โˆ’1 the unit (๐‘› โˆ’ 1)-sphere. Showthat vol(๐‘†๐‘›โˆ’1) = ๐‘› vol(๐ต๐‘›).

Hint: Apply Stokesโ€™ theorem to the (๐‘› โˆ’ 1)-form

๐œ‡ โ‰”๐‘›โˆ‘๐‘–=1(โˆ’1)๐‘–โˆ’1๐‘ฅ๐‘–๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘– โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›

and note by Exercise 4.4.ix that ๐œ‡ is the Riemannian volume form of ๐‘†๐‘›โˆ’1.

Exercise 4.6.ii. Let๐ท โŠ‚ ๐‘๐‘› be a smooth domain. Show that there exists a neighborhood ๐‘ˆof ๐œ•๐ท in ๐‘๐‘› and a ๐ถโˆž defining function ๐‘”โˆถ ๐‘ˆ โ†’ ๐‘ for๐ท with the properties:(1) ๐‘ โˆˆ ๐‘ˆ โˆฉ ๐ท if and only if ๐‘”(๐‘) < 0,(2) and ๐‘‘๐‘”๐‘ โ‰  0 if ๐‘ โˆˆ ๐‘

Page 144: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

132 Chapter 4: Manifolds & Forms on Manifolds

Hint: Deduce from Theorem 4.4.9 that a local version of this result is true. Show thatyou can cover ๐‘ by a family U = {๐‘ˆ๐›ผ}๐›ผโˆˆ๐ผ of open subsets of ๐‘๐‘› such that for each thereexists a function ๐‘”๐›ผ โˆถ ๐‘ˆ๐›ผ โ†’ ๐‘ with the properties (1) and (2). Now let (๐œŒ๐‘–)๐‘–โ‰ฅ1 be a partitionof unity subordinate to U and let ๐‘” = โˆ‘โˆž๐‘–=1 ๐œŒ๐‘–๐‘”๐›ผ๐‘– where supp(๐œŒ๐‘–) โŠ‚ ๐‘ˆ๐›ผ๐‘– .

Exercise 4.6.iii. In Exercise 4.6.ii suppose ๐‘ is compact. Show that there exists a globaldefining function ๐‘“โˆถ ๐‘๐‘› โ†’ ๐‘ for๐ท with properties (1) and (2).

Hint: Let ๐œŒ โˆˆ ๐ถโˆž0 (๐‘ˆ) be a function such that 0 โ‰ค ๐œŒ(๐‘ฅ) โ‰ค 1 for all ๐‘ฅ โˆˆ ๐‘ˆ and ๐œŒ isidentically 1 on a neighborhood of ๐‘, and replace ๐‘” by the function

๐‘“(๐‘ฅ) ={{{{{

๐œŒ(๐‘ฅ)๐‘”(๐‘ฅ) + (1 โˆ’ ๐œŒ(๐‘ฅ)), ๐‘ฅ โˆˆ ๐‘๐‘› โˆ– ๐ท๐‘”(๐‘ฅ), ๐‘ฅ โˆˆ ๐œ•๐ท๐œŒ(๐‘ฅ) โˆ’ (1 โˆ’ ๐œŒ(๐‘ฅ))๐‘”(๐‘ฅ), ๐‘ฅ โˆˆ int(๐ท) .

Exercise 4.6.iv. Show that the form ๐ฟ๐’—๐‘“๐œˆ๐‘ in equation (4.6.13) does not depend on whatchoice we make of a defining function ๐‘“ for๐ท.

Hints:โ€ข Show that if ๐‘” is another defining function then, at ๐‘ โˆˆ ๐‘, ๐‘‘๐‘“๐‘ = ๐œ†๐‘‘๐‘”๐‘, where ๐œ†

is a positive constant.โ€ข Show that if one replaces ๐‘‘๐‘“๐‘ by (๐‘‘๐‘”)๐‘ the first term in the product (๐ฟ๐’—๐‘“)(๐‘)(๐œˆ๐‘)๐‘

changes by a factor ๐œ† and the second term by a factor 1/๐œ†.Exercise 4.6.v. Show that the form ๐œˆ๐‘ is intrinsically defined in the sense that if ๐œˆ is any(๐‘› โˆ’ 1)-form satisfying equation (4.6.11), then ๐œˆ๐‘ = ๐œ„โ‹†๐‘๐œˆ.

Hint: Exercise 4.5.vi.

Exercise 4.6.vi. Show that the form ๐œŽ๐‘ in equation (4.6.14) is the Riemannian volume formon ๐‘.Exercise 4.6.vii. Show that the (๐‘› โˆ’ 1)-form

๐œ‡ = (๐‘ฅ21 +โ‹ฏ + ๐‘ฅ2๐‘›)โˆ’๐‘›๐‘›โˆ‘๐‘Ÿ=1(โˆ’1)๐‘Ÿโˆ’1๐‘ฅ๐‘Ÿ๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘Ÿ โˆงโ‹ฏ๐‘‘๐‘ฅ๐‘›

is closed and prove directly that Stokesโ€™ theorem holds for the annulus ๐‘Ž < ๐‘ฅ21 +โ‹ฏ+๐‘ฅ2๐‘› < ๐‘by showing that the integral of ๐œ‡ over the sphere, ๐‘ฅ21 + โ‹ฏ + ๐‘ฅ2๐‘› = ๐‘Ž, is equal to the integralover the sphere, ๐‘ฅ21 +โ‹ฏ + ๐‘ฅ2๐‘› = ๐‘.Exercise 4.6.viii. Let ๐‘“โˆถ ๐‘๐‘›โˆ’1 โ†’ ๐‘ be an everywhere positive ๐ถโˆž function and let ๐‘ˆ be abounded open subset of ๐‘๐‘›โˆ’1. Verify directly that Stokesโ€™ theorem is true if๐ท is the domaindefined by

0 < ๐‘ฅ๐‘› < ๐‘“(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›โˆ’1) , (๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›โˆ’1) โˆˆ ๐‘ˆand ๐œ‡ an (๐‘› โˆ’ 1)-form of the form

๐œ™(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›)๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›โˆ’1where ๐œ™ is in ๐ถโˆž0 (๐‘๐‘›).Exercise 4.6.ix. Let๐‘‹ be an oriented ๐‘›-manifold and ๐’— a vector field on๐‘‹which is complete.Verify that for ๐œ” โˆˆ ๐›บ๐‘›๐‘ (๐‘‹)

โˆซ๐‘‹๐ฟ๐’—๐œ” = 0

in the following ways:(1) Directly by using the divergence theorem.

Page 145: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง4.7 Degree theory on manifolds 133

(2) Indirectly by showing that

โˆซ๐‘‹๐‘“โ‹†๐‘ก ๐œ” = โˆซ

๐‘‹๐œ”

where ๐‘“๐‘ก โˆถ ๐‘‹ โ†’ ๐‘‹, โˆ’โˆž < ๐‘ก < โˆž, is the one-parameter group of diffeomorphisms of๐‘‹generated by ๐’—.

Exercise 4.6.x. Let๐‘‹ be an oriented๐‘›-manifold and๐ท โŠ‚ ๐‘‹ a smooth domainwhose closureis compact. Show that if ๐‘ โ‰” ๐œ•๐ท is the boundary of ๐ท and ๐‘”โˆถ ๐‘ โ†’ ๐‘ a diffeomorphism ๐‘”cannot be extended to a smooth map ๐‘“โˆถ ๐ท โ†’ ๐‘.

4.7. Degree theory on manifolds

In this section weโ€™ll show how to generalize to manifolds the results about the โ€œdegreeโ€of a proper mapping that we discussed in Chapter 3. Weโ€™ll begin by proving the manifoldanalogue of Theorem 3.3.1.

Theorem 4.7.1. Let ๐‘‹ be an oriented connected ๐‘›-manifold and ๐œ” โˆˆ ๐›บ๐‘›๐‘ (๐‘‹) a compactlysupported ๐‘›-form. Then the following are equivalent(1) โˆซ๐‘‹ ๐œ” = 0.(2) ๐œ” = ๐‘‘๐œ‡ for some ๐œ‡ โˆˆ ๐›บ๐‘›โˆ’1๐‘ (๐‘‹).

Proof. We have already verified the assertion (2)โ‡’(1) (see Theorem 4.5.15), so what is leftto prove is the converse assertion. The proof of this is more or less identical with the proofof the โ€œ(1)โ‡’(2)โ€ part of Theorem 3.2.2:

Step 1. Let๐‘ˆ be a connected parametrizable open subset of๐‘‹. If ๐œ” โˆˆ ๐›บ๐‘›๐‘ (๐‘ˆ) has property (1),then ๐œ” = ๐‘‘๐œ‡ for some ๐œ‡ โˆˆ ๐›บ๐‘›โˆ’1๐‘ (๐‘ˆ).

Proof of Step 1. Let ๐œ™โˆถ ๐‘ˆ0 โ†’ ๐‘ˆ be an oriented parametrization of ๐‘ˆ. Then

โˆซ๐‘ˆ0๐œ™โ‹†๐œ” = โˆซ

๐‘‹๐œ” = 0

and since ๐‘ˆ0 is a connected open subset of ๐‘๐‘›, ๐œ™โ‹†๐œ” = ๐‘‘๐œˆ for some ๐œˆ โˆˆ ๐›บ๐‘›โˆ’1๐‘ (๐‘ˆ0) by Theo-rem 3.3.1. Let ๐œ‡ = (๐œ™โˆ’1)โ‹†๐œˆ. Then ๐‘‘๐œ‡ = (๐œ™โˆ’1)โ‹†๐‘‘๐œˆ = ๐œ”. โ–ก

Step 2. Fix a base point ๐‘0 โˆˆ ๐‘‹ and let ๐‘ be any point of ๐‘‹. Then there exists a collectionof connected parametrizable open sets๐‘Š1,โ€ฆ,๐‘Š๐‘ with ๐‘0 โˆˆ ๐‘Š1 and ๐‘ โˆˆ ๐‘Š๐‘ such that for1 โ‰ค ๐‘– โ‰ค ๐‘ โˆ’ 1, the intersection๐‘Š๐‘– โˆฉ๐‘Š๐‘–+1 is non-empty.

Proof of Step 2. The set of points, ๐‘ โˆˆ ๐‘‹, for which this assertion is true is open and the setfor which it is not true is open. Moreover, this assertion is true for ๐‘ = ๐‘0. โ–ก

Step 3. We deduce Theorem 4.7.1 from a slightly stronger result. Introduce an equivalencerelation on ๐›บ๐‘›๐‘ (๐‘‹) by declaring that two ๐‘›-forms ๐œ”1, ๐œ”2 โˆˆ ๐›บ๐‘›๐‘ (๐‘‹) are equivalent if ๐œ”1 โˆ’ ๐œ”2 โˆˆ๐‘‘๐›บ๐‘›โˆ’1๐‘ฅ (๐‘‹). Denote this equivalence relation by a ๐œ”1 โˆผ ๐œ”2.

We will prove:

Theorem 4.7.2. For ๐œ”1 and ๐œ”2 โˆˆ ๐›บ๐‘›๐‘ (๐‘‹) the following are equivalent:(1) โˆซ๐‘‹ ๐œ”1 = โˆซ๐‘‹ ๐œ”2(2) ๐œ”1 โˆผ ๐œ”2.

Page 146: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

134 Chapter 4: Manifolds & Forms on Manifolds

Applying this result to a form ๐œ” โˆˆ ๐›บ๐‘›๐‘ (๐‘‹) whose integral is zero, we conclude that๐œ” โˆผ 0, which means that ๐œ” = ๐‘‘๐œ‡ for some ๐œ‡ โˆˆ ๐›บ๐‘›โˆ’1๐‘ (๐‘‹). Hence Theorem 4.7.2 impliesTheorem 4.7.1. Conversely, if โˆซ๐‘‹ ๐œ”1 = โˆซ๐‘‹ ๐œ”2, then โˆซ๐‘‹(๐œ”1 โˆ’ ๐œ”2) = 0, so ๐œ”1 โˆ’ ๐œ”2 = ๐‘‘๐œ‡ forsome ๐œ‡ โˆˆ ๐›บ๐‘›๐‘ (๐‘‹). Hence Theorem 4.7.2 implies Theorem 4.7.1.

Step 4. By a partition of unity argument it suffices to prove Theorem 4.7.2 for ๐œ”1 โˆˆ ๐›บ๐‘›๐‘ (๐‘ˆ1)and ๐œ”2 โˆˆ ๐›บ๐‘›๐‘ (๐‘ˆ2) where ๐‘ˆ1 and ๐‘ˆ2 are connected parametrizable open sets. Moreover, if theintegrals of ๐œ”1 and ๐œ”2 are zero then ๐œ”๐‘– = ๐‘‘๐œ‡๐‘– for some ๐œ‡๐‘– โˆˆ ๐›บ๐‘›๐‘ (๐‘ˆ๐‘–) by Step 1, so in this case,the theorem is true. Suppose on the other hand that

โˆซ๐‘‹๐œ”1 = โˆซ

๐‘‹๐œ”2 = ๐‘ โ‰  0 .

Then dividing by ๐‘, we can assume that the integrals of ๐œ”1 and ๐œ”2 are both equal to 1.

Step 5. Let๐‘Š1,โ€ฆ,๐‘Š๐‘ be, as in Step 2, a sequence of connected parametrizable open sets withthe property that the intersections,๐‘Š1โˆฉ๐‘ˆ1,๐‘Š๐‘โˆฉ๐‘ˆ2 and๐‘Š๐‘–โˆฉ๐‘Š๐‘–+1, for ๐‘– = 1,โ€ฆ,๐‘โˆ’1, are allnon-empty. Select ๐‘›-forms, ๐›ผ0 โˆˆ ๐›บ๐‘›๐‘ (๐‘ˆ1 โˆฉ๐‘Š1), ๐›ผ๐‘ โˆˆ ๐›บ๐‘›๐‘ (๐‘Š๐‘ โˆฉ ๐‘ˆ2) and ๐›ผ๐‘– โˆˆ ๐›บ๐‘›๐‘ (๐‘Š๐‘– โˆฉ๐‘Š๐‘–+1),for ๐‘– = 1,โ€ฆ,๐‘ โˆ’ 1, such that the integral of each ๐›ผ๐‘– over ๐‘‹ is equal to 1 By Step 1 we see thatTheorem 4.7.1 is true for ๐‘ˆ1, ๐‘ˆ2 and the๐‘Š1,โ€ฆ,๐‘Š๐‘, hence Theorem 4.7.2 is true for ๐‘ˆ1, ๐‘ˆ2and the๐‘Š1,โ€ฆ,๐‘Š๐‘, so

๐œ”1 โˆผ ๐›ผ0 โˆผ ๐›ผ1 โˆผ โ‹ฏ โˆผ ๐›ผ๐‘ โˆผ ๐œ”2and thus ๐œ”1 โˆผ ๐œ”2. โ–ก

Just as in (3.4.2) we get as a corollary of the theorem above the following โ€œdefinitionโ€“theoremโ€ of the degree of a differentiable mapping:

Theorem4.7.3. Let๐‘‹ and๐‘Œ be compact oriented ๐‘›-manifolds and let๐‘Œ be connected. Given aproper ๐ถโˆž mapping, ๐‘“โˆถ ๐‘‹ โ†’ ๐‘Œ, there exists a topological invariant deg(๐‘“) with the definingproperty:

(4.7.4) โˆซ๐‘‹๐‘“โ‹†๐œ” = deg(๐‘“) โˆซ

๐‘Œ๐œ” .

Proof. As in the proof of Theorem 3.4.6 pick an ๐‘›-form ๐œ”0 โˆˆ ๐›บ๐‘›๐‘ (๐‘Œ) whose integral over ๐‘Œis one and define the degree of ๐‘“ to be the integral over๐‘‹ of ๐‘“โ‹†๐œ”0, i.e., set

(4.7.5) deg(๐‘“) โ‰” โˆซ๐‘‹๐‘“โ‹†๐œ”0 .

Now let ๐œ” be any ๐‘›-form in ๐›บ๐‘›๐‘ (๐‘Œ) and let

(4.7.6) ๐‘ โ‰” โˆซ๐‘Œ๐œ” .

Then the integral of ๐œ” โˆ’ ๐‘๐œ”0 over ๐‘Œ is zero so there exists an (๐‘› โˆ’ 1)-form ๐œ‡ โˆˆ ๐›บ๐‘›โˆ’1๐‘ (๐‘Œ) forwhich ๐œ” โˆ’ ๐‘๐œ”0 = ๐‘‘๐œ‡. Hence ๐‘“โ‹†๐œ” = ๐‘๐‘“โ‹†๐œ”0 + ๐‘‘๐‘“โ‹†๐œ‡, so

โˆซ๐‘‹๐‘“โ‹†๐œ” = ๐‘โˆซ

๐‘‹๐‘“โ‹†๐œ”0 = deg(๐‘“) โˆซ

๐‘Œ๐œ”

by equations (4.7.5) and (4.7.6). โ–ก

Itโ€™s clear from the formula (4.7.4) that the degree of ๐‘“ is independent of the choice of๐œ”0. (Just apply this formula to any ๐œ” โˆˆ ๐›บ๐‘›๐‘ (๐‘Œ) having integral over ๐‘Œ equal to one.) Itโ€™s alsoclear from (4.7.4) that โ€œdegreeโ€ behaves well with respect to composition of mappings:

Page 147: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง4.7 Degree theory on manifolds 135

Theorem 4.7.7. Let ๐‘ be an oriented, connected ๐‘›-manifold and ๐‘”โˆถ ๐‘Œ โ†’ ๐‘ a proper ๐ถโˆžmap. Then

(4.7.8) deg(๐‘” โˆ˜ ๐‘“) = deg(๐‘“) deg(๐‘”) .

Proof. Let ๐œ” โˆˆ ๐›บ๐‘›๐‘ (๐‘) be a compactly supported form with the property that โˆซ๐‘ ๐œ” = 1. Then

deg(๐‘” โˆ˜ ๐‘“) = โˆซ๐‘‹(๐‘” โˆ˜ ๐‘“)โ‹†๐œ” = โˆซ

๐‘‹๐‘“โ‹† โˆ˜ ๐‘”โ‹†๐œ” = deg(๐‘“) โˆซ

๐‘Œ๐‘”โ‹†๐œ”

= deg(๐‘“) deg(๐‘”) . โ–ก

We will next show how to compute the degree of ๐‘“ by generalizing to manifolds theformula for deg(๐‘“) that we derived in ยง3.6.

Definition 4.7.9. A point ๐‘ โˆˆ ๐‘‹ is a critical point of ๐‘“ if the map

(4.7.10) ๐‘‘๐‘“๐‘ โˆถ ๐‘‡๐‘๐‘‹ โ†’ ๐‘‡๐‘“(๐‘)๐‘Œis not bijective.

Weโ€™ll denote by๐ถ๐‘“ the set of all critical points of ๐‘“, and weโ€™ll call a point ๐‘ž โˆˆ ๐‘Œ a criticalvalue of ๐‘“ if it is in the image ๐‘“(๐ถ๐‘“) of ๐ถ๐‘“ under ๐‘“ and a regular value if itโ€™s not. (Thus theset of regular values is the set ๐‘Œ โˆ– ๐‘“(๐ถ๐‘“).) If ๐‘ž is a regular value, then as we observed in Sec-tion 3.6, the map (4.7.10) is bijective for every ๐‘ โˆˆ ๐‘“โˆ’1(๐‘ž) and hence by Theorem 4.2.13, ๐‘“maps a neighborhood๐‘ˆ๐‘ of ๐‘ diffeomorphically onto a neighborhood๐‘‰๐‘ of ๐‘ž. In particular,๐‘ˆ๐‘ โˆฉ ๐‘“โˆ’1(๐‘ž) = ๐‘. Since ๐‘“ is proper the set ๐‘“โˆ’1(๐‘ž) is compact, and since the sets ๐‘ˆ๐‘ are acovering of๐‘“โˆ’1(๐‘ž), this covering must be a finite covering. In particular, the set ๐‘“โˆ’1(๐‘ž) itselfhas to be a finite set. As in ยง2.7 we can shrink the ๐‘ˆ๐‘โ€™s so as to insure that they have thefollowing properties:(i) Each ๐‘ˆ๐‘ is a parametrizable open set.(ii) ๐‘ˆ๐‘ โˆฉ ๐‘ˆ๐‘โ€ฒ is empty for ๐‘ โ‰  ๐‘โ€ฒ.(iii) ๐‘“(๐‘ˆ๐‘) = ๐‘“(๐‘ˆ๐‘โ€ฒ) = ๐‘‰ for all ๐‘ and ๐‘โ€ฒ.(iv) ๐‘‰ is a parametrizable open set.(v) ๐‘“โˆ’1(๐‘‰) = โ‹ƒ๐‘โˆˆ๐‘“โˆ’1(๐‘ž)๐‘ˆ๐‘.

To exploit these properties let ๐œ” be an ๐‘›-form in ๐›บ๐‘›๐‘ (๐‘‰) with integral equal to 1. Thenby (v):

deg(๐‘“) = โˆซ๐‘‹๐‘“โ‹†๐œ” = โˆ‘

๐‘โˆซ๐‘ˆ๐‘๐‘“โ‹†๐œ” .

But ๐‘“โˆถ ๐‘ˆ๐‘ โ†’ ๐‘‰ is a diffeomorphism, hence by (4.5.13) and (4.5.14)

โˆซ๐‘ˆ๐‘๐‘“โ‹†๐œ” = โˆซ

๐‘‰๐œ”

if ๐‘“โˆถ ๐‘ˆ๐‘ โ†’ ๐‘‰ is orientation preserving and

โˆซ๐‘ˆ๐‘๐‘“โ‹†๐œ” = โˆ’โˆซ

๐‘‰๐œ”

if ๐‘“โˆถ ๐‘ˆ๐‘ โ†’ ๐‘‰ is orientation reversing. Thus we have proved:

Theorem 4.7.11. The degree of ๐‘“ is equal to the sum

(4.7.12) deg(๐‘“) = โˆ‘๐‘โˆˆ๐‘“โˆ’1(๐‘ž)๐œŽ๐‘

Page 148: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

136 Chapter 4: Manifolds & Forms on Manifolds

where ๐œŽ๐‘ = +1 if the map (4.7.10) is orientation preserving and ๐œŽ๐‘ = โˆ’1 if the map (4.7.10)is orientation reversing.

We will next show that Sardโ€™s Theorem is true for maps between manifolds and hencethat there exist lots of regular values. We first observe that if ๐‘ˆ is a parametrizable opensubset of๐‘‹ and ๐‘‰ a parametrizable open neighborhood of ๐‘“(๐‘ˆ) in ๐‘Œ, then Sardโ€™s Theoremis true for the map ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘‰ since, up to diffeomorphism, ๐‘ˆ and ๐‘‰ are just open subsetsof ๐‘๐‘›. Now let ๐‘ž be any point in ๐‘Œ, let ๐ต be a compact neighborhood of ๐‘ž, and let ๐‘‰ be aparametrizable open set containing ๐ต. Then if ๐ด = ๐‘“โˆ’1(๐ต) it follows from Theorem 3.4.7that๐ด can be covered by a finite collection of parametrizable open sets,๐‘ˆ1,โ€ฆ,๐‘ˆ๐‘ such that๐‘“(๐‘ˆ๐‘–) โŠ‚ ๐‘‰. Hence since Sardโ€™s Theorem is true for each of the maps ๐‘“โˆถ ๐‘ˆ๐‘– โ†’ ๐‘‰ and ๐‘“โˆ’1(๐ต)is contained in the union of the ๐‘ˆ๐‘–โ€™s we conclude that the set of regular values of ๐‘“ intersectsthe interior of ๐ต in an open dense set. Thus, since ๐‘ž is an arbitrary point of ๐‘Œ, we have proved:

Theorem 4.7.13. If ๐‘‹ and ๐‘Œ are ๐‘›-manifolds and ๐‘“โˆถ ๐‘‹ โ†’ ๐‘Œ is a proper ๐ถโˆž map the set ofregular values of ๐‘“ is an open dense subset of ๐‘Œ.

Since there exist lots of regular values the formula (4.7.12) gives us an effective wayof computing the degree of ๐‘“. Weโ€™ll next justify our assertion that deg(๐‘“) is a topologicalinvariant of ๐‘“. To do so, letโ€™s generalize Definition 2.6.14 to manifolds.

Definition 4.7.14. Let๐‘‹ and ๐‘Œ be manifolds and ๐‘“0, ๐‘“1 โˆถ ๐‘‹ โ†’ ๐‘Œ be ๐ถโˆž maps. A ๐ถโˆž map

(4.7.15) ๐นโˆถ ๐‘‹ ร— [0, 1] โ†’ ๐‘Œis a homotopy between๐‘“0 and๐‘“1 if for all ๐‘ฅ โˆˆ ๐‘‹we have๐น(๐‘ฅ, 0) = ๐‘“0(๐‘ฅ) and๐น(๐‘ฅ, 1) = ๐‘“1(๐‘ฅ).Moreover, if๐‘“0 and๐‘“1 are propermaps, the homotopy,๐น, is a proper homotopy if๐น is properas a ๐ถโˆž map, i.e., for every compact set ๐ถ of ๐‘Œ, ๐นโˆ’1(๐ถ) is compact.

Letโ€™s now prove the manifold analogue of Theorem 3.6.10.

Theorem 4.7.16. Let ๐‘‹ and ๐‘Œ be oriented ๐‘›-manifolds and assume that ๐‘Œ is connected. If๐‘“0, ๐‘“2 โˆถ ๐‘‹ โ†’ ๐‘Œ are proper maps and the map (4.7.8) is a proper homotopy, then deg(๐‘“1) =deg(๐‘“2).

Proof. Let๐œ” be an ๐‘›-form in๐›บ๐‘›๐‘ (๐‘Œ)whose integral over๐‘Œ is equal to 1, and let๐ถ โ‰” supp(๐œ”)be the support of ๐œ”. Then if ๐น is a proper homotopy between ๐‘“0 and ๐‘“1, the set, ๐นโˆ’1(๐ถ), iscompact and its projection on๐‘‹(4.7.17) { ๐‘ฅ โˆˆ ๐‘‹ | (๐‘ฅ, ๐‘ก) โˆˆ ๐นโˆ’1(๐ถ) for some ๐‘ก โˆˆ [0, 1] }is compact. Let ๐‘“๐‘ก โˆถ ๐‘‹ โ†’ ๐‘Œ be the map: ๐‘“๐‘ก(๐‘ฅ) = ๐น(๐‘ฅ, ๐‘ก). By our assumptions on ๐น, ๐‘“๐‘ก is aproper ๐ถโˆž map. Moreover, for all ๐‘ก the ๐‘›-form ๐‘“โ‹†๐‘ก ๐œ” is a ๐ถโˆž function of ๐‘ก and is supportedon the fixed compact set (4.7.17). Hence itโ€™s clear from the definitions of the integral of aform and ๐‘“๐‘ก that the integral

โˆซ๐‘‹๐‘“โ‹†๐‘ก ๐œ”

is a ๐ถโˆž function of ๐‘ก. On the other hand this integral is by definition the degree of ๐‘“๐‘ก andhence by Theorem 4.7.3, deg(๐‘“๐‘ก) is an integer, so it does not depend on ๐‘ก. In particular,deg(๐‘“0) = deg(๐‘“1). โ–ก

Exercises for ยง4.7Exercise 4.7.i. Let ๐‘“โˆถ ๐‘ โ†’ ๐‘ be the map ๐‘ฅ โ†ฆ ๐‘ฅ๐‘›. Show that deg(๐‘“) = 0 if ๐‘› is even and 1if ๐‘› is odd.

Page 149: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง4.8 Applications of degree theory 137

Exercise 4.7.ii. Let ๐‘“โˆถ ๐‘ โ†’ ๐‘ be the polynomial function,

๐‘“(๐‘ฅ) = ๐‘ฅ๐‘› + ๐‘Ž1๐‘ฅ๐‘›โˆ’1 +โ‹ฏ + ๐‘Ž๐‘›โˆ’1๐‘ฅ + ๐‘Ž๐‘› ,where the ๐‘Ž๐‘–โ€™s are in ๐‘. Show that if ๐‘› is even, deg(๐‘“) = 0 and if ๐‘› is odd, deg(๐‘“) = 1.

Exercise 4.7.iii. Let ๐‘†1 be the unit circle in the complex plane and let ๐‘“โˆถ ๐‘†1 โ†’ ๐‘†1 be themap ๐‘’๐‘–๐œƒ โ†ฆ ๐‘’๐‘–๐‘๐œƒ, where๐‘ ias a positive integer. What is the degree of ๐‘“?

Exercise 4.7.iv. Let ๐‘†๐‘›โˆ’1 be the unit sphere in ๐‘๐‘› and ๐œŽโˆถ ๐‘†๐‘›โˆ’1 โ†’ ๐‘†๐‘›โˆ’1 the antipodal map๐‘ฅ โ†ฆ โˆ’๐‘ฅ. What is the degree of ๐œŽ?

Exercise 4.7.v. Let ๐ด โˆˆ ๐‘‚(๐‘›) be an orthogonal ๐‘› ร— ๐‘›matrix and let

๐‘“๐ด โˆถ ๐‘†๐‘›โˆ’1 โ†’ ๐‘†๐‘›โˆ’1

be the map ๐‘ฅ โ†ฆ ๐ด๐‘ฅ. What is the degree of ๐‘“๐ด?

Exercise 4.7.vi. A manifold ๐‘Œ is contractable if for some point ๐‘0 โˆˆ ๐‘Œ, the identity map of๐‘Œ onto itself is homotopic to the constant map ๐‘“๐‘0 โˆถ ๐‘Œ โ†’ ๐‘Œ given by ๐‘“๐‘0(๐‘ฆ) โ‰” ๐‘0. Showthat if ๐‘Œ is an oriented contractable ๐‘›-manifold and ๐‘‹ an oriented connected ๐‘›-manifoldthen for every proper mapping ๐‘“โˆถ ๐‘‹ โ†’ ๐‘Œ we have deg(๐‘“) = 0. In particular show that if๐‘› > 0 and ๐‘Œ is compact then ๐‘Œ cannot be contractable.

Hint: Let ๐‘“ be the identity map of ๐‘Œ onto itself.

Exercise 4.7.vii. Let ๐‘‹ and ๐‘Œ be oriented connected ๐‘›-manifolds and ๐‘“โˆถ ๐‘‹ โ†’ ๐‘Œ a proper๐ถโˆž map. Show that if deg(๐‘“) โ‰  0, then ๐‘“ is surjective.

Exercise 4.7.viii. Using Sardโ€™s Theorem prove that if ๐‘‹ and ๐‘Œ are manifolds of dimension๐‘˜ and โ„“, with ๐‘˜ < โ„“ and ๐‘“โˆถ ๐‘‹ โ†’ ๐‘Œ is a proper ๐ถโˆž map, then the complement of the imageof๐‘‹ in ๐‘Œ is open and dense.

Hint: Let ๐‘Ÿ โ‰” โ„“ โˆ’ ๐‘˜ and apply Sardโ€™s Theorem to the map

๐‘”โˆถ ๐‘‹ ร— ๐‘†๐‘Ÿ โ†’ ๐‘Œ , ๐‘”(๐‘ฅ, ๐‘Ž) โ‰” ๐‘“(๐‘ฅ) .

Exercise 4.7.ix. Prove that the 2-sphere ๐‘†2 and the torus ๐‘†1 ร— ๐‘†1 are not diffeomorphic.

4.8. Applications of degree theory

Thepurpose of this sectionwill be to describe a few typical applications of degree theoryto problems in analysis, geometry, and topology. The first of these applications will be yetanother variant of the Brouwer fixed point theorem.

Application 4.8.1. Let ๐‘‹ be an oriented (๐‘› + 1)-dimensional manifold, ๐ท โŠ‚ ๐‘‹ a smoothdomain and๐‘ โ‰” ๐œ•๐ท the boundary of๐ท. Assume that the closure๐ท = ๐‘โˆช๐ท of๐ท is compact(and in particular that๐‘‹ is compact).

Theorem 4.8.2. Let ๐‘Œ be an oriented connected ๐‘›-manifold and ๐‘“โˆถ ๐‘ โ†’ ๐‘Œ a ๐ถโˆž map. Sup-pose there exists a ๐ถโˆž map ๐นโˆถ ๐ท โ†’ ๐‘Œ whose restriction to ๐‘ is ๐‘“. Then deg(๐‘“) = 0.

Proof. Let ๐œ‡ be an element of๐›บ๐‘›๐‘ (๐‘Œ). Then ๐‘‘๐œ‡ = 0, so ๐‘‘๐นโ‹†๐œ‡ = ๐นโ‹†๐‘‘๐œ‡ = 0. On the other handif ๐œ„ โˆถ ๐‘ โ†’ ๐‘‹ is the inclusion map,

โˆซ๐ท๐‘‘๐นโ‹†๐œ‡ = โˆซ

๐‘๐œ„โ‹†๐นโ‹†๐œ‡ = โˆซ

๐‘๐‘“โ‹†๐œ‡ = deg(๐‘“) โˆซ

๐‘Œ๐œ‡

by Stokesโ€™ theorem since ๐น โˆ˜ ๐œ„ = ๐‘“. Hence deg(๐‘“) has to be zero. โ–ก

Page 150: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

138 Chapter 4: Manifolds & Forms on Manifolds

Application 4.8.3 (a non-linear eigenvalue problem). This application is a non-linear gen-eralization of a standard theorem in linear algebra. Let ๐ดโˆถ ๐‘๐‘› โ†’ ๐‘๐‘› be a linear map. If ๐‘› iseven, ๐ดmay not have real eigenvalues. (For instance for the map

๐ดโˆถ ๐‘2 โ†’ ๐‘2 , (๐‘ฅ, ๐‘ฆ) โ†ฆ (โˆ’๐‘ฆ, ๐‘ฅ)the eigenvalues of ๐ด are ยฑโˆšโˆ’1.) However, if ๐‘› is odd it is a standard linear algebra fact thatthere exists a vector, ๐‘ฃ โˆˆ ๐‘๐‘› โˆ– {0}, and a ๐œ† โˆˆ ๐‘ such that ๐ด๐‘ฃ = ๐œ†๐‘ฃ. Moreover replacing ๐‘ฃby ๐‘ฃ|๐‘ฃ| one can assume that |๐‘ฃ| = 1. This result turns out to be a special case of a much moregeneral result. Let ๐‘†๐‘›โˆ’1 be the unit (๐‘› โˆ’ 1)-sphere in ๐‘๐‘› and let ๐‘“โˆถ ๐‘†๐‘›โˆ’1 โ†’ ๐‘๐‘› be a ๐ถโˆž map.

Theorem 4.8.4. There exists a vector ๐‘ฃ โˆˆ ๐‘†๐‘›โˆ’1 and a number ๐œ† โˆˆ ๐‘ such that ๐‘“(๐‘ฃ) = ๐œ†๐‘ฃ.

Proof. The proof will be by contradiction. If the theorem isnโ€™t true the vectors ๐‘ฃ and ๐‘“(๐‘ฃ),are linearly independent and hence the vector(4.8.5) ๐‘”(๐‘ฃ) = ๐‘“(๐‘ฃ) โˆ’ (๐‘“(๐‘ฃ) โ‹… ๐‘ฃ)๐‘ฃis nonzero. Let

(4.8.6) โ„Ž(๐‘ฃ) = ๐‘”(๐‘ฃ)|๐‘”(๐‘ฃ)|

.

By (4.8.5)โ€“(4.8.6), |๐‘ฃ| = |โ„Ž(๐‘ฃ)| = 1 and ๐‘ฃ โ‹… โ„Ž(๐‘ฃ) = 0, i.e., ๐‘ฃ and โ„Ž(๐‘ฃ) are both unit vectors andare perpendicular to each other. Let(4.8.7) ๐›พ๐‘ก โˆถ ๐‘†๐‘›โˆ’1 โ†’ ๐‘†๐‘›โˆ’1 , 0 โ‰ค ๐‘ก โ‰ค 1be the map(4.8.8) ๐›พ๐‘ก(๐‘ฃ) = cos(๐œ‹๐‘ก)๐‘ฃ + sin(๐œ‹๐‘ก)โ„Ž(๐‘ฃ) .For ๐‘ก = 0 this map is the identity map and for ๐‘ก = 1, it is the antipodal map ๐œŽ(๐‘ฃ) = ๐‘ฃ, hence(4.8.7) asserts that the identity map and the antipodal map are homotopic and thereforethat the degree of the antipodal map is one. On the other hand the antipodal map is therestriction to ๐‘†๐‘›โˆ’1 of the map (๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) โ†ฆ (โˆ’๐‘ฅ1,โ€ฆ, โˆ’๐‘ฅ๐‘›) and the volume form ๐œ” on ๐‘†๐‘›โˆ’1is the restriction to ๐‘†๐‘›โˆ’1 of the (๐‘› โˆ’ 1)-form

(4.8.9)๐‘›โˆ‘๐‘–=1(โˆ’1)๐‘–โˆ’1๐‘ฅ๐‘–๐‘‘๐‘ฅ๐‘– โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘– โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› .

If we replace ๐‘ฅ๐‘– by โˆ’๐‘ฅ๐‘– in equation (4.8.9) the sign of this form changes by (โˆ’1)๐‘› hence๐œŽโ‹†๐œ” = (โˆ’1)๐‘›๐œ”. Thus if ๐‘› is odd, ๐œŽ is an orientation reversing diffeomorphism of ๐‘†๐‘›โˆ’1 onto๐‘†๐‘›โˆ’1, so its degree is โˆ’1, and this contradicts what we just deduced from the existence of thehomotopy (4.8.8). โ–ก

From this argument we can deduce another interesting fact about the sphere ๐‘†๐‘›โˆ’1 when๐‘› โˆ’ 1 is even. For ๐‘ฃ โˆˆ ๐‘†๐‘›โˆ’1 the tangent space to ๐‘†๐‘›โˆ’1 at ๐‘ฃ is just the space,

๐‘‡๐‘ฃ๐‘†๐‘›โˆ’1 = { (๐‘ฃ, ๐‘ค) | ๐‘ค โˆˆ ๐‘๐‘› and ๐‘ฃ โ‹… ๐‘ค = 0 } ,so a vector field on ๐‘†๐‘›โˆ’1 can be viewed as a function ๐‘”โˆถ ๐‘†๐‘›โˆ’1 โ†’ ๐‘๐‘› with the property

๐‘”(๐‘ฃ) โ‹… ๐‘ฃ = 0for all ๐‘ฃ โˆˆ ๐‘†๐‘›โˆ’1. If this function is nonzero at all points, then, letting โ„Ž be the function (4.8.6),and arguing as above, weโ€™re led to a contradiction. Hence we conclude:

Theorem 4.8.10. If ๐‘› โˆ’ 1 is even and ๐’— is a vector field on the sphere ๐‘†๐‘›โˆ’1, then there exists apoint ๐‘ โˆˆ ๐‘†๐‘›โˆ’1 at which ๐’—(๐‘) = 0.

Page 151: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง4.8 Applications of degree theory 139

Note that if ๐‘› โˆ’ 1 is odd this statement is not true. Thevector field

๐‘ฅ1๐œ•๐œ•๐‘ฅ2โˆ’ ๐‘ฅ2๐œ•๐œ•๐‘ฅ1+โ‹ฏ + ๐‘ฅ2๐‘›โˆ’1

๐œ•๐œ•๐‘ฅ2๐‘›โˆ’ ๐‘ฅ2๐‘›

๐œ•๐œ•๐‘ฅ2๐‘›โˆ’1

is a counterexample. It is nowhere vanishing and at ๐‘ โˆˆ ๐‘†๐‘›โˆ’1 is tangent to ๐‘†๐‘›โˆ’1.Application 4.8.11 (The Jordanโ€“Brouwer separation theorem). Let ๐‘‹ be a compact ori-ented (๐‘›โˆ’1)-dimensional submanifold of๐‘๐‘›. In this subsection of ยง4.8 weโ€™ll outline a proofof the following theorem (leaving the details as a string of exercises).

Theorem 4.8.12. If๐‘‹ is connected, the complement of ๐‘๐‘› โˆ–๐‘‹ of๐‘‹ has exactly two connectedcomponents.

This theorem is known as the Jordanโ€“Brouwer separation theorem (and in two dimen-sions as the Jordan curve theorem). For simple, easy to visualize, submanifolds of๐‘๐‘› like the(๐‘› โˆ’ 1)-sphere this result is obvious, and for this reason itโ€™s easy to be misled into thinkingof it as being a trivial (and ot very interesting) result. However, for submanifolds of ๐‘๐‘› likethe curve in ๐‘2 depicted in the Figure 4.8.2 itโ€™s much less obvious. (In ten seconds or less: isthe point ๐‘ in this figure inside this curve or outside?)

To determine whether a point ๐‘ โˆˆ ๐‘๐‘›โˆ–๐‘‹ is inside๐‘‹ or outside๐‘‹, one needs a topolog-ical invariant to detect the difference; such an invariant is provided by the winding number.

Definition 4.8.13. For ๐‘ โˆˆ ๐‘๐‘› โˆ– ๐‘‹ let๐›พ๐‘ โˆถ ๐‘‹ โ†’ ๐‘†๐‘›โˆ’1

be the map๐›พ๐‘(๐‘ฅ) =

๐‘ฅ โˆ’ ๐‘|๐‘ฅ โˆ’ ๐‘|

.

The winding number๐‘Š(๐‘‹, ๐‘) of๐‘‹ about ๐‘ is the degree๐‘Š(๐‘‹, ๐‘) โ‰” deg(๐›พ๐‘) .

We show below that๐‘Š(๐‘‹, ๐‘) = 0 if๐‘ is outside, and if๐‘ is inside๐‘‹, then๐‘Š(๐‘‹, ๐‘) = ยฑ1(depending on the orientation of ๐‘‹). Hence the winding number tells us which of the twocomponents of ๐‘๐‘› โˆ– ๐‘‹ the point ๐‘ is contained in.

Exercises for ยง4.8Exercise 4.8.i. Let๐‘ˆ be a connected component of ๐‘๐‘› โˆ–๐‘‹. Show that if ๐‘0 and ๐‘1 are in๐‘ˆ,๐‘Š(๐‘‹, ๐‘0) = ๐‘Š(๐‘‹, ๐‘1).

Hints:โ€ข First suppose that the line segment,

๐‘๐‘ก = (1 โˆ’ ๐‘ก)๐‘0 + ๐‘ก๐‘1 , 0 โ‰ค ๐‘ก โ‰ค 1lies in ๐‘ˆ. Conclude from the homotopy invariance of degree that

๐‘Š(๐‘‹, ๐‘0) = ๐‘Š(๐‘‹, ๐‘๐‘ก) = ๐‘Š(๐‘‹, ๐‘1) .โ€ข Show that there exists a sequence of points ๐‘ž1,โ€ฆ, ๐‘ž๐‘ โˆˆ ๐‘ˆ, with ๐‘ž1 = ๐‘0 and๐‘ž๐‘ = ๐‘1, such that the line segment joining ๐‘ž๐‘– to ๐‘ž๐‘–+1 is in ๐‘ˆ.

Exercise 4.8.ii. Let ๐‘‹ be a connected (๐‘› โˆ’ 1)-dimensional submanifold of ๐‘๐‘›. Show that๐‘๐‘› โˆ– ๐‘‹ has at most two connected components.

Hints:โ€ข Show that if ๐‘ž is in ๐‘‹ there exists a small ๐œ€-ball ๐ต๐œ€(๐‘ž) centered at ๐‘ž such that๐ต๐œ€(๐‘ž) โˆ’ ๐‘‹ has two components. (See Theorem 4.2.15.

Page 152: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

140 Chapter 4: Manifolds & Forms on Manifolds

โ€ข Show that if ๐‘ is in ๐‘๐‘› โˆ– ๐‘‹, there exists a sequence ๐‘ž1,โ€ฆ, ๐‘ž๐‘ โˆˆ ๐‘๐‘› โˆ– ๐‘‹ such that๐‘ž1 = ๐‘, ๐‘ž๐‘ โˆˆ ๐ต๐œ€(๐‘ž) and the line segments joining ๐‘ž๐‘– to ๐‘ž๐‘–+1 are in ๐‘๐‘› โˆ– ๐‘‹.

Exercise 4.8.iii. For ๐‘ฃ โˆˆ ๐‘†๐‘›โˆ’1, show that ๐‘ฅ โˆˆ ๐‘‹ is in ๐›พโˆ’1๐‘ (๐‘ฃ) if and only if ๐‘ฅ lies on the ray

(4.8.14) ๐‘ + ๐‘ก๐‘ฃ , 0 < ๐‘ก < โˆž .

Exercise 4.8.iv. Let ๐‘ฅ โˆˆ ๐‘‹ be a point on this ray. Show that

(4.8.15) (๐‘‘๐›พ๐‘)๐‘ฅ โˆถ ๐‘‡๐‘๐‘‹ โ†’ ๐‘‡๐‘ฃ๐‘†๐‘›โˆ’1

is bijective if and only if ๐‘ฃ โˆ‰ ๐‘‡๐‘๐‘‹, i.e., if and only if the ray (4.8.14) is not tangent to๐‘‹ at ๐‘ฅ.Hint: ๐›พ๐‘ โˆถ ๐‘‹ โ†’ ๐‘†๐‘›โˆ’1 is the composition of the maps

๐œ๐‘ โˆถ ๐‘‹ โ†’ ๐‘๐‘› โˆ– {0} , ๐‘ฅ โ†ฆ ๐‘ฅ โˆ’ ๐‘ ,

and๐œ‹โˆถ ๐‘๐‘› โˆ– {0} โ†’ ๐‘†๐‘›โˆ’1 , ๐‘ฆ โ†ฆ ๐‘ฆ

|๐‘ฆ|.

Show that if ๐œ‹(๐‘ฆ) = ๐‘ฃ, then the kernel of (๐‘‘๐œ‹)๐‘” is the one-dimensional subspace of ๐‘๐‘›spanned by ๐‘ฃ. Conclude that if ๐‘ฆ = ๐‘ฅ โˆ’ ๐‘ and ๐‘ฃ = ๐‘ฆ/|๐‘ฆ| the composite map

(๐‘‘๐›พ๐‘)๐‘ฅ = (๐‘‘๐œ‹)๐‘ฆ โˆ˜ (๐‘‘๐œ๐‘)๐‘ฅis bijective if and only if ๐‘ฃ โˆ‰ ๐‘‡๐‘ฅ๐‘‹.

Exercise 4.8.v. From Exercises 4.8.iii and 4.8.iv deduce that ๐‘ฃ is a regular value of ๐›พ๐‘ ifand only if the ray (4.8.14) intersects ๐‘‹ in a finite number of points and at each point ofintersection is not tangent to๐‘‹ at that point.

Exercise 4.8.vi. In Exercise 4.8.v show that the map (4.8.15) is orientation preserving ifthe orientations of ๐‘‡๐‘ฅ๐‘‹ and ๐‘ฃ are compatible with the standard orientation of ๐‘‡๐‘๐‘๐‘›. (SeeExercise 1.6.v.)

Exercise 4.8.vii. Conclude that deg(๐›พ๐‘) counts (with orientations) the number of pointswhere the ray (4.8.14) intersects๐‘‹.

Exercise 4.8.viii. Let ๐‘1 โˆˆ ๐‘๐‘› โˆ– ๐‘‹ be a point on the ray (4.8.14). Show that if ๐‘ฃ โˆˆ ๐‘†๐‘›โˆ’1 is aregular value of ๐›พ๐‘, it is a regular value of ๐›พ๐‘1 and show that the number

deg(๐›พ๐‘) โˆ’ deg(๐›พ๐‘1) = ๐‘Š(๐‘‹, ๐‘) โˆ’๐‘Š(๐‘‹, ๐‘1)

counts (with orientations) the number of points on the ray lying between ๐‘ and ๐‘1.Hint: Exercises 4.8.v and 4.8.vii.

Exercise 4.8.ix. Let ๐‘ฅ โˆˆ ๐‘‹ be a point on the ray (4.8.14). Suppose ๐‘ฅ = ๐‘ + ๐‘ก๐‘ฃ. Show that if๐œ€ is a small positive number and

๐‘ยฑ = ๐‘ + (๐‘ก ยฑ ๐œ€)๐‘ฃ

then๐‘Š(๐‘‹, ๐‘+) = ๐‘Š(๐‘‹, ๐‘โˆ’) ยฑ 1 ,

and from Exercise 4.8.i conclude that ๐‘+ and ๐‘โˆ’ lie in different components of ๐‘๐‘› โˆ– ๐‘‹. Inparticular conclude that ๐‘๐‘› โˆ– ๐‘‹ has exactly two components.

Page 153: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง4.8 Applications of degree theory 141

Exercise 4.8.x. Finally show that if ๐‘ is very large the difference

๐›พ๐‘(๐‘ฅ) โˆ’๐‘|๐‘|, ๐‘ฅ โˆˆ ๐‘‹ ,

is very small, i.e., ๐›พ๐‘ is not surjective and hence the degree of ๐›พ๐‘ is zero. Conclude that for๐‘ โˆˆ ๐‘๐‘›โˆ–๐‘‹, ๐‘ is in the unbounded component of๐‘๐‘›โˆ–๐‘‹ if๐‘Š(๐‘‹, ๐‘) = 0 and in the boundedcomponent if๐‘Š(๐‘‹, ๐‘) = ยฑ1 (the โ€œยฑโ€ depending on the orientation of๐‘‹).

Remark 4.8.16. The proof of Jordanโ€“Brouwer sketched above gives us an effective way ofdecidingwhether the point๐‘ in Figure 4.8.2, is inside๐‘‹ or outside๐‘‹. Draw a non-tangentialray from ๐‘. If it intersects๐‘‹ in an even number of points, ๐‘ is outside๐‘‹ and if it intersects๐‘‹ is an odd number of points ๐‘ inside.

๏ฟฝ

๏ฟฝ

๏ฟฝ

inside

outside

Figure 4.8.1. A Jordan curve with ๐‘ inside of the curve and ๐‘ž outside

Application 4.8.17 (TheGaussโ€“Bonnet theorem). Let๐‘‹ โŠ‚ ๐‘๐‘› be a compact, connected, ori-ented (๐‘›โˆ’1)-dimensional submanifold. By the Jordanโ€“Brouwer theorem๐‘‹ is the boundaryof a bounded smooth domain, so for each ๐‘ฅ โˆˆ ๐‘‹ there exists a unique outward pointing unitnormal vector ๐‘›๐‘ฅ. The Gauss map

๐›พโˆถ ๐‘‹ โ†’ ๐‘†๐‘›โˆ’1

is the map ๐‘ฅ โ†ฆ ๐‘›๐‘ฅ. Let ๐œŽ be the Riemannian volume form of ๐‘†๐‘›โˆ’1, or, in other words, therestriction to ๐‘†๐‘›โˆ’1 of the form,

๐‘›โˆ‘๐‘–=1(โˆ’1)๐‘–โˆ’1๐‘ฅ๐‘–๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘– โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› ,

and let ๐œŽ๐‘‹ be the Riemannian volume form of๐‘‹. Then for each ๐‘ โˆˆ ๐‘‹(4.8.18) (๐›พโ‹†๐œŽ)๐‘ = ๐พ(๐‘)(๐œŽ๐‘‹)๐‘žwhere ๐พ(๐‘) is the scalar curvature of ๐‘‹ at ๐‘. This number measures the extent to whichโ€œ๐‘‹ is curvedโ€ at ๐‘. For instance, if ๐‘‹๐‘Ž is the circle, |๐‘ฅ| = ๐‘Ž in ๐‘2, the Gauss map is the map๐‘ โ†’ ๐‘/๐‘Ž, so for all ๐‘ we have ๐พ๐‘Ž(๐‘) = 1/๐‘Ž, reflecting the fact that for ๐‘Ž < ๐‘, ๐‘‹๐‘Ž is morecurved than๐‘‹๐‘.

The scalar curvature can also be negative. For instance for surfaces ๐‘‹ in ๐‘3, ๐พ(๐‘) ispositive at ๐‘ if๐‘‹ is convex at ๐‘ and negative if๐‘‹ is convexโ€“concave at ๐‘. (See Figures 4.8.2

Page 154: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

142 Chapter 4: Manifolds & Forms on Manifolds

and 4.8.3 below. The surface in Figure 4.8.2 is convex at ๐‘, and the surface in Figure 4.8.3 isconvexโ€“concave.)

๏ฟฝ(๏ฟฝ)

๏ฟฝ ๏ฟฝ

Figure 4.8.2. Positive scalar curvature at ๐‘

๏ฟฝ(๏ฟฝ)๏ฟฝ

๏ฟฝ

Figure 4.8.3. Negative scalar curvature at ๐‘

Let vol(๐‘†๐‘›โˆ’1) be the Riemannian volume of the (๐‘› โˆ’ 1)-sphere, i.e., let

vol(๐‘†๐‘›โˆ’1) = 2๐œ‹๐‘›/2

๐›ค(๐‘›/2)(where ๐›ค is the Gamma function). Then by (4.8.18) the quotient

(4.8.19)โˆซ๐พ๐œŽ๐‘‹

vol(๐‘†๐‘›โˆ’1)is the degree of the Gauss map, and hence is a topological invariant of the surface of๐‘‹. For

๏ฟฝ

surface ๏ฟฝ of genus ๏ฟฝ

๏ฟฝ1 ๏ฟฝ2 ๏ฟฝ0๏ฟฝ๏ฟฝ

the sphere ๏ฟฝ2

โ€ฆ ๏ฟฝ0 ๏ฟฝ

Figure 4.8.4. The Gauss map from a surface of genus ๐‘” to the sphere

Page 155: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง4.9 The index of a vector field 143

๐‘› = 3 the Gaussโ€“Bonnet theorem asserts that this topological invariant is just 1 โˆ’ ๐‘” where๐‘” is the genus of ๐‘‹ or, in other words, the โ€œnumber of holesโ€. Figure 4.8.4 gives a pictorialproof of this result. (Notice that at the points ๐‘1,โ€ฆ, ๐‘๐‘” the surface๐‘‹ is convexโ€“concave sothe scalar curvature at these points is negative, i.e., the Gauss map is orientation reversing.On the other hand, at the point ๐‘0 the surface is convex, so the Gauss map at this point isorientation preserving.)

4.9. The index of a vector field

Let ๐ท be a bounded smooth domain in ๐‘๐‘› and ๐’— = โˆ‘๐‘›๐‘–=1 ๐‘ฃ๐‘–๐œ•/๐œ•๐‘ฅ๐‘– a ๐ถโˆž vector field de-fined on the closure๐ท of๐ท.Wewill define below a topological invariant which, for โ€œgenericโ€๐’—โ€™s, counts (with appropriate ยฑ-signs) the number of zeros of ๐’—. To avoid complications weโ€™llassume ๐’— has no zeros on the boundary of๐ท.

Definition 4.9.1. Let ๐œ•๐ท be the boundary of๐ท and let

๐‘“๐’— โˆถ ๐œ•๐ท โ†’ ๐‘†๐‘›โˆ’1

be the mapping

๐‘ โ†ฆ ๐’—(๐‘)|๐’—(๐‘)|

,

where ๐’—(๐‘) = (๐‘ฃ1(๐‘),โ€ฆ, ๐‘ฃ๐‘›(๐‘)). The index of ๐’— with respect to๐ท is by definition the degreeof ๐‘“๐’—.

Weโ€™ll denote this index by ind(๐’—, ๐ท) and as a first step in investigating its propertiesweโ€™ll prove:

Theorem 4.9.2. Let๐ท1 be a smooth domain in ๐‘๐‘› whose closure is contained in๐ท. Then

ind(๐’—, ๐ท) = ind(๐’—, ๐ท1)

provided that ๐’— has no zeros in the set๐ท โˆ– ๐ท1.

Proof. Let๐‘Š = ๐ท โˆ– ๐ท1. Then the map ๐‘“๐’— โˆถ ๐œ•๐ท โ†’ ๐‘†๐‘›โˆ’1 extends to a ๐ถโˆž map

๐นโˆถ ๐‘Š โ†’ ๐‘†๐‘›โˆ’1 , ๐‘ โ†ฆ ๐’—(๐‘)|๐’—(๐‘)|

.

Moreover,๐œ•๐‘Š = ๐‘‹ โˆช ๐‘‹โˆ’1

where๐‘‹ is the boundary of๐ทwith its natural boundary orientation and๐‘‹โˆ’1 is the boundaryof ๐ท1 with its boundary orientation reversed. Let ๐œ” be an element of ๐›บ๐‘›โˆ’1(๐‘†๐‘›โˆ’1) whoseintegral over ๐‘†๐‘›โˆ’1 is 1. Then if ๐‘“ = ๐‘“๐’— and ๐‘“1 = (๐‘“1)๐’— are the restrictions of ๐น to ๐‘‹ and ๐‘‹1we get from Stokesโ€™ theorem (and the fact that ๐‘‘๐œ” = 0) the identity

0 = โˆซ๐‘Š๐นโ‹†๐‘‘๐œ” = โˆซ

๐‘Š๐‘‘๐นโ‹†๐œ”

= โˆซ๐‘‹๐‘“โ‹†๐œ” โˆ’ โˆซ

๐‘‹1๐‘“โ‹†1 ๐œ” = deg(๐‘“) โˆ’ deg(๐‘“1) .

Henceind(๐’—, ๐ท) = deg(๐‘“) = deg(๐‘“1) = ind(๐’—, ๐ท) . โ–ก

Page 156: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

144 Chapter 4: Manifolds & Forms on Manifolds

Suppose now that ๐’— has a finite number of isolated zeros ๐‘1,โ€ฆ, ๐‘๐‘˜ in ๐ท. Let ๐ต๐œ€(๐‘๐‘–) bethe open ball of radius ๐œ€ with center at ๐‘๐‘–. By making ๐œ€ small enough we can assume thateach of these balls is contained in ๐ท and that theyโ€™re mutually disjoint. We will define thelocal index ind(๐’—, ๐‘๐‘–) of ๐’— at ๐‘๐‘– to be the index of ๐’— with respect to ๐ต๐œ€(๐‘๐‘–). By Theorem 4.9.2these local indices are unchanged if we replace ๐œ€ by a smaller ๐œ€, and by applying this theoremto the domain

๐ท1 =๐‘˜โ‹ƒ๐‘–=1๐ต๐‘๐‘–(๐œ€)

we get, as a corollary of the theorem, the formula

(4.9.3) ind(๐’—, ๐ท) =๐‘˜โˆ‘๐‘–=1

ind(๐’—, ๐‘๐‘–)

which computes the global index of ๐’— with respect to๐ท in terms of these local indices.Letโ€™s now see how to compute these local indices. Letโ€™s first suppose that the point๐‘ = ๐‘๐‘–

is at the origin of ๐‘๐‘›. Then near ๐‘ = 0

๐’— = ๐’—lin + ๐’—โ€ฒ

where๐’— = ๐’—lin = โˆ‘

1โ‰ค๐‘–,๐‘—โ‰ค๐‘›๐‘Ž๐‘–,๐‘—๐‘ฅ๐‘–๐œ•๐œ•๐‘ฅ๐‘—

the ๐‘Ž๐‘–,๐‘—โ€™s being constants and

๐’—๐‘– =๐‘›โˆ‘๐‘—=1๐‘“๐‘–๐‘—๐œ•๐œ•๐‘ฅ๐‘—

where the ๐‘“๐‘–๐‘—โ€™s vanish to second order near zero, i.e., satisfy

(4.9.4) |๐‘“๐‘–,๐‘—(๐‘ฅ)| โ‰ค ๐ถ|๐‘ฅ|2

for some constant ๐ถ > 0.

Definition 4.9.5. Weโ€™ll say that the point ๐‘ = 0 is a non-degenerate zero of ๐’— is the matrix๐ด = (๐‘Ž๐‘–,๐‘—) is non-singular.

This means in particular that

(4.9.6)๐‘›โˆ‘๐‘—=1|๐‘›โˆ‘๐‘–=1๐‘Ž๐‘–,๐‘—๐‘ฅ๐‘–| โ‰ฅ ๐ถ1|๐‘ฅ|

form some constant ๐ถ1 > 0. Thus by (4.9.4) and (4.9.6) the vector field

๐’—๐‘ก = ๐’—lin + ๐‘ก๐’—โ€ฒ , 0 โ‰ค ๐‘ก โ‰ค 1

has no zeros in the ball ๐ต๐œ€(0), other than the point ๐‘ = 0 itself, provided that ๐œ€ is smallenough. Therefore if we let๐‘‹๐œ€ be the boundary of ๐ต๐œ€(0) we get a homotopy

๐นโˆถ ๐‘‹๐œ€ ร— [0, 1] โ†’ ๐‘†๐‘›โˆ’1 , (๐‘ฅ, ๐‘ก) โ†ฆ ๐‘“๐’—๐‘ก(๐‘ฅ)

between the maps ๐‘“๐’—lin โˆถ ๐‘‹๐œ€ โ†’ ๐‘†๐‘›โˆ’1 and ๐‘“๐’— โˆถ ๐‘‹๐œ€ โ†’ ๐‘†๐‘›โˆ’1, thus by Theorem 4.7.16 we see that

deg(๐‘“๐’—) = deg(๐‘“๐’—lin). Therefore,

(4.9.7) ind(๐’—, ๐‘) = ind(๐’—lin, ๐‘) .

Page 157: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง4.9 The index of a vector field 145

Wehave assumed in the above discussion that๐‘ = 0, but by introducing at๐‘ a translatedcoordinate system for which ๐‘ is the origin, these comments are applicable to any zero ๐‘ of๐’—. More explicitly if ๐‘1,โ€ฆ, ๐‘๐‘› are the coordinates of ๐‘ then as above

๐’— = ๐’—lin + ๐’—โ€ฒ

where

๐’—lin โ‰” โˆ‘1โ‰ค๐‘–,๐‘—โ‰ค๐‘›๐‘Ž๐‘–,๐‘—(๐‘ฅ๐‘– โˆ’ ๐‘๐‘–)

๐œ•๐œ•๐‘ฅ๐‘—

and ๐’—โ€ฒ vanishes to second order at ๐‘, and if ๐‘ is a non-degenerate zero of ๐‘ž, i.e., if the matrix๐ด = (๐‘Ž๐‘–,๐‘—) is non-singular, then exactly the same argument as before shows that

ind(๐’—, ๐‘) = ind(๐’—lin, ๐‘) .

We will next prove:

Theorem 4.9.8. If ๐‘ is a non-degenerate zero of ๐’—, the local index ind(๐’—, ๐‘) is +1 or โˆ’1 de-pending on whether the determinant of the matrix, ๐ด = (๐‘Ž๐‘–,๐‘—) is positive or negative.

Proof. As above we can, without loss of generality, assume that ๐‘ = 0. By (4.9.7) we canassume ๐’— = ๐’—lin. Let๐ท be the domain defined by

(4.9.9)๐‘›โˆ‘๐‘—=1(๐‘›โˆ‘๐‘–=1๐‘Ž๐‘–,๐‘—๐‘ฅ๐‘–)

2

< 1 ,

and let ๐‘‹ โ‰” ๐œ•๐ท be its boundary. Since the only zero of ๐’—lin inside this domain is ๐‘ = 0 weget from (4.9.3) and (4.9.4) that

ind(๐’—, ๐‘) = ind(๐’—lin, ๐‘) = ind(๐’—lin, ๐ท) .

Moreover, the map๐‘“๐’—lin โˆถ ๐‘‹ โ†’ ๐‘†

๐‘›โˆ’1

is, in view of (4.9.9), just the linear map ๐‘ฃ โ†ฆ ๐ด๐‘ฃ, restricted to ๐‘‹. In particular, since ๐ด isa diffeomorphism, this mapping is a diffeomorphism as well, so the degree of this map is+1 or โˆ’1 depending on whether this map is orientation preserving or not. To decide whichof these alternatives is true let ๐œ” = โˆ‘๐‘›๐‘–=1(โˆ’1)๐‘–๐‘ฅ๐‘–๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘– โˆงโ‹ฏ๐‘‘๐‘ฅ๐‘› be the Riemannianvolume form on ๐‘†๐‘›โˆ’1 then

โˆซ๐‘‹๐‘“โ‹†๐’—lin๐œ” = deg(๐‘“๐’—lin) vol(๐‘†

๐‘›โˆ’1) .

Since ๐’— is the restriction of ๐ด to๐‘‹. By Stokesโ€™ theorem this is equal to

โˆซ๐ท๐ดโ‹†๐‘‘๐œ” = ๐‘›โˆซ

๐ท๐ดโ‹†๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›

= ๐‘› det(๐ด) โˆซ๐ท๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›

= ๐‘› det(๐ด) vol(๐ท)

which gives us the formula

deg(๐‘“๐’—lin , ๐ท) =๐‘› det๐ด vol(๐ท)

vol(๐‘†๐‘›โˆ’1). โ–ก

Page 158: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

146 Chapter 4: Manifolds & Forms on Manifolds

Weโ€™ll briefly describe the various types of non-degenerate zeros that can occur for vectorfields in two dimensions. To simplify this description a bit weโ€™ll assume that the matrix

๐ด = (๐‘Ž11 ๐‘Ž12๐‘Ž21 ๐‘Ž22)

is diagonalizable and that its eigenvalues are not purely imaginary. Then the following fivescenarios can occur:(1) Theeigenvalues of๐ด are real and positive. In this case the integral curves of ๐’—lin in a neigh-

borhood of ๐‘ look like the curves in Figure 4.9.1 and hence, in a small neighborhood

Figure 4.9.1. Real and positive eigenvalues

of ๐‘, the integral sums of ๐’— itself look approximately like the curve in Figure 4.9.1.(2) The eigenvalues of๐ด are real and negative. In this case the integral curves of ๐’—lin look like

the curves in Figure 4.9.1, but the arrows are pointing into ๐‘, rather than out of ๐‘, i.e.,

Figure 4.9.2. Real and negative eigenvalues

(3) The eigenvalues of ๐ด are real, but one is positive and one is negative. In this case theintegral curves of ๐’—lin look like the curves in Figure 4.9.3.

(4) The eigenvalues of ๐ด are complex and of the form ๐‘Ž ยฑ โˆšโˆ’๐‘, with ๐‘Ž positive. In this casethe integral curves of ๐’—lin are spirals going out of ๐‘ as in Figure 4.9.4.

(5) The eigenvalues of ๐ด are complex and of the form ๐‘Ž ยฑ โˆšโˆ’๐‘, with ๐‘Ž negative. In this casethe integral curves are as in Figure 4.9.4 but are spiraling into ๐‘ rather than out of ๐‘.

Definition 4.9.10. Zeros of ๐’— of types (1) and (4) are called sources; those of types (2) and(5) are called sinks and those of type (3) are called saddles.

Page 159: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง4.9 The index of a vector field 147

Figure 4.9.3. Real eigenvalues, one positive and one negative

Figure 4.9.4. Complex eigenvalues of the form ๐‘Ž ยฑ โˆšโˆ’๐‘, with ๐‘Ž positive.

Thus in particular the two-dimensional version of equation (4.9.3) tells us:

Theorem 4.9.11. If the vector field ๐’— on ๐ท has only non-degenerate zeros then ind(๐’—, ๐ท) isequal to the number of sources plus the number of sinks minus the number of saddles.

Page 160: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

Page 161: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

CHAPTER 5

Cohomology via forms

5.1. The de Rham cohomology groups of a manifold

In the last four chapters weโ€™ve frequently encountered the question: When is a closed๐‘˜-formon an open subset of๐‘๐‘ (or,more generally on a submanifold of๐‘๐‘) exact? To inves-tigate this question more systematically than weโ€™ve done heretofore, let๐‘‹ be an ๐‘›-manifoldand let

๐‘๐‘˜(๐‘‹) โ‰” {๐œ” โˆˆ ๐›บ๐‘˜(๐‘‹) | ๐‘‘๐œ” = 0 }and

๐ต๐‘˜(๐‘‹) โ‰” ๐‘‘(๐›บ๐‘˜โˆ’1(๐‘‹)) โŠ‚ ๐›บ๐‘˜(๐‘‹)be the vector spaces of closed and exact ๐‘˜-forms. Since ๐ต๐‘˜(๐‘‹) is a vector subspace of๐‘๐‘˜(๐‘‹),we can form the quotient space

๐ป๐‘˜(๐‘‹) โ‰” ๐‘๐‘˜(๐‘‹)/๐ต๐‘˜(๐‘‹) ,and the dimension of this space is a measure of the extent to which closed forms fail to beexact. We will call this space the ๐‘˜th de Rham cohomology group of the manifold ๐‘‹. Sincethe vector spaces ๐‘๐‘˜(๐‘‹) and ๐ต๐‘˜(๐‘‹) are both infinite dimensional in general, there is noguarantee that this quotient space is finite dimensional, however, weโ€™ll show later in thischapter that it is in a lot of interesting cases.

The spaces๐ป๐‘˜(๐‘‹) also have compactly supported counterparts. Namely let

๐‘๐‘˜๐‘ (๐‘‹) โ‰” {๐œ” โˆˆ ๐›บ๐‘˜๐‘ (๐‘‹) | ๐‘‘๐œ” = 0 }and

๐ต๐‘˜๐‘ (๐‘‹) โ‰” ๐‘‘(๐›บ๐‘˜โˆ’1๐‘ (๐‘‹)) โŠ‚ ๐›บ๐‘˜๐‘ (๐‘‹) .Then as above ๐ต๐‘˜๐‘ (๐‘‹) is a vector subspace of ๐‘๐‘˜๐‘ (๐‘‹) and the vector space quotient

๐ป๐‘˜๐‘ (๐‘‹) โ‰” ๐‘๐‘˜๐‘ (๐‘‹)/๐ต๐‘˜๐‘ (๐‘‹)is the ๐‘˜th compactly supported de Rham cohomology group of๐‘‹.

Given a closed ๐‘˜-form ๐œ” โˆˆ ๐‘๐‘˜(๐‘‹) we will denote by [๐œ”] the image of ๐œ” in the quotientspace ๐ป๐‘˜(๐‘‹) = ๐‘๐‘˜(๐‘‹)/๐ต๐‘˜(๐‘‹) and call [๐œ”] the cohomology class of ๐œ”. We will also use thesame notation for compactly supported cohomology. If ๐œ” is in ๐‘๐‘˜๐‘ (๐‘‹) weโ€™ll denote by [๐œ”]the cohomology class of ๐œ” in the quotient space๐ป๐‘˜๐‘ (๐‘‹) = ๐‘๐‘˜๐‘ (๐‘‹)/๐ต๐‘˜๐‘ (๐‘‹).

Some cohomology groups of manifolds weโ€™ve already computed in the previous chap-ters (although we didnโ€™t explicitly describe these computations as โ€œcomputing cohomol-ogyโ€). Weโ€™ll make a list below of some of the properties that we have already discoveredabout the de Rham cohomology of a manifold๐‘‹:(1) If ๐‘‹ is connected, ๐ป0(๐‘‹) = ๐‘. To see this, note that a closed zero form is a function๐‘“ โˆˆ ๐ถโˆž(๐‘‹) having the property ๐‘‘๐‘“ = 0, and if๐‘‹ is connected the only such functionsare constants.

149

Page 162: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

150 Chapter 5: Cohomology via forms

(2) If ๐‘‹ is connected and non-compact๐ป0๐‘ (๐‘‹) = 0. To see this, note that if ๐‘“ is in ๐ถโˆž0 (๐‘‹)and๐‘‹ is non-compact, ๐‘“ has to be zero at some point, and hence if ๐‘‘๐‘“ = 0, then ๐‘“ hasto be identically zero.

(3) If๐‘‹ is ๐‘›-dimensional,๐›บ๐‘˜(๐‘‹) = ๐›บ๐‘˜๐‘ (๐‘‹) = 0

for ๐‘˜ < 0 or ๐‘˜ > ๐‘›, hence๐ป๐‘˜(๐‘‹) = ๐ป๐‘˜๐‘ (๐‘‹) = 0

for ๐‘˜ < 0 or ๐‘˜ > ๐‘›.(4) If๐‘‹ is an oriented, connected ๐‘›-manifold, the integration operation is a linear map

(5.1.1) โˆซ๐‘‹โˆถ ๐›บ๐‘›๐‘ (๐‘‹) โ†’ ๐‘

and, by Theorem 4.8.2, the kernel of this map is ๐ต๐‘›๐‘ (๐‘‹). Moreover, in degree ๐‘›,๐‘๐‘›๐‘ (๐‘‹) =๐›บ๐‘›๐‘ (๐‘‹) and hence by the definition of๐ป๐‘˜๐‘ (๐‘‹) as the quotient๐‘๐‘˜๐‘ (๐‘‹)/๐ต๐‘˜๐‘ (๐‘‹), we get from(5.1.1) a bijective map

(5.1.2) ๐ผ๐‘‹ โˆถ ๐ป๐‘›๐‘ (๐‘‹) โฅฒ ๐‘ .

In other words๐ป๐‘›๐‘ (๐‘‹) = ๐‘.(5) Let ๐‘ˆ be a star-shaped open subset of ๐‘๐‘›. In Exercises 2.6.iv to 2.6.vii we sketched a

proof of the assertion: For ๐‘˜ > 0 every closed form ๐œ” โˆˆ ๐‘๐‘˜(๐‘ˆ) is exact. Translating thisassertion into cohomology language, we showed that๐ป๐‘˜(๐‘ˆ) = 0 for ๐‘˜ > 0.

(6) Let๐‘ˆ โŠ‚ ๐‘๐‘› be an open rectangle. In Exercises 3.2.iv to 3.2.vii we sketched a proof of theassertion: If ๐œ” โˆˆ ๐›บ๐‘˜๐‘ (๐‘ˆ) is closed and ๐‘˜ is less than ๐‘›, then ๐œ” = ๐‘‘๐œ‡ for some (๐‘˜โˆ’1)-form๐œ‡ โˆˆ ๐›บ๐‘˜โˆ’1๐‘ (๐‘ˆ). Hence we showed๐ป๐‘˜๐‘ (๐‘ˆ) = 0 for ๐‘˜ < ๐‘›.

(7) Poincarรฉ lemma for manifolds: Let ๐‘‹ be an ๐‘›-manifold and ๐œ” โˆˆ ๐‘๐‘˜(๐‘‹), ๐‘˜ > 0 a closed๐‘˜-form. Then for every point ๐‘ โˆˆ ๐‘‹ there exists a neighborhood ๐‘ˆ of ๐‘ and a (๐‘˜ โˆ’ 1)-form ๐œ‡ โˆˆ ๐›บ๐‘˜โˆ’1(๐‘ˆ) such that ๐œ” = ๐‘‘๐œ‡ on ๐‘ˆ. To see this note that for open subsets of ๐‘๐‘›we proved this result in Section 2.4 and since๐‘‹ is locally diffeomorphic at ๐‘ to an opensubset of ๐‘๐‘› this result is true for manifolds as well.

(8) Let๐‘‹be the unit sphere ๐‘†๐‘› in๐‘๐‘›+1. Since ๐‘†๐‘› is compact, connected andoriented๐ป0(๐‘†๐‘›) =๐ป๐‘›(๐‘†๐‘›) = ๐‘.

We will show that for ๐‘˜ โ‰ , 0, ๐‘›๐ป๐‘˜(๐‘†๐‘›) = 0 .

To see this let ๐œ” โˆˆ ๐›บ๐‘˜(๐‘†๐‘›) be a closed ๐‘˜-form and let ๐‘ = (0,โ€ฆ, 0, 1) โˆˆ ๐‘†๐‘› be the โ€œnorthpoleโ€ of ๐‘†๐‘›. By the Poincarรฉ lemma there exists a neighborhood๐‘ˆ of ๐‘ in ๐‘†๐‘› and a ๐‘˜โˆ’1-form ๐œ‡ โˆˆ ๐›บ๐‘˜โˆ’1(๐‘ˆ) with ๐œ” = ๐‘‘๐œ‡ on ๐‘ˆ. Let ๐œŒ โˆˆ ๐ถโˆž0 (๐‘ˆ) be a โ€œbump functionโ€ which isequal to one on a neighborhood ๐‘ˆ0 of ๐‘ˆ in ๐‘. Then

(5.1.3) ๐œ”1 = ๐œ” โˆ’ ๐‘‘๐œŒ๐œ‡is a closed ๐‘˜-form with compact support in ๐‘†๐‘› โˆ– {๐‘}. However stereographic projectiongives one a diffeomorphism

๐œ™โˆถ ๐‘๐‘› โ†’ ๐‘†๐‘› โˆ– {๐‘}(see Exercise 5.1.i), and hence ๐œ™โ‹†๐œ”1 is a closed compactly supported ๐‘˜-form on๐‘๐‘› withsupport in a large rectangle. Thus by (5.1.3) ๐œ™โ‹†๐œ” = ๐‘‘๐œˆ, for some ๐œˆ โˆˆ ๐›บ๐‘˜โˆ’1๐‘ (๐‘๐‘›), and by(5.1.3)

(5.1.4) ๐œ” = ๐‘‘(๐œŒ๐œ‡ + (๐œ™โˆ’1)โ‹†๐œˆ)

Page 163: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง5.1 The de Rham cohomology groups of a manifold 151

with (๐œ™โˆ’1)โ‹†๐œˆ โˆˆ ๐›บ๐‘˜โˆ’1๐‘ (๐‘†๐‘›โˆ–{๐‘}) โŠ‚ ๐›บ๐‘˜(๐‘†๐‘›), so weโ€™ve proved that for 0 < ๐‘˜ < ๐‘› every closed๐‘˜-form on ๐‘†๐‘› is exact.We will next discuss some โ€œpullbackโ€ operations in de Rham theory. Let ๐‘‹ and ๐‘Œ be

manifolds and ๐‘“โˆถ ๐‘‹ โ†’ ๐‘Œ a ๐ถโˆž map. For ๐œ” โˆˆ ๐›บ๐‘˜(๐‘Œ), ๐‘‘๐‘“โ‹†๐œ” = ๐‘“โ‹†๐‘‘๐œ”, so if ๐œ” is closed, ๐‘“โ‹†๐œ”is as well. Moreover, if ๐œ” = ๐‘‘๐œ‡, ๐‘“โ‹†๐œ” = ๐‘‘๐‘“โ‹†๐œ‡, so if ๐œ” is exact, ๐‘“โ‹†๐œ” is as well. Thus we havelinear maps

๐‘“โ‹† โˆถ ๐‘๐‘˜(๐‘Œ) โ†’ ๐‘๐‘˜(๐‘‹)and

(5.1.5) ๐‘“โ‹† โˆถ ๐ต๐‘˜(๐‘Œ) โ†’ ๐ต๐‘˜(๐‘‹)and composing ๐‘“โ‹† โˆถ ๐‘๐‘˜(๐‘Œ) โ†’ ๐‘๐‘˜(๐‘‹) with the projection

๐œ‹โˆถ ๐‘๐‘˜(๐‘‹) โ†’ ๐‘๐‘˜(๐‘‹)/๐ต๐‘˜(๐‘‹)we get a linear map

(5.1.6) ๐‘๐‘˜(๐‘Œ) โ†’ ๐ป๐‘˜(๐‘‹) .In view of (5.1.5), ๐ต๐‘˜(๐‘Œ) is in the kernel of this map, so by Proposition 1.2.9 one gets aninduced linear map

๐‘“โ™ฏ โˆถ ๐ป๐‘˜(๐‘Œ) โ†’ ๐ป๐‘˜(๐‘Œ) ,such that ๐‘“โ™ฏ โˆ˜ ๐œ‹ is the map (5.1.6). In other words, if ๐œ” is a closed ๐‘˜-form on ๐‘Œ, then ๐‘“โ™ฏ hasthe defining property

(5.1.7) ๐‘“โ™ฏ[๐œ”] = [๐‘“โ‹†๐œ”] .This โ€œpullbackโ€ operation on cohomology satisfies the following chain rule: Let ๐‘ be a

manifold and ๐‘”โˆถ ๐‘Œ โ†’ ๐‘ a ๐ถโˆž map. Then if ๐œ” is a closed ๐‘˜-form on ๐‘(๐‘” โˆ˜ ๐‘“)โ‹†๐œ” = ๐‘“โ‹†๐‘”โ‹†๐œ”

by the chain rule for pullbacks of forms, and hence by (5.1.7)

(5.1.8) (๐‘” โˆ˜ ๐‘“)โ™ฏ[๐œ”] = ๐‘“โ™ฏ(๐‘”โ™ฏ[๐œ”]) .The discussion above carries over verbatim to the setting of compactly supported de

Rham cohomology: If ๐‘“โˆถ ๐‘‹ โ†’ ๐‘Œ is a proper ๐ถโˆž map ๐‘“ induces a pullback map on coho-mology

๐‘“โ™ฏ โˆถ ๐ป๐‘˜๐‘ (๐‘Œ) โ†’ ๐ป๐‘˜๐‘ (๐‘‹)and if ๐‘“โˆถ ๐‘‹ โ†’ ๐‘Œ and ๐‘”โˆถ ๐‘Œ โ†’ ๐‘ are proper ๐ถโˆž maps then the chain rule (5.1.8) holds forcompactly supported de Rham cohomology as well as for ordinary de Rham cohomology.Notice also that if ๐‘“โˆถ ๐‘‹ โ†’ ๐‘Œ is a diffeomorphism, we can take ๐‘ to be ๐‘‹ itself and ๐‘” to be๐‘“โˆ’1, and in this case the chain rule tells us that the inducedmapsmaps๐‘“โ™ฏ โˆถ ๐ป๐‘˜(๐‘Œ) โ†’ ๐ป๐‘˜(๐‘Œ)and ๐‘“โ™ฏ โˆถ ๐ป๐‘˜๐‘ (๐‘Œ) โ†’ ๐ป๐‘˜๐‘ (๐‘‹) are bijections, i.e.,๐ป๐‘˜(๐‘‹) and๐ป๐‘˜(๐‘Œ) and๐ป๐‘˜๐‘ (๐‘‹) and๐ป๐‘˜๐‘ (๐‘Œ) areisomorphic as vector spaces.

We will next establish an important fact about the pullback operation ๐‘“โ™ฏ; weโ€™ll showthat itโ€™s a homotopy invariant of ๐‘“. Recall that two ๐ถโˆž maps

(5.1.9) ๐‘“0, ๐‘“1 โˆถ ๐‘‹ โ†’ ๐‘Œare homotopic if there exists a ๐ถโˆž map

๐นโˆถ ๐‘‹ ร— [0, 1] โ†’ ๐‘Œwith the property ๐น(๐‘, 0) = ๐‘“0(๐‘) and ๐น(๐‘, 1) = ๐‘“1(๐‘) for all ๐‘ โˆˆ ๐‘‹. We will prove:

Page 164: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

152 Chapter 5: Cohomology via forms

Theorem 5.1.10. If the maps (5.1.9) are homotopic then, for the maps they induce on coho-mology

(5.1.11) ๐‘“โ™ฏ0 = ๐‘“โ™ฏ1 .

Our proof of this will consist of proving this for an important special class of homo-topies, and then by โ€œpullbackโ€ tricks deducing this result for homotopies in general. Let ๐’—be a complete vector field on๐‘‹ and let

๐‘“๐‘ก โˆถ ๐‘‹ โ†’ ๐‘‹ , โˆ’โˆž < ๐‘ก < โˆžbe the one-parameter group of diffeomorphisms that ๐’— generates. Then

๐นโˆถ ๐‘‹ ร— [0, 1] โ†’ ๐‘‹ , ๐น(๐‘, ๐‘ก) โ‰” ๐‘“๐‘ก(๐‘) ,is a homotopy between ๐‘“0 and ๐‘“1, and weโ€™ll show that for this homotopic pair (5.1.11) istrue.

Proof. Recall that for ๐œ” โˆˆ ๐›บ๐‘˜(๐‘‹)๐‘‘๐‘‘๐‘ก๐‘“โ‹†๐‘ก ๐œ” |๐‘ก=0= ๐ฟ๐’— = ๐œ„๐’—๐‘‘๐œ” + ๐‘‘๐œ„๐’—๐œ”

and more generally for all ๐‘ก we have๐‘‘๐‘‘๐‘ก๐‘“โ‹†๐‘ก ๐œ” =

๐‘‘๐‘‘๐‘ ๐‘“โ‹†๐‘ +๐‘ก๐œ” |

๐‘ =0= ๐‘‘๐‘‘๐‘ (๐‘“๐‘  โˆ˜ ๐‘“๐‘ก)โ‹†๐œ” |

๐‘ =0

= ๐‘‘๐‘‘๐‘ ๐‘“โ‹†๐‘ก ๐‘“โ‹†๐‘  ๐œ” |

๐‘ =0= ๐‘“โ‹†๐‘ก๐‘‘๐‘‘๐‘ ๐‘“โ‹†๐‘  ๐œ” |๐‘ =0

= ๐‘“โ‹†๐‘ก ๐ฟ๐’—๐œ”= ๐‘“โ‹†๐‘ก ๐œ„๐’—๐‘‘๐œ” + ๐‘‘๐‘“โ‹†๐‘ก ๐œ„๐’—๐œ” .

Thus if we set๐‘„๐‘ก๐œ” โ‰” ๐‘“โ‹†๐‘ก ๐œ„๐’—๐œ”

we get from this computation:๐‘‘๐‘‘๐‘ก๐‘“โ‹†๐œ” = ๐‘‘๐‘„๐‘ก + ๐‘„๐‘ก๐‘‘๐œ”

and integrating over 0 โ‰ค ๐‘ก โ‰ค 1:(5.1.12) ๐‘“โ‹†1 ๐œ” โˆ’ ๐‘“โ‹†0 ๐œ” = ๐‘‘๐‘„๐œ” + ๐‘„๐‘‘๐œ”

where ๐‘„โˆถ ๐›บ๐‘˜(๐‘Œ) โ†’ ๐›บ๐‘˜โˆ’1(๐‘‹) is the operator

๐‘„๐œ” = โˆซ1

0๐‘„๐‘ก๐œ”๐‘‘๐‘ก .

The identity (5.1.11) is an easy consequence of this โ€œchain homotopyโ€ identity. If ๐œ” is in๐‘๐‘˜(๐‘‹), then ๐‘‘๐œ” = 0, so

๐‘“โ‹†1 ๐œ” โˆ’ ๐‘“โ‹†0 ๐œ” = ๐‘‘๐‘„๐œ”and

๐‘“โ™ฏ1 [๐œ”] โˆ’ ๐‘“โ™ฏ0 [๐œ”] = [๐‘“โ‹†1 ๐œ” โˆ’ ๐‘“โ‹†0 ๐œ”] = 0 . โ–ก

Weโ€™ll now describe how to extract from this result a proof of Theorem 5.1.10 for anypair of homotopic maps. Weโ€™ll begin with the following useful observation.

Page 165: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง5.1 The de Rham cohomology groups of a manifold 153

Proposition 5.1.13. If ๐‘“0, ๐‘“1 โˆถ ๐‘‹ โ†’ ๐‘Œ are homotopic ๐ถโˆž mappings, then there exists a ๐ถโˆžmap

๐นโˆถ ๐‘‹ ร— ๐‘ โ†’ ๐‘Œsuch that the restriction of ๐น to๐‘‹ ร— [0, 1] is a homotopy between ๐‘“0 and ๐‘“1.

Proof. Let ๐œŒ โˆˆ ๐ถโˆž0 (๐‘), ๐œŒ โ‰ฅ 0, be a bump function which is supported on the interval [ 14 ,34 ]

and is positive at ๐‘ก = 12 . Then

๐œ’(๐‘ก) =โˆซ๐‘กโˆ’โˆž ๐œŒ(๐‘ )๐‘‘๐‘ โˆซโˆžโˆ’โˆž ๐œŒ(๐‘ )๐‘‘๐‘ 

is a function which is zero on the interval (โˆ’โˆž, 14 ], is 1 on the interval [ 34 ,โˆž), and, for all ๐‘ก,lies between 0 and 1. Now let

๐บโˆถ ๐‘‹ ร— [0, 1] โ†’ ๐‘Œbe a homotopy between ๐‘“0 and ๐‘“1 and let ๐นโˆถ ๐‘‹ ร— ๐‘ โ†’ ๐‘Œ be the map(5.1.14) ๐น(๐‘ฅ, ๐‘ก) = ๐บ(๐‘ฅ, ๐œ’(๐‘ก)) .This is a ๐ถโˆž map and since

๐น(๐‘ฅ, 1) = ๐บ(๐‘ฅ, ๐œ’(1)) = ๐บ(๐‘ฅ, 1) = ๐‘“1(๐‘ฅ) ,and

๐น(๐‘ฅ, 0) = ๐บ(๐‘ฅ, ๐œ’(0)) = ๐บ(๐‘ฅ, 0) = ๐‘“0(๐‘ฅ) ,it gives one a homotopy between ๐‘“0 and ๐‘“1. โ–ก

Weโ€™re now in position to deduce Theorem 5.1.10 from the version of this result that weproved above.

Proof of Theorem 5.1.10. Let๐›พ๐‘ก โˆถ ๐‘‹ ร— ๐‘ โ†’ ๐‘‹ ร— ๐‘ , โˆ’โˆž < ๐‘ก < โˆž

be the one-parameter group of diffeomorphisms๐›พ๐‘ก(๐‘ฅ, ๐‘Ž) = (๐‘ฅ, ๐‘Ž + ๐‘ก)

and let ๐’— = ๐œ•/๐œ•๐‘ก be the vector field generating this group. For a ๐‘˜-form ๐œ‡ โˆˆ ๐›บ๐‘˜(๐‘‹ ร— ๐‘), wehave by (5.1.12) the identity

๐›พโ‹†1 ๐œ‡ โˆ’ ๐›พโ‹†0 ๐œ‡ = ๐‘‘๐›ค๐œ‡ + ๐›ค๐‘‘๐œ‡where

(5.1.15) ๐›ค๐œ‡ = โˆซ1

0๐›พโ‹†๐‘ก (๐œ„๐œ•/๐œ•๐‘ก๐œ‡)๐‘‘๐‘ก .

Now let ๐น, as in Proposition 5.1.13, be a ๐ถโˆž map๐นโˆถ ๐‘‹ ร— ๐‘ โ†’ ๐‘Œ

whose restriction to๐‘‹ ร— [0, 1] is a homotopy between ๐‘“0 and ๐‘“1. Then for ๐œ” โˆˆ ๐›บ๐‘˜(๐‘Œ)๐›พโ‹†1๐นโ‹†๐œ” โˆ’ ๐›พโ‹†0๐นโ‹†๐œ” = ๐‘‘๐›ค๐นโ‹†๐œ‡ + ๐›ค๐นโ‹†๐‘‘๐œ‡

by the identity (5.1.14). Now let ๐œ„ โˆถ ๐‘‹ โ†’ ๐‘‹ ร— ๐‘ be the inclusion ๐‘ โ†ฆ (๐‘, 0), and note that(๐น โˆ˜ ๐›พ1 โˆ˜ ๐œ„)(๐‘) = ๐น(๐‘, 1) = ๐‘“1(๐‘)

and(๐น โˆ˜ ๐›พ0 โˆ˜ ๐œ„)(๐‘) = ๐น(๐‘, 0) = ๐‘“0(๐‘)

Page 166: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

154 Chapter 5: Cohomology via forms

i.e.,๐น โˆ˜ ๐›พ1 โˆ˜ ๐œ„ = ๐‘“1

and๐น โˆ˜ ๐›พ0 โˆ˜ ๐œ„ = ๐‘“0 .

Thus๐œ„โ‹†(๐›พโ‹†1๐นโ‹†๐œ” โˆ’ ๐›พโ‹†0๐นโ‹†๐œ”) = ๐‘“โ‹†1 ๐œ” โˆ’ ๐‘“โ‹†0 ๐œ”

and on the other hand by (5.1.15)

๐œ„โ‹†(๐›พโ‹†1๐นโ‹†๐œ” โˆ’ ๐›พโ‹†0๐นโ‹†๐œ”) = ๐‘‘๐œ„โ‹†๐›ค๐นโ‹†๐œ” + ๐œ„โ‹†๐›ค๐นโ‹†๐‘‘๐œ” .

Letting๐‘„โˆถ ๐›บ๐‘˜(๐‘Œ) โ†’ ๐›บ๐‘˜โˆ’1(๐‘‹)

be the โ€œchain homotopyโ€ operator

(5.1.16) ๐‘„๐œ” โ‰” ๐œ„โ‹†๐›ค๐นโ‹†๐œ”

we can write the identity above more succinctly in the form

(5.1.17) ๐‘“โ‹†1 ๐œ” โˆ’ ๐‘“โ‹†0 ๐œ” = ๐‘‘๐‘„๐œ” + ๐‘„๐‘‘๐œ”

and from this deduce, exactly as we did earlier, the identity (5.1.11).This proof can easily be adapted to the compactly supported setting. Namely the oper-

ator (5.1.16) is defined by the integral

(5.1.18) ๐‘„๐œ” = โˆซ1

0๐œ„โ‹†๐›พโ‹†๐‘ก (๐œ„๐œ•/๐œ•๐‘ก๐นโ‹†๐œ”)๐‘‘๐‘ก .

Hence if ๐œ” is supported on a set๐ด in ๐‘Œ, the integrand of (5.1.17) at ๐‘ก is supported on the set

(5.1.19) { ๐‘ โˆˆ ๐‘‹ | ๐น(๐‘, ๐‘ก) โˆˆ ๐ด } ,

and hence ๐‘„๐œ” is supported on the set

๐œ‹(๐นโˆ’1(๐ด) โˆฉ ๐‘‹ ร— [0, 1])

where ๐œ‹โˆถ ๐‘‹ ร— [0, 1] โ†’ ๐‘‹ is the projection map ๐œ‹(๐‘, ๐‘ก) = ๐‘. โ–ก

Suppose now that ๐‘“0 and ๐‘“1 are proper mappings and

๐บโˆถ ๐‘‹ ร— [0, 1] โ†’ ๐‘Œ

a proper homotopy between ๐‘“0 and ๐‘“1, i.e., a homotopy between ๐‘“0 and ๐‘“1 which is properas a ๐ถโˆž map. Then if ๐น is the map (5.1.14) its restriction to ๐‘‹ ร— [0, 1] is also a proper map,so this restriction is also a proper homotopy between ๐‘“0 and ๐‘“1. Hence if ๐œ” is in ๐›บ๐‘˜๐‘ (๐‘Œ) and๐ด is its support, the set (5.1.19) is compact, so ๐‘„๐œ” is in ๐›บ๐‘˜โˆ’1๐‘ (๐‘‹). Therefore all summandsin the โ€œchain homotopyโ€ formula (5.1.17) are compactly supported. Thus weโ€™ve proved:

Theorem 5.1.20. If ๐‘“0, ๐‘“1 โˆถ ๐‘‹ โ†’ ๐‘Œ are proper ๐ถโˆž maps which are homotopic via a properhomotopy, the induced maps on cohomology

๐‘“โ™ฏ0 , ๐‘“โ™ฏ1 โˆถ ๐ป๐‘˜๐‘ (๐‘Œ) โ†’ ๐ป๐‘˜๐‘ (๐‘‹)

are the same.

Page 167: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง5.1 The de Rham cohomology groups of a manifold 155

Weโ€™ll conclude this section by noting that the cohomology groups๐ป๐‘˜(๐‘‹) are equippedwith a natural product operation. Namely, suppose ๐œ”๐‘– โˆˆ ๐›บ๐‘˜๐‘–(๐‘‹), ๐‘– = 1, 2, is a closed formand that ๐‘๐‘– = [๐œ”๐‘–] is the cohomology class represented by ๐œ”๐‘–. We can then define a productcohomology class ๐‘1 โ‹… ๐‘2 in๐ป๐‘˜1+๐‘˜2(๐‘‹) by the recipe(5.1.21) ๐‘1 โ‹… ๐‘2 โ‰” [๐œ”1 โˆง ๐œ”2] .To show that this is a legitimate definition we first note that since ๐œ”2 is closed

๐‘‘(๐œ”1 โˆง ๐œ”2) = ๐‘‘๐œ”1 โˆง ๐œ”2 + (โˆ’1)๐‘˜1๐œ”1 โˆง ๐‘‘๐œ”2 = 0 ,so ๐œ”1 โˆง ๐œ”2 is closed and hence does represent a cohomology class. Moreover if we replace๐œ”1 by another representative ๐œ”1 + ๐‘‘๐œ‡1 = ๐œ”โ€ฒ of the cohomology class ๐‘1, then

๐œ”โ€ฒ1 โˆง ๐œ”2 = ๐œ”1 โˆง ๐œ”2 + ๐‘‘๐œ‡1 โˆง ๐œ”2 .But since ๐œ”2 is closed,

๐‘‘๐œ‡1 โˆง ๐œ”2 = ๐‘‘(๐œ‡1 โˆง ๐œ”2) + (โˆ’1)๐‘˜1๐œ‡1 โˆง ๐‘‘๐œ”2= ๐‘‘(๐œ‡1 โˆง ๐œ”2)

so๐œ”โ€ฒ1 โˆง ๐œ”2 = ๐œ”1 โˆง ๐œ”2 + ๐‘‘(๐œ‡1 โˆง ๐œ”2)

and [๐œ”โ€ฒ1 โˆง ๐œ”2] = [๐œ”1 โˆง ๐œ”2]. Similarly (5.1.21) is unchanged if we replace ๐œ”2 by ๐œ”2 + ๐‘‘๐œ‡2,so the definition of (5.1.21) depends neither on the choice of ๐œ”1 nor ๐œ”2 and hence is anintrinsic definition as claimed.

There is a variant of this product operation for compactly supported cohomology classes,and weโ€™ll leave for you to check that itโ€™s also well defined. Suppose ๐‘1 is in๐ป

๐‘˜1๐‘ (๐‘‹) and ๐‘2 is in๐ป๐‘˜2(๐‘‹) (i.e., ๐‘1 is a compactly supported class and ๐‘2 is an ordinary cohomology class). Let๐œ”1 be a representative of ๐‘1 in๐›บ

๐‘˜1๐‘ (๐‘‹) and ๐œ”2 a representative of ๐‘2 in๐›บ๐‘˜2(๐‘‹). Then ๐œ”1 โˆง๐œ”2is a closed form in ๐›บ๐‘˜1+๐‘˜2๐‘ (๐‘‹) and hence defines a cohomology class(5.1.22) ๐‘1 โ‹… ๐‘2 โ‰” [๐œ”1 โˆง ๐œ”2]

in ๐ป๐‘˜1+๐‘˜2๐‘ (๐‘‹). Weโ€™ll leave for you to check that this is intrinsically defined. Weโ€™ll also leavefor you to check that (5.1.22) is intrinsically defined if the roles of ๐‘1 and ๐‘2 are reversed, i.e.,if ๐‘1 is in๐ป๐‘˜1(๐‘‹) and ๐‘2 in๐ป

๐‘˜2๐‘ (๐‘‹) and that the products (5.1.21) and (5.1.22) both satisfy

๐‘1 โ‹… ๐‘2 = (โˆ’1)๐‘˜1๐‘˜2๐‘2 โ‹… ๐‘1 .Finally we note that if๐‘Œ is anothermanifold and๐‘“โˆถ ๐‘‹ โ†’ ๐‘Œ a๐ถโˆžmap then for๐œ”1 โˆˆ ๐›บ๐‘˜1(๐‘Œ)and ๐œ”2 โˆˆ ๐›บ๐‘˜2(๐‘Œ)

๐‘“โ‹†(๐œ”1 โˆง ๐œ”2) = ๐‘“โ‹†๐œ”1 โˆง ๐‘“โ‹†๐œ”2by (2.6.8) and hence if ๐œ”1 and ๐œ”2 are closed and ๐‘๐‘– = [๐œ”๐‘–], then(5.1.23) ๐‘“โ™ฏ(๐‘1 โ‹… ๐‘2) = ๐‘“โ™ฏ๐‘1 โ‹… ๐‘“โ™ฏ๐‘2 .

Exercises for ยง5.1Exercise 5.1.i (stereographic projection). Let ๐‘ โˆˆ ๐‘†๐‘› be the point ๐‘ = (0,โ€ฆ, 0, 1). Showthat for every point ๐‘ฅ = (๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›+1) of ๐‘†๐‘› โˆ– {๐‘} the ray

๐‘ก๐‘ฅ + (1 โˆ’ ๐‘ก)๐‘ , ๐‘ก > 0intersects the plane ๐‘ฅ๐‘›+1 = 0 in the point

๐›พ(๐‘ฅ) = 11 โˆ’ ๐‘ฅ๐‘›+1

(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›)

Page 168: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

156 Chapter 5: Cohomology via forms

and that the map ๐›พโˆถ ๐‘†๐‘› โˆ– {๐‘} โ†’ ๐‘๐‘› is a diffeomorphism.

Exercise 5.1.ii. Show that the operator

๐‘„๐‘ก โˆถ ๐›บ๐‘˜(๐‘Œ) โ†’ ๐›บ๐‘˜โˆ’1(๐‘‹)in the integrand of equation (5.1.18), i.e., the operator

๐‘„๐‘ก๐œ” = ๐œ„โ‹†๐›พโ‹†๐‘ก (๐œ„๐œ•/๐œ•๐‘ก)๐นโ‹†๐œ”has the following description. Let ๐‘ be a point of ๐‘‹ and let ๐‘ž = ๐‘“๐‘ก(๐‘). The curve ๐‘  โ†ฆ ๐‘“๐‘ (๐‘)passes through ๐‘ž at time ๐‘  = ๐‘ก. Let ๐‘ฃ(๐‘ž) โˆˆ ๐‘‡๐‘ž๐‘Œ be the tangent vector to this curve at ๐‘ก. Showthat

(5.1.24) (๐‘„๐‘ก๐œ”)(๐‘) = (๐‘‘๐‘“โ‹†๐‘ก )๐‘๐œ„๐‘ฃ(๐‘ž)๐œ”๐‘ž .

Exercise 5.1.iii. Let๐‘ˆ be a star-shaped open subset of ๐‘๐‘›, i.e., a subset of ๐‘๐‘› with the prop-erty that for every ๐‘ โˆˆ ๐‘ˆ the ray { ๐‘ก๐‘ | 0 โ‰ค ๐‘ก โ‰ค 1 } is in ๐‘ˆ.(1) Let ๐’— be the vector field

๐’— =๐‘›โˆ‘๐‘–=1๐‘ฅ๐‘–๐œ•๐œ•๐‘ฅ๐‘–

and ๐›พ๐‘ก โˆถ ๐‘ˆ โ†’ ๐‘ˆ the map ๐‘ โ†ฆ ๐‘ก๐‘. Show that for every ๐‘˜-form ๐œ” โˆˆ ๐›บ๐‘˜(๐‘ˆ)๐œ” = ๐‘‘๐‘„๐œ” + ๐‘„๐‘‘๐œ”

where

๐‘„๐œ” = โˆซ1

0๐›พโ‹†๐‘ก ๐œ„๐’—๐œ”๐‘‘๐‘ก๐‘ก

.

(2) Show that if ๐œ” = โˆ‘๐ผ ๐‘Ž๐ผ(๐‘ฅ)๐‘‘๐‘ฅ๐ผ then

(5.1.25) ๐‘„๐œ” = โˆ‘๐ผ,๐‘Ÿ(โˆซ ๐‘ก๐‘˜โˆ’1(โˆ’1)๐‘Ÿโˆ’1๐‘ฅ๐‘–๐‘Ÿ๐‘Ž๐ผ(๐‘ก๐‘ฅ)๐‘‘๐‘ก) ๐‘‘๐‘ฅ๐ผ๐‘Ÿ

where ๐‘‘๐‘ฅ๐ผ๐‘Ÿ โ‰” ๐‘‘๐‘ฅ๐‘–1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘–๐‘Ÿ โˆงโ‹ฏ๐‘‘๐‘ฅ๐‘–๐‘˜Exercise 5.1.iv. Let ๐‘‹ and ๐‘Œ be oriented connected ๐‘›-manifolds, and ๐‘“โˆถ ๐‘‹ โ†’ ๐‘Œ a propermap. Show that the linear map ๐ฟ defined by the commutative square

๐ป๐‘›๐‘ (๐‘Œ) ๐ป๐‘›๐‘ (๐‘‹)

๐‘ ๐‘

๐‘“โ™ฏ

๐ผ๐‘Œ โ‰€ ๐ผ๐‘‹โ‰€

๐ฟ

is multiplication by deg(๐‘“).

Exercise 5.1.v. A homotopy equivalence between๐‘‹ and ๐‘Œ is a pair of maps ๐‘“โˆถ ๐‘‹ โ†’ ๐‘Œ and๐‘”โˆถ ๐‘Œ โ†’ ๐‘‹ such that ๐‘” โˆ˜ ๐‘“ โ‰ƒ id๐‘‹ and ๐‘“ โˆ˜ ๐‘” โ‰ƒ id๐‘Œ. Show that if ๐‘‹ and ๐‘Œ are homotopyequivalent their cohomology groups are the same โ€œup to isomorphismโ€, i.e., ๐‘“ and ๐‘” induceinverse isomorphisms ๐‘“โ™ฏ โˆถ ๐ป๐‘˜(๐‘Œ) โ†’ ๐ป๐‘˜(๐‘‹) and ๐‘”โ™ฏ โˆถ ๐ป๐‘˜(๐‘‹) โ†’ ๐ป๐‘˜(๐‘Œ).

Exercise 5.1.vi. Show that ๐‘๐‘› โˆ– {0} and ๐‘†๐‘›โˆ’1 are homotopy equivalent.

Exercise 5.1.vii. What are the cohomology groups of the ๐‘›-sphere with two points deleted?Hint: The ๐‘›-sphere with one point deleted is homeomorphic to ๐‘๐‘›.

Page 169: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง5.1 The de Rham cohomology groups of a manifold 157

Exercise 5.1.viii. Let ๐‘‹ and ๐‘Œ be manifolds and ๐‘“0, ๐‘“1, ๐‘“2 โˆถ ๐‘‹ โ†’ ๐‘Œ three ๐ถโˆž maps. Showthat if ๐‘“0 and ๐‘“1 are homotopic and ๐‘“1 and ๐‘“2 are homotopic then ๐‘“0 and ๐‘“2 are homotopic.

Hint: The homotopy (5.1.7) has the property that๐น(๐‘, ๐‘ก) = ๐‘“๐‘ก(๐‘) = ๐‘“0(๐‘)

for 0 โ‰ค ๐‘ก โ‰ค 14 and๐น(๐‘, ๐‘ก) = ๐‘“๐‘ก(๐‘) = ๐‘“1(๐‘)

for 34 โ‰ค ๐‘ก < 1. Show that two homotopies with these properties: a homotopy between ๐‘“0and ๐‘“1 and a homotopy between ๐‘“1 and ๐‘“2, are easy to โ€œglue togetherโ€ to get a homotopybetween ๐‘“0 and ๐‘“2.Exercise 5.1.ix.(1) Let๐‘‹ be an ๐‘›-manifold. Given points ๐‘0, ๐‘1, ๐‘2 โˆˆ ๐‘‹, show that if ๐‘0 can be joined to ๐‘1

by a๐ถโˆž curve ๐›พ0 โˆถ [0, 1] โ†’ ๐‘‹, and๐‘1 can be joined to๐‘2 by a๐ถโˆž curve ๐›พ1 โˆถ [0, 1] โ†’ ๐‘‹,then ๐‘0 can be joined to ๐‘2 by a ๐ถโˆž curve, ๐›พโˆถ [0, 1] โ†’ ๐‘‹.

Hint: A๐ถโˆž curve, ๐›พโˆถ [0, 1] โ†’ ๐‘‹, joining ๐‘0 to ๐‘2 can be thought of as a homotopybetween the maps

๐›พ๐‘0 โˆถ โˆ— โ†’ ๐‘‹ , โˆ— โ†ฆ ๐‘0and

๐›พ๐‘1 โˆถ โˆ— โ†’ ๐‘‹ , โˆ— โ†ฆ ๐‘1where โˆ— is the zero-dimensional manifold consisting of a single point.

(2) Show that if a manifold ๐‘‹ is connected it is arc-wise connected: any two points can byjoined by a ๐ถโˆž curve.

Exercise 5.1.x. Let๐‘‹ be a connected ๐‘›-manifold and ๐œ” โˆˆ ๐›บ1(๐‘‹) a closed one-form.(1) Show that if ๐›พโˆถ [0, 1] โ†’ ๐‘‹ is a ๐ถโˆž curve there exists a partition:

0 = ๐‘Ž0 < ๐‘Ž1 < โ‹ฏ < ๐‘Ž๐‘› = 1of the interval [0, 1] and open sets ๐‘ˆ1,โ€ฆ,๐‘ˆ๐‘› in๐‘‹ such that ๐›พ ([๐‘Ž๐‘–โˆ’1, ๐‘Ž๐‘–]) โŠ‚ ๐‘ˆ๐‘– and suchthat ๐œ”|๐‘ˆ๐‘– is exact.

(2) In part (1) show that there exist functions ๐‘“๐‘– โˆˆ ๐ถโˆž(๐‘ˆ๐‘–) such that ๐œ”|๐‘ˆ๐‘– = ๐‘‘๐‘“๐‘– and๐‘“๐‘– (๐›พ(๐‘Ž๐‘–)) = ๐‘“๐‘–+1 (๐›พ(๐‘Ž๐‘–)).

(3) Show that if ๐‘0 and ๐‘1 are the end points of ๐›พ

๐‘“๐‘›(๐‘1) โˆ’ ๐‘“1(๐‘0) = โˆซ1

0๐›พโ‹†๐œ” .

(4) Let(5.1.26) ๐›พ๐‘  โˆถ [0, 1] โ†’ ๐‘‹ , 0 โ‰ค ๐‘  โ‰ค 1

be a homotopic family of curves with ๐›พ๐‘ (0) = ๐‘0 and ๐›พ๐‘ (1) = ๐‘1. Prove that the integral

โˆซ1

0๐›พโ‹†๐‘  ๐œ”

is independent of ๐‘ 0.Hint: Let ๐‘ 0 be a point on the interval, [0, 1]. For ๐›พ = ๐›พ๐‘ 0 choose ๐‘Ž๐‘–โ€™s and ๐‘“๐‘–โ€™s as in

parts (a)โ€“(b) and show that for ๐‘  close to ๐‘ 0, ๐›พ๐‘ [๐‘Ž๐‘–โˆ’1, ๐‘Ž๐‘–] โŠ‚ ๐‘ˆ๐‘–.(5) A connected manifold ๐‘‹ is simply connected if for any two curves ๐›พ0, ๐›พ1 โˆถ [0, 1] โ†’ ๐‘‹

with the same end-points ๐‘0 and ๐‘1, there exists a homotopy (5.1.22) with ๐›พ๐‘ (0) = ๐‘0and ๐›พ๐‘ (1) = ๐‘1, i.e., ๐›พ0 can be smoothly deformed into ๐›พ1 by a family of curves all havingthe same end-points. Prove the following theorem.

Page 170: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

158 Chapter 5: Cohomology via forms

Theorem 5.1.27. If๐‘‹ is simply-connected, then๐ป1(๐‘‹) = 0.

Exercise 5.1.xi. Show that the product operation (5.1.21) is associative and satisfies left andright distributive laws.

Exercise 5.1.xii. Let๐‘‹ be a compact oriented 2๐‘›-dimensional manifold. Show that themap

๐ตโˆถ ๐ป๐‘›(๐‘‹) ร— ๐ป๐‘›(๐‘‹) โ†’ ๐‘defined by

๐ต(๐‘1, ๐‘2) = ๐ผ๐‘‹(๐‘1 โ‹… ๐‘2)is a bilinear form on๐ป๐‘›(๐‘‹) and that ๐ต is symmetric if ๐‘› is even and alternating if ๐‘› is odd.

5.2. The Mayerโ€“Vietoris Sequence

In this section weโ€™ll develop some techniques for computing cohomology groups ofmanifolds. (These techniques are known collectively as โ€œdiagram chasingโ€ and themasteringof these techniques is more akin to becoming proficient in checkers or chess or the Sundayacrostics in the New York Times than in the areas of mathematics to which theyโ€™re applied.)Let ๐ถ0, ๐ถ1, ๐ถ2,โ€ฆ be vector spaces and ๐‘‘โˆถ ๐ถ๐‘– โ†’ ๐ถ๐‘–+1 a linear map. The sequence of vectorspaces and maps

(5.2.1) ๐ถ0 ๐ถ1 ๐ถ2 โ‹ฏ .๐‘‘ ๐‘‘ ๐‘‘

is called a cochain complex, or simply a complex, if ๐‘‘2 = 0, i.e., if for ๐‘Ž โˆˆ ๐ถ๐‘˜, ๐‘‘(๐‘‘๐‘Ž) = 0. Forinstance if๐‘‹ is a manifold the de Rham complex

(5.2.2) ๐›บ0(๐‘‹) ๐›บ1(๐‘‹) ๐›บ2(๐‘‹) โ‹ฏ .๐‘‘ ๐‘‘ ๐‘‘

is an example of a complex, and the complex of compactly supported de Rham forms

(5.2.3) ๐›บ0๐‘ (๐‘‹) ๐›บ1๐‘ (๐‘‹) ๐›บ2๐‘ (๐‘‹) โ‹ฏ .๐‘‘ ๐‘‘ ๐‘‘

is another example. One defines the cohomology groups of the complex (5.2.1) in exactlythe same way that we defined the cohomology groups of the complexes (5.2.2) and (5.2.3)in ยง5.1. Let

๐‘๐‘˜ โ‰” ker(๐‘‘โˆถ ๐ถ๐‘˜ โ†’ ๐ถ๐‘˜+1) = { ๐‘Ž โˆˆ ๐ถ๐‘˜ | ๐‘‘๐‘Ž = 0 }and

๐ต๐‘˜ โ‰” ๐‘‘๐ถ๐‘˜โˆ’1

i.e., let ๐‘Ž be in ๐ต๐‘˜ if and only if ๐‘Ž = ๐‘‘๐‘ for some ๐‘ โˆˆ ๐ถ๐‘˜โˆ’1. Then ๐‘‘๐‘Ž = ๐‘‘2๐‘ = 0, so ๐ต๐‘˜ is avector subspace of ๐‘๐‘˜, and we define ๐ป๐‘˜(๐ถ)โ€” the ๐‘˜th cohomology group of the complex(5.2.1) โ€” to be the quotient space

(5.2.4) ๐ป๐‘˜(๐ถ) โ‰” ๐‘๐‘˜/๐ต๐‘˜ .Given ๐‘ โˆˆ ๐‘๐‘˜ we will, as in ยง5.1, denote its image in๐ป๐‘˜(๐ถ) by [๐‘] and weโ€™ll call ๐‘ a represen-tative of the cohomology class [๐‘].

We will next assemble a small dictionary of โ€œdiagram chasingโ€ terms.

Definition 5.2.5. Let ๐‘‰0, ๐‘‰1, ๐‘‰2,โ€ฆ be vector spaces and ๐›ผ๐‘– โˆถ ๐‘‰๐‘– โ†’ ๐‘‰๐‘–+1 linear maps. Thesequence

๐‘‰0 ๐‘‰1 ๐‘‰2 โ‹ฏ .๐›ผ0 ๐›ผ1 ๐›ผ2

is an exact sequence if, for each ๐‘–, the kernel of ๐›ผ๐‘–+1 is equal to the image of ๐›ผ๐‘–.

Page 171: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง5.2 The Mayerโ€“Vietoris Sequence 159

For example the sequence (5.2.1) is exact if ๐‘๐‘– = ๐ต๐‘– for all ๐‘–, or, in other words, if๐ป๐‘–(๐ถ) = 0 for all ๐‘–. A simple example of an exact sequence that weโ€™ll encounter a lot belowis a sequence of the form

0 ๐‘‰1 ๐‘‰2 ๐‘‰3 0 ,๐›ผ1 ๐›ผ2

i.e., a five term exact sequence whose first and last terms are the vector space, ๐‘‰0 = ๐‘‰4 = 0,and hence ๐›ผ0 = ๐›ผ3 = 0. This sequence is exact if and only if the following conditions hold:

(1) ๐›ผ1 is injective,(2) the kernel of ๐›ผ2 equals the image of ๐›ผ1, and(3) ๐›ผ2 is surjective.

We will call an exact sequence of this form a short exact sequence. (Weโ€™ll also encountera lot below an even shorter example of an exact sequence, namely a sequence of the form

0 ๐‘‰1 ๐‘‰2 0 .๐›ผ1

This is an exact sequence if and only if ๐›ผ1 is bijective.)Another basic notion in the theory of diagram chasing is the notion of a commutative

diagram. The square diagram of vector spaces and linear maps

๐ด ๐ต

๐ถ ๐ท

๐‘–

๐‘“

๐‘—

๐‘”

commutes if ๐‘— โˆ˜ ๐‘“ = ๐‘” โˆ˜ ๐‘–, and a more complicated diagram of vector spaces and linear mapslike the diagram

๐ด1 ๐ด2 ๐ด3

๐ต1 ๐ต2 ๐ต3

๐ถ1 ๐ถ2 ๐ถ3

commutes if every sub-square in the diagram commutes.We now have enough โ€œdiagram chasingโ€ vocabulary to formulate the Mayerโ€“Vietoris

theorem. For ๐‘Ÿ = 1, 2, 3 let

(5.2.6) ๐ถ0๐‘Ÿ ๐ถ1๐‘Ÿ ๐ถ2๐‘Ÿ โ‹ฏ .๐‘‘ ๐‘‘ ๐‘‘

be a complex and, for fixed ๐‘˜, let

(5.2.7) 0 ๐ถ๐‘˜1 ๐ถ๐‘˜2 ๐ถ๐‘˜3 0๐‘– ๐‘—

Page 172: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

160 Chapter 5: Cohomology via forms

be a short exact sequence. Assume that the diagram below commutes:

โ‹ฎ โ‹ฎ โ‹ฎ

0 ๐ถ๐‘˜โˆ’11 ๐ถ๐‘˜โˆ’12 ๐ถ๐‘˜โˆ’13 0

0 ๐ถ๐‘˜1 ๐ถ๐‘˜2 ๐ถ๐‘˜3 0

0 ๐ถ๐‘˜+11 ๐ถ๐‘˜+12 ๐ถ๐‘˜+13 0

โ‹ฎ โ‹ฎ โ‹ฎ .

๐‘‘

๐‘–

๐‘‘

๐‘—

๐‘‘

๐‘‘

๐‘–

๐‘‘

๐‘—

๐‘‘

๐‘– ๐‘—

That is, assume that in the left hand squares, ๐‘‘๐‘– = ๐‘–๐‘‘, and in the right hand squares, ๐‘‘๐‘— = ๐‘—๐‘‘.The Mayerโ€“Vietoris theorem addresses the following question: If one has information

about the cohomology groups of two of the three complexes (5.2.6), what information aboutthe cohomology groups of the third can be extracted from this diagram? Let us first observethat the maps ๐‘– and ๐‘— give rise to mappings between these cohomology groups. Namely, for๐‘Ÿ = 1, 2, 3 let ๐‘๐‘˜๐‘Ÿ be the kernel of the map ๐‘‘โˆถ ๐ถ๐‘˜๐‘Ÿ โ†’ ๐ถ๐‘˜+1๐‘Ÿ , and ๐ต๐‘˜๐‘Ÿ the image of the map๐‘‘โˆถ ๐ถ๐‘˜โˆ’1๐‘Ÿ โ†’ ๐ถ๐‘˜๐‘Ÿ . Since ๐‘–๐‘‘ = ๐‘‘๐‘–, ๐‘–maps ๐ต๐‘˜1 into ๐ต๐‘˜2 and ๐‘๐‘˜1 into ๐‘๐‘˜2 , therefore by (5.2.4) it givesrise to a linear mapping

๐‘–โ™ฏ โˆถ ๐ป๐‘˜(๐ถ1) โ†’ ๐ป๐‘˜(๐ถ2) .Similarly since ๐‘—๐‘‘ = ๐‘‘๐‘—, ๐‘—maps ๐ต๐‘˜2 into ๐ต๐‘˜3 and ๐‘๐‘˜2 into ๐‘๐‘˜3 , and so by (5.2.4) gives rise to alinear mapping

๐‘—โ™ฏ โˆถ ๐ป๐‘˜(๐ถ2) โ†’ ๐ป๐‘˜(๐ถ3) .Moreover, since ๐‘— โˆ˜ ๐‘– = 0 the image of ๐‘–โ™ฏ is contained in the kernel of ๐‘—โ™ฏ. Weโ€™ll leave as anexercise the following sharpened version of this observation:

Proposition 5.2.8. The kernel of ๐‘—โ™ฏ equals the image of ๐‘–โ™ฏ, i.e., the three term sequence

(5.2.9) ๐ป๐‘˜(๐ถ1) ๐ป๐‘˜(๐ถ2) ๐ป๐‘˜(๐ถ3)๐‘–โ™ฏ ๐‘—โ™ฏ

is exact.

Since (5.2.7) is a short exact sequence one is tempted to conjecture that (5.2.9) is alsoa short exact sequence (which, if it were true, would tell us that the cohomology groupsof any two of the complexes (5.2.6) completely determine the cohomology groups of thethird). Unfortunately, this is not the case. To see how this conjecture can be violated Let ustry to show that the mapping ๐‘—โ™ฏ is surjective. Let ๐‘๐‘˜3 be an element of ๐‘๐‘˜3 representing thecohomology class [๐‘๐‘˜3] in ๐ป3(๐ถ3). Since (5.2.7) is exact there exists a ๐‘๐‘˜2 in ๐ถ๐‘˜2 which getsmapped by ๐‘— onto ๐‘๐‘˜3 , and if ๐‘๐‘˜3 were in ๐‘๐‘˜2 this would imply

๐‘—โ™ฏ[๐‘๐‘˜2] = [๐‘—๐‘๐‘˜2] = [๐‘๐‘˜3] ,

Page 173: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง5.2 The Mayerโ€“Vietoris Sequence 161

i.e., the cohomology class [๐‘๐‘˜3] would be in the image of ๐‘—โ™ฏ. However, since thereโ€™s no reasonfor ๐‘๐‘˜2 to be in ๐‘๐‘˜2 , thereโ€™s also no reason for [๐‘๐‘˜3] to be in the image of ๐‘—โ™ฏ. What we can say,however, is that ๐‘—๐‘‘๐‘๐‘˜2 = ๐‘‘๐‘—๐‘๐‘˜2 = ๐‘‘๐‘๐‘˜3 = 0 since ๐‘๐‘˜3 is in ๐‘๐‘˜3 . Therefore by the exactness of(5.2.7) in degree ๐‘˜ + 1 there exists a unique element ๐‘๐‘˜+11 in ๐ถ๐‘˜+11 with property(5.2.10) ๐‘‘๐‘๐‘˜2 = ๐‘–๐‘๐‘˜+11 .Moreover, since

0 = ๐‘‘(๐‘‘๐‘๐‘˜2) = ๐‘‘๐‘–(๐‘๐‘˜+11 ) = ๐‘– ๐‘‘๐‘๐‘˜+11and ๐‘– is injective, ๐‘‘๐‘๐‘˜+11 = 0, i.e.,(5.2.11) ๐‘๐‘˜+11 โˆˆ ๐‘๐‘˜+11 .Thus via (5.2.10) and (5.2.11) weโ€™ve converted an element ๐‘๐‘˜3 of ๐‘๐‘˜3 into an element ๐‘๐‘˜+11 of๐‘๐‘˜+11 and hence set up a correspondence(5.2.12) ๐‘๐‘˜3 โˆˆ ๐‘๐‘˜3 โ†’ ๐‘๐‘˜+11 โˆˆ ๐‘๐‘˜+11 .Unfortunately this correspondence isnโ€™t, strictly speaking, a map of ๐‘๐‘˜3 into ๐‘๐‘˜+11 ; the ๐‘๐‘˜1 in(5.2.12) isnโ€™t determined by ๐‘๐‘˜3 alone but also by the choice we made of ๐‘๐‘˜2 . Suppose, how-ever, that we make another choice of a ๐‘๐‘˜2 with the property ๐‘—(๐‘๐‘˜2) = ๐‘๐‘˜3 . Then the differencebetween our two choices is in the kernel of ๐‘— and hence, by the exactness of (5.2.6) at level๐‘˜, is in the image of ๐‘–. In other words, our two choices are related by

(๐‘๐‘˜2)new = (๐‘๐‘˜2)old + ๐‘–(๐‘๐‘˜1)for some ๐‘๐‘˜1 in ๐ถ๐‘˜1 , and hence by (5.2.10)

(๐‘๐‘˜+11 )new = (๐‘๐‘˜+11 )old + ๐‘‘๐‘๐‘˜1 .Therefore, even though the correspondence (5.2.12) isnโ€™t strictly speaking amap it does giverise to a well-defined map

๐‘๐‘˜3 โ†’ ๐ป๐‘˜+1(๐ถ1) , ๐‘๐‘˜3 โ†ฆ [๐‘๐‘˜+13 ] .Moreover, if ๐‘๐‘˜3 is in ๐ต๐‘˜3 , i.e., ๐‘๐‘˜3 = ๐‘‘๐‘๐‘˜โˆ’13 for some ๐‘๐‘˜โˆ’13 โˆˆ ๐ถ๐‘˜โˆ’13 , then by the exactness of (5.2.6)at level ๐‘˜โˆ’1, ๐‘๐‘˜โˆ’13 = ๐‘—(๐‘๐‘˜โˆ’12 ) for some ๐‘๐‘˜โˆ’12 โˆˆ ๐ถ๐‘˜โˆ’12 and hence ๐‘๐‘˜3 = ๐‘—(๐‘‘๐‘๐‘˜โˆ’22 ). In other words wecan take the ๐‘๐‘˜2 above to be ๐‘‘๐‘๐‘˜โˆ’12 in which case the ๐‘๐‘˜+11 in equation (5.2.10) is just zero.Thusthe map (5.2.12) maps ๐ต๐‘˜3 to zero and hence by Proposition 1.2.9 gives rise to a well-definedmap

๐›ฟโˆถ ๐ป๐‘˜(๐ถ3) โ†’ ๐ป๐‘˜+1(๐ถ1)mapping [๐‘๐‘˜3] โ†’ [๐‘๐‘˜+11 ]. We will leave it as an exercise to show that this mapping measuresthe failure of the arrow ๐‘—โ™ฏ in the exact sequence (5.2.9) to be surjective (and hence the failureof this sequence to be a short exact sequence at its right end).

Proposition 5.2.13. The image of the map ๐‘—โ™ฏ โˆถ ๐ป๐‘˜(๐ถ2) โ†’ ๐ป๐‘˜(๐ถ3) is equal to the kernel ofthe map ๐›ฟโˆถ ๐ป๐‘˜(๐ถ3) โ†’ ๐ป๐‘˜+1(๐ถ1).

Hint: Suppose that in the correspondence (5.2.12), ๐‘๐‘˜+11 is in ๐ต๐‘˜+11 . Then ๐‘๐‘˜+11 = ๐‘‘๐‘๐‘˜1 forsome ๐‘๐‘˜1 in ๐ถ๐‘˜1 . Show that ๐‘—(๐‘๐‘˜2 โˆ’ ๐‘–(๐‘๐‘˜1)) = ๐‘๐‘˜3 and ๐‘‘(๐‘๐‘˜2 โˆ’ ๐‘–(๐‘๐‘˜1)) = 0, i.e., ๐‘๐‘˜2 โˆ’ ๐‘–(๐‘๐‘˜1) is in ๐‘๐‘˜2 andhence ๐‘—โ™ฏ[๐‘๐‘˜2 โˆ’ ๐‘–(๐‘๐‘˜1)] = [๐‘๐‘˜3].

Let us next explore the failure of themap ๐‘–โ™ฏ โˆถ ๐ป๐‘˜+1(๐ถ1) โ†’ ๐ป๐‘˜+1(๐ถ2), to be injective. Let๐‘๐‘˜+11 be in ๐‘๐‘˜+11 and suppose that its cohomology class, [๐‘๐‘˜+11 ], gets mapped by ๐‘–โ™ฏ into zero.This translates into the statement(5.2.14) ๐‘–(๐‘๐‘˜+11 ) = ๐‘‘๐‘๐‘˜2

Page 174: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

162 Chapter 5: Cohomology via forms

for some ๐‘๐‘˜2 โˆˆ ๐ถ๐‘˜2 . Moreover since ๐‘‘๐‘๐‘˜2 = ๐‘–(๐‘๐‘˜+11 ), ๐‘—(๐‘‘๐‘๐‘˜2) = 0. But if

(5.2.15) ๐‘๐‘˜3 โ‰” ๐‘—(๐‘๐‘˜2)then ๐‘‘๐‘๐‘˜3 = ๐‘‘๐‘—(๐‘๐‘˜2) = ๐‘—(๐‘‘๐‘๐‘˜2) = ๐‘—(๐‘–(๐‘๐‘˜+11 )) = 0, so ๐‘๐‘˜3 is in ๐‘๐‘˜3 , and by (5.2.14), (5.2.15) and thedefinition of ๐›ฟ

[๐‘๐‘˜+11 ] = ๐›ฟ[๐‘๐‘˜3] .In other words the kernel of themap ๐‘–โ™ฏ โˆถ ๐ป๐‘˜+1(๐ถ1) โ†’ ๐ป๐‘˜+1(๐ถ2) is contained in the image ofthe map ๐›ฟโˆถ ๐ป๐‘˜(๐ถ3) โ†’ ๐ป๐‘˜+1(๐ถ1). We will leave it as an exercise to show that this argumentcan be reversed to prove the converse assertion and hence to prove

Proposition 5.2.16. The image of the map ๐›ฟโˆถ ๐ป๐‘˜(๐ถ1) โ†’ ๐ป๐‘˜+1(๐ถ1) is equal to the kernel ofthe map ๐‘–โ™ฏ โˆถ ๐ป๐‘˜+1(๐ถ1) โ†’ ๐ป๐‘˜+1(๐ถ2).

Putting together the Propositions 5.2.8, 5.2.13 and 5.2.16 we obtain the main result ofthis section: the Mayerโ€“Vietoris theorem. The sequence of cohomology groups and linearmaps

(5.2.17) โ‹ฏ ๐ป๐‘˜(๐ถ1) ๐ป๐‘˜(๐ถ2) ๐ป๐‘˜(๐ถ3) ๐ป๐‘˜+1(๐ถ1) โ‹ฏ๐›ฟ ๐‘–โ™ฏ ๐‘—โ™ฏ ๐›ฟ ๐‘–โ™ฏ

is exact.

Remark 5.2.18. To see an illuminating real world example of an application of these ideas,we strongly recommend that our readers stare at Exercise 5.2.v with gives amethod for com-puting the de Rham cohomology of the ๐‘›-sphere ๐‘†๐‘› in terms of the de Rham cohomologiesof ๐‘†๐‘› โˆ– {(0,โ€ฆ, 0, 1)} and ๐‘†๐‘› โˆ– {(0,โ€ฆ, 0, โˆ’1)} via an exact sequence of the form (5.2.17).

Remark 5.2.19. In view of the โ€œโ‹ฏโ€โ€™s this sequence can be a very long sequence and is com-monly referred to as the long exact sequence in cohomology associated to the short exactsequence of complexes (5.2.7).

Before we discuss the applications of this result, we will introduce some vector spacenotation. Given vector spaces ๐‘‰1 and ๐‘‰2, weโ€™ll denote by ๐‘‰1 โŠ• ๐‘‰2 the vector space sum of ๐‘‰1and ๐‘‰2, i.e., the set of all pairs

(๐‘ข1, ๐‘ข2) , ๐‘ข๐‘– โˆˆ ๐‘‰๐‘–with the addition operation

(๐‘ข1, ๐‘ข2) + (๐‘ฃ1 + ๐‘ฃ2) โ‰” (๐‘ข1 + ๐‘ฃ1, ๐‘ข2 + ๐‘ฃ2)and the scalar multiplication operation

๐œ†(๐‘ข1, ๐‘ข2) โ‰” (๐œ†๐‘ข1, ๐œ†๐‘ข2) .Now let๐‘‹ be a manifold and let๐‘ˆ1 and๐‘ˆ2 be open subsets of๐‘‹. Then one has a linear map

๐‘– โˆถ ๐›บ๐‘˜(๐‘ˆ1 โˆช ๐‘ˆ2) โ†’ ๐›บ๐‘˜(๐‘ˆ1) โŠ• ๐›บ๐‘˜(๐‘ˆ2)defined by(5.2.20) ๐œ” โ†ฆ (๐œ”|๐‘ˆ1 , ๐œ”|๐‘ˆ2)where ๐œ”|๐‘ˆ๐‘– is the restriction of ๐œ” to ๐‘ˆ๐‘–. Similarly one has a linear map

๐‘—โˆถ ๐›บ๐‘˜(๐‘ˆ1) โŠ• ๐›บ๐‘˜(๐‘ˆ2) โ†’ ๐›บ๐‘˜(๐‘ˆ1 โˆฉ ๐‘ˆ2)defined by

(๐œ”1, ๐œ”2) โ†ฆ ๐œ”1|๐‘ˆ1โˆฉ๐‘ˆ2 โˆ’ ๐œ”2|๐‘ˆ1โˆฉ๐‘ˆ2 .We claim:

Page 175: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง5.2 The Mayerโ€“Vietoris Sequence 163

Theorem 5.2.21. The sequence

0 ๐›บ๐‘˜(๐‘ˆ1 โˆฉ ๐‘ˆ2) ๐›บ๐‘˜(๐‘ˆ1) โŠ• ๐›บ๐‘˜(๐‘ˆ2) ๐›บ๐‘˜(๐‘ˆ1 โˆฉ ๐‘ˆ2) 0 .๐‘– ๐‘—

is a short exact sequence.

Proof. If the right hand side of (5.2.20) is zero, ๐œ” itself has to be zero so the map (5.2.20) isinjective. Moreover, if the right hand side of (5.2) is zero,๐œ”1 and๐œ”2 are equal on the overlap,๐‘ˆ1 โˆฉ ๐‘ˆ2, so we can glue them together to get a ๐ถโˆž ๐‘˜-form on ๐‘ˆ1 โˆช ๐‘ˆ2 by setting ๐œ” = ๐œ”1 on๐‘ˆ1 and ๐œ” = ๐œ”2 on๐‘ˆ2. Thus by (5.2.20) ๐‘–(๐œ”) = (๐œ”1, ๐œ”2), and this shows that the kernel of ๐‘— isequal to the image of ๐‘–. Hence to complete the proof we only have to show that ๐‘— is surjective,i.e., that every form ๐œ” on๐›บ๐‘˜(๐‘ˆ1โˆฉ๐‘ˆ2) can be written as a difference, ๐œ”1|๐‘ˆ1โˆฉ๐‘ˆ2โˆ’๐œ”2|๐‘ˆ1โˆฉ๐‘ˆ2,where ๐œ”1 is in๐›บ๐‘˜(๐‘ˆ1) and ๐œ”2 in in๐›บ๐‘˜(๐‘ˆ2). To prove this weโ€™ll need the following variant ofthe partition of unity theorem.

Theorem 5.2.22. There exist functions, ๐œ™๐›ผ โˆˆ ๐ถโˆž(๐‘ˆ1 โˆช ๐‘ˆ2), ๐›ผ = 1, 2, such that support ๐œ™๐›ผ iscontained in ๐‘ˆ๐›ผ and ๐œ™1 + ๐œ™2 = 1.

Before proving this Let us use it to complete our proof of Theorem 5.2.21. Given ๐œ” โˆˆ๐›บ๐‘˜(๐‘ˆ1 โˆฉ ๐‘ˆ2) let

(5.2.23) ๐œ”1 โ‰” {๐œ™2๐œ”, on ๐‘ˆ1 โˆฉ ๐‘ˆ20, on ๐‘ˆ1 โˆ– ๐‘ˆ1 โˆฉ ๐‘ˆ2

and let

(5.2.24) ๐œ”2 โ‰” {โˆ’๐œ™1๐œ”, on ๐‘ˆ1 โˆฉ ๐‘ˆ20, on ๐‘ˆ2 โˆ– ๐‘ˆ1 โˆฉ ๐‘ˆ2 .

Since ๐œ™2 is supported on ๐‘ˆ2 the form defined by (5.2.23) is ๐ถโˆž on ๐‘ˆ1 and since ๐œ™1 is sup-ported on ๐‘ˆ1 the form defined by (5.2.24) is ๐ถโˆž on ๐‘ˆ2 and since ๐œ™1 + ๐œ™2 = 1, ๐œ”1 โˆ’ ๐œ”2 =(๐œ™1 + ๐œ™2)๐œ” = ๐œ” on ๐‘ˆ1 โˆฉ ๐‘ˆ2. โ–ก

Proof of Theorem 5.2.22. Let ๐œŒ๐‘– โˆˆ ๐ถโˆž0 (๐‘ˆ1โˆช๐‘ˆ2), ๐‘– = 1, 2, 3,โ€ฆ be a partition of unity subordi-nate to the cover {๐‘ˆ1, ๐‘ˆ2} of๐‘ˆ1 โˆช๐‘ˆ2 and let ๐œ™1 be the sum of the ๐œŒ๐‘–โ€™s with support on๐‘ˆ1 and๐œ™2 the sum of the remaining ๐œŒ๐‘–โ€™s. Itโ€™s easy to check (using part (b) of Theorem 4.6.1) that ๐œ™๐›ผis supported in ๐‘ˆ๐›ผ and (using part (a) of Theorem 4.6.1) that ๐œ™1 + ๐œ™2 = 1. โ–ก

Now let

(5.2.25) 0 ๐ถ01 ๐ถ11 ๐ถ21 โ‹ฏ .๐‘‘ ๐‘‘ ๐‘‘

be the de Rham complex of ๐‘ˆ1 โˆช ๐‘ˆ2, let

(5.2.26) 0 ๐ถ03 ๐ถ13 ๐ถ23 โ‹ฏ .๐‘‘ ๐‘‘ ๐‘‘

be the de Rham complex of ๐‘ˆ1 โˆฉ ๐‘ˆ2, and let

(5.2.27) 0 ๐ถ02 ๐ถ12 ๐ถ22 โ‹ฏ .๐‘‘ ๐‘‘ ๐‘‘

be the vector space direct sum of the de Rham complexes of ๐‘ˆ1 and ๐‘ˆ2, i.e., the complexwhose ๐‘˜th term is

๐ถ๐‘˜2 = ๐›บ๐‘˜(๐‘ˆ1) โŠ• ๐›บ๐‘˜(๐‘ˆ2)

Page 176: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

164 Chapter 5: Cohomology via forms

with ๐‘‘โˆถ ๐ถ๐‘˜2 โ†’ ๐ถ๐‘˜+12 defined to be the map ๐‘‘(๐œ‡1, ๐œ‡2) = (๐‘‘๐œ‡1, ๐‘‘๐œ‡2). Since ๐ถ๐‘˜1 = ๐›บ๐‘˜(๐‘ˆ1 โˆช ๐‘ˆ2)and ๐ถ๐‘˜3 = ๐›บ๐‘˜(๐‘ˆ1 โˆฉ ๐‘ˆ2) we have, by Theorem 5.2.21, a short exact sequence

0 ๐ถ๐‘˜1 ๐ถ๐‘˜2 ๐ถ๐‘˜3 0 ,๐‘– ๐‘—

and itโ€™s easy to see that ๐‘– and ๐‘— commute with the ๐‘‘โ€™s:๐‘‘๐‘– = ๐‘–๐‘‘ and ๐‘‘๐‘— = ๐‘—๐‘‘ .

Hence weโ€™re exactly in the situation to which Mayerโ€“Vietoris applies. Since the cohomologygroups of the complexes (5.2.25) and (5.2.26) are the de Rham cohomology groups๐ป๐‘˜(๐‘ˆ1โˆช๐‘ˆ2) and ๐ป๐‘˜(๐‘ˆ1 โˆฉ ๐‘ˆ2), and the cohomology groups of the complex (5.2.27) are the vectorspace direct sums,๐ป๐‘˜(๐‘ˆ1) โŠ• ๐ป๐‘˜(๐‘ˆ2), we obtain from the abstract Mayerโ€“Vietoris theorem,the following de Rham theoretic version of Mayerโ€“Vietoris.

Theorem 5.2.28. Letting ๐‘ˆ = ๐‘ˆ1 โˆช ๐‘ˆ2 and ๐‘‰ = ๐‘ˆ1 โˆฉ ๐‘ˆ2 one has a long exact sequence in deRham cohomology:

โ‹ฏ ๐ป๐‘˜(๐‘ˆ) ๐ป๐‘˜๐‘ (๐‘ˆ1) โŠ• ๐ป๐‘˜๐‘ (๐‘ˆ2) ๐ป๐‘˜๐‘ (๐‘‰) ๐ป๐‘˜+1๐‘ (๐‘ˆ) โ‹ฏ .๐›ฟ ๐‘–โ™ฏ ๐‘—โ™ฏ ๐›ฟ ๐‘–โ™ฏ

This result also has an analogue for compactly supported de Rham cohomology. Let(5.2.29) ๐‘– โˆถ ๐›บ๐‘˜๐‘ (๐‘ˆ1 โˆฉ ๐‘ˆ2) โ†’ ๐ป๐‘˜๐‘ (๐‘ˆ1) โŠ• ๐›บ๐‘˜๐‘ (๐‘ˆ2)be the map

๐‘–(๐œ”) โ‰” (๐œ”1, ๐œ”2)where

(5.2.30) ๐œ”๐‘– โ‰” {๐œ”, on ๐‘ˆ1 โˆฉ ๐‘ˆ20, on ๐‘ˆ๐‘– โˆ– ๐‘ˆ1 โˆฉ ๐‘ˆ2 .

(Since ๐œ” is compactly supported on ๐‘ˆ1 โˆฉ ๐‘ˆ2 the form defined by equation (5.2.29) is a ๐ถโˆžform and is compactly supported on ๐‘ˆ๐‘–.) Similarly, let

๐‘—โˆถ ๐›บ๐‘˜๐‘ (๐‘ˆ1) โŠ• ๐›บ๐‘˜๐‘ (๐‘ˆ2) โ†’ ๐›บ๐‘˜๐‘ (๐‘ˆ1 โˆช ๐‘ˆ2)be the map

๐‘—(๐œ”1, ๐œ”2) โ‰” ๏ฟฝ๏ฟฝ1 โˆ’ ๏ฟฝ๏ฟฝ2where:

๏ฟฝ๏ฟฝ๐‘– โ‰” {๐œ”๐‘–, on ๐‘ˆ๐‘–0, on (๐‘ˆ1 โˆช ๐‘ˆ2) โˆ’ ๐‘ˆ๐‘– .

As above itโ€™s easy to see that ๐‘– is injective and that the kernel of ๐‘— is equal to the image of ๐‘–.Thus if we can prove that ๐‘— is surjective weโ€™ll have proved

Theorem 5.2.31. The sequence

0 ๐›บ๐‘˜๐‘ (๐‘ˆ1 โˆฉ ๐‘ˆ2) ๐›บ๐‘˜๐‘ (๐‘ˆ1) โŠ• ๐›บ๐‘˜๐‘ (๐‘ˆ2) ๐›บ๐‘˜๐‘ (๐‘ˆ1 โˆฉ ๐‘ˆ2) 0 .๐‘– ๐‘—

is a short exact sequence.

Proof. To prove the surjectivity of ๐‘— we mimic the proof above. Given ๐œ” โˆˆ ๐›บ๐‘˜๐‘ (๐‘ˆ1 โˆช ๐‘ˆ2), let๐œ”1 โ‰” ๐œ™1๐œ”|๐‘ˆ1

and๐œ”2 โ‰” โˆ’๐œ™2๐œ”|๐‘ˆ2 .

Then by (5.2.30) we have that๐œ” = ๐‘—(๐œ”1, ๐œ”2). โ–ก

Page 177: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง5.3 Cohomology of Good Covers 165

Thus, applying Mayerโ€“Vietoris to the compactly supported versions of the complexes(5.2.6), we obtain the following theorem.

Theorem 5.2.32. Letting ๐‘ˆ = ๐‘ˆ1 โˆช ๐‘ˆ2 and ๐‘‰ = ๐‘ˆ1 โˆฉ ๐‘ˆ2 there exists a long exact sequence incompactly supported de Rham cohomology

โ‹ฏ ๐ป๐‘˜๐‘ (๐‘ˆ) ๐ป๐‘˜๐‘ (๐‘ˆ1) โŠ• ๐ป๐‘˜๐‘ (๐‘ˆ2) ๐ป๐‘˜๐‘ (๐‘‰) ๐ป๐‘˜+1๐‘ (๐‘ˆ) โ‹ฏ .๐›ฟ ๐‘–โ™ฏ ๐‘—โ™ฏ ๐›ฟ ๐‘–โ™ฏ

Exercises for ยง5.2Exercise 5.2.i. Prove Proposition 5.2.8.

Exercise 5.2.ii. Prove Proposition 5.2.13.

Exercise 5.2.iii. Prove Proposition 5.2.16.

Exercise 5.2.iv. Show that if ๐‘ˆ1, ๐‘ˆ2 and ๐‘ˆ1 โˆฉ ๐‘ˆ2 are non-empty and connected the firstsegment of the Mayerโ€“Vietoris sequence is a short exact sequence

0 ๐ป0(๐‘ˆ1 โˆช ๐‘ˆ2) ๐ป0(๐‘ˆ1) โŠ• ๐ป0(๐‘ˆ2) ๐ป0(๐‘ˆ1 โˆฉ ๐‘ˆ2) 0 .๐‘–โ™ฏ ๐‘—โ™ฏ

Exercise 5.2.v. Let๐‘‹ = ๐‘†๐‘› and let๐‘ˆ1 and๐‘ˆ2 be the open subsets of ๐‘†๐‘› obtained by removingfrom ๐‘†๐‘› the points, ๐‘1 = (0,โ€ฆ, 0, 1) and ๐‘2 = (0,โ€ฆ, 0, โˆ’1).(1) Using stereographic projection show that ๐‘ˆ1 and ๐‘ˆ2 are diffeomorphic to ๐‘๐‘›.(2) Show that๐‘ˆ1โˆช๐‘ˆ2 = ๐‘†๐‘› and๐‘ˆ1โˆฉ๐‘ˆ2 is homotopy equivalent to ๐‘†๐‘›โˆ’1. (See Exercise 5.1.v.)

Hint: ๐‘ˆ1 โˆฉ ๐‘ˆ2 is diffeomorphic to ๐‘๐‘› โˆ– {0}.(3) Deduce from the Mayerโ€“Vietoris sequence that๐ป๐‘–+1(๐‘†๐‘›) = ๐ป๐‘–(๐‘†๐‘›โˆ’1) for ๐‘– โ‰ฅ 1.(4) Using part (3) give an inductive proof of a result that we proved by other means in

Section 5.1:๐ป๐‘˜(๐‘†๐‘›) = 0 for 1 โ‰ค ๐‘˜ < ๐‘›.

Exercise 5.2.vi. Using the Mayerโ€“Vietoris sequence of Exercise 5.2.v with cohomology re-placed by compactly supported cohomology show that

๐ป๐‘˜๐‘ (๐‘๐‘› โˆ– {0}) โ‰… {๐‘, ๐‘˜ = 1, ๐‘›0, otherwise .

Exercise 5.2.vii. Let ๐‘› a positive integer and let

0 ๐‘‰1 ๐‘‰2 โ‹ฏ ๐‘‰๐‘›โˆ’1 ๐‘‰๐‘› 0๐‘“1 ๐‘“๐‘›โˆ’1

be an exact sequence of finite dimensional vector spaces. Prove that โˆ‘๐‘›๐‘–=1 dim(๐‘‰๐‘–) = 0.

5.3. Cohomology of Good Covers

In this section we will show that for compact manifolds (and for lots of other manifoldsbesides) the de Rham cohomology groups which we defined in ยง5.1 are finite dimensionalvector spaces and thus, in principle, โ€œcomputableโ€ objects. A key ingredient in our proof ofthis fact is the notion of a good cover of a manifold.

Definition 5.3.1. Let๐‘‹ be an ๐‘›-manifold, and let U = {๐‘ˆ๐›ผ}๐›ผโˆˆ๐ผ be an open cover of๐‘‹. ThenU is a good cover if for every finite set of indices ๐›ผ1,โ€ฆ, ๐›ผ๐‘˜ โˆˆ ๐ผ the intersection๐‘ˆ๐›ผ1 โˆฉโ‹ฏโˆฉ๐‘ˆ๐›ผ๐‘˜is either empty or is diffeomorphic to ๐‘๐‘›.

One of our first goals in this section will be to show that good covers exist. We willsketch below a proof of the following.

Page 178: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

166 Chapter 5: Cohomology via forms

Theorem 5.3.2. Every manifold admits a good cover.

The proof involves an elementary result about open convex subsets of ๐‘๐‘›.

Proposition 5.3.3. A bounded open convex subset ๐‘ˆ โŠ‚ ๐‘๐‘› is diffeomorphic to ๐‘๐‘›.

A proof of this will be sketched in Exercises 5.3.i to 5.3.iv. One immediate consequenceof Proposition 5.3.3 is an important special case of Theorem 5.3.2.

Theorem 5.3.4. Every open subset ๐‘ˆ of ๐‘๐‘› admits a good cover.

Proof. For each ๐‘ โˆˆ ๐‘ˆ let ๐‘ˆ๐‘ be an open convex neighborhood of ๐‘ in ๐‘ˆ (for instance an๐œ€-ball centered at ๐‘). Since the intersection of any two convex sets is again convex the cover,{๐‘ˆ๐‘}๐‘โˆˆ๐‘ˆ is a good cover by Proposition 5.3.3. โ–ก

For manifolds the proof of Theorem 5.3.2 is somewhat trickier. The proof requires amanifold analogue of the notion of convexity and there are several serviceable candidates.The one we will use is the following. Let ๐‘‹ โŠ‚ ๐‘๐‘ be an ๐‘›-manifold and for ๐‘ โˆˆ ๐‘‹ let ๐‘‡๐‘๐‘‹be the tangent space to๐‘‹ at ๐‘. Recalling that ๐‘‡๐‘๐‘‹ sits inside ๐‘‡๐‘๐‘๐‘ and that

๐‘‡๐‘๐‘๐‘ = { (๐‘, ๐‘ฃ) | ๐‘ฃ โˆˆ ๐‘๐‘ }

we get a map๐‘‡๐‘๐‘‹ โ†ช ๐‘‡๐‘๐‘๐‘ โ†’ ๐‘๐‘ , (๐‘, ๐‘ฅ) โ†ฆ ๐‘ + ๐‘ฅ ,

and this map maps ๐‘‡๐‘๐‘‹ bijectively onto an ๐‘›-dimensional โ€œaffineโ€ subspace ๐ฟ๐‘ of๐‘๐‘ whichis tangent to ๐‘‹ at ๐‘. Let ๐œ‹๐‘ โˆถ ๐‘‹ โ†’ ๐ฟ๐‘ be, as in the figure below, the orthogonal projectionof๐‘‹ onto ๐ฟ๐‘.

๏ฟฝ

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ(๏ฟฝ)๏ฟฝ

Figure 5.3.1. The orthogonal projection of๐‘‹ onto ๐ฟ๐‘

Definition 5.3.5. An open subset ๐‘‰ of๐‘‹ is convex if for every ๐‘ โˆˆ ๐‘‰ the map ๐œ‹๐‘ โˆถ ๐‘‹ โ†’ ๐ฟ๐‘maps ๐‘‰ diffeomorphically onto a convex open subset of ๐ฟ๐‘.

Itโ€™s clear from this definition of convexity that the intersection of two open convex sub-sets of ๐‘‹ is an open convex subset of ๐‘‹ and that every open convex subset of ๐‘‹ is diffeo-morphic to ๐‘๐‘›. Hence to prove Theorem 5.3.2 it suffices to prove that every point ๐‘ โˆˆ ๐‘‹ iscontained in an open convex subset ๐‘ˆ๐‘ of ๐‘‹. Here is a sketch of how to prove this. In thefigure above let ๐ต๐œ€(๐‘) be the ball of radius ๐œ€ about ๐‘ in ๐ฟ๐‘ centered at ๐‘. Since ๐ฟ๐‘ and ๐‘‡๐‘are tangent at ๐‘ the derivative of ๐œ‹๐‘ at ๐‘ is just the identity map, so for ๐œ€ small ๐œ‹๐‘ maps aneighborhood, ๐‘ˆ๐œ€๐‘ of ๐‘ in๐‘‹ diffeomorphically onto ๐ต๐œ€(๐‘). We claim:

Proposition 5.3.6. For ๐œ€ small, ๐‘ˆ๐œ€๐‘ is a convex subset of๐‘‹.

Page 179: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง5.3 Cohomology of Good Covers 167

Intuitively this assertion is pretty obvious: if ๐‘ž is in ๐‘ˆ๐œ€๐‘ and ๐œ€ is small the map

๐ต๐œ€๐‘ ๐‘ˆ๐œ€๐‘ ๐ฟ๐‘ž๐œ‹โˆ’1๐‘ ๐œ‹๐‘ž

is to order ๐œ€2 equal to the identity map, so itโ€™s intuitively clear that its image is a slightlywarped, but still convex, copy of ๐ต๐œ€(๐‘). We wonโ€™t, however, bother to write out the detailsthat are required to make this proof rigorous.

A good cover is a particularly good โ€œgood coverโ€ if it is a finite cover. Weโ€™ll codify thisproperty in the definition below.

Definition 5.3.7. An ๐‘›-manifold ๐‘‹ is said to have finite topology if ๐‘‹ admits a finite cov-ering by open sets ๐‘ˆ1,โ€ฆ,๐‘ˆ๐‘ with the property that for every multi-index, ๐ผ = (๐‘–1,โ€ฆ, ๐‘–๐‘˜),1 โ‰ค ๐‘–1 โ‰ค ๐‘–2โ‹ฏ < ๐‘–๐พ โ‰ค ๐‘, the set(5.3.8) ๐‘ˆ๐ผ โ‰” ๐‘ˆ๐‘–1 โˆฉโ‹ฏ โˆฉ ๐‘ˆ๐‘–๐‘˜is either empty or is diffeomorphic to ๐‘๐‘›.

If ๐‘‹ is a compact manifold and U = {๐‘ˆ๐›ผ}๐›ผโˆˆ๐ผ is a good cover of ๐‘‹ then by the Heineโ€“Borel theorem we can extract from U a finite subcover ๐‘ˆ1,โ€ฆ,๐‘ˆ๐‘, where

๐‘ˆ๐‘– โ‰” ๐‘ˆ๐›ผ๐‘– , for ๐›ผ1,โ€ฆ, ๐›ผ๐‘ โˆˆ ๐ผ ,hence we conclude:

Theorem 5.3.9. Every compact manifold has finite topology.

More generally, for any manifold ๐‘‹, let ๐ถ be a compact subset of ๐‘‹. Then by Heineโ€“Borel we can extract from the cover U a finite subcollection ๐‘ˆ1,โ€ฆ,๐‘ˆ๐‘, where

๐‘ˆ๐‘– โ‰” ๐‘ˆ๐›ผ๐‘– , for ๐›ผ1,โ€ฆ, ๐›ผ๐‘ โˆˆ ๐ผ ,that covers ๐ถ, hence letting ๐‘ˆ โ‰” ๐‘ˆ1 โˆชโ‹ฏ โˆช ๐‘ˆ๐‘, weโ€™ve proved:

Theorem5.3.10. If๐‘‹ is an ๐‘›-manifold and๐ถ a compact subset of๐‘‹, then there exists an openneighborhood ๐‘ˆ of ๐ถ in๐‘‹ with finite topology.

We can in fact even strengthen this further. Let ๐‘ˆ0 be any open neighborhood of ๐ถ in๐‘‹. Then in the theorem above we can replace๐‘‹ by ๐‘ˆ0 to conclude:

Theorem5.3.11. Let๐‘‹ be amanifold,๐ถ a compact subset of๐‘‹, and๐‘ˆ0 an open neighborhoodof ๐ถ in ๐‘‹. Then there exists an open neighborhood ๐‘ˆ of ๐ถ in ๐‘‹, ๐‘ˆ contained in ๐‘ˆ0, so that ๐‘ˆhas finite topology.

We will justify the term โ€œfinite topologyโ€ by devoting the rest of this section to proving.

Theorem 5.3.12. Let ๐‘‹ be an ๐‘›-manifold. If ๐‘‹ has finite topology the de Rham cohomologygroups ๐ป๐‘˜(๐‘‹), for ๐‘˜ = 0,โ€ฆ, ๐‘›, and the compactly supported de Rham cohomology groups๐ป๐‘˜๐‘ (๐‘‹), for ๐‘˜ = 0,โ€ฆ, ๐‘› are finite dimensional vector spaces.

The basic ingredients in the proof of this will be the Mayerโ€“Vietoris techniques that wedeveloped in ยง5.2 and the following elementary result about vector spaces.

Lemma 5.3.13. Let ๐‘‰1, ๐‘‰2, and ๐‘‰3 be vector spaces and

(5.3.14) ๐‘‰1 ๐‘‰2 ๐‘‰3๐›ผ ๐›ฝ

an exact sequence of linear maps. Then if ๐‘‰1 and ๐‘‰3 are finite dimensional, so is ๐‘‰2.

Page 180: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

168 Chapter 5: Cohomology via forms

Proof. Since ๐‘‰3 is finite dimensional, the im(๐›ฝ) is of finite dimension ๐‘˜. Hence there existvectors ๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜ โˆˆ ๐‘‰2 such that

im(๐›ฝ) = span(๐›ฝ(๐‘ฃ1),โ€ฆ, ๐›ฝ(๐‘ฃ๐‘˜)) .

Now let ๐‘ฃ โˆˆ ๐‘‰2.Then ๐›ฝ(๐‘ฃ) is a linear combination ๐›ฝ(๐‘ฃ) = โˆ‘๐‘˜๐‘–=1 ๐‘๐‘–๐›ฝ(๐‘ฃ๐‘–), where ๐‘1,โ€ฆ, ๐‘๐‘˜ โˆˆ๐‘. So

(5.3.15) ๐‘ฃโ€ฒ โ‰” ๐‘ฃ โˆ’๐‘˜โˆ‘๐‘–=1๐‘๐‘–๐‘ฃ๐‘–

is in the kernel of ๐›ฝ and hence, by the exactness of (5.3.14), in the image of ๐›ผ. But๐‘‰1 is finitedimensional, so im(๐›ผ) is finite dimensional. Letting ๐‘ฃ๐‘˜+1,โ€ฆ, ๐‘ฃ๐‘š be a basis of im(๐›ผ) we canby (5.3.15)) write ๐‘ฃ as a sum ๐‘ฃ = โˆ‘๐‘š๐‘–=1 ๐‘๐‘–๐‘ฃ๐‘–. In other words ๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘š is a basis of ๐‘‰2. โ–ก

Proof of Theorem 5.3.4. Our proof will be by induction on the number of open sets in a goodcover of๐‘‹. More specifically, let

U = {๐‘ˆ1,โ€ฆ,๐‘ˆ๐‘}

be a good cover of ๐‘‹. If๐‘ = 1, ๐‘‹ = ๐‘ˆ1 and hence ๐‘‹ is diffeomorphic to ๐‘๐‘›, so๐ป๐‘˜(๐‘‹) = 0for ๐‘˜ > 0, and ๐ป0(๐‘‹) โ‰… ๐‘, so the theorem is certainly true in this case. Let us now proveitโ€™s true for arbitrary๐‘ by induction. Let ๐‘ˆ โ‰” ๐‘ˆ2 โˆชโ‹ฏ โˆช๐‘ˆ๐‘. Then ๐‘ˆ is a submanifold of๐‘‹,and, thinking of๐‘ˆ as a manifold in its own right, {๐‘ˆ2,โ€ฆ,๐‘ˆ๐‘} is a good cover of๐‘ˆ involvingonly๐‘โˆ’1 sets. Hence the cohomology groups of๐‘ˆ are finite dimensional by the inductionhypothesis. The manifold ๐‘ˆ โˆฉ ๐‘ˆ1 has a good cover given by {๐‘ˆ โˆฉ ๐‘ˆ2,โ€ฆ,๐‘ˆ โˆฉ ๐‘ˆ๐‘}, so by theinduction hypothesis the cohomology groups of๐‘ˆโˆฉ๐‘ˆ1 are finite-dimensional. To prove thatthe theorem is true for ๐‘‹ we note that ๐‘‹ = ๐‘ˆ1 โˆช ๐‘ˆ, and and the Mayerโ€“Vietoris sequencegives an exact sequence

๐ป๐‘˜โˆ’1(๐‘ˆ1 โˆฉ ๐‘ˆ) ๐ป๐‘˜(๐‘‹) ๐ป๐‘˜(๐‘ˆ1) โŠ• ๐ป๐‘˜(๐‘ˆ) .๐›ฟ ๐‘–โ™ฏ

Since the right-hand and left-hand terms are finite dimensional it follows fromLemma5.3.13that the middle term is also finite dimensional. โ–ก

The proof works practically verbatim for compactly supported cohomology. For๐‘ = 1

๐ป๐‘˜๐‘ (๐‘‹) = ๐ป๐‘˜๐‘ (๐‘ˆ1) = ๐ป๐‘˜๐‘ (๐‘๐‘›)

so all the cohomology groups of๐ป๐‘˜(๐‘‹) are finite in this case, and the induction โ€œ๐‘โˆ’ 1โ€โ‡’โ€œ๐‘โ€ follows from the exact sequence

๐ป๐‘˜๐‘ (๐‘ˆ1) โŠ• ๐ป๐‘˜๐‘ (๐‘ˆ) ๐ป๐‘˜๐‘ (๐‘‹) ๐ป๐‘˜+1๐‘ (๐‘ˆ1 โˆฉ ๐‘ˆ) .๐‘—โ™ฏ ๐›ฟ

Remark 5.3.16. A careful analysis of the proof above shows that the dimensions of thevector spaces๐ป๐‘˜(๐‘‹) are determined by the intersection properties of the open sets ๐‘ˆ๐‘–, i.e.,by the list of multi-indices ๐ผ for which th intersections (5.3.8) are non-empty.

This collection of multi-indices is called the nerve of the cover U, and this remarksuggests that there should be a cohomology theory which has as input the nerve of U andas output cohomology groups which are isomorphic to the de Rham cohomology groups.Such a theory does exist, and we further address it in ยง5.8. (A nice account of it can also befound in [13, Ch. 5]).

Page 181: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง5.3 Cohomology of Good Covers 169

Exercises for ยง5.3Exercise 5.3.i. Let ๐‘ˆ be a bounded open subset of ๐‘๐‘›. A continuous function

๐œ“โˆถ ๐‘ˆ โ†’ [0,โˆž)is called an exhaustion function if it is proper as a map of ๐‘ˆ into [0,โˆž); i.e., if, for every๐‘Ž > 0, ๐œ“โˆ’1([0, ๐‘Ž]) is compact. For ๐‘ฅ โˆˆ ๐‘ˆ let

๐‘‘(๐‘ฅ) = inf{ |๐‘ฅ โˆ’ ๐‘ฆ| | ๐‘ฆ โˆˆ ๐‘๐‘› โˆ’ ๐‘ˆ } ,i.e., let ๐‘‘(๐‘ฅ) be the โ€œdistanceโ€ from ๐‘ฅ to the boundary of๐‘ˆ. Show that ๐‘‘(๐‘ฅ) > 0 and that ๐‘‘(๐‘ฅ)is continuous as a function of ๐‘ฅ. Conclude that ๐œ“0 = 1/๐‘‘ is an exhaustion function.

Exercise 5.3.ii. Show that there exists a๐ถโˆž exhaustion function, ๐œ™0 โˆถ ๐‘ˆ โ†’ [0,โˆž), with theproperty ๐œ™0 โ‰ฅ ๐œ“20 where ๐œ“0 is the exhaustion function in Exercise 5.3.i.

Hints: For ๐‘– = 2, 3,โ€ฆ let

๐ถ๐‘– = { ๐‘ฅ โˆˆ ๐‘ˆ | 1๐‘– โ‰ค ๐‘‘(๐‘ฅ) โ‰ค1๐‘–โˆ’1 }

and๐‘ˆ๐‘– = { ๐‘ฅ โˆˆ ๐‘ˆ | 1๐‘–+1 < ๐‘‘(๐‘ฅ) <

1๐‘–โˆ’2 } .

Let ๐œŒ๐‘– โˆˆ ๐ถโˆž0 (๐‘ˆ๐‘–), ๐œŒ๐‘– โ‰ฅ 0, be a โ€œbumpโ€ function which is identically one on ๐ถ๐‘– and let ๐œ™0 =โˆ‘โˆž๐‘–=2 ๐‘–2๐œŒ๐‘– + 1.

Exercise 5.3.iii. Let๐‘ˆ be a bounded open convex subset of ๐‘๐‘› containing the origin. Showthat there exists an exhaustion function

๐œ“โˆถ ๐‘ˆ โ†’ ๐‘ , ๐œ“(0) = 1 ,having the property that ๐œ“ is a monotonically increasing function of ๐‘ก along the ray, ๐‘ก๐‘ฅ,0 โ‰ค ๐‘ก โ‰ค 1, for all points ๐‘ฅ โˆˆ ๐‘ˆ.

Hints:โ€ข Let ๐œŒ(๐‘ฅ), 0 โ‰ค ๐œŒ(๐‘ฅ) โ‰ค 1, be a ๐ถโˆž function which is one outside a small neighbor-

hood of the origin in ๐‘ˆ and is zero in a still smaller neighborhood of the origin.Modify the function, ๐œ™0, in the previous exercise by setting ๐œ™(๐‘ฅ) = ๐œŒ(๐‘ฅ)๐œ™0(๐‘ฅ) andlet

๐œ“(๐‘ฅ) = โˆซ1

0๐œ™(๐‘ ๐‘ฅ)๐‘‘๐‘ ๐‘ + 1 .

Show that for 0 โ‰ค ๐‘ก โ‰ค 1๐‘‘๐œ“๐‘‘๐‘ก(๐‘ก๐‘ฅ) = ๐œ™(๐‘ก๐‘ฅ)/๐‘ก

and conclude from equation (5.3.15) that๐œ“ is monotonically increasing along theray, ๐‘ก๐‘ฅ, 0 โ‰ค ๐‘ก โ‰ค 1.

โ€ข Show that for 0 < ๐œ€ < 1,๐œ“(๐‘ฅ) โ‰ฅ ๐œ€๐œ™(๐‘ฆ)

where ๐‘ฆ is a point on the ray, ๐‘ก๐‘ฅ, 0 โ‰ค ๐‘ก โ‰ค 1 a distance less than ๐œ€|๐‘ฅ| from๐‘‹.โ€ข Show that there exist constants, ๐ถ0 and ๐ถ1, ๐ถ1 > 0 such that

๐œ“(๐‘ฅ) = ๐ถ1๐‘‘(๐‘ฅ)+ ๐ถ0 .

(Take ๐œ€ to be equal to 12๐‘‘(๐‘ฅ)/|๐‘ฅ|.)

Page 182: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

170 Chapter 5: Cohomology via forms

Exercise 5.3.iv. Show that every bounded, open convex subset, ๐‘ˆ, of ๐‘๐‘› is diffeomorphicto ๐‘๐‘›.

Hints:โ€ข Let ๐œ“(๐‘ฅ) be the exhaustion function constructed in Exercise 5.3.iii and let

๐‘“โˆถ ๐‘ˆ โ†’ ๐‘๐‘›

be the map: ๐‘“(๐‘ฅ) = ๐œ“(๐‘ฅ)๐‘ฅ. Show that this map is a bijective map of ๐‘ˆ onto ๐‘๐‘›.โ€ข Show that for ๐‘ฅ โˆˆ ๐‘ˆ and ๐‘ฃ โˆˆ ๐‘๐‘›

(๐‘‘๐‘“)๐‘ฅ๐‘ฃ = ๐œ“(๐‘ฅ)๐‘ฃ + ๐‘‘๐œ“๐‘ฅ(๐‘ฃ)๐‘ฅand conclude that ๐‘‘๐‘“๐‘ฅ is bijective at ๐‘ฅ, i.e., that ๐‘“ is locally a diffeomorphism of aneighborhood of ๐‘ฅ in ๐‘ˆ onto a neighborhood of ๐‘“(๐‘ฅ) in ๐‘๐‘›.

โ€ข Putting these together show that ๐‘“ is a diffeomorphism of ๐‘ˆ onto ๐‘๐‘›.Exercise 5.3.v. Let ๐‘ˆ โŠ‚ ๐‘ be the union of the open intervals, ๐‘˜ < ๐‘ฅ < ๐‘˜ + 1, ๐‘˜ an integer.Show that ๐‘ˆ does not have finite topology.

Exercise 5.3.vi. Let ๐‘‰ โŠ‚ ๐‘2 be the open set obtained by deleting from ๐‘2 the points, ๐‘๐‘› =(0, ๐‘›), for every integer ๐‘›. Show that ๐‘‰ does not have finite topology.

Hint: Let ๐›พ๐‘› be a circle of radius 12 centered about the point ๐‘๐‘›. Using Exercises 2.1.viiiand 2.1.ix show that there exists a closed smooth one-form, ๐œ”๐‘› on ๐‘‰ with the property thatโˆซ๐›พ๐‘› ๐œ”๐‘› = 1 and โˆซ๐›พ๐‘š ๐œ”๐‘› = 0 for๐‘š โ‰  ๐‘›.

Exercise 5.3.vii. Let๐‘‹ be an ๐‘›-manifold and U = {๐‘ˆ1, ๐‘ˆ2} a good cover of๐‘‹. What are thecohomology groups of๐‘‹ if the nerve of this cover is:(1) {1}, {2}.(2) {1}, {2}, {1, 2}.Exercise 5.3.viii. Let ๐‘‹ be an ๐‘›-manifold and U = {๐‘ˆ1, ๐‘ˆ2, ๐‘ˆ3} a good cover of ๐‘‹. Whatare the cohomology groups of๐‘‹ if the nerve of this cover is:(1) {1}, {2}, {3}.(2) {1}, {2}, {3}, {1, 2}.(3) {1}, {2}, {3}, {1, 2}, {1, 3}(4) {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}.(5) {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.Exercise 5.3.ix. Let ๐‘†1 be the unit circle in๐‘3 parametrized by arc length: (๐‘ฅ, ๐‘ฆ) = (cos ๐œƒ, sin ๐œƒ).Let ๐‘ˆ1 be the set: 0 < ๐œƒ < 2๐œ‹3 , ๐‘ˆ2 the set: ๐œ‹2 < ๐œƒ <

3๐œ‹2 , and ๐‘ˆ3 the set: โˆ’ 2๐œ‹3 < ๐œƒ <

๐œ‹3 .

(1) Show that the ๐‘ˆ๐‘–โ€™s are a good cover of ๐‘†1.(2) Using the previous exercise compute the cohomology groups of ๐‘†1.

Exercise 5.3.x. Let ๐‘†2 be the unit 2-sphere in ๐‘3. Show that the sets๐‘ˆ๐‘– = { (๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3) โˆˆ ๐‘†2 | ๐‘ฅ๐‘– > 0 }

๐‘– = 1, 2, 3 and๐‘ˆ๐‘– = { (๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3) โˆˆ ๐‘†2 | ๐‘ฅ๐‘–โˆ’3 < 0 } ,

๐‘– = 4, 5, 6, are a good cover of ๐‘†2. What is the nerve of this cover?

Exercise 5.3.xi. Let๐‘‹ and๐‘Œ be manifolds. Show that if they both have finite topology, theirproduct๐‘‹ ร— ๐‘Œ does as well.

Exercise 5.3.xii.

Page 183: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง5.4 Poincarรฉ duality 171

(1) Let๐‘‹ be amanifold and let๐‘ˆ1,โ€ฆ,๐‘ˆ๐‘, be a good cover of๐‘‹. Show that๐‘ˆ1ร—๐‘,โ€ฆ,๐‘ˆ๐‘ร—๐‘is a good cover of๐‘‹ ร— ๐‘ and that the nerves of these two covers are the same.

(2) By Remark 5.3.16,๐ป๐‘˜(๐‘‹ ร— ๐‘) โ‰… ๐ป๐‘˜(๐‘‹) .

Verify this directly using homotopy techniques.(3) More generally, show that for all โ„“ โ‰ฅ 0

๐ป๐‘˜(๐‘‹ ร— ๐‘โ„“) โ‰… ๐ป๐‘˜(๐‘‹)(a) by concluding that this has to be the case in view of the Remark 5.3.16,(b) and by proving this directly using homotopy techniques.

5.4. Poincarรฉ duality

In this chapter weโ€™ve been studying two kinds of cohomology groups: the ordinary deRham cohomology groups๐ป๐‘˜ and the compactly supported de Rham cohomology groups๐ป๐‘˜๐‘ . It turns out that these groups are closely related. In fact if ๐‘‹ is a connected oriented๐‘›-manifold and has finite topology, then ๐ป๐‘›โˆ’๐‘˜๐‘ (๐‘‹) is the vector space dual of ๐ป๐‘˜(๐‘‹). Wegive a proof of this later in this section, however, before we do we need to review some basiclinear algebra.

Given finite dimensional vector spaces ๐‘‰ and๐‘Š, a bilinear pairing between ๐‘‰ and๐‘Šis a map(5.4.1) ๐ตโˆถ ๐‘‰ ร—๐‘Š โ†’ ๐‘which is linear in each of its factors. In other words, for fixed ๐‘ค โˆˆ ๐‘Š, the map

โ„“๐‘ค โˆถ ๐‘‰ โ†’ ๐‘ , ๐‘ฃ โ†ฆ ๐ต(๐‘ฃ, ๐‘ค)is linear, and for ๐‘ฃ โˆˆ ๐‘‰, the map

โ„“๐‘ฃ โˆถ ๐‘Š โ†’ ๐‘ , ๐‘ค โ†ฆ ๐ต(๐‘ฃ, ๐‘ค)is linear. Therefore, from the pairing (5.4.1) one gets a map(5.4.2) ๐ฟ๐ต โˆถ ๐‘Š โ†’ ๐‘‰โ‹† , ๐‘ค โ†ฆ โ„“๐‘คand since โ„“๐‘ค1 + โ„“๐‘ค2(๐‘ฃ) = ๐ต(๐‘ฃ, ๐‘ค1 + ๐‘ค2) = โ„“๐‘ค1+๐‘ค2(๐‘ฃ), this map is linear. Weโ€™ll say that (5.4.1)is a non-singular pairing if (5.4.2) is bijective. Notice, by the way, that the roles of ๐‘‰ and๐‘Š can be reversed in this definition. Letting ๐ตโ™ฏ(๐‘ค, ๐‘ฃ) โ‰” ๐ต(๐‘ฃ, ๐‘ค) we get an analogous linearmap

๐ฟ๐ตโ™ฏ โˆถ ๐‘‰ โ†’ ๐‘Šโ‹†

and in fact(5.4.3) (๐ฟ๐ตโ™ฏ(๐‘ฃ))(๐‘ค) = (๐ฟ๐ต(๐‘ค))(๐‘ฃ) = ๐ต(๐‘ฃ, ๐‘ค) .Thus if

๐œ‡โˆถ ๐‘‰ โ†’ (๐‘‰โ‹†)โ‹†

is the canonical identification of ๐‘‰ with (๐‘‰โ‹†)โ‹† given by the recipe๐œ‡(๐‘ฃ)(โ„“) = โ„“(๐‘ฃ)

for ๐‘ฃ โˆˆ ๐‘‰ and โ„“ โˆˆ ๐‘‰โ‹†, we can rewrite equation (5.4.3) more suggestively in the form(5.4.4) ๐ฟ๐ตโ™ฏ = ๐ฟโ‹†๐ต๐œ‡i.e., ๐ฟ๐ต and ๐ฟ๐ตโ™ฏ are just the transposes of each other. In particular ๐ฟ๐ต is bijective if and onlyif ๐ฟ๐ตโ™ฏ is bijective.

Page 184: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

172 Chapter 5: Cohomology via forms

Let us now apply these remarks to de Rham theory. Let ๐‘‹ be a connected, oriented๐‘›-manifold. If ๐‘‹ has finite topology the vector spaces, ๐ป๐‘›โˆ’๐‘˜๐‘ (๐‘‹) and ๐ป๐‘˜(๐‘‹) are both finitedimensional. We will show that there is a natural bilinear pairing between these spaces, andhence by the discussion above, a natural linear mapping of๐ป๐‘˜(๐‘‹) into the vector space dualof๐ป๐‘›โˆ’1๐‘ (๐‘‹). To see this let ๐‘1 be a cohomology class in๐ป๐‘›โˆ’๐‘˜๐‘ (๐‘‹) and ๐‘2 a cohomology classin๐ป๐‘˜(๐‘‹). Then by (5.1.22) their product ๐‘1 โ‹… ๐‘2 is an element of๐ป๐‘›๐‘ (๐‘‹), and so by (5.1.2) wecan define a pairing between ๐‘1 and ๐‘2 by setting(5.4.5) ๐ต(๐‘1, ๐‘2) โ‰” ๐ผ๐‘‹(๐‘1 โ‹… ๐‘2) .Notice that if ๐œ”1 โˆˆ ๐›บ๐‘›โˆ’๐‘˜๐‘ (๐‘‹) and ๐œ”2 โˆˆ ๐›บ๐‘˜(๐‘‹) are closed forms representing the cohomologyclasses ๐‘1 and ๐‘2, respectively, then by (5.1.22) this pairing is given by the integral

๐ต(๐‘1, ๐‘2) โ‰” โˆซ๐‘‹๐œ”1 โˆง ๐œ”2 .

Weโ€™ll next show that this bilinear pairing is non-singular in one important special case:Proposition 5.4.6. If๐‘‹ is diffeomorphic to ๐‘๐‘› the pairing defined by (5.4.5) is non-singular.

Proof. To verify this there is very little to check. The vector spaces ๐ป๐‘˜(๐‘๐‘›) and ๐ป๐‘›โˆ’๐‘˜๐‘ (๐‘๐‘›)are zero except for ๐‘˜ = 0, so all we have to check is that the pairing

๐ป๐‘›๐‘ (๐‘‹) ร— ๐ป0(๐‘‹) โ†’ ๐‘is non-singular. To see this recall that every compactly supported ๐‘›-form is closed and thatthe only closed zero-forms are the constant functions, so at the level of forms, the pairing(5.4.5) is just the pairing

๐›บ๐‘›(๐‘‹) ร— ๐‘ โ†’ ๐‘ , (๐œ”, ๐‘) โ†ฆ ๐‘โˆซ๐‘‹๐œ” ,

and this is zero if and only if ๐‘ is zero or ๐œ” is in ๐‘‘๐›บ๐‘›โˆ’1๐‘ (๐‘‹). Thus at the level of cohomologythis pairing is non-singular. โ–ก

We will now show how to prove this result in general.Theorem 5.4.7 (Poincarรฉ duality). Let๐‘‹ be an oriented, connected ๐‘›-manifold having finitetopology. Then the pairing (5.4.5) is non-singular.

The proof of this will be very similar in spirit to the proof that we gave in the last sec-tion to show that if๐‘‹ has finite topology its de Rham cohomology groups are finite dimen-sional. Like that proof, it involves Mayerโ€“Vietoris plus some elementary diagram-chasing.The โ€œdiagram-chasingโ€ part of the proof consists of the following two lemmas.Lemma 5.4.8. Let ๐‘‰1, ๐‘‰2 and ๐‘‰3 be finite dimensional vector spaces, and let

๐‘‰1 ๐‘‰2 ๐‘‰3๐›ผ ๐›ฝ

be an exact sequence of linear mappings. Then the sequence of transpose maps

๐‘‰โ‹†3 ๐‘‰โ‹†2 ๐‘‰โ‹†1๐›ฝโ‹† ๐›ผโ‹†

is exact.Proof. Given a vector subspace,๐‘Š2, of ๐‘‰2, let

๐‘ŠโŸ‚2 = { โ„“ โˆˆ ๐‘‰โ‹†2 | โ„“(๐‘ค) = 0 for all ๐‘ค โˆˆ ๐‘Š} .Weโ€™ll leave for you to check that if๐‘Š2 is the kernel of ๐›ฝ, then๐‘ŠโŸ‚2 is the image of ๐›ฝโ‹† and thatif๐‘Š2 is the image of ๐›ผ,๐‘ŠโŸ‚2 is the kernel of ๐›ผโ‹†. Hence if ๐›ฝ = im(๐›ผ), im(๐›ฝโ‹†) = ker(๐›ผโ‹†). โ–ก

Page 185: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง5.4 Poincarรฉ duality 173

Lemma 5.4.9 (5-lemma). Consider a commutative diagram of vector spaces

(5.4.10)

๐ต1 ๐ต2 ๐ต3 ๐ต4 ๐ต5

๐ด1 ๐ด2 ๐ด3 ๐ด4 ๐ด5 .

๐›ฝ1

๐›พ1

๐›ฝ2

๐›พ2

๐›ฝ3

๐›พ3

๐›ฝ4

๐›พ4 ๐›พ5

๐›ผ1 ๐›ผ2 ๐›ผ3 ๐›ผ4

satisfying the following conditions:(1) All the vector spaces are finite dimensional.(2) The two rows are exact.(3) The linear maps, ๐›พ1, ๐›พ2, ๐›พ4, and ๐›พ5 are bijections.Then the map ๐›พ3 is a bijection.

Proof. Weโ€™ll show that ๐›พ3 is surjective. Given ๐‘Ž3 โˆˆ ๐ด3 there exists a ๐‘4 โˆˆ ๐ต4 such that๐›พ4(๐‘4) = ๐›ผ3(๐‘Ž3) since ๐›พ4 is bijective.Moreover, ๐›พ5(๐›ฝ4(๐‘4)) = ๐›ผ4(๐›ผ3(๐‘Ž3)) = 0, by the exactnessof the top row. Therefore, since ๐›พ5 is bijective, ๐›ฝ4(๐‘4) = 0, so by the exactness of the bottomrow ๐‘4 = ๐›ฝ3(๐‘3) for some ๐‘3 โˆˆ ๐ต3, and hence

๐›ผ3(๐›พ3(๐‘3)) = ๐›พ4(๐›ฝ3(๐‘3)) = ๐›พ4(๐‘4) = ๐›ผ3(๐‘Ž3) .Thus ๐›ผ3(๐‘Ž3 โˆ’ ๐›พ3(๐‘3)) = 0, so by the exactness of the top row

๐‘Ž3 โˆ’ ๐›พ3(๐‘3) = ๐›ผ2(๐‘Ž2)for some ๐‘Ž2 โˆˆ ๐ด2. Hence by the bijectivity of ๐›พ2 there exists a ๐‘2 โˆˆ ๐ต2 with ๐‘Ž2 = ๐›พ2(๐‘2), andhence

๐‘Ž3 โˆ’ ๐›พ3(๐‘3) = ๐›ผ2(๐‘Ž2) = ๐›ผ2(๐›พ2(๐‘2)) = ๐›พ3(๐›ฝ2(๐‘2)) .Thus finally

๐‘Ž3 = ๐›พ3(๐‘3 + ๐›ฝ2(๐‘2)) .Since ๐‘Ž3 was any element of ๐ด3 this proves the surjectivity of ๐›พ3.

One can prove the injectivity of ๐›พ3 by a similar diagram-chasing argument, but one canalso prove this with less duplication of effort by taking the transposes of all the arrows in(5.4.10) and noting that the same argument as above proves the surjectivity of ๐›พโ‹†3 โˆถ ๐ดโ‹†3 โ†’๐ตโ‹†3 . โ–ก

To prove Theorem 5.4.7 we apply these lemmas to the diagram below. In this diagram๐‘ˆ1 and ๐‘ˆ2 are open subsets of ๐‘‹,๐‘€ = ๐‘ˆ1 โˆช ๐‘ˆ2, we write ๐‘ˆ1,2 โ‰” ๐‘ˆ1 โˆฉ ๐‘ˆ2, and the verticalarrows are the mappings defined by the pairing (5.4.5). We will leave for you to check thatthis is a commutative diagram โ€œup to signโ€. (To make it commutative one has to replacesome of the vertical arrows, ๐›พ, by their negatives: โˆ’๐›พ.) This is easy to check except for thecommutative square on the extreme left. To check that this square commutes, some seriousdiagram-chasing is required.

โ‹ฏ ๐ป๐‘˜โˆ’1๐‘ (๐‘€) ๐ป๐‘˜๐‘ (๐‘ˆ1,2) ๐ป๐‘˜๐‘ (๐‘ˆ1) โŠ• ๐ป๐‘˜๐‘ (๐‘ˆ2) ๐ป๐‘˜๐‘ (๐‘€) โ‹ฏ

โ‹ฏ ๐ป๐‘›โˆ’(๐‘˜โˆ’1)(๐‘€)โ‹† ๐ป๐‘›โˆ’๐‘˜(๐‘ˆ1,2)โ‹† ๐ป๐‘›โˆ’๐‘˜(๐‘ˆ1)โ‹† โŠ• ๐ป๐‘›โˆ’๐‘˜(๐‘ˆ2)โ‹† ๐ป๐‘›โˆ’๐‘˜(๐‘€)โ‹† โ‹ฏ

By Mayerโ€“Vietoris the bottom row of the diagram is exact and by Mayerโ€“Vietoris andLemma 5.4.8 the top row of the diagram is exact. Hence we can apply the โ€œfive lemmaโ€ tothe diagram to conclude:

Page 186: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

174 Chapter 5: Cohomology via forms

Lemma 5.4.11. If the maps๐ป๐‘˜(๐‘ˆ) โ†’ ๐ป๐‘›โˆ’๐‘˜๐‘ (๐‘ˆ)โ‹†

defined by the pairing (5.4.5) are bijective for๐‘ˆ1, ๐‘ˆ2 and๐‘ˆ1,2 = ๐‘ˆ1โˆฉ๐‘ˆ2, they are also bijectivefor๐‘€ = ๐‘ˆ1 โˆช ๐‘ˆ2.

Thus to prove Theorem 5.4.7 we can argue by induction as in ยง5.3. Let ๐‘ˆ1, ๐‘ˆ2,โ€ฆ,๐‘ˆ๐‘be a good cover of ๐‘‹. If ๐‘ = 1, then ๐‘‹ = ๐‘ˆ1 and, hence, since ๐‘ˆ1 is diffeomorphic to๐‘๐‘›, the map (5.4.12) is bijective by Proposition 5.4.6. Now Let us assume the theorem istrue for manifolds involving good covers by ๐‘˜ open sets where ๐‘˜ is less than ๐‘. Let ๐‘ˆโ€ฒ =๐‘ˆ1 โˆชโ‹ฏ โˆช ๐‘ˆ๐‘โˆ’1 and ๐‘ˆโ€ณ = ๐‘ˆ๐‘. Since

๐‘ˆโ€ฒ โˆฉ ๐‘ˆโ€ณ = ๐‘ˆ1 โˆฉ ๐‘ˆ๐‘ โˆชโ‹ฏ โˆช ๐‘ˆ๐‘โˆ’1 โˆฉ ๐‘ˆ๐‘it can be covered by a good cover by ๐‘˜ open sets, ๐‘˜ < ๐‘, and hence the hypotheses of thelemma are true for ๐‘ˆโ€ฒ, ๐‘ˆโ€ณ and ๐‘ˆโ€ฒ โˆฉ ๐‘ˆโ€ณ. Thus the lemma says that (5.4.12) is bijective forthe union๐‘‹ of ๐‘ˆโ€ฒ and ๐‘ˆโ€ณ. โ–ก

Exercises for ยง5.4Exercise 5.4.i (proper pushforward for compactly supported de Rham cohomology). Let๐‘‹ be an ๐‘š-manifold, ๐‘Œ an ๐‘›-manifold and ๐‘“โˆถ ๐‘‹ โ†’ ๐‘Œ a ๐ถโˆž map. Suppose that both ofthese manifolds are oriented and connected and have finite topology. Show that there existsa unique linear map

(5.4.12) ๐‘“! โˆถ ๐ป๐‘šโˆ’๐‘˜๐‘ (๐‘‹) โ†’ ๐ป๐‘›โˆ’๐‘˜๐‘ (๐‘Œ)with the property(5.4.13) ๐ต๐‘Œ(๐‘“!๐‘1, ๐‘2) = ๐ต๐‘‹(๐‘1, ๐‘“โ™ฏ๐‘2)for all ๐‘1 โˆˆ ๐ป๐‘šโˆ’๐‘˜๐‘ (๐‘‹) and ๐‘2 โˆˆ ๐ป๐‘˜(๐‘Œ). (In this formula ๐ต๐‘‹ is the bilinear pairing (5.4.5) on๐‘‹ and ๐ต๐‘Œ is the bilinear pairing (5.4.5) on ๐‘Œ.)Exercise 5.4.ii. Suppose that the map ๐‘“ in Exercise 5.4.i is proper. Show that there exists aunique linear map

๐‘“! โˆถ ๐ป๐‘šโˆ’๐‘˜(๐‘‹) โ†’ ๐ป๐‘›โˆ’๐‘˜(๐‘Œ)with the property

๐ต๐‘Œ(๐‘1, ๐‘“!๐‘2) = (โˆ’1)๐‘˜(๐‘šโˆ’๐‘›)๐ต๐‘‹(๐‘“โ™ฏ๐‘1, ๐‘2)for all ๐‘1 โˆˆ ๐ป๐‘˜๐‘ (๐‘Œ) and ๐‘2 โˆˆ ๐ป๐‘šโˆ’๐‘˜(๐‘‹), and show that, if๐‘‹ and ๐‘Œ are compact, this mappingis the same as the mapping ๐‘“! in Exercise 5.4.i.

Exercise 5.4.iii. Let ๐‘ˆ be an open subset of ๐‘๐‘› and let ๐‘“โˆถ ๐‘ˆ ร— ๐‘ โ†’ ๐‘ˆ be the projection,๐‘“(๐‘ฅ, ๐‘ก) = ๐‘ฅ. Show that there is a unique linear mapping

๐‘“โ‹† โˆถ ๐›บ๐‘˜+1๐‘ (๐‘ˆ ร— ๐‘) โ†’ ๐›บ๐‘˜๐‘ (๐‘ˆ)with the property

(5.4.14) โˆซ๐‘ˆ๐‘“โ‹†๐œ‡ โˆง ๐œˆ = โˆซ

๐‘ˆร—๐‘๐œ‡ โˆง ๐‘“โ‹†๐œˆ

for all ๐œ‡ โˆˆ ๐›บ๐‘˜+1๐‘ (๐‘ˆ ร— ๐‘) and ๐œˆ โˆˆ ๐›บ๐‘›โˆ’๐‘˜(๐‘ˆ).Hint: Let ๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘› and ๐‘ก be the standard coordinate functions on ๐‘๐‘› ร— ๐‘. By Exer-

cise 2.3.v every (๐‘˜ + 1)-form ๐œ” โˆˆ ๐›บ๐‘˜+1๐‘ (๐‘ˆ ร—๐‘) can be written uniquely in โ€œreduced formโ€ asa sum

๐œ” = โˆ‘๐ผ๐‘“๐ผ๐‘‘๐‘ก โˆง ๐‘‘๐‘ฅ๐ผ +โˆ‘

๐ฝ๐‘”๐ฝ๐‘‘๐‘ฅ๐ฝ

Page 187: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง5.4 Poincarรฉ duality 175

over multi-indices, ๐ผ and ๐ฝ, which are strictly increasing. Let

๐‘“โ‹†๐œ” = โˆ‘๐ผ(โˆซ๐‘๐‘“๐ผ(๐‘ฅ, ๐‘ก)๐‘‘๐‘ก) ๐‘‘๐‘ฅ๐ผ .

Exercise 5.4.iv. Show that the mapping ๐‘“โ‹† in Exercise 5.4.iii satisfies ๐‘“โ‹†๐‘‘๐œ” = ๐‘‘๐‘“โ‹†๐œ”.Exercise 5.4.v. Show that if ๐œ” is a closed compactly supported (๐‘˜ + 1)-form on ๐‘ˆ ร— ๐‘ then

[๐‘“โ‹†๐œ”] = ๐‘“![๐œ”]where ๐‘“! is the mapping (5.4.13) and ๐‘“โ‹† the mapping (5.4.14).

Exercise 5.4.vi.(1) Let ๐‘ˆ be an open subset of ๐‘๐‘› and let ๐‘“โˆถ ๐‘ˆ ร— ๐‘โ„“ โ†’ ๐‘ˆ be the projection, ๐‘“(๐‘ฅ, ๐‘ก) = ๐‘ฅ.

Show that there is a unique linear mapping

๐‘“โ‹† โˆถ ๐›บ๐‘˜+โ„“๐‘ (๐‘ˆ ร— ๐‘โ„“) โ†’ ๐›บ๐‘˜๐‘ (๐‘ˆ)with the property

โˆซ๐‘ˆ๐‘“โ‹†๐œ‡ โˆง ๐œˆ = โˆซ

๐‘ˆร—๐‘โ„“๐œ‡ โˆง ๐‘“โ‹†๐œˆ

for all ๐œ‡ โˆˆ ๐›บ๐‘˜+โ„“๐‘ (๐‘ˆ ร— ๐‘โ„“) and ๐œˆ โˆˆ ๐›บ๐‘›โˆ’๐‘˜(๐‘ˆ).Hint: Exercise 5.4.iii plus induction on โ„“.

(2) Show that for ๐œ” โˆˆ ๐›บ๐‘˜+โ„“๐‘ (๐‘ˆ ร— ๐‘โ„“)๐‘‘๐‘“โ‹†๐œ” = ๐‘“โ‹†๐‘‘๐œ” .

(3) Show that if ๐œ” is a closed, compactly supported (๐‘˜ + โ„“)-form on๐‘‹ ร— ๐‘โ„“

[๐‘“โ‹†๐œ”] = ๐‘“![๐œ”]where ๐‘“! โˆถ ๐ป๐‘˜+โ„“๐‘ (๐‘ˆ ร— ๐‘โ„“) โ†’ ๐ป๐‘˜๐‘ (๐‘ˆ) is the map (5.4.13).

Exercise 5.4.vii. Let ๐‘‹ be an ๐‘›-manifold and ๐‘Œ an๐‘š-manifold. Assume ๐‘‹ and ๐‘Œ are com-pact, oriented and connected, and orient ๐‘‹ ร— ๐‘Œ by giving it its natural product orientation.Let

๐‘“โˆถ ๐‘‹ ร— ๐‘Œ โ†’ ๐‘Œbe the projection map ๐‘“(๐‘ฅ, ๐‘ฆ) = ๐‘ฆ. Given

๐œ” โˆˆ ๐›บ๐‘š(๐‘‹ ร— ๐‘Œ)and ๐‘ โˆˆ ๐‘Œ, let

(5.4.15) ๐‘“โ‹†๐œ”(๐‘) โ‰” โˆซ๐‘‹๐œ„โ‹†๐‘๐œ” ,

where ๐œ„๐‘ โˆถ ๐‘‹ โ†’ ๐‘‹ ร— ๐‘Œ is the inclusion map ๐œ„๐‘(๐‘ฅ) = (๐‘ฅ, ๐‘).(1) Show that the function ๐‘“โ‹†๐œ” defined by equation (5.4.15) is ๐ถโˆž, i.e., is in ๐›บ0(๐‘Œ).(2) Show that if ๐œ” is closed this function is constant.(3) Show that if ๐œ” is closed

[๐‘“โ‹†๐œ”] = ๐‘“![๐œ”]where ๐‘“! โˆถ ๐ป๐‘›(๐‘‹ ร— ๐‘Œ) โ†’ ๐ป0(๐‘Œ) is the map (5.4.13).

Exercise 5.4.viii.(1) Let๐‘‹ be an ๐‘›-manifoldwhich is compact, connected and oriented. CombiningPoincarรฉ

duality with Exercise 5.3.xii show that

๐ป๐‘˜+โ„“๐‘ (๐‘‹ ร— ๐‘โ„“) โ‰… ๐ป๐‘˜๐‘ (๐‘‹) .

Page 188: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

176 Chapter 5: Cohomology via forms

(2) Show, moreover, that if ๐‘“โˆถ ๐‘‹ ร— ๐‘โ„“ โ†’ ๐‘‹ is the projection ๐‘“(๐‘ฅ, ๐‘Ž) = ๐‘ฅ, then๐‘“! โˆถ ๐ป๐‘˜+โ„“๐‘ (๐‘‹ ร— ๐‘โ„“) โ†’ ๐ป๐‘˜๐‘ (๐‘‹)

is a bijection.

Exercise 5.4.ix. Let ๐‘‹ and ๐‘Œ be as in Exercise 5.4.i. Show that the pushforward operation(5.4.13) satisfies the projection formula

๐‘“!(๐‘1 โ‹… ๐‘“โ™ฏ๐‘2) = ๐‘“!(๐‘1) โ‹… ๐‘2 ,for ๐‘1 โˆˆ ๐ป๐‘˜๐‘ (๐‘‹) and ๐‘2 โˆˆ ๐ปโ„“(๐‘Œ).

5.5. Thom classes & intersection theory

Let ๐‘‹ be a connected, oriented ๐‘›-manifold. If ๐‘‹ has finite topology its cohomologygroups are finite-dimensional, and since the bilinear pairing ๐ต defined by (5.4.5) is non-singular we get from this pairing bijective linear maps

(5.5.1) ๐ฟ๐ต โˆถ ๐ป๐‘›โˆ’๐‘˜๐‘ (๐‘‹) โ†’ ๐ป๐‘˜(๐‘‹)โ‹†

and(5.5.2) ๐ฟโ‹†๐ต โˆถ ๐ป๐‘›โˆ’๐‘˜(๐‘‹) โ†’ ๐ป๐‘˜๐‘ (๐‘‹)โ‹† .In particular, if โ„“โˆถ ๐ป๐‘˜(๐‘‹) โ†’ ๐‘ is a linear function (i.e., an element of ๐ป๐‘˜(๐‘‹)โ‹†), then by(5.5.1) we can convert โ„“ into a cohomology class

(5.5.3) ๐ฟโˆ’1๐ต (โ„“) โˆˆ ๐ป๐‘›โˆ’๐‘˜๐‘ (๐‘‹) ,and similarly if โ„“๐‘ โˆถ ๐ป๐‘˜๐‘ (๐‘‹) โ†’ ๐‘ is a linear function, we can convert it by (5.5.2) into acohomology class

(๐ฟโ‹†๐ต)โˆ’1(โ„“) โˆˆ ๐ป๐‘›โˆ’๐‘˜(๐‘‹) .One way that linear functions like this arise in practice is by integrating forms over

submanifolds of ๐‘‹. Namely let ๐‘Œ be a closed oriented ๐‘˜-dimensional submanifold of ๐‘‹.Since ๐‘Œ is oriented, we have by (5.1.2) an integration operation in cohomology

๐ผ๐‘Œ โˆถ ๐ป๐‘˜๐‘ (๐‘Œ) โ†’ ๐‘ ,and since ๐‘Œ is closed the inclusion map ๐œ„๐‘Œ of ๐‘Œ into๐‘‹ is proper, so we get from it a pullbackoperation on cohomology

๐œ„โ™ฏ๐‘Œ โˆถ ๐ป๐‘˜๐‘ (๐‘‹) โ†’ ๐ป๐‘˜๐‘ (๐‘Œ)and by composing these two maps, we get a linear map โ„“๐‘Œ = ๐ผ๐‘Œ โˆ˜ ๐œ„

โ™ฏ๐‘Œ โˆถ ๐ป๐‘˜๐‘ (๐‘‹) โ†’ ๐‘. The

cohomology class๐‘‡๐‘Œ โ‰” ๐ฟโˆ’1๐ต (โ„“๐‘Œ) โˆˆ ๐ป๐‘˜๐‘ (๐‘‹)

associated with โ„“๐‘Œ is called the Thom class of the manifold ๐‘Œ and has the defining property

(5.5.4) ๐ต(๐‘‡๐‘Œ, ๐‘) = ๐ผ๐‘Œ(๐œ„โ™ฏ๐‘Œ๐‘)

for ๐‘ โˆˆ ๐ป๐‘˜๐‘ (๐‘‹). Let us see what this defining property looks like at the level of forms. Let๐œ๐‘Œ โˆˆ ๐›บ๐‘›โˆ’๐‘˜(๐‘‹) be a closed ๐‘˜-form representing ๐‘‡๐‘Œ. Then by (5.4.5), the formula (5.5.4) for๐‘ = [๐œ”], becomes the integral formula

(5.5.5) โˆซ๐‘‹๐œ๐‘Œ โˆง ๐œ” = โˆซ

๐‘Œ๐œ„โ‹†๐‘Œ๐œ” .

In other words, for every closed form ๐œ” โˆˆ ๐›บ๐‘›โˆ’๐‘˜๐‘ (๐‘‹), the integral of ๐œ” over ๐‘Œ is equal tothe integral over๐‘‹ of ๐œ๐‘Œ โˆง ๐œ”. A closed form ๐œ๐‘Œ with this โ€œreproducingโ€ property is called aThom form for ๐‘Œ. Note that if we add to ๐œ๐‘Œ an exact (๐‘› โˆ’ ๐‘˜)-form ๐œ‡ โˆˆ ๐‘‘๐›บ๐‘›โˆ’๐‘˜โˆ’1(๐‘‹), we get

Page 189: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง5.5 Thom classes & intersection theory 177

another representative ๐œ๐‘Œ +๐œ‡ of the cohomology class ๐‘‡๐‘Œ, and hence another form with thisreproducing property. Also, since equation (5.5.5) is a direct translation into form languageof equation (5.5.4), any closed (๐‘› โˆ’ ๐‘˜)-form ๐œ๐‘Œ with the reproducing property (5.5.5) is arepresentative of the cohomology class ๐‘‡๐‘Œ.

These remarks make sense as well for compactly supported cohomology. Suppose ๐‘Œ iscompact. Then from the inclusion map we get a pullback map

๐œ„โ™ฏ๐‘Œ โˆถ ๐ป๐‘˜(๐‘‹) โ†’ ๐ป๐‘˜(๐‘Œ)and since ๐‘Œ is compact, the integration operation ๐ผ๐‘Œ is a map๐ป๐‘˜(๐‘Œ) โ†’ ๐‘, so the composi-tion of these two operations is a map,

โ„“๐‘Œ โˆถ ๐ป๐‘˜(๐‘‹) โ†’ ๐‘which by (5.5.3) gets converted into a cohomology class

๐‘‡๐‘Œ = ๐ฟโˆ’1๐ต (โ„“๐‘Œ) โˆˆ ๐ป๐‘›โˆ’๐‘˜๐‘ (๐‘‹) .Moreover, if ๐œ๐‘Œ โˆˆ ๐›บ๐‘›โˆ’๐‘˜๐‘ (๐‘‹) is a closed form, it represents this cohomology class if and onlyif it has the reproducing property

(5.5.6) โˆซ๐‘‹๐œ๐‘Œ โˆง ๐œ” = โˆซ

๐‘Œ๐œ„โ‹†๐‘Œ๐œ”

for closed forms๐œ” โˆˆ ๐›บ๐‘›โˆ’๐‘˜(๐‘‹). (Thereโ€™s a subtle difference, however, between formula (5.5.5)and formula (5.5.6). In (5.5.5) ๐œ” has to be closed and compactly supported and in (5.5.6) itjust has to be closed.)

As above we have a lot of latitude in our choice of ๐œ๐‘Œ: we can add to it any element of๐‘‘๐›บ๐‘›โˆ’๐‘˜โˆ’1๐‘ (๐‘‹). One consequence of this is the following.

Theorem 5.5.7. Given a neighborhood ๐‘ˆ of ๐‘Œ in ๐‘‹, there exists a closed form ๐œ๐‘Œ โˆˆ ๐›บ๐‘›โˆ’๐‘˜๐‘ (๐‘ˆ)with the reproducing property

(5.5.8) โˆซ๐‘ˆ๐œ๐‘Œ โˆง ๐œ” = โˆซ

๐‘Œ๐œ„โ‹†๐‘Œ๐œ”

for all closed forms ๐œ” โˆˆ ๐›บ๐‘˜(๐‘ˆ).

Hence, in particular, ๐œ๐‘Œ has the reproducing property (5.5.6) for all closed forms ๐œ” โˆˆ๐›บ๐‘›โˆ’๐‘˜(๐‘‹). This result shows that the Thom form ๐œ๐‘Œ can be chosen to have support in anarbitrarily small neighborhood of ๐‘Œ.

Proof of Theorem 5.5.7. By Theorem 5.3.9 we can assume that ๐‘ˆ has finite topology andhence, in our definition of ๐œ๐‘Œ, we can replace the manifold ๐‘‹ by the open submanifold ๐‘ˆ.This gives us a Thom form ๐œ๐‘Œ with support in ๐‘ˆ and with the reproducing property (5.5.8)for closed forms ๐œ” โˆˆ ๐›บ๐‘›โˆ’๐‘˜(๐‘ˆ). โ–ก

Let us see what Thom forms actually look like in concrete examples. Suppose ๐‘Œ is de-fined globally by a system of โ„“ independent equations, i.e., suppose there exists an openneighborhood ๐‘‚ of ๐‘Œ in ๐‘‹, a ๐ถโˆž map ๐‘“โˆถ ๐‘‚ โ†’ ๐‘โ„“, and a bounded open convex neighbor-hood ๐‘‰ of the origin in ๐‘๐‘› satisfying the following properties.

Properties 5.5.9.(1) The origin is a regular value of ๐‘“.(2) ๐‘“โˆ’1(๐‘‰) is closed in๐‘‹.(3) ๐‘Œ = ๐‘“โˆ’1(0).

Page 190: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

178 Chapter 5: Cohomology via forms

Then by (1) and (3) ๐‘Œ is a closed submanifold of ๐‘‚ and by (2) itโ€™s a closed submanifoldof๐‘‹. Moreover, it has a natural orientation: For every ๐‘ โˆˆ ๐‘Œ the map

๐‘‘๐‘“๐‘ โˆถ ๐‘‡๐‘๐‘‹ โ†’ ๐‘‡0๐‘โ„“

is surjective, and its kernel is ๐‘‡๐‘๐‘Œ, so from the standard orientation of ๐‘‡0๐‘โ„“ one gets anorientation of the quotient space

๐‘‡๐‘๐‘‹/๐‘‡๐‘๐‘Œ ,and hence since ๐‘‡๐‘๐‘‹ is oriented, one gets by Theorem 1.9.9 an orientation on ๐‘‡๐‘๐‘Œ. (SeeExample 4.4.5.) Now let ๐œ‡ be an element of ๐›บโ„“๐‘(๐‘‹). Then ๐‘“โ‹†๐œ‡ is supported in ๐‘“โˆ’1(๐‘‰) andhence by property (2) we can extend it to ๐‘‹ by setting it equal to zero outside ๐‘‚. We willprove:

Theorem 5.5.10. If โˆซ๐‘‰ ๐œ‡ = 1, then ๐‘“โ‹†๐œ‡ is a Thom form for ๐‘Œ.

To prove this weโ€™ll first prove that if ๐‘“โ‹†๐œ‡ has property (5.5.5) for some choice of ๐œ‡ it hasthis property for every choice of ๐œ‡.

Lemma 5.5.11. Let ๐œ‡1 and ๐œ‡2 be forms in๐›บโ„“๐‘(๐‘‰) such that โˆซ๐‘‰ ๐œ‡1 = โˆซ๐‘‰ ๐œ‡2 = 1. Then for everyclosed ๐‘˜-form ๐œˆ โˆˆ ๐›บ๐‘˜๐‘ (๐‘‹) we have

โˆซ๐‘‹๐‘“โ‹†๐œ‡1 โˆง ๐œˆ = โˆซ

๐‘‹๐‘“โ‹†๐œ‡2 โˆง ๐œˆ .

Proof. By Theorem 3.2.2, ๐œ‡1 โˆ’ ๐œ‡2 = ๐‘‘๐›ฝ for some ๐›ฝ โˆˆ ๐›บโ„“โˆ’1๐‘ (๐‘‰), hence, since ๐‘‘๐œˆ = 0(๐‘“โ‹†๐œ‡1 โˆ’ ๐‘“โ‹†๐œ‡2) โˆง ๐œˆ = ๐‘‘๐‘“โ‹†๐›ฝ โˆง ๐œˆ = ๐‘‘(๐‘“โ‹†๐›ฝ โˆง ๐œˆ) .

Therefore, by Stokes theorem, the integral over๐‘‹ of the expression on the left is zero. โ–กNow suppose ๐œ‡ = ๐œŒ(๐‘ฅ1,โ€ฆ, ๐‘ฅโ„“)๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅโ„“, for ๐œŒ in ๐ถโˆž0 (๐‘‰). For ๐‘ก โ‰ค 1 let

๐œ‡๐‘ก = ๐‘กโ„“๐œŒ (๐‘ฅ1๐‘ก,โ€ฆ, ๐‘ฅโ„“๐‘ก) ๐‘‘๐‘ฅ1 โˆงโ‹ฏ๐‘‘๐‘ฅโ„“ .

This form is supported in the convex set ๐‘ก๐‘‰, so by Lemma 5.5.11

โˆซ๐‘‹๐‘“โ‹†๐œ‡๐‘ก โˆง ๐œˆ = โˆซ

๐‘‹๐‘“โ‹†๐œ‡ โˆง ๐œˆ

for all closed forms ๐œˆ โˆˆ ๐›บ๐‘˜๐‘ (๐‘‹). Hence to prove that ๐‘“โ‹†๐œ‡ has the property (5.5.5), it sufficesto prove that

(5.5.12) lim๐‘กโ†’0โˆซ๐‘“โ‹†๐œ‡๐‘ก โˆง ๐œˆ = โˆซ

๐‘Œ๐œ„โ‹†๐‘Œ๐œˆ .

We prove this by proving a stronger result.

Lemma 5.5.13. The assertion (5.5.12) is true for every ๐‘˜-form ๐œˆ โˆˆ ๐›บ๐‘˜๐‘ (๐‘‹).Proof. The canonical sumbersion theorem (see Theorem b.17) says that for every ๐‘ โˆˆ ๐‘Œthere exists a neighborhood๐‘ˆ๐‘ of ๐‘ in ๐‘Œ, a neighborhood,๐‘Š of 0 in ๐‘๐‘›, and an orientationpreserving diffeomorphism ๐œ“โˆถ (๐‘Š, 0) โ†’ (๐‘ˆ๐‘, ๐‘) such that(5.5.14) ๐‘“ โˆ˜ ๐œ“ = ๐œ‹where ๐œ‹โˆถ ๐‘๐‘› โ†’ ๐‘โ„“ is the canonical submersion, ๐œ‹(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) = (๐‘ฅ1,โ€ฆ, ๐‘ฅโ„“). Let U be thecover of ๐‘‚ by the open sets, ๐‘‚ โˆ– ๐‘Œ and the ๐‘ˆ๐‘โ€™s. Choosing a partition of unity subordinateto this cover it suffices to verify (5.5.12) for ๐œˆ in ๐›บ๐‘˜๐‘ (๐‘‚ โˆ– ๐‘Œ) and ๐œˆ in ๐›บ๐‘˜๐‘ (๐‘ˆ๐‘). Let us firstsuppose ๐œˆ is in ๐›บ๐‘˜๐‘ (๐‘‚ โˆ– ๐‘Œ). Then ๐‘“(supp ๐œˆ) is a compact subset of ๐‘โ„“ โˆ– {0} and hence for ๐‘ก

Page 191: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง5.5 Thom classes & intersection theory 179

small ๐‘“(supp ๐œˆ) is disjoint from ๐‘ก๐‘‰, and both sides of (5.5.12) are zero. Next suppose that ๐œˆis in ๐›บ๐‘˜๐‘ (๐‘ˆ๐‘). Then ๐œ“โ‹†๐œˆ is a compactly supported ๐‘˜-form on๐‘Š so we can write it as a sum

๐œ“โ‹†๐œˆ = โˆ‘๐ผโ„Ž๐ผ(๐‘ฅ)๐‘‘๐‘ฅ๐ผ , โ„Ž๐ผ โˆˆ ๐ถโˆž0 (๐‘Š)

the ๐ผโ€™s being strictly increasing multi-indices of length ๐‘˜. Let ๐ผ0 = (โ„“ + 1, โ„“2 + 2,โ€ฆ, ๐‘›). Then

(5.5.15) ๐œ‹โ‹†๐œ‡๐‘ก โˆง ๐œ“โ‹†๐œˆ = ๐‘กโ„“๐œŒ (๐‘ฅ1๐‘ก,โ€ฆ, ๐‘ฅโ„“๐‘ก) โ„Ž๐ผ0(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›)๐‘‘๐‘ฅ๐‘Ÿ โˆงโ‹ฏ๐‘‘๐‘ฅ๐‘›

and by (5.5.14)๐œ“โ‹†(๐‘“โ‹†๐œ‡๐‘ก โˆง ๐œˆ) = ๐œ‹โ‹†๐œ‡๐‘ก โˆง ๐œ“โ‹†๐œˆ

and hence since ๐œ“ is orientation preserving

โˆซ๐‘‹๐‘“โ‹†๐œ‡๐‘ก โˆง ๐œˆ = โˆซ

๐‘ˆ๐‘๐‘“โ‹†๐œ‡๐‘ก โˆง ๐œˆ = ๐‘กโ„“ โˆซ

๐‘๐‘›๐œŒ (๐‘ฅ1๐‘ก,โ€ฆ, ๐‘ฅโ„“๐‘ก) โ„Ž๐ผ0(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›)๐‘‘๐‘ฅ

= โˆซ๐‘๐‘›๐œŒ(๐‘ฅ1,โ€ฆ, ๐‘ฅโ„“)โ„Ž๐ผ0(๐‘ก๐‘ฅ1,โ€ฆ, ๐‘ก๐‘ฅโ„“, ๐‘ฅโ„“+1,โ€ฆ, ๐‘ฅ๐‘›)๐‘‘๐‘ฅ

and the limit of this expression as ๐‘ก tends to zero is

โˆซ๐œŒ(๐‘ฅ1,โ€ฆ, ๐‘ฅโ„“)โ„Ž๐ผ0(0,โ€ฆ, 0, ๐‘ฅโ„“+1,โ€ฆ, ๐‘ฅ๐‘›)๐‘‘๐‘ฅ1โ‹ฏ๐‘‘๐‘ฅ๐‘›or

(5.5.16) โˆซโ„Ž๐ผ(0,โ€ฆ, 0, ๐‘ฅโ„“+1,โ€ฆ, ๐‘ฅ๐‘›) ๐‘‘๐‘ฅโ„“+1โ‹ฏ๐‘‘๐‘ฅ๐‘› .

This, however, is just the integral of๐œ“โ‹†๐œˆ over the set๐œ‹โˆ’1(0)โˆฉ๐‘Š. By (5.5.12),๐œ“maps๐œ‹โˆ’1(0)โˆฉ๐‘Š diffeomorphically onto ๐‘Œ โˆฉ ๐‘ˆ๐‘ and by our recipe for orienting ๐‘Œ this diffeomorphism isan orientation-preserving diffeomorphism, so the integral (5.5.16) is equal to โˆซ๐‘Œ ๐œˆ. โ–ก

Weโ€™ll now describe some applications of Thom forms to topological intersection theory.Let ๐‘Œ and ๐‘ be closed, oriented submanifolds of ๐‘‹ of dimensions ๐‘˜ and โ„“ where ๐‘˜ + โ„“ = ๐‘›,and Let us assume one of them (say ๐‘) is compact. We will show below how to define anintersection number ๐ผ(๐‘Œ, ๐‘), which on the one hand will be a topological invariant of ๐‘Œand ๐‘ and on the other hand will actually count, with appropriate ยฑ-signs, the number ofpoints of intersection of ๐‘Œ and ๐‘ when they intersect non-tangentially. (Thus this notion issimilar to the notion of the degree deg(๐‘“) for a ๐ถโˆž mapping ๐‘“. On the one hand deg(๐‘“)is a topological invariant of ๐‘“. Itโ€™s unchanged if we deform ๐‘“ by a homotopy. On the otherhand if ๐‘ž is a regular value of๐‘“, then deg(๐‘“) counts with appropriate ยฑ-signs the number ofpoints in the set ๐‘“โˆ’1(๐‘ž).)

Weโ€™ll first give the topological definition of this intersection number. This is by the for-mula(5.5.17) ๐ผ(๐‘Œ, ๐‘) = ๐ต(๐‘‡๐‘Œ, ๐‘‡๐‘)where ๐‘‡๐‘Œ โˆˆ ๐ปโ„“(๐‘‹) and ๐‘‡๐‘ โˆˆ ๐ป๐‘˜๐‘ (๐‘‹) and ๐ต is the bilinear pairing (5.4.5). If ๐œ๐‘Œ โˆˆ ๐›บโ„“(๐‘‹)and ๐œ๐‘ โˆˆ ๐›บ๐‘˜๐‘ (๐‘‹) are Thom forms representing ๐‘‡๐‘Œ and ๐‘‡๐‘, (5.5.17) can also be defined as theintegral

๐ผ(๐‘Œ, ๐‘) = โˆซ๐‘‹๐œ๐‘Œ โˆง ๐œ๐‘

or by (5.5.8), as the integral over ๐‘Œ,

(5.5.18) ๐ผ(๐‘Œ, ๐‘) = โˆซ๐‘Œ๐œ„โ‹†๐‘Œ๐œ๐‘

Page 192: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

180 Chapter 5: Cohomology via forms

or, since ๐œ๐‘Œ โˆง ๐œ๐‘ = (โˆ’1)๐‘˜โ„“๐œ๐‘ โˆง ๐œ๐‘Œ, as the integral over ๐‘

๐ผ(๐‘‹, ๐‘Œ) = (โˆ’1)๐‘˜โ„“ โˆซ๐‘๐œ„โ‹†๐‘๐œ๐‘Œ .

In particular๐ผ(๐‘Œ, ๐‘) = (โˆ’1)๐‘˜โ„“๐ผ(๐‘, ๐‘Œ).

As a test case for our declaring ๐ผ(๐‘Œ, ๐‘) to be the intersection number of๐‘Œ and๐‘we will firstprove:

Proposition 5.5.19. If ๐‘Œ and ๐‘ do not intersect, then ๐ผ(๐‘Œ, ๐‘) = 0.

Proof. If๐‘Œ and๐‘ donโ€™t intersect then, since๐‘Œ is closed,๐‘ˆ = ๐‘‹โˆ–๐‘Œ is an open neighborhoodof ๐‘ in ๐‘‹, therefore since ๐‘ is compact there exists by Theorem 5.5.7 a Thom form ๐œ๐‘ โˆˆ๐›บโ„“๐‘(๐‘ˆ). Thus ๐œ„โ‹†๐‘Œ๐œ๐‘ = 0, and so by (5.5.18) we have ๐ผ(๐‘Œ, ๐‘) = 0. โ–ก

Weโ€™ll next indicate howone computes ๐ผ(๐‘Œ, ๐‘)when๐‘Œ and๐‘ intersect โ€œnon-tangentiallyโ€,or, to use terminology more in current usage, when their intersection is transversal. Recallthat at a point of intersection, ๐‘ โˆˆ ๐‘Œ โˆฉ ๐‘, ๐‘‡๐‘๐‘Œ and ๐‘‡๐‘๐‘ are vector subspaces of ๐‘‡๐‘๐‘‹.

Definition 5.5.20. ๐‘Œ and ๐‘ intersect transversally if for every ๐‘ โˆˆ ๐‘Œ โˆฉ ๐‘ we have๐‘‡๐‘๐‘Œ โˆฉ ๐‘‡๐‘๐‘ = 0 .

Since ๐‘› = ๐‘˜ + โ„“ = dim๐‘‡๐‘๐‘Œ + dim๐‘‡๐‘๐‘ = dim๐‘‡๐‘๐‘‹, this condition is equivalent to

(5.5.21) ๐‘‡๐‘๐‘‹ = ๐‘‡๐‘๐‘Œ โŠ• ๐‘‡๐‘๐‘ ,

i.e., every vector, ๐‘ข โˆˆ ๐‘‡๐‘๐‘‹, can be written uniquely as a sum, ๐‘ข = ๐‘ฃ + ๐‘ค, with ๐‘ฃ โˆˆ ๐‘‡๐‘๐‘Œ and๐‘ค โˆˆ ๐‘‡๐‘๐‘. Since ๐‘‹, ๐‘Œ and ๐‘ are oriented, their tangent spaces at ๐‘ are oriented, and weโ€™llsay that these spaces are compatibly oriented if the orientations of the two sides of (5.5.21)agree. (In other words if ๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜ is an oriented basis of ๐‘‡๐‘๐‘Œ and ๐‘ค1,โ€ฆ,๐‘คโ„“ is an orientedbasis of๐‘‡๐‘๐‘, the ๐‘› vectors, ๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘˜,๐‘ค1,โ€ฆ,๐‘คโ„“, are an oriented basis of๐‘‡๐‘๐‘‹.)Wewill definethe local intersection number ๐ผ๐‘(๐‘Œ, ๐‘) of ๐‘Œ and ๐‘ at ๐‘ to be equal to +1 if ๐‘‹, ๐‘Œ, and ๐‘ arecompatibly oriented at ๐‘ and to be equal to โˆ’1 if theyโ€™re not. With this notation weโ€™ll prove:

Theorem 5.5.22. If ๐‘Œ and ๐‘ intersect transversally then ๐‘Œ โˆฉ ๐‘ is a finite set and

๐ผ(๐‘Œ, ๐‘) = โˆ‘๐‘โˆˆ๐‘Œโˆฉ๐‘๐ผ๐‘(๐‘Œ, ๐‘) .

To prove this we first need to show that transverse intersections look nice locally.

Theorem 5.5.23. If ๐‘Œ and ๐‘ intersect transversally, then for every ๐‘ โˆˆ ๐‘Œ โˆฉ ๐‘, there existsan open neighborhood ๐‘‰๐‘ of ๐‘ in ๐‘‹, an open neighborhood ๐‘ˆ๐‘ of the origin in ๐‘๐‘›, and anorientation-preserving diffeomorphism ๐œ“๐‘ โˆถ ๐‘‰๐‘ โฅฒ ๐‘ˆ๐‘ which maps ๐‘‰๐‘ โˆฉ ๐‘Œ diffeomorphicallyonto the subset of ๐‘ˆ๐‘ defined by the equations: ๐‘ฅ1 = โ‹ฏ = ๐‘ฅโ„“ = 0, and maps ๐‘‰ โˆฉ ๐‘ onto thesubset of ๐‘ˆ๐‘ defined by the equations: ๐‘ฅโ„“+1 = โ‹ฏ = ๐‘ฅ๐‘› = 0.

Proof. Since this result is a local result, we can assume that ๐‘‹ = ๐‘๐‘› and hence by Theo-rem 4.2.15 that there exists a neighborhood ๐‘‰๐‘ of ๐‘ in ๐‘๐‘› and submersions ๐‘“โˆถ (๐‘‰๐‘, ๐‘) โ†’(๐‘โ„“, 0) and ๐‘”โˆถ (๐‘‰๐‘, ๐‘) โ†’ (๐‘๐‘˜, 0) with the properties

(5.5.24) ๐‘‰๐‘ โˆฉ ๐‘Œ = ๐‘“โˆ’1(0)and(5.5.25) ๐‘‰๐‘ โˆฉ ๐‘ = ๐‘”โˆ’1(0) .

Page 193: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง5.5 Thom classes & intersection theory 181

Moreover, by (4.3.5) ๐‘‡๐‘๐‘Œ = (๐‘‘๐‘“๐‘)โˆ’1(0) and ๐‘‡๐‘๐‘ = (๐‘‘๐‘”๐‘)โˆ’1(0). Hence by (5.5.21), the equa-tions(5.5.26) ๐‘‘๐‘“๐‘(๐‘ฃ) = ๐‘‘๐‘”๐‘(๐‘ฃ) = 0for ๐‘ฃ โˆˆ ๐‘‡๐‘๐‘‹ imply that ๐‘ฃ = 0. Now let ๐œ“๐‘ โˆถ ๐‘‰๐‘ โ†’ ๐‘๐‘› be the map

(๐‘“, ๐‘”) โˆถ ๐‘‰๐‘ โ†’ ๐‘โ„“ ร— ๐‘๐‘˜ = ๐‘๐‘› .Then by (5.5.26), ๐‘‘๐œ“๐‘ is bijective, therefore, shrinking ๐‘‰๐‘ if necessary, we can assume that๐œ“๐‘ maps ๐‘‰๐‘ diffeomorphically onto a neighborhood ๐‘ˆ๐‘ of the origin in ๐‘๐‘›, and hence by(5.5.24) and (5.5.25)), ๐œ“๐‘ maps๐‘‰๐‘ โˆฉ๐‘Œ onto the set: ๐‘ฅ1 = โ‹ฏ = ๐‘ฅโ„“ = 0 and maps๐‘‰๐‘ โˆฉ๐‘ ontothe set: ๐‘ฅโ„“+1 = โ‹ฏ = ๐‘ฅ๐‘› = 0. Finally, if ๐œ“ isnโ€™t orientation preserving, we can make it so bycomposing it with the involution, (๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) โ†ฆ (๐‘ฅ1, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›โˆ’1, โˆ’๐‘ฅ๐‘›). โ–ก

From this result we deduce:

Theorem 5.5.27. If ๐‘Œ and ๐‘ intersect transversally, their intersection is a finite set.

Proof. By Theorem 5.5.23 the only point of intersection in ๐‘‰๐‘ is ๐‘ itself. Moreover, since ๐‘Œis closed and ๐‘ is compact, ๐‘Œ โˆฉ ๐‘ is compact. Therefore, since the ๐‘‰๐‘โ€™s cover ๐‘Œ โˆฉ ๐‘ we canextract a finite subcover by the Heineโ€“Borel theorem. However, since no two ๐‘‰๐‘โ€™s cover thesame point of ๐‘Œ โˆฉ ๐‘, this cover must already be a finite subcover. โ–ก

We will now prove Theorem 5.5.22.

Proof of Theorem 5.5.22. Since ๐‘Œ is closed, the map ๐œ„๐‘Œ โˆถ ๐‘Œ โ†ช ๐‘‹ is proper, so by Theo-rem 3.4.7 there exists a neighborhood๐‘ˆ of๐‘ in๐‘‹ such that๐‘ˆโˆฉ๐‘Œ is contained in the unionof the open sets ๐‘‰๐‘ above. Moreover by Theorem 5.5.7 we can choose ๐œ๐‘ to be supportedin ๐‘ˆ and by Theorem 5.3.2 we can assume that ๐‘ˆ has finite topology, so weโ€™re reduced toproving the theorem with๐‘‹ replaced by ๐‘ˆ and ๐‘Œ replaced by ๐‘Œ โˆฉ ๐‘ˆ. Let

๐‘‚ โ‰” ๐‘ˆ โˆฉ โ‹ƒ๐‘โˆˆ๐‘‹๐‘‰๐‘ ,

let ๐‘“โˆถ ๐‘‚ โ†’ ๐‘โ„“ be the map whose restriction to ๐‘‰๐‘ โˆฉ ๐‘ˆ is ๐œ‹ โˆ˜ ๐œ“๐‘ where ๐œ‹ is, as in equa-tion (5.5.14), the canonical submersion of ๐‘๐‘› onto ๐‘โ„“, and finally let ๐‘‰ be a bounded con-vex neighborhood of ๐‘โ„“, whose closure is contained in the intersection of the open sets,๐œ‹ โˆ˜ ๐œ“๐‘(๐‘‰๐‘ โˆฉ ๐‘ˆ). Then ๐‘“โˆ’1(๐‘‰) is a closed subset of ๐‘ˆ, so if we replace ๐‘‹ by ๐‘ˆ and ๐‘Œ by๐‘Œโˆฉ๐‘ˆ, the data (๐‘“, ๐‘‚, ๐‘‰) satisfy Properties 5.5.9. Thus to prove Theorem 5.5.22 it suffices byTheorem 5.5.10 to prove this theorem with

๐œ๐‘Œ = ๐œŽ๐‘(๐‘Œ)๐‘“โ‹†๐œ‡on ๐‘‰๐‘ โˆฉ ๐‘‚ where ๐œŽ๐‘(๐‘Œ) = +1 or โˆ’1 depending on whether the orientation of ๐‘Œ โˆฉ ๐‘‰๐‘ inTheorem 5.5.10 coincides with the given orientation of ๐‘Œ or not. Thus

๐ผ(๐‘Œ, ๐‘) = (โˆ’1)๐‘˜โ„“๐ผ(๐‘, ๐‘Œ)

= (โˆ’1)๐‘˜โ„“ โˆ‘๐‘โˆˆ๐‘‹๐œŽ๐‘(๐‘Œ) โˆซ

๐‘๐œ„โ‹†๐‘๐‘“โ‹†๐œ‡

= (โˆ’1)๐‘˜โ„“ โˆ‘๐‘โˆˆ๐‘‹๐œŽ๐‘(๐‘Œ) โˆซ

๐‘๐œ„โ‹†๐‘๐œ“โ‹†๐‘๐œ‹โ‹†๐œ‡

= โˆ‘๐‘โˆˆ๐‘‹(โˆ’1)๐‘˜โ„“๐œŽ๐‘(๐‘Œ) โˆซ

๐‘โˆฉ๐‘‰๐‘(๐œ‹ โˆ˜ ๐œ“๐‘ โˆ˜ ๐œ„๐‘)โ‹†๐œ‡ .

Page 194: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

182 Chapter 5: Cohomology via forms

But ๐œ‹ โˆ˜ ๐œ“๐‘ โˆ˜ ๐œ„๐‘ maps an open neighborhood of ๐‘ in ๐‘ˆ๐‘ โˆฉ ๐‘ diffeomorphically onto ๐‘‰, and๐œ‡ is compactly supported in ๐‘‰, so since โˆซ๐‘‰ ๐œ‡ = 1,

โˆซ๐‘โˆฉ๐‘ˆ๐‘(๐œ‹ โˆ˜ ๐œ“๐‘ โˆ˜ ๐œ„๐‘)โ‹†๐œ‡ = ๐œŽ๐‘(๐‘) โˆซ

๐‘‰๐œ‡ = ๐œŽ๐‘(๐‘) ,

where ๐œŽ๐‘(๐‘) = +1 or โˆ’1 depending on whether ๐œ‹ โˆ˜ ๐œ“๐‘ โˆ˜ ๐œ„๐‘ is orientation preserving or not.Thus finally

๐ผ(๐‘Œ, ๐‘) = โˆ‘๐‘โˆˆ๐‘‹(โˆ’1)๐‘˜โ„“๐œŽ๐‘(๐‘Œ)๐œŽ๐‘(๐‘) .

We will leave as an exercise the task of unraveling these orientations and showing that

(โˆ’1)๐‘˜โ„“๐œŽ๐‘(๐‘Œ)๐œŽ๐‘(๐‘) = ๐ผ๐‘(๐‘Œ, ๐‘)

and hence that ๐ผ(๐‘Œ, ๐‘) = โˆ‘๐‘โˆˆ๐‘‹ ๐ผ๐‘(๐‘Œ, ๐‘). โ–ก

Exercises for ยง5.5Exercise 5.5.i. Let๐‘‹be a connected oriented๐‘›-manifold,๐‘Š a connected oriented โ„“-dimensionalmanifold, ๐‘“โˆถ ๐‘‹ โ†’ ๐‘Š a ๐ถโˆž map, and ๐‘Œ a closed submanifold of๐‘‹ of dimension ๐‘˜ โ‰” ๐‘› โˆ’ โ„“.Suppose ๐‘Œ is a โ€œlevel setโ€ of the map ๐‘“, i.e., suppose that ๐‘ž is a regular value of ๐‘“ and that๐‘Œ = ๐‘“โˆ’1(๐‘ž). Show that if ๐œ‡ is in ๐›บโ„“๐‘(๐‘) and its integral over ๐‘ is 1, then one can orient ๐‘Œ sothat ๐œ๐‘Œ = ๐‘“โ‹†๐œ‡ is a Thom form for ๐‘Œ.

Hint: Theorem 5.5.10.

Exercise 5.5.ii. In Exercise 5.5.i show that if ๐‘ โŠ‚ ๐‘‹ is a compact oriented โ„“-dimensionalsubmanifold of๐‘‹ then

๐ผ(๐‘Œ, ๐‘) = (โˆ’1)๐‘˜โ„“ deg(๐‘“ โˆ˜ ๐œ„๐‘) .

Exercise 5.5.iii. Let ๐‘ž1 be another regular value of the map ๐‘“โˆถ ๐‘‹ โ†’ ๐‘Š and let ๐‘Œ1 = ๐‘“โˆ’1(๐‘ž).Show that

๐ผ(๐‘Œ, ๐‘) = ๐ผ(๐‘Œ1, ๐‘) .

Exercise 5.5.iv.(1) Show that if ๐‘ž is a regular value of the map ๐‘“ โˆ˜ ๐œ„๐‘ โˆถ ๐‘ โ†’ ๐‘Š, then ๐‘ and ๐‘Œ intersect

transversally.(2) Show that this is an โ€œif and only if โ€ proposition: If ๐‘Œ and ๐‘ intersect transversally, then๐‘ž is a regular value of the map ๐‘“ โˆ˜ ๐œ„๐‘.

Exercise 5.5.v. Suppose ๐‘ž is a regular value of the map ๐‘“ โˆ˜ ๐œ„๐‘. Show that ๐‘ is in ๐‘Œโˆฉ๐‘ if andonly if ๐‘ is in the preimage (๐‘“ โˆ˜ ๐œ„๐‘)โˆ’1(๐‘ž) of ๐‘ž and that

๐ผ๐‘(๐‘‹, ๐‘Œ) = (โˆ’1)๐‘˜โ„“๐œŽ๐‘where ๐œŽ๐‘ is the orientation number of the map ๐‘“ โˆ˜ ๐œ„๐‘, at ๐‘, i.e., ๐œŽ๐‘ = 1 if ๐‘“ โˆ˜ ๐œ„๐‘ is orientation-preserving at ๐‘ and ๐œŽ๐‘ = โˆ’1 if ๐‘“ โˆ˜ ๐œ„๐‘ is orientation-reversving at ๐‘.

Exercise 5.5.vi. Suppose the map ๐‘“โˆถ ๐‘‹ โ†’ ๐‘Š is proper. Show that there exists a neighbor-hood, ๐‘‰, of ๐‘ž in๐‘Š having the property that all points of ๐‘‰ are regular values of ๐‘“.

Hint: Since ๐‘ž is a regular value of ๐‘“ there exists, for every ๐‘ โˆˆ ๐‘“โˆ’1(๐‘ž) a neighborhood๐‘ˆ๐‘ of ๐‘ on which ๐‘“ is a submersion. Conclude, by Theorem 3.4.7, that there exists a neigh-borhood ๐‘‰ of ๐‘ž with ๐‘“โˆ’1(๐‘‰) โŠ‚ โ‹ƒ๐‘โˆˆ๐‘“โˆ’1(๐‘ž)๐‘ˆ๐‘.

Page 195: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง5.6 The Lefschetz Theorem 183

Exercise 5.5.vii. Show that in every neighborhood๐‘‰1 of ๐‘ž in๐‘‰ there exists a point ๐‘ž1 whosepreimage

๐‘Œ1 โ‰” ๐‘“โˆ’1(๐‘ž1)intersects ๐‘ transversally. Conclude that one can โ€œdeform ๐‘Œ an arbitrarily small amount sothat it intersects ๐‘ transversallyโ€.

Hint: Exercise 5.5.iv plus Sardโ€™s theorem.

Exercise 5.5.viii (Intersection theory for mappings). Let ๐‘‹ be an oriented, connected ๐‘›-manifold, ๐‘ a compact, oriented โ„“-dimensional submanifold, ๐‘Œ an oriented manifold ofdimension ๐‘˜ โ‰” ๐‘› โˆ’ โ„“ and ๐‘“โˆถ ๐‘Œ โ†’ ๐‘‹ a proper ๐ถโˆž map. Define the intersection number of๐‘“ with ๐‘ to be the integral

๐ผ(๐‘“, ๐‘) โ‰” โˆซ๐‘Œ๐‘“โ‹†๐œ๐‘ .

(1) Show that ๐ผ(๐‘“, ๐‘) is a homotopy invariant of ๐‘“, i.e., show that if ๐‘“0, ๐‘“1 โˆถ ๐‘Œ โ†’ ๐‘‹ areproper ๐ถโˆž maps and are properly homotopic, then

๐ผ(๐‘“0, ๐‘) = ๐ผ(๐‘“1, ๐‘) .(2) Show that if ๐‘Œ is a closed submanifold of ๐‘‹ of dimension ๐‘˜ = ๐‘› โˆ’ โ„“ and ๐œ„๐‘Œ โˆถ ๐‘Œ โ†’ ๐‘‹ is

the inclusion map, then ๐ผ(๐œ„๐‘Œ, ๐‘) = ๐ผ(๐‘Œ, ๐‘).

Exercise 5.5.ix.(1) Let ๐‘‹ be an oriented connected ๐‘›-manifold and let ๐‘ be a compact zero-dimensional

submanifold consisting of a single point ๐‘ง0 โˆˆ ๐‘‹. Show that if ๐œ‡ is in ๐›บ๐‘›๐‘ (๐‘‹) then ๐œ‡ is aThom form for ๐‘ if and only if its integral is 1.

(2) Let ๐‘Œ be an oriented ๐‘›-manifold and ๐‘“โˆถ ๐‘Œ โ†’ ๐‘‹ a ๐ถโˆž map. Show that for ๐‘ = {๐‘ง0} asin part (1) we have ๐ผ(๐‘“, ๐‘) = deg(๐‘“).

5.6. The LefschetzTheorem

In this section weโ€™ll apply the intersection techniques that we developed in ยง5.5 to aconcrete problem in dynamical systems: counting the number of fixed points of a differen-tiable mapping. The Brouwer fixed point theorem, which we discussed in ยง3.6, told us thata ๐ถโˆž map of the unit ball into itself has to have at least one fixed point. The Lefschetz the-orem is a similar result for manifolds. It will tell us that a ๐ถโˆž map of a compact manifoldinto itself has to have a fixed point if a certain topological invariant of the map, its globalLefschetz number, is nonzero.

Before stating this result, we will first show how to translate the problem of countingfixed points of a mapping into an intersection number problem. Let ๐‘‹ be an oriented com-pact ๐‘›-manifold and ๐‘“โˆถ ๐‘‹ โ†’ ๐‘‹ a ๐ถโˆž map. Define the graph of ๐‘“ in ๐‘‹ ร— ๐‘‹ to be theset

๐›ค๐‘“ โ‰” { (๐‘ฅ, ๐‘“(๐‘ฅ)) | ๐‘ฅ โˆˆ ๐‘‹ } โŠ‚ ๐‘‹ ร— ๐‘‹ .Itโ€™s easy to see that this is an ๐‘›-dimensional submanifold of๐‘‹ ร—๐‘‹ and that this manifold isdiffeomorphic to๐‘‹ itself. In fact, in one direction, there is a ๐ถโˆž map

(5.6.1) ๐›พ๐‘“ โˆถ ๐‘‹ โ†’ ๐›ค๐‘“ , ๐‘ฅ โ†ฆ (๐‘ฅ, ๐‘“(๐‘ฅ)) ,and, in the other direction, a ๐ถโˆž map

๐œ‹โˆถ ๐›ค๐‘“ โ†’ ๐‘‹ , (๐‘ฅ, ๐‘“(๐‘ฅ)) โ†ฆ ๐‘ฅ ,and itโ€™s obvious that these maps are inverses of each other and hence diffeomorphisms. Wewill orient ๐›ค๐‘“ by requiring that ๐›พ๐‘“ and ๐œ‹ be orientation-preserving diffeomorphisms.

Page 196: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

184 Chapter 5: Cohomology via forms

An example of a graph is the graph of the identity map of ๐‘‹ onto itself. This is thediagonal in๐‘‹ ร— ๐‘‹

๐›ฅ โ‰” { (๐‘ฅ, ๐‘ฅ) | ๐‘ฅ โˆˆ ๐‘‹ } โŠ‚ ๐‘‹ ร— ๐‘‹and its intersection with ๐›ค๐‘“ is the set

๐›ค๐‘“ โˆฉ ๐›ฅ = { (๐‘ฅ, ๐‘ฅ) | ๐‘“(๐‘ฅ) = ๐‘ฅ } ,which is just the set of fixed points of๐‘“. Hence a natural way to count the fixed points of๐‘“ isas the intersection number of ๐›ค๐‘“ and ๐›ฅ in๐‘‹ร—๐‘‹. To do so we need these three manifolds tobe oriented, but, as we noted above, ๐›ค๐‘“ and ๐›ฅ acquire orientations from the identifications(5.6.1) and, as for๐‘‹ร—๐‘‹, weโ€™ll give it its natural orientation as a product of orientedmanifolds.(See ยง4.5.)

Definition 5.6.2. The global Lefschetz number of ๐‘“ is the intersection number

๐ฟ(๐‘“) โ‰” ๐ผ(๐›ค๐‘“, ๐›ฅ) .

In this section weโ€™ll give two recipes for computing this number: one by topologicalmethods and the other by making transversality assumptions and computing this numberas a sum of local intersection numbers viaTheorem 5.5.22.We first showwhat one gets fromthe transversality approach.

Definition 5.6.3. The map ๐‘“โˆถ ๐‘‹ โ†’ ๐‘‹ is a Lefschetz map, or simply Lefschetz, if ๐›ค๐‘“ and ๐›ฅintersect transversally.

Let us see what being Lefschetz entails. Suppose๐‘ is a fixed point of๐‘“.Then at the point๐‘ž = (๐‘, ๐‘) of ๐›ค๐‘“(5.6.4) ๐‘‡๐‘ž(๐›ค๐‘“) = (๐‘‘๐›พ๐‘“)๐‘๐‘‡๐‘๐‘‹ = { (๐‘ฃ, ๐‘‘๐‘“๐‘(๐‘ฃ)) | ๐‘ฃ โˆˆ ๐‘‡๐‘๐‘‹}and, in particular, for the identity map,

๐‘‡๐‘ž(๐›ฅ) = { (๐‘ฃ, ๐‘ฃ) | ๐‘ฃ โˆˆ ๐‘‡๐‘๐‘‹} .Therefore, if ๐›ฅ and ๐›ค๐‘“ are to intersect transversally, the intersection of ๐‘‡๐‘ž(๐›ค๐‘“) โˆฉ๐‘‡๐‘ž(๐›ฅ) inside๐‘‡๐‘ž(๐‘‹ ร— ๐‘‹) has to be the zero space. In other words if

(5.6.5) (๐‘ฃ, ๐‘‘๐‘“๐‘(๐‘ฃ)) = (๐‘ฃ, ๐‘ฃ)then ๐‘ฃ = 0. But the identity (5.6.5) says that ๐‘ฃ is a fixed point of ๐‘‘๐‘“๐‘, so transversality at ๐‘amounts to the assertion

๐‘‘๐‘“๐‘(๐‘ฃ) = ๐‘ฃ โŸบ ๐‘ฃ = 0 ,or in other words the assertion that the map

(5.6.6) (id๐‘‡๐‘๐‘‹ โˆ’๐‘‘๐‘“๐‘) โˆถ ๐‘‡๐‘๐‘‹ โ†’ ๐‘‡๐‘๐‘‹

is bijective.

Proposition5.6.7. The local intersection number ๐ผ๐‘(๐›ค๐‘“, ๐›ฅ) is 1 if (5.6.6) is orientation-preservingand โˆ’1 otherwise.

In other words ๐ผ๐‘(๐›ค๐‘“, ๐›ฅ) is the sign of det(id๐‘‡๐‘๐‘‹ โˆ’๐‘‘๐‘“๐‘).

Proof. To prove this let ๐‘’1,โ€ฆ, ๐‘’๐‘› be an oriented basis of ๐‘‡๐‘๐‘‹ and let

(5.6.8) ๐‘‘๐‘“๐‘(๐‘’๐‘–) =๐‘›โˆ‘๐‘—=1๐‘Ž๐‘—,๐‘–๐‘’๐‘— .

Page 197: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง5.6 The Lefschetz Theorem 185

Now set ๐‘ฃ๐‘– โ‰” (๐‘’๐‘–, 0) โˆˆ ๐‘‡๐‘ž(๐‘‹ ร— ๐‘‹) and ๐‘ค๐‘– โ‰” (0, ๐‘’๐‘–) โˆˆ ๐‘‡๐‘ž(๐‘‹ ร— ๐‘‹). Then by the definition ofthe product orientation on ๐‘‹ ร— ๐‘‹, we have that (๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘›, ๐‘ค1,โ€ฆ,๐‘ค๐‘›) is an oriented basisof ๐‘‡๐‘ž(๐‘‹ ร— ๐‘‹), and by (5.6.4)

(๐‘ฃ1 + โˆ‘๐‘›๐‘—=1 ๐‘Ž๐‘—,๐‘–๐‘ค๐‘—,โ€ฆ, ๐‘ฃ๐‘› + โˆ‘

๐‘›๐‘—=1 ๐‘Ž๐‘—,๐‘›๐‘ค๐‘—)

is an oriented basis of ๐‘‡๐‘ž๐›ค๐‘“ and ๐‘ฃ1 + ๐‘ค1,โ€ฆ, ๐‘ฃ๐‘› + ๐‘ค๐‘› is an oriented basis of ๐‘‡๐‘ž๐›ฅ. Thus๐ผ๐‘(๐›ค๐‘“, ๐›ฅ) = ยฑ1, depending on whether or not the basis

(๐‘ฃ1 + โˆ‘๐‘›๐‘—=1 ๐‘Ž๐‘—,๐‘–๐‘ค๐‘—,โ€ฆ, ๐‘ฃ๐‘› + โˆ‘

๐‘›๐‘—=1 ๐‘Ž๐‘—,๐‘›๐‘ค๐‘—, ๐‘ฃ1 + ๐‘ค1,โ€ฆ, ๐‘ฃ๐‘› + ๐‘ค๐‘›)

of ๐‘‡๐‘ž(๐‘‹ ร— ๐‘‹) is compatibly oriented with the basis (5.6.8). Thus ๐ผ๐‘(๐›ค๐‘“, ๐›ฅ) = ยฑ1, the signdepending on whether the determinant of the 2๐‘› ร— 2๐‘›matrix relating these two bases:

๐‘ƒ โ‰” (id๐‘› ๐ดid๐‘› id๐‘›)

is positive or negative, where๐ด = (๐‘Ž๐‘–,๐‘—). However, by the block matrix determinant formula,we see that to see that

det(๐‘ƒ) = det(id๐‘› โˆ’๐ด idโˆ’1๐‘› id๐‘›) det(id๐‘›) = det(id๐‘› โˆ’๐ด) ,hence by (5.6.8) we see that det(๐‘ƒ) = det(id๐‘› โˆ’๐‘‘๐‘“๐‘). (If you are not familiar with this, it iseasy to see that by elementary row operations ๐‘ƒ can be converted into the matrix

(id๐‘› ๐ด0 id๐‘› โˆ’๐ด

)

apply Exercise 1.8.vii.) โ–ก

Let us summarize what we have shown so far.

Theorem 5.6.9. A ๐‘“โˆถ ๐‘‹ โ†’ ๐‘‹, is a Lefschetz map if and only if for every fixed point ๐‘ of ๐‘“,the map

id๐‘‡๐‘๐‘‹ โˆ’๐‘‘๐‘“๐‘ โˆถ ๐‘‡๐‘๐‘‹ โ†’ ๐‘‡๐‘๐‘‹is bijective. Moreover for Lefschetz maps ๐‘“ we have

๐ฟ(๐‘“) = โˆ‘๐‘=๐‘“(๐‘)๐ฟ๐‘(๐‘“)

where ๐ฟ๐‘(๐‘“) = +1 if id๐‘‡๐‘๐‘‹ โˆ’๐‘‘๐‘“๐‘ is orientation-preserving and ๐ฟ๐‘(๐‘“) = โˆ’1 if id๐‘‡๐‘๐‘‹ โˆ’๐‘‘๐‘“๐‘ isorientation-reversing.

Weโ€™ll next describe how to compute ๐ฟ(๐‘“) as a topological invariant of ๐‘“. Let ๐œ„๐›ค๐‘“ be theinclusion map of ๐›ค๐‘“ into ๐‘‹ ร— ๐‘‹ and let ๐‘‡๐›ฅ โˆˆ ๐ป๐‘›(๐‘‹ ร— ๐‘‹) be the Thom class of ๐›ฅ. Then by(5.5.18)

๐ฟ(๐‘“) = ๐ผ๐›ค๐‘“(๐œ„โ‹†๐›ค๐‘“๐‘‡๐›ฅ)

and hence since themapping ๐›พ๐‘“ โˆถ ๐‘‹ โ†’ ๐‘‹ร—๐‘‹ defined by (5.6.1) is an orientation-preservingdiffeomorphism of๐‘‹ โฅฒ ๐›ค๐‘“ we have

(5.6.10) ๐ฟ(๐‘“) = ๐ผ๐‘‹(๐›พโ‹†๐‘“๐‘‡๐›ฅ) .To evaluate the expression on the right weโ€™ll need to know some facts about the cohomologygroups of product manifolds.Themain result on this topic is the Kรผnneth theorem, and weโ€™lltake up the formulation and proof of this theorem in ยง5.7. First, however, weโ€™ll describe aresult which follows from the Kรผnneth theorem and which will enable us to complete ourcomputation of ๐ฟ(๐‘“).

Page 198: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

186 Chapter 5: Cohomology via forms

Let ๐œ‹1 and ๐œ‹2 be the projection of๐‘‹ร—๐‘‹ onto its first and second factors, i.e., for ๐‘– = 1, 2let

๐œ‹๐‘– โˆถ ๐‘‹ ร— ๐‘‹ โ†’ ๐‘‹be the projection ๐œ‹๐‘–(๐‘ฅ1, ๐‘ฅ2) โ‰” ๐‘ฅ๐‘–. Then by equation (5.6.1) we have

(5.6.11) ๐œ‹1 โ‹… ๐›พ๐‘“ = id๐‘‹and

(5.6.12) ๐œ‹2 โ‹… ๐›พ๐‘“ = ๐‘“ .

Lemma 5.6.13. If ๐œ”1 and ๐œ”2 are in ๐›บ๐‘›(๐‘‹) then

(5.6.14) โˆซ๐‘‹ร—๐‘‹๐œ‹โ‹†1๐œ”1 โˆง ๐œ‹โ‹†2๐œ”2 = (โˆซ

๐‘‹๐œ”1)(โˆซ

๐‘‹๐œ”2) .

Proof. By a partition of unity argument we can assume that ๐œ”๐‘– has compact support in aparametrizable open set, ๐‘‰๐‘–. Let ๐‘ˆ๐‘– be an open subset of ๐‘๐‘› and ๐œ™๐‘– โˆถ ๐‘ˆ๐‘– โ†’ ๐‘‰๐‘– an orientation-preserving diffeomorphism. Then

๐œ™โ‹†๐‘– ๐œ” = ๐œŒ๐‘–๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘›with ๐œŒ๐‘– โˆˆ ๐ถโˆž0 (๐‘ˆ๐‘–), so the right hand side of (5.6.14) is the product of integrals over ๐‘๐‘›:

(5.6.15) (โˆซ๐‘๐‘›๐œŒ1(๐‘ฅ)๐‘‘๐‘ฅ)(โˆซ

๐‘๐‘›๐œŒ2(๐‘ฅ)๐‘‘๐‘ฅ) .

Moreover, since๐‘‹ ร— ๐‘‹ is oriented by its product orientation, the map

๐œ“โˆถ ๐‘ˆ1 ร— ๐‘ˆ2 โ†’ ๐‘‰1 ร— ๐‘‰2is given by (๐‘ฅ, ๐‘ฆ) โ†ฆ (๐œ™1(๐‘ฅ) ,๐œ™2(๐‘ฆ)) is an orientation-preserving diffeomorphism and since๐œ‹๐‘– โˆ˜ ๐œ“ = ๐œ™๐‘–

๐œ“โ‹†(๐œ‹โ‹†1๐œ”1 โˆง ๐œ‹โ‹†2๐œ”2) = ๐œ™โ‹†1๐œ”1 โˆง ๐œ™โ‹†2๐œ”2= ๐œŒ1(๐‘ฅ)๐œŒ2(๐‘ฆ)๐‘‘๐‘ฅ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฅ๐‘› โˆง ๐‘‘๐‘ฆ1 โˆงโ‹ฏ โˆง ๐‘‘๐‘ฆ๐‘›

and hence the left hand side of (5.6.14) is the integral over ๐‘2๐‘› of the function, ๐œŒ1(๐‘ฅ)๐œŒ2(๐‘ฆ),and therefore, by integration by parts, is equal to the product (5.6.15). โ–ก

As a corollary of this lemma we get a product formula for cohomology classes.

Lemma 5.6.16. If ๐‘1 and ๐‘2 are in๐ป๐‘›(๐‘‹) then๐ผ๐‘‹ร—๐‘‹(๐œ‹โ‹†1 ๐‘1 โ‹… ๐œ‹โ‹†2 ๐‘2) = ๐ผ๐‘‹(๐‘1)๐ผ๐‘‹(๐‘2) .

Now let ๐‘‘๐‘˜ โ‰” dim๐ป๐‘˜(๐‘‹) and note that since ๐‘‹ is compact, Poincarรฉ duality tells usthat ๐‘‘๐‘˜ = ๐‘‘โ„“ when โ„“ = ๐‘› โˆ’ ๐‘˜. In fact it tells us even more. Let ๐œ‡๐‘˜1,โ€ฆ, ๐œ‡๐‘˜๐‘‘๐‘˜ be a basis of๐ป๐‘˜(๐‘‹).Then, since the pairing (5.4.5) is non-singular, there exists for โ„“ = ๐‘› โˆ’ ๐‘˜ a โ€œdualโ€ basis

๐œˆโ„“๐‘— , ๐‘— = 1,โ€ฆ, ๐‘‘โ„“of๐ปโ„“(๐‘‹) satisfying(5.6.17) ๐ผ๐‘‹(๐œ‡๐‘˜๐‘– โ‹… ๐œˆโ„“๐‘— ) = ๐›ฟ๐‘–,๐‘— .

Lemma 5.6.18. The cohomology classes

๐œ‹โ™ฏ1๐œˆโ„“๐‘Ÿ โ‹… ๐œ‹โ™ฏ2๐œ‡๐‘˜๐‘  , ๐‘˜ + โ„“ = ๐‘›

for ๐‘˜ = 0,โ€ฆ, ๐‘› and 1 โ‰ค ๐‘Ÿ, ๐‘  โ‰ค ๐‘‘๐‘˜, are a basis for๐ป๐‘›(๐‘‹ ร— ๐‘‹).

Page 199: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง5.6 The Lefschetz Theorem 187

This is the corollary of the Kรผnneth theorem that we alluded to above (and whose proofweโ€™ll give in ยง5.7). Using these results we prove the following.

Theorem 5.6.19. The Thom class ๐‘‡๐›ฅ โˆˆ ๐ป๐‘›(๐‘‹ ร— ๐‘‹) is given explicitly by the formula

(5.6.20) ๐‘‡๐›ฅ = โˆ‘๐‘˜+โ„“=๐‘›(โˆ’1)โ„“

๐‘‘๐‘˜โˆ‘๐‘–=1๐œ‹โ™ฏ1๐œ‡๐‘˜๐‘– โ‹… ๐œ‹

โ™ฏ2๐œˆโ„“๐‘– .

Proof. Wehave to check that for every cohomology class ๐‘ โˆˆ ๐ป๐‘›(๐‘‹ร—๐‘‹), the class๐‘‡๐›ฅ definedby (5.6.20) has the reproducing property

(5.6.21) ๐ผ๐‘‹ร—๐‘‹(๐‘‡๐›ฅ โ‹… ๐‘) = ๐ผ๐›ฅ(๐œ„โ™ฏ๐›ฅ๐‘)

where ๐œ„๐›ฅ is the inclusion map of ๐›ฅ into๐‘‹ ร— ๐‘‹. However the map

๐›พ๐›ฅ โˆถ ๐‘‹ โ†’ ๐‘‹ ร— ๐‘‹ , ๐‘ฅ โ†ฆ (๐‘ฅ, ๐‘ฅ)is an orientation-preserving diffeomorphism of๐‘‹ onto ๐›ฅ, so it suffices to show that

(5.6.22) ๐ผ๐‘‹ร—๐‘‹(๐‘‡๐›ฅ โ‹… ๐‘) = ๐ผ๐‘‹(๐›พโ™ฏ๐›ฅ๐‘)

and by Lemma 5.6.18 it suffices to verify (5.6.22) for ๐‘โ€™s of the form

๐‘ = ๐œ‹โ™ฏ1๐œˆโ„“๐‘Ÿ โ‹… ๐œ‹โ™ฏ2๐œ‡๐‘˜๐‘  .

The product of this class with a typical summand of (5.6.20), for instance, the summand

(5.6.23) (โˆ’1)โ„“โ€ฒ๐œ‹โ™ฏ1๐œ‡๐‘˜โ€ฒ๐‘– โ‹… ๐œ‹โ™ฏ2๐œˆโ„“โ€ฒ๐‘– , ๐‘˜โ€ฒ + โ„“โ€ฒ = ๐‘› ,

is equal, up to sign to,๐œ‹โ™ฏ1๐œ‡๐‘˜

โ€ฒ๐‘– โ‹… ๐œˆโ„“๐‘Ÿ โ‹… ๐œ‹

โ™ฏ2๐œ‡๐‘˜๐‘  โ‹… ๐œˆโ„“

โ€ฒ๐‘– .

Notice, however, that if ๐‘˜ โ‰  ๐‘˜โ€ฒ this product is zero: For ๐‘˜ < ๐‘˜โ€ฒ, ๐‘˜โ€ฒ + โ„“ is greater than ๐‘˜ + โ„“and hence greater than ๐‘›. Therefore

๐œ‡๐‘˜โ€ฒ๐‘– โ‹… ๐œˆโ„“๐‘Ÿ โˆˆ ๐ป๐‘˜โ€ฒ+โ„“(๐‘‹)

is zero since ๐‘‹ is of dimension ๐‘›, and for ๐‘˜ > ๐‘˜โ€ฒ, โ„“โ€ฒ is greater than โ„“ and ๐œ‡๐‘˜๐‘  โ‹… ๐œˆโ„“โ€ฒ๐‘– is zero for

the same reason. Thus in taking the product of ๐‘‡๐›ฅ with ๐‘ we can ignore all terms in the sumexcept for the terms, ๐‘˜โ€ฒ = ๐‘˜ and โ„“โ€ฒ = โ„“. For these terms, the product of (5.6.23) with ๐‘ is

(โˆ’1)๐‘˜โ„“๐œ‹โ™ฏ1๐œ‡๐‘˜๐‘– โ‹… ๐œˆโ„“๐‘Ÿ โ‹… ๐œ‹โ™ฏ2๐œ‡๐‘˜3 โ‹… ๐œˆโ„“๐‘– .

(Exercise: Check this. Hint: (โˆ’1)โ„“(โˆ’1)โ„“2 = 1.) Thus

๐‘‡๐›ฅ โ‹… ๐‘ = (โˆ’1)๐‘˜โ„“๐‘‘๐‘˜โˆ‘๐‘–=1๐œ‹โ™ฏ1๐œ‡๐‘˜๐‘– โ‹… ๐œˆโ„“๐‘Ÿ โ‹… ๐œ‹

โ™ฏ2๐œ‡๐‘˜๐‘  โ‹… ๐œˆโ„“๐‘–

and hence by Lemma 5.6.13 and (5.6.17)

๐ผ๐‘‹ร—๐‘‹(๐‘‡๐›ฅ โ‹… ๐‘) = (โˆ’1)๐‘˜โ„“๐‘‘๐‘˜โˆ‘๐‘–=1๐ผ๐‘‹(๐œ‡๐‘˜๐‘– โ‹… ๐œˆโ„“๐‘Ÿ)๐ผ๐‘‹(๐œ‡๐‘˜๐‘  โ‹… ๐œˆโ„“๐‘– )

= (โˆ’1)๐‘˜โ„“๐‘‘๐‘˜โˆ‘๐‘–=1๐›ฟ๐‘–,๐‘Ÿ๐›ฟ๐‘–,๐‘ 

= (โˆ’1)๐‘˜โ„“๐›ฟ๐‘Ÿ,๐‘  .

Page 200: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

188 Chapter 5: Cohomology via forms

On the other hand for ๐‘ = ๐œ‹โ™ฏ1๐œˆโ„“๐‘Ÿ โ‹… ๐œ‹โ™ฏ2๐œ‡๐‘˜๐‘ ๐›พโ™ฏ๐›ฅ๐‘ = ๐›พ

โ™ฏ๐›ฅ๐œ‹โ™ฏ1๐œˆโ„“๐‘Ÿ โ‹… ๐›พ

โ™ฏ๐›ฅ๐œ‹โ™ฏ2๐œ‡๐‘˜๐‘ 

= (๐œ‹1 โ‹… ๐›พ๐›ฅ)โ™ฏ๐œˆโ„“๐‘Ÿ(๐œ‹2 โ‹… ๐›พ๐›ฅ)โ™ฏ๐œ‡๐‘˜๐‘ = ๐œˆโ„“๐‘Ÿ โ‹… ๐œ‡๐‘˜๐‘ 

since๐œ‹1 โ‹… ๐œˆ๐›ฅ = ๐œ‹2 โ‹… ๐›พ๐›ฅ = id๐‘‹ .

So๐ผ๐‘‹(๐›พโ™ฏ๐›ฅ๐‘) = ๐ผ๐‘‹(๐œˆโ„“๐‘Ÿ โ‹… ๐œ‡๐‘˜๐‘  ) = (โˆ’1)๐‘˜โ„“๐›ฟ๐‘Ÿ,๐‘ 

by (5.6.17). Thus the two sides of (5.6.21) are equal. โ–ก

Weโ€™re now in position to compute ๐ฟ(๐‘“) , i.e., to compute the expression ๐ผ๐‘‹(๐›พโ‹†๐‘“๐‘‡๐›ฅ) onthe right hand side of (5.6.10). Since ๐œˆโ„“1,โ€ฆ, ๐œˆโ„“๐‘‘โ„“ is a basis of๐ปโ„“(๐‘‹) the linear mapping

(5.6.24) ๐‘“โ™ฏ โˆถ ๐ปโ„“(๐‘‹) โ†’ ๐ปโ„“(๐‘‹)can be described in terms of this basis by a matrix [๐‘“โ„“๐‘–,๐‘—] with the defining property

๐‘“โ™ฏ๐œˆโ„“๐‘– =๐‘‘โ„“โˆ‘๐‘—=1๐‘“โ„“๐‘—,๐‘–๐œˆโ„“๐‘— .

Thus by equations (5.6.11), (5.6.12) and (5.6.20) we have

๐›พโ™ฏ๐‘“๐‘‡๐›ฅ = ๐›พโ™ฏ๐‘“ โˆ‘๐‘˜+โ„“=๐‘›(โˆ’1)โ„“

๐‘‘๐‘˜โˆ‘๐‘–=1๐œ‹โ™ฏ1๐œ‡๐‘˜๐‘– โ‹… ๐œ‹

โ™ฏ2๐œˆโ„“๐‘–

= โˆ‘๐‘˜+โ„“=๐‘›(โˆ’1)โ„“

๐‘‘๐‘˜โˆ‘๐‘–=1(๐œ‹1 โ‹… ๐›พ๐‘“)โ™ฏ๐œ‡๐‘˜๐‘– โ‹… (๐œ‹2 โ‹… ๐œˆ๐‘“)โ™ฏ๐œˆโ„“๐‘–

= โˆ‘๐‘˜+โ„“=๐‘›(โˆ’1)โ„“

๐‘‘๐‘˜โˆ‘๐‘–=1๐œ‡๐‘˜๐‘– โ‹… ๐‘“โ™ฏ๐œˆโ„“๐‘–

= โˆ‘๐‘˜+โ„“=๐‘›(โˆ’1)โ„“

๐‘‘๐‘˜โˆ‘๐‘–=1๐‘“โ„“๐‘—,๐‘–๐œ‡๐‘˜๐‘– โ‹… ๐œˆโ„“๐‘— .

Thus by (5.6.17)

๐ผ๐‘‹(๐›พโ™ฏ๐‘“๐‘‡๐›ฅ) = โˆ‘

๐‘˜+โ„“=๐‘›(โˆ’1)โ„“ โˆ‘

1โ‰ค๐‘–,๐‘—โ‰ค๐‘‘โ„“๐‘“โ„“๐‘—,๐‘–๐ผ๐‘‹(๐œ‡๐‘˜๐‘– โ‹… ๐œˆโ„“๐‘— )

= โˆ‘๐‘˜+โ„“=๐‘›(โˆ’1)โ„“ โˆ‘

1โ‰ค๐‘–,๐‘—โ‰ค๐‘‘โ„“๐‘“โ„“๐‘—,๐‘–๐›ฟ๐‘–,๐‘—

=๐‘›โˆ‘โ„“=0(โˆ’1)โ„“

๐‘‘โ„“โˆ‘๐‘–=1๐‘“โ„“๐‘–,๐‘– .

But โˆ‘๐‘‘โ„“๐‘–=1 ๐‘“โ„“๐‘–,๐‘– is just the trace of the linear mapping (5.6.24) (see Exercise 5.6.xii), so we endup with the following purely topological prescription of ๐ฟ(๐‘“).

Theorem 5.6.25. The Lefschetz number ๐ฟ(๐‘“) is the alternating sum

๐ฟ(๐‘“) =๐‘›โˆ‘โ„“=0(โˆ’1)โ„“ tr(๐‘“โ™ฏ | ๐ปโ„“(๐‘‹))

Page 201: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง5.6 The Lefschetz Theorem 189

where tr(๐‘“โ™ฏ | ๐ปโ„“(๐‘‹)) is the trace of the map ๐‘“โ™ฏ โˆถ ๐ปโ„“(๐‘‹) โ†’ ๐ปโ„“(๐‘‹).Exercises for ยง5.6

Exercise 5.6.i. Show that if ๐‘“0 โˆถ ๐‘‹ โ†’ ๐‘‹ and ๐‘“1 โˆถ ๐‘‹ โ†’ ๐‘‹ are homotopic ๐ถโˆž mappings๐ฟ(๐‘“0) = ๐ฟ(๐‘“1).Exercise 5.6.ii.(1) The Euler characteristic ๐œ’(๐‘‹) of๐‘‹ is defined to be the intersection number of the diag-

onal with itself in๐‘‹ ร— ๐‘‹, i.e., the โ€œself-intersectionโ€ number๐œ’(๐‘‹) โ‰” ๐ผ(๐›ฅ, ๐›ฅ) = ๐ผ๐‘‹ร—๐‘‹(๐‘‡๐›ฅ, ๐‘‡๐›ฅ) .

Show that if a ๐ถโˆž map ๐‘“โˆถ ๐‘‹ โ†’ ๐‘‹ is homotopic to the identity, then ๐ฟ(๐‘“) = ๐œ’(๐‘‹).(2) Show that

๐œ’(๐‘‹) =๐‘›โˆ‘โ„“=0(โˆ’1)โ„“ dim๐ปโ„“(๐‘‹) .

(3) Show that if๐‘‹ is an odd-dimensional (compact) manifold, then ๐œ’(๐‘‹) = 0.Exercise 5.6.iii.(1) Let ๐‘†๐‘› be the unit ๐‘›-sphere in ๐‘๐‘›+1. Show that if ๐‘”โˆถ ๐‘†๐‘› โ†’ ๐‘†๐‘› is a ๐ถโˆž map, then

๐ฟ(๐‘”) = 1 + (โˆ’1)๐‘› deg(๐‘”) .(2) Conclude that if deg(๐‘”) โ‰  (โˆ’1)๐‘›+1, then ๐‘” has to have a fixed point.Exercise 5.6.iv. Let ๐‘“ be a ๐ถโˆž mapping of the closed unit ball ๐ต๐‘›+1 into itself and let๐‘”โˆถ ๐‘†๐‘› โ†’ ๐‘†๐‘› be the restriction of ๐‘“ to he boundary of ๐ต๐‘›+1. Show that if deg(๐‘”) โ‰  (โˆ’1)๐‘›+1then the fixed point of ๐‘“ predicted by Brouwerโ€™s theorem can be taken to be a point on theboundary of ๐ต๐‘›+1.Exercise 5.6.v.(1) Show that if ๐‘”โˆถ ๐‘†๐‘› โ†’ ๐‘†๐‘› is the antipodal map ๐‘”(๐‘ฅ) โ‰” โˆ’๐‘ฅ, then deg(๐‘”) = (โˆ’1)๐‘›+1.(2) Conclude that the result in Exercise 5.6.iv is sharp. Show that the map

๐‘“โˆถ ๐ต๐‘›+1 โ†’ ๐ต๐‘›+1 , ๐‘“(๐‘ฅ) = โˆ’๐‘ฅ ,has only one fixed point, namely the origin, and in particular has no fixed points on theboundary.

Exercise 5.6.vi. Let ๐’— be a vector field on a compact manifold ๐‘‹. Since ๐‘‹ is compact, ๐’—generates a one-parameter group of diffeomorphisms(5.6.26) ๐‘“๐‘ก โˆถ ๐‘‹ โ†’ ๐‘‹ , โˆ’โˆž < ๐‘ก < โˆž .(1) Let ๐›ด๐‘ก be the set of fixed points of ๐‘“๐‘ก. Show that this set contains the set of zeros of ๐’—,

i.e., the points ๐‘ โˆˆ ๐‘‹ where ๐’—(๐‘) = 0.(2) Suppose that for some ๐‘ก0, ๐‘“๐‘ก0 is Lefschetz. Show that for all ๐‘ก, ๐‘“๐‘ก maps ๐›ด๐‘ก0 into itself.(3) Show that for |๐‘ก| < ๐œ€, ๐œ€ small, the points of ๐›ด๐‘ก0 are fixed points of ๐‘“๐‘ก.(4) Conclude that ๐›ด๐‘ก0 is equal to the set of zeros of ๐‘ฃ.(5) In particular, conclude that for all ๐‘ก the points of ๐›ด๐‘ก0 are fixed points of ๐‘“๐‘ก.Exercise 5.6.vii.(1) Let ๐‘‰ be a finite dimensional vector space and

๐น(๐‘ก) โˆถ ๐‘‰ โ†’ ๐‘‰ , โˆ’โˆž < ๐‘ก < โˆža one-parameter group of linear maps of ๐‘‰ onto itself. Let ๐ด = ๐‘‘๐น๐‘‘๐‘ก (0) and show that๐น(๐‘ก) = exp ๐‘ก๐ด. (See Exercise 2.2.viii.)

Page 202: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

190 Chapter 5: Cohomology via forms

(2) Show that if id๐‘‰ โˆ’๐น(๐‘ก0) โˆถ ๐‘‰ โ†’ ๐‘‰ is bijective for some ๐‘ก0, then ๐ดโˆถ ๐‘‰ โ†’ ๐‘‰ is bijective.Hint: Show that if ๐ด๐‘ฃ = 0 for some ๐‘ฃ โˆˆ ๐‘‰ โˆ’ {0}, ๐น(๐‘ก)๐‘ฃ = ๐‘ฃ.

Exercise 5.6.viii. Let ๐’— be a vector field on a compact manifold ๐‘‹ and let (5.6.26) be theone-parameter group of diffeomorphisms generated by ๐’—. If ๐’—(๐‘) = 0 then by part (1) ofExercise 5.6.vi, ๐‘ is a fixed point of ๐‘“๐‘ก for all ๐‘ก.(1) Show that

(๐‘‘๐‘“๐‘ก) โˆถ ๐‘‡๐‘๐‘‹ โ†’ ๐‘‡๐‘๐‘‹is a one-parameter group of linear mappings of ๐‘‡๐‘๐‘‹ onto itself.

(2) Conclude from Exercise 5.6.vii that there exists a linear map(5.6.27) ๐ฟ๐’—(๐‘)โˆถ ๐‘‡๐‘๐‘‹ โ†’ ๐‘‡๐‘๐‘‹

with the propertyexp ๐‘ก๐ฟ๐’—(๐‘) = (๐‘‘๐‘“๐‘ก)๐‘ .

Exercise 5.6.ix. Suppose ๐‘“๐‘ก0 is a Lefschetz map for some ๐‘ก0. Let ๐‘Ž = ๐‘ก0/๐‘ where ๐‘ is apositive integer. Show that ๐‘“๐‘Ž is a Lefschetz map.

Hints:โ€ข Show that

๐‘“๐‘ก0 = ๐‘“๐‘Ž โˆ˜ โ‹ฏ โˆ˜ ๐‘“๐‘Ž = ๐‘“๐‘๐‘Ž

(i.e., ๐‘“๐‘Ž composed with itself๐‘ times).โ€ข Show that if ๐‘ is a fixed point of ๐‘“๐‘Ž, it is a fixed pointof ๐‘“๐‘ก0 .โ€ข Conclude from Exercise 5.6.vi that the fixed points of ๐‘“๐‘Ž are the zeros of ๐‘ฃ.โ€ข Show that if ๐‘ is a fixed point of ๐‘“๐‘Ž,

(๐‘‘๐‘“๐‘ก0)๐‘ = (๐‘‘๐‘“๐‘Ž)๐‘๐‘ .

โ€ข Conclude that if (๐‘‘๐‘“๐‘Ž)๐‘๐‘ฃ = ๐‘ฃ for some ๐‘ฃ โˆˆ ๐‘‡๐‘๐‘‹ โˆ– {0}, then (๐‘‘๐‘“๐‘ก0)๐‘๐‘ฃ = ๐‘ฃ.Exercise 5.6.x. Show that for all ๐‘ก, ๐ฟ(๐‘“๐‘ก) = ๐œ’(๐‘‹).

Hint: Exercise 5.6.ii.

Exercise 5.6.xi (Hopf Theorem). A vector field ๐’— on a compact manifold ๐‘‹ is a Lefschetzvector field if for some ๐‘ก0 โˆˆ ๐‘ the map ๐‘“๐‘ก0 is a Lefschetz map.(1) Show that if ๐’— is a Lefschetz vector field then it has a finite number of zeros and for each

zero ๐‘ the linear map (5.6.27) is bijective.(2) For a zero ๐‘ of ๐’— let ๐œŽ๐‘(๐’—) = +1 if the map (5.6.27) is orientation-preserving and let๐œŽ๐‘(๐’—) = โˆ’1 if itโ€™s orientation-reversing. Show that

๐œ’(๐‘‹) = โˆ‘๐’—(๐‘)=0๐œŽ๐‘(๐’—) .

Hint: Apply the Lefschetz theorem to ๐‘“๐‘Ž, ๐‘Ž = ๐‘ก0/๐‘,๐‘ large.

Exercise 5.6.xii (review of the trace). For ๐ด = (๐‘Ž๐‘–,๐‘—) an ๐‘› ร— ๐‘›matrix define

tr(๐ด) โ‰”๐‘›โˆ‘๐‘–=1๐‘Ž๐‘–,๐‘– .

(1) Show that if ๐ด and ๐ต are ๐‘› ร— ๐‘›matricestr(๐ด๐ต) = tr(๐ต๐ด) .

(2) Show that if ๐ต is an invertible ๐‘› ร— ๐‘›matrixtr(๐ต๐ด๐ตโˆ’1) = tr(๐ด) .

Page 203: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง5.7 The Kรผnneth theorem 191

(3) Let ๐‘‰ be and ๐‘›-dimensional vector space and ๐ฟโˆถ ๐‘‰ โ†’ ๐‘‰ a linear map. Fix a basis๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘› of ๐‘‰ and define the trace of ๐ฟ to be the trace of ๐ด where ๐ด is the definingmatrix for ๐ฟ in this basis, i.e.,

๐ฟ๐‘ฃ๐‘– =๐‘›โˆ‘๐‘—=1๐‘Ž๐‘—,๐‘–๐‘ฃ๐‘— .

Show that this is an intrinsic definition not depending on the basis ๐‘ฃ1,โ€ฆ, ๐‘ฃ๐‘›.

5.7. The Kรผnneth theorem

Let ๐‘‹ be an ๐‘›-manifold and ๐‘Œ an ๐‘Ÿ-dimensional manifold, both of these manifoldshaving finite topology. Let

๐œ‹โˆถ ๐‘‹ ร— ๐‘Œ โ†’ ๐‘‹be the projection map ๐œ‹(๐‘ฅ, ๐‘ฆ) = ๐‘ฅ and

๐œŒโˆถ ๐‘‹ ร— ๐‘Œ โ†’ ๐‘Œ

the projectionmap (๐‘ฅ, ๐‘ฆ) โ†’ ๐‘ฆ. Since๐‘‹ and๐‘Œ have finite topology their cohomology groupsare finite dimensional vector spaces. For 0 โ‰ค ๐‘˜ โ‰ค ๐‘› let

๐œ‡๐‘˜๐‘– , 1 โ‰ค ๐‘– โ‰ค dim๐ป๐‘˜(๐‘‹) ,

be a basis of๐ป๐‘˜(๐‘‹) and for 0 โ‰ค โ„“ โ‰ค ๐‘Ÿ let

๐œˆโ„“๐‘— , 1 โ‰ค ๐‘— โ‰ค dim๐ปโ„“(๐‘Œ)

be a basis of ๐ปโ„“(๐‘Œ). Then for ๐‘˜ + โ„“ = ๐‘š the product, ๐œ‹โ™ฏ๐œ‡๐‘˜๐‘– โ‹… ๐œŒโ™ฏ๐œˆโ„“๐‘— , is in ๐ป๐‘š(๐‘‹ ร— ๐‘Œ). TheKรผnneth theorem asserts

Theorem 5.7.1. The product manifold ๐‘‹ ร— ๐‘Œ has finite topology and hence the cohomologygroups๐ป๐‘š(๐‘‹ ร— ๐‘Œ) are finite dimensional. Moreover, the products over ๐‘˜ + โ„“ = ๐‘š

๐œ‹โ™ฏ๐œ‡๐‘˜๐‘– โ‹… ๐œŒโ™ฏ๐œˆโ„“๐‘— , 0 โ‰ค ๐‘– โ‰ค dim๐ป๐‘˜(๐‘‹) , 0 โ‰ค ๐‘— โ‰ค dim๐ปโ„“(๐‘Œ) ,(5.7.2)

are a basis for the vector space๐ป๐‘š(๐‘‹ ร— ๐‘Œ).

The fact that๐‘‹ร—๐‘Œ has finite topology is easy to verify. If๐‘ˆ1,โ€ฆ,๐‘ˆ๐‘€, is a good cover of๐‘‹ and ๐‘‰1,โ€ฆ,๐‘‰๐‘, is a good cover of ๐‘Œ the products of these open sets๐‘ˆ๐‘– ร—๐‘‰๐‘—, for 1 โ‰ค ๐‘– โ‰ค ๐‘€and 1 โ‰ค ๐‘— โ‰ค ๐‘ is a good cover of ๐‘‹ ร— ๐‘Œ: For every multi-index ๐ผ, ๐‘ˆ๐ผ is either empty ordiffeomorphic to ๐‘๐‘›, and for every multi-index ๐ฝ,๐‘‰๐ฝ is either empty or diffeomorphic to ๐‘๐‘Ÿ,hence for any productmulti-index (๐ผ, ๐ฝ), the product๐‘ˆ๐ผร—๐‘‰๐ฝ is either empty or diffeomorphicto ๐‘๐‘› ร—๐‘๐‘Ÿ. The tricky part of the proof is verifying that the products from (5.7.2) are a basisof ๐ป๐‘š(๐‘‹ ร— ๐‘Œ), and to do this it will be helpful to state the theorem above in a form thatavoids our choosing specified bases for๐ป๐‘˜(๐‘‹) and๐ปโ„“(๐‘Œ). To do so weโ€™ll need to generalizeslightly the notion of a bilinear pairing between two vector space.

Definition 5.7.3. Let๐‘‰1,๐‘‰2 and๐‘Š be finite dimensional vector spaces. Amap๐ตโˆถ ๐‘‰1ร—๐‘‰2 โ†’๐‘Š of sets is a bilinear map if it is linear in each of its factors, i.e., for ๐‘ฃ2 โˆˆ ๐‘‰2 the map

๐‘ฃ1 โˆˆ ๐‘‰1 โ†ฆ ๐ต(๐‘ฃ1, ๐‘ฃ2)

is a linear map of ๐‘‰1 into๐‘Š and for ๐‘ฃ1 โˆˆ ๐‘‰1 so is the map

๐‘ฃ2 โˆˆ ๐‘‰2 โ†ฆ ๐ต(๐‘ฃ1, ๐‘ฃ2) .

Page 204: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

192 Chapter 5: Cohomology via forms

Itโ€™s clear that if ๐ต1 and ๐ต2 are bilinear maps of ๐‘‰1 ร— ๐‘‰2 into๐‘Š and ๐œ†1 and ๐œ†2 are realnumbers the function

๐œ†1๐ต1 + ๐œ†2๐ต2 โˆถ ๐‘‰1 ร— ๐‘‰2 โ†’๐‘Šis also a bilinear map of ๐‘‰1 ร— ๐‘‰2 into๐‘Š, so the set of all bilinear maps of ๐‘‰1 ร— ๐‘‰2 into๐‘Šforms a vector space. In particular the set of all bilinear maps of ๐‘‰1 ร— ๐‘‰2 into ๐‘ is a vectorspace, and since this vector space will play an essential role in our intrinsic formulation ofthe Kรผnneth theorem, weโ€™ll give it a name. Weโ€™ll call it the tensor product of๐‘‰โ‹†1 and๐‘‰โ‹†2 anddenote it by ๐‘‰โ‹†1 โŠ— ๐‘‰โ‹†2 . To explain where this terminology comes from we note that if โ„“1 andโ„“2 are vectors in ๐‘‰โ‹†1 and ๐‘‰โ‹†2 then one can define a bilinear map

โ„“1 โŠ— โ„“2 โˆถ ๐‘‰1 ร— ๐‘‰2 โ†’ ๐‘by setting (โ„“1 โŠ— โ„“2)(๐‘ฃ1, ๐‘ฃ2) โ‰” โ„“1(๐‘ฃ1)โ„“2(๐‘ฃ2). In other words one has a tensor product map:

(5.7.4) ๐‘‰โ‹†1 ร— ๐‘‰โ‹†2 โ†’ ๐‘‰โ‹†1 โŠ— ๐‘‰โ‹†2mapping (โ„“1, โ„“2) to โ„“1 โŠ— โ„“2. We leave for you to check that this is a bilinear map of ๐‘‰โ‹†1 ร— ๐‘‰โ‹†2into ๐‘‰โ‹†1 โŠ— ๐‘‰โ‹†2 and to check as well

Proposition 5.7.5. If โ„“11 ,โ€ฆ, โ„“1๐‘š is a basis of๐‘‰โ‹†1 and โ„“21 ,โ€ฆ, โ„“2๐‘› is a basis of๐‘‰โ‹†2 then โ„“1๐‘– โŠ— โ„“2๐‘— , for1 โ‰ค ๐‘– โ‰ค ๐‘š and 1 โ‰ค ๐‘— โ‰ค ๐‘›, is a basis of ๐‘‰โ‹†1 โŠ— ๐‘‰โ‹†2 .

Hint: If ๐‘‰1 and ๐‘‰2 are the same vector space you can find a proof of this in ยง1.3 and theproof is basically the same if theyโ€™re different vector spaces.

Corollary 5.7.6. Let ๐‘‰1 and ๐‘‰2 be finite-dimensional vector spaces. Then

dim(๐‘‰โ‹†1 โŠ— ๐‘‰โ‹†2 ) = dim(๐‘‰โ‹†1 ) dim(๐‘‰โ‹†2 ) = dim(๐‘‰1) dim(๐‘‰2) .

Weโ€™ll now perform some slightly devious maneuvers with โ€œdualityโ€ operations. Firstnote that for any finite dimensional vector space ๐‘‰, the evaluation pairing

๐‘‰ ร— ๐‘‰โ‹† โ†’ ๐‘ , (๐‘ฃ, โ„“) โ†ฆ โ„“(๐‘ฃ)is a non-singular bilinear pairing, so, as we explained in ยง5.4 it gives rise to a bijective linearmapping

(5.7.7) ๐‘‰ โ†’ (๐‘‰โ‹†)โ‹† .Next note that if

(5.7.8) ๐ฟโˆถ ๐‘‰1 ร— ๐‘‰2 โ†’๐‘Šis a bilinear mapping and โ„“โˆถ ๐‘Š โ†’ ๐‘ a linear mapping (i.e., an element of๐‘Šโ‹†), then thecomposition of โ„“ and ๐ฟ is a bilinear mapping

โ„“ โˆ˜ ๐ฟโˆถ ๐‘‰1 ร— ๐‘‰2 โ†’ ๐‘and hence by definition an element of ๐‘‰โ‹†1 โŠ— ๐‘‰โ‹†2 . Thus from the bilinear mapping (5.7.8) weget a linear mapping

(5.7.9) ๐ฟโ™ฏ โˆถ ๐‘Šโ‹† โ†’ ๐‘‰โ‹†1 โŠ— ๐‘‰โ‹†2 .

Weโ€™ll now define a notion of tensor product for the vector spaces ๐‘‰1 and๐‘‰2 themselves.

Definition 5.7.10. The vector space ๐‘‰1 โŠ— ๐‘‰2 is the vector space dual of ๐‘‰โ‹†1 โŠ— ๐‘‰โ‹†2 , i.e., is thespace

(5.7.11) ๐‘‰1 โŠ— ๐‘‰2 โ‰” (๐‘‰โ‹†1 โŠ— ๐‘‰โ‹†2 )โ‹† .

Page 205: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง5.7 The Kรผnneth theorem 193

One implication of (5.7.11) is that there is a natural bilinear map

(5.7.12) ๐‘‰1 ร— ๐‘‰2 โ†’ ๐‘‰1 โŠ— ๐‘‰2 .

(In (5.7.4) replace ๐‘‰๐‘– by ๐‘‰โ‹†๐‘– and note that by (5.7.7) (๐‘‰โ‹†๐‘– )โ‹† = ๐‘‰๐‘–.) Another is the following:

Proposition 5.7.13. Let ๐ฟ be a bilinear map of ๐‘‰1 ร— ๐‘‰2 into๐‘Š. Then there exists a uniquelinear map

๐ฟ# โˆถ ๐‘‰1 โŠ— ๐‘‰2 โ†’๐‘Šwith the property

(5.7.14) ๐ฟ#(๐‘ฃ1 โŠ— ๐‘ฃ2) = ๐ฟ(๐‘ฃ1, ๐‘ฃ2)

where ๐‘ฃ1 โŠ— ๐‘ฃ2 is the image of (๐‘ฃ1, ๐‘ฃ2) with respect to (5.7.12).

Proof. Let ๐ฟ# be the transpose of the map ๐ฟโ™ฏ in (5.7.9) and note that by (5.7.7) (๐‘Šโ‹†)โ‹† =๐‘Š. โ–ก

Notice that by Proposition 5.7.13 the property (5.7.14) is the defining property of ๐ฟ#;it uniquely determines this map. (This is in fact the whole point of the tensor product con-struction. Its purpose is to convert bilinear maps, which are not linear, into linear maps.)

After this brief digression (into an area of mathematics which some mathematiciansunkindly refer to as โ€œabstract nonsenseโ€), let us come back to our motive for this digression:an intrinsic formulation of the Kรผnneth theorem. As above let ๐‘‹ and ๐‘Œ be manifolds ofdimension ๐‘› and ๐‘Ÿ, respectively, both having finite topology. For ๐‘˜+โ„“ = ๐‘š one has a bilinearmap

๐ป๐‘˜(๐‘‹) ร— ๐ปโ„“(๐‘Œ) โ†’ ๐ป๐‘š(๐‘‹ ร— ๐‘Œ)mapping (๐‘1, ๐‘2) to ๐œ‹โ‹†๐‘1 โ‹… ๐œŒโ‹†๐‘2, and hence by Proposition 5.7.13 a linear map

(5.7.15) ๐ป๐‘˜(๐‘‹) โŠ— ๐ปโ„“(๐‘Œ) โ†’ ๐ป๐‘š(๐‘‹ ร— ๐‘Œ) .

Let๐ป๐‘š1 (๐‘‹ ร— ๐‘Œ) โ‰” โจ

๐‘˜+โ„“=๐‘š๐ป๐‘˜(๐‘‹) โŠ— ๐ปโ„“(๐‘Œ) .

The maps (5.7.15) can be combined into a single linear map

(5.7.16) ๐ป๐‘š1 (๐‘‹ ร— ๐‘Œ) โ†’ ๐ป๐‘š(๐‘‹ ร— ๐‘Œ)

and our intrinsic version of the Kรผnneth theorem asserts the following.

Theorem 5.7.17. The map (5.7.16) is bijective.

Here is a sketch of how to prove this. (Filling in the details will be left as a series ofexercises.) Let ๐‘ˆ be an open subset of๐‘‹ which has finite topology and let

H๐‘š1 (๐‘ˆ) โ‰” โจ๐‘˜+โ„“=๐‘š๐ป๐‘˜(๐‘ˆ) โŠ— ๐ปโ„“(๐‘Œ)

andH๐‘š2 (๐‘ˆ) โ‰” ๐ป๐‘š(๐‘ˆ ร— ๐‘Œ) .

As weโ€™ve just seen thereโ€™s a Kรผnneth map

๐œ…โˆถ H๐‘š1 (๐‘ˆ) โ†’ H๐‘š2 (๐‘ˆ) .

Page 206: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

194 Chapter 5: Cohomology via forms

Exercises for ยง5.7Exercise 5.7.i. Let ๐‘ˆ1 and ๐‘ˆ2 be open subsets of ๐‘‹, both having finite topology, and let๐‘ˆ = ๐‘ˆ1 โˆช ๐‘ˆ2. Show that there is a long exact sequence:

โ‹ฏ H๐‘š1 (๐‘ˆ) H๐‘š1 (๐‘ˆ1) โŠ•H๐‘š1 (๐‘ˆ2) H๐‘š1 (๐‘ˆ1 โˆฉ ๐‘ˆ2) H๐‘š+11 (๐‘ˆ) โ‹ฏ ,๐›ฟ ๐›ฟ

Hint: Take the usual Mayerโ€“Vietoris sequence

โ‹ฏ ๐ป๐‘˜(๐‘ˆ) ๐ป๐‘˜(๐‘ˆ1) โŠ• ๐ป๐‘˜(๐‘ˆ2) ๐ป๐‘˜(๐‘ˆ1 โˆฉ ๐‘ˆ2) ๐ป๐‘˜+1(๐‘ˆ) โ‹ฏ ,๐›ฟ ๐›ฟ

tensor each term in this sequence with๐ปโ„“(๐‘Œ), and sum over ๐‘˜ + โ„“ = ๐‘š.

Exercise 5.7.ii. Show that for H2 there is a similar sequence.Hint: Apply Mayerโ€“Vietoris to the open subsets ๐‘ˆ1 ร— ๐‘Œ and ๐‘ˆ2 ร— ๐‘Œ of๐‘€.

Exercise 5.7.iii. Show that the diagram below commutes:

โ‹ฏ H๐‘š1 (๐‘ˆ) H๐‘š1 (๐‘ˆ1) โŠ•H๐‘š1 (๐‘ˆ2) H๐‘š1 (๐‘ˆ1 โˆฉ ๐‘ˆ2) H๐‘š+11 (๐‘ˆ) โ‹ฏ

โ‹ฏ H๐‘š2 (๐‘ˆ) H๐‘š2 (๐‘ˆ1) โŠ•H๐‘š2 (๐‘ˆ2) H๐‘š2 (๐‘ˆ1 โˆฉ ๐‘ˆ2) H๐‘š+12 (๐‘ˆ) โ‹ฏ

๐›ฟ

๐œ… ๐œ…

๐›ฟ

๐œ… ๐œ…

๐›ฟ ๐›ฟ

(This looks hard but is actually very easy: just write down the definition of each arrow in thelanguage of forms.)

Exercise 5.7.iv. Conclude from Exercise 5.7.iii that if the Kรผnneth map is bijective for ๐‘ˆ1,๐‘ˆ2 and ๐‘ˆ1 โˆฉ ๐‘ˆ2 it is bijective for ๐‘ˆ.

Exercise 5.7.v. Prove the Kรผnneth theorem by induction on the number of open sets in agood cover of๐‘‹. To get the induction started, note that

๐ป๐‘˜(๐‘๐‘› ร— ๐‘Œ) โ‰… ๐ป๐‘˜(๐‘Œ) .(See Exercise 5.3.xi.)

5.8. ฤŒech Cohomology

We pointed out at the end of ยง5.3 that if a manifold๐‘‹ admits a finite good cover

U = {๐‘ˆ1,โ€ฆ,๐‘ˆ๐‘‘} ,then in principle its cohomology can be read off from the intersection properties of the๐‘ˆ๐‘–โ€™s.In this section weโ€™ll explain in more detail how to do this. More explicitly, we will show howto construct from the intersection properties of the ๐‘ˆ๐‘–โ€™s a sequence of cohomology groups๐ป๐‘˜(U; ๐‘), and we will prove that these ฤŒech cohomology groups are isomorphic to the deRham cohomology groups of ๐‘‹. (However we will leave for the reader a key ingredient inthe proof: a diagram chasing argument that is similar to the diagram chasing arguments thatwere used to prove the Mayerโ€“Vietoris theorem in ยง5.2 and the five lemma in ยง5.4.)

We will denote by๐‘๐‘˜(U) the set of all multi-indices

๐ผ = (๐‘–0,โ€ฆ, ๐‘–๐‘˜) , 1 โ‰ค ๐‘–0,โ€ฆ, ๐‘–๐‘˜ โ‰ค ๐‘‘with the property that the intersection

๐‘ˆ๐ผ โ‰” ๐‘ˆ๐‘–0 โˆฉโ‹ฏ โˆฉ ๐‘ˆ๐‘–๐‘˜

Page 207: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง5.8 ฤŒech Cohomology 195

is nonempty. (For example, for 1 โ‰ค ๐‘– โ‰ค ๐‘‘, themulti-index ๐ผ = (๐‘–0,โ€ฆ, ๐‘–๐‘˜)with ๐‘–0 = โ‹ฏ = ๐‘–๐‘˜ = ๐‘–is in๐‘๐‘˜(U) since ๐‘ˆ๐ผ = ๐‘ˆ๐‘–.) The disjoint union๐‘(U) โ‰” โˆ๐‘˜โ‰ฅ0๐‘๐‘˜(U) is called the nerve ofthe cover U and๐‘๐‘˜(U) is the ๐‘˜-skeleton of the nerve๐‘(U). Note that if we delete ๐‘–๐‘Ÿ froma multi-index ๐ผ = (๐‘–0,โ€ฆ, ๐‘–๐‘˜) in๐‘๐‘˜(U), i.e., replace ๐ผ by

๐ผ๐‘Ÿ โ‰” (๐‘–0,โ€ฆ, ๐‘–๐‘Ÿโˆ’1, ๐‘–๐‘Ÿ+1,โ€ฆ, ๐‘–๐‘˜) ,then ๐ผ๐‘Ÿ โˆˆ ๐‘๐‘˜โˆ’1(U).

We now associate a cochain complex to ๐‘(U) by defining ๐ถ๐‘˜(U; ๐‘) to be the finitedimensional vector space consisting of all (set-theoretic) maps ๐‘โˆถ ๐‘๐‘˜(U) โ†’ ๐‘:

๐ถ๐‘˜(U; ๐‘) โ‰” {๐‘โˆถ ๐‘๐‘˜(U) โ†’ ๐‘} ,with addition and scalar multiplication of functions. Define a coboundary operator

๐›ฟโˆถ ๐ถ๐‘˜โˆ’1(U; ๐‘) โ†’ ๐ถ๐‘˜(U; ๐‘)by setting

(5.8.1) ๐›ฟ(๐‘)(๐ผ) โ‰”๐‘˜โˆ‘๐‘Ÿ=0(โˆ’1)๐‘Ÿ๐‘(๐ผ๐‘Ÿ) .

We claim that ๐›ฟ actually is a coboundary operator, i.e., ๐›ฟ โˆ˜ ๐›ฟ = 0. To see this, we note thatfor ๐‘ โˆˆ ๐ถ๐‘˜โˆ’1(U; ๐‘) and ๐ผ โˆˆ ๐‘๐‘˜(U), by (5.8.1) we have

๐›ฟ(๐›ฟ(๐‘))(๐ผ) =๐‘˜+1โˆ‘๐‘Ÿ=0(โˆ’1)๐‘Ÿ๐›ฟ(๐‘)(๐ผ๐‘Ÿ)

=๐‘˜+1โˆ‘๐‘Ÿ=0(โˆ’1)๐‘Ÿ(โˆ‘

๐‘ <๐‘Ÿ(โˆ’1)๐‘ ๐‘(๐ผ๐‘Ÿ,๐‘ ) + โˆ‘

๐‘ >๐‘Ÿ(โˆ’1)๐‘ โˆ’1๐‘(๐ผ๐‘Ÿ,๐‘ )) .

Thus the term ๐‘(๐ผ๐‘Ÿ,๐‘ ) occurs twice in the sum, but occurs oncewith opposite signs, and hence๐›ฟ(๐›ฟ(๐‘))(๐ผ) = 0.

The cochain complex

(5.8.2) 0 ๐ถ0(U; ๐‘) ๐ถ1(U; ๐‘) โ‹ฏ ๐ถ๐‘˜(U; ๐‘) โ‹ฏ๐›ฟ ๐›ฟ ๐›ฟ ๐›ฟ

is called theฤŒech cochain complex of the coverU.TheฤŒech cohomology groups of the coverU are the cohomology groups of the ฤŒech cochain complex:

๐ป๐‘˜(U; ๐‘) โ‰” ker(๐›ฟโˆถ ๐ถ๐‘˜(U; ๐‘) โ†’ ๐ถ๐‘˜+1(U; ๐‘))im(๐›ฟโˆถ ๐ถ๐‘˜โˆ’1(U; ๐‘) โ†’ ๐ถ๐‘˜(U; ๐‘))

.

The rest of the section is devoted to proving the following theorem:

Theorem 5.8.3. Let ๐‘‹ be a manifold and U a finite good cover of ๐‘‹. Then for all ๐‘˜ โ‰ฅ 0 wehave isomorphisms

๐ป๐‘˜(U; ๐‘) โ‰… ๐ป๐‘˜(๐‘‹) .

Remarks 5.8.4.(1) The definition of๐ป๐‘˜(U; ๐‘) only involves the nerve๐‘(U) of this cover soTheorem 5.8.3

is in effect a proof of the claim we made above: the cohomology of๐‘‹ is in principle deter-mined by the intersection properties of the ๐‘ˆ๐‘–โ€™s.

(2) Theorem 5.8.3 gives us another proof of an assertion we proved earlier: if ๐‘‹ admits afinite good cover the cohomology groups of๐‘‹ are finite-dimensional.

Page 208: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

196 Chapter 5: Cohomology via forms

Theproof ofTheorem 5.8.3 will involve an interesting de Rham theoretic generalizationof the ฤŒech cochain complex (5.8.2). Namely, for ๐‘˜ and โ„“ nonnegative integers we define aฤŒech cochain of degree ๐‘˜ with values in๐›บโ„“ to be a map ๐‘ which assigns each ๐ผ โˆˆ ๐‘๐‘˜(U) anโ„“-form ๐‘(๐ผ) โˆˆ ๐›บโ„“(๐‘ˆ๐ผ).

The set of these cochains forms an infinite dimensional vector space ๐ถ๐‘˜(U; ๐›บโ„“). Wewill show how to define a coboundary operator

๐›ฟโˆถ ๐ถ๐‘˜โˆ’1(U; ๐›บโ„“) โ†’ ๐ถ๐‘˜(U; ๐›บโ„“)similar to the ฤŒech coboundary operator (5.8.1). To define this operator, let ๐ผ โˆˆ ๐‘๐‘˜(U) andfor 0 โ‰ค ๐‘Ÿ โ‰ค ๐‘˜ let ๐›พ๐‘Ÿ โˆถ ๐›บโ„“(๐‘ˆ๐ผ๐‘Ÿ) โ†’ ๐›บ

โ„“(๐‘ˆ๐ผ) be the restriction map defined by๐œ” โ†ฆ ๐œ”|๐‘ˆ๐ผ .

(Note that the restiction ๐œ”|๐‘ˆ๐ผ is well-defined since ๐‘ˆ๐ผ โŠ‚ ๐‘ˆ๐ผ๐‘Ÿ .) Thus given a ฤŒech cochain๐‘ โˆˆ ๐ถ๐‘˜โˆ’1(U; ๐›บโ„“) we can, mimicking (5.8.1), define a ฤŒech cochain ๐›ฟ(๐‘) โˆˆ ๐ถ๐‘˜(U; ๐›บโ„“) bysetting

(5.8.5) ๐›ฟ(๐‘)(๐ผ) โ‰”๐‘˜โˆ‘๐‘Ÿ=0๐›พ๐‘Ÿ(๐‘(๐ผ๐‘Ÿ)) =

๐‘˜โˆ‘๐‘Ÿ=0๐‘(๐ผ๐‘Ÿ)|๐‘ˆ๐ผ .

In other words, except for the ๐›พ๐‘Ÿโ€™s the definition of this cochain is formally identical withthe definition (5.8.1). We leave it as an exercise that the operators

๐›ฟโˆถ ๐ถ๐‘˜โˆ’1(U; ๐›บโ„“) โ†’ ๐ถ๐‘˜(U; ๐›บโ„“)satisfy ๐›ฟ โˆ˜ ๐›ฟ = 0.1

Thus, to summarize, for every nonnegative integer โ„“wehave constructed aฤŒech cochaincomplex with values in ๐›บโ„“

(5.8.6) 0 ๐ถ0(U; ๐›บโ„“) ๐ถ1(U; ๐›บโ„“) โ‹ฏ ๐ถ๐‘˜(U; ๐›บโ„“) โ‹ฏ .๐›ฟ ๐›ฟ ๐›ฟ ๐›ฟ

Our next task in this sectionwill be to compute the cohomology of the complex (5.8.6).Weโ€™llbegin with the 0th cohomology group of (5.8.6), i.e., the kernel of the coboundary operator

๐›ฟโˆถ ๐ถ0(U; ๐›บโ„“) โ†’ ๐ถ1(U; ๐›บโ„“) .An element ๐‘ โˆˆ ๐ถ0(U; ๐›บโ„“) is, by definition, a map which assigns to each ๐‘– โˆˆ {1,โ€ฆ, ๐‘‘} anelement ๐‘(๐‘–) โ‰• ๐œ”๐‘– of ๐›บโ„“(๐‘ˆ๐‘–).

Now let ๐ผ = (๐‘–0, ๐‘–1) be an element of๐‘1(U). Then, by definition, ๐‘ˆ๐‘–0 โˆฉ ๐‘ˆ๐‘–1 is nonemptyand

๐›ฟ(๐‘)(๐ผ) = ๐›พ๐‘–0๐œ”๐‘–1 โˆ’ ๐›พ๐‘–1๐œ”๐‘–0 .Thus ๐›ฟ(๐‘) = 0 if and only if

๐œ”๐‘–0 |๐‘ˆ๐‘–0โˆฉ๐‘ˆ๐‘–1 = ๐œ”๐‘–1 |๐‘ˆ๐‘–0โˆฉ๐‘ˆ๐‘–1for all ๐ผ โˆˆ ๐‘1(U). This is true if and only if each โ„“-form ๐œ”๐‘– โˆˆ ๐›บโ„“(๐‘ˆ๐‘–) is the restriction to ๐‘ˆ๐‘–of a globally defined โ„“-form ๐œ” on ๐‘ˆ1 โˆชโ‹ฏ โˆช ๐‘ˆ๐‘‘ = ๐‘‹. Thus

ker(๐›ฟโˆถ ๐ถ0(U; ๐›บโ„“) โ†’ ๐ถ1(U; ๐›บโ„“)) = ๐›บโ„“(๐‘‹) .Inserting ๐›บโ„“(๐‘‹) into the sequence (5.8.6) we get a new sequence

(5.8.7) 0 ๐›บโ„“(๐‘‹) ๐ถ0(U; ๐›บโ„“) โ‹ฏ ๐ถ๐‘˜(U; ๐›บโ„“) โ‹ฏ ,๐›ฟ ๐›ฟ ๐›ฟ

and we prove:

1Hint: Except for keeping track of the ๐›พ๐‘Ÿโ€™s the proof is identical to the proof of the analogous result for thecoboundary operator (5.8.1).

Page 209: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง5.8 ฤŒech Cohomology 197

Theorem5.8.8. Let๐‘‹ be amanifold andU afinite good cover of๐‘‹.Then for each nonnegativeinteger โ„“, the sequence (5.8.7) is exact.

Weโ€™ve just proved that the sequence (5.8.7) is exact in the first spot. To prove that (5.8.7)is exact in its ๐‘˜th spot, we will construct a chain homotopy operator

๐‘„โˆถ ๐ถ๐‘˜(U; ๐›บโ„“) โ†’ ๐ถ๐‘˜+1(U; ๐›บโ„“)with the property that(5.8.9) ๐›ฟ๐‘„(๐‘) + ๐‘„๐›ฟ(๐‘) = ๐‘for all ๐‘ โˆˆ ๐ถ๐‘˜(U; ๐›บโ„“). To define this operator weโ€™ll need a slight generalization of Theo-rem 5.2.22.

Theorem 5.8.10. Let ๐‘‹ be a manifold with a finite good cover {๐‘ˆ1,โ€ฆ,๐‘ˆ๐‘}. Then there existfunctions ๐œ™1,โ€ฆ, ๐œ™๐‘ โˆˆ ๐ถโˆž(๐‘‹) such that supp(๐œ™๐‘–) โŠ‚ ๐‘ˆ๐‘– for ๐‘– = 1,โ€ฆ,๐‘ and โˆ‘๐‘๐‘–=1 ๐œ™๐‘– = 1.Proof of Theorem 5.8.10. Let (๐œŒ๐‘–)๐‘–โ‰ฅ1, where ๐œŒ๐‘– โˆˆ ๐ถโˆž0 (๐‘‹), be a partition of unity subordinateto the cover U and let ๐œ™1 be the sum of the ๐œŒ๐‘—โ€™s with support in ๐‘ˆ1:

๐œ™1 โ‰” โˆ‘๐‘—โ‰ฅ1

supp(๐œŒ๐‘—)โŠ‚๐‘ˆ1

๐œŒ๐‘— .

Deleting those ๐œŒ๐‘— such that supp(๐œŒ๐‘—) โŠ‚ ๐‘ˆ1 from the sequence (๐œŒ๐‘–)๐‘–โ‰ฅ1, we get a new sequence(๐œŒโ€ฒ๐‘– )๐‘–โ‰ฅ1. Let ๐œ™2 be the sum of the ๐œŒโ€ฒ๐‘— โ€™s with support in ๐‘ˆ1:

๐œ™2 โ‰” โˆ‘๐‘—โ‰ฅ1

supp(๐œŒโ€ฒ๐‘— )โŠ‚๐‘ˆ2

๐œŒโ€ฒ๐‘— .

Now we delete those ๐œŒโ€ฒ๐‘— such that supp(๐œŒโ€ฒ๐‘— ) โŠ‚ ๐‘ˆ2 from the sequence (๐œŒโ€ฒ๐‘– )๐‘–โ‰ฅ1 and construct๐œ™3 by the same method we used to construct ๐œ™1 and ๐œ™2, and so on. โ–ก

Now we define the operator ๐‘„ and prove Theorem 5.8.8.

Proof of Theorem 5.8.8. To define the operator (5.8.9) let ๐‘ โˆˆ ๐ถ๐‘˜(U; ๐›บโ„“). Then we define๐‘„๐‘ โˆˆ ๐ถ๐‘˜โˆ’1(U; ๐›บโ„“) by defining its value at ๐ผ โˆˆ ๐‘๐‘˜โˆ’1(๐ผ) to be

๐‘„๐‘(๐ผ) โ‰”๐‘‘โˆ‘๐‘–=0๐œ™๐‘–๐‘(๐‘–, ๐‘–0,โ€ฆ, ๐‘–๐‘˜โˆ’1) ,

where ๐ผ = (๐‘–0,โ€ฆ, ๐‘–๐‘˜โˆ’1) and the ๐‘–th summand on the right is defined by be equal to 0when๐‘ˆ๐‘–โˆฉ๐‘ˆ๐ผ is empty and defined to be the product of the function ๐œ™๐‘– and the โ„“-form ๐‘(๐‘–, ๐‘–0,โ€ฆ, ๐‘–๐‘˜โˆ’1)when๐‘ˆ๐‘–โˆฉ๐‘ˆ๐ผ is nonempty. (Note that in this case, the multi-index (๐‘–, ๐‘–0,โ€ฆ, ๐‘–๐‘˜โˆ’1) is in๐‘๐‘˜(U)and so by definition ๐‘(๐‘–, ๐‘–0,โ€ฆ, ๐‘–๐‘˜โˆ’1) is an element of ๐›บโ„“(๐‘ˆ๐‘– โˆฉ ๐‘ˆ๐ผ). However, since ๐œ™๐‘– is sup-ported on ๐‘ˆ๐‘–, we can extend the โ„“-form ๐œ™๐‘–๐‘(๐‘–, ๐‘–0,โ€ฆ, ๐‘–๐‘˜โˆ’1) ti ๐‘ˆ๐ผ by setting it equal to zerooutside of ๐‘ˆ๐‘– โˆฉ ๐‘ˆ๐ผ.)

To prove (5.8.9) we note that for ๐‘ โˆˆ ๐ถ๐‘˜(U; ๐›บโ„“) we have

๐‘„๐›ฟ๐‘(๐‘–0,โ€ฆ, ๐‘–๐‘˜) =๐‘‘โˆ‘๐‘–=1๐œ™๐‘–๐›ฟ๐‘(๐‘–, ๐‘–0,โ€ฆ, ๐‘–๐‘˜) ,

so by (5.8.5) the right hand side is equal to

(5.8.11)๐‘‘โˆ‘๐‘–=1๐œ™๐‘–๐›พ๐‘–๐‘(๐‘–0,โ€ฆ, ๐‘–๐‘˜) +

๐‘‘โˆ‘๐‘–=1

๐‘˜โˆ‘๐‘ =0(โˆ’1)๐‘ +1๐œ™๐‘–๐›พ๐‘–๐‘ ๐‘(๐‘–, ๐‘–0,โ€ฆ, ๐šค๐‘ ,โ€ฆ, ๐‘–๐‘˜) ,

Page 210: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

198 Chapter 5: Cohomology via forms

where (๐‘–, ๐‘–0,โ€ฆ, ๐šค๐‘ ,โ€ฆ, ๐‘–๐‘˜) is the multi-index (๐‘–, ๐‘–0,โ€ฆ, ๐‘–๐‘˜) with ๐‘–๐‘  deleted. Similarly,

๐›ฟ๐‘„๐‘(๐‘–0,โ€ฆ, ๐‘–๐‘˜) =๐‘˜โˆ‘๐‘ =0(โˆ’1)๐‘ ๐›พ๐‘–๐‘ ๐‘„๐‘(๐‘–0,โ€ฆ, ๐šค๐‘ ,โ€ฆ, ๐‘–๐‘˜)

=๐‘‘โˆ‘๐‘–=1

๐‘˜โˆ‘๐‘ =0(โˆ’1)๐‘ ๐œ™๐‘–๐›พ๐‘–๐‘ ๐‘(๐‘–, ๐‘–0,โ€ฆ, ๐šค๐‘ ,โ€ฆ, ๐‘–๐‘˜) .

However, this is the negative of the second summand of (5.8.11); so, by adding these twosummands we get

(๐‘„๐›ฟ๐‘ + ๐›ฟ๐‘„๐‘)(๐‘–0,โ€ฆ, ๐‘–๐‘˜) =๐‘‘โˆ‘๐‘–=1๐œ™๐‘–๐›พ๐‘–๐‘(๐‘–0,โ€ฆ, ๐‘–๐‘˜)

and since โˆ‘๐‘‘๐‘–=1 ๐œ™๐‘– = 1, this identity reduced to

(๐‘„๐›ฟ๐‘ + ๐›ฟ๐‘„๐‘)(๐ผ) = ๐‘(๐ผ) ,or, since ๐ผ โˆˆ ๐‘๐‘˜(U) is any element, ๐‘„๐›ฟ๐‘ + ๐›ฟ๐‘„๐‘ = ๐‘.

Finally, note the Theorem 5.8.8 is an immediate consequence of the existence of thischain homotopy operator. Namely, if ๐‘ โˆˆ ๐ถ๐‘˜(U; ๐›บโ„“) is in the kernel of ๐›ฟ, then

๐‘ = ๐‘„๐›ฟ(๐‘) + ๐›ฟ๐‘„(๐‘) = ๐›ฟ๐‘„(๐‘) ,so ๐‘ is in the image of ๐›ฟโˆถ ๐ถ๐‘˜โˆ’1(U; ๐›บโ„“) โ†’ ๐ถ๐‘˜(U; ๐›บโ„“). โ–ก

To prove Theorem 5.8.3, we note that in addition to the exact sequence

0 ๐›บโ„“(๐‘‹) ๐ถ0(U; ๐›บโ„“) โ‹ฏ ๐ถ๐‘˜(U; ๐›บโ„“) โ‹ฏ ,๐›ฟ ๐›ฟ ๐›ฟ

we have another exact sequence(5.8.12)0 ๐ถ๐‘˜(U; ๐‘) ๐ถ๐‘˜(U; ๐›บ0) ๐ถ๐‘˜(U; ๐›บ1) โ‹ฏ ๐ถ๐‘˜(U; ๐›บโ„“) โ‹ฏ ,๐‘‘ ๐‘‘ ๐‘‘ ๐‘‘ ๐‘‘

where the ๐‘‘โ€™s are defined as follows: given ๐‘ โˆˆ ๐ถ๐‘˜(U; ๐›บโ„“) and ๐ผ โˆˆ ๐‘๐‘˜(U), we have that๐‘(๐ผ) โˆˆ ๐›บโ„“(๐‘ˆ๐ผ) and ๐‘‘(๐‘(๐ผ)) โˆˆ ๐›บโ„“+1(๐‘ˆ๐ผ), and we define ๐‘‘(๐‘) โˆˆ ๐ถ๐‘˜(U; ๐›บโ„“+1) to be the mapgiven by

๐ผ โ†ฆ ๐‘‘(๐‘(๐ผ)) .It is clear from this definition that ๐‘‘(๐‘‘(๐‘)) = 0 so the sequence

(5.8.13) ๐ถ๐‘˜(U; ๐›บ0) ๐ถ๐‘˜(U; ๐›บ1) โ‹ฏ ๐ถ๐‘˜(U; ๐›บโ„“) โ‹ฏ๐‘‘ ๐‘‘ ๐‘‘ ๐‘‘

is a complex and the exactness of this sequence follows from the fact that, since U is a goodcover, the sequence

๐›บ0(๐‘ˆ๐ผ) ๐›บ1(๐‘ˆ๐ผ) โ‹ฏ ๐›บโ„“(๐‘ˆ๐ผ) โ‹ฏ๐‘‘ ๐‘‘ ๐‘‘ ๐‘‘

is exact. Moreover, if ๐‘ โˆˆ ๐ถ๐‘˜(U; ๐›บ0) and ๐‘‘๐‘ = 0, then for every ๐ผ โˆˆ ๐‘๐‘˜(U), we have๐‘‘๐‘(๐ผ) = 0, i.e., the 0-form ๐‘(๐ผ) in ๐›บ0(๐‘ˆ๐ผ) is constant. Hence the map given by ๐ผ โ†ฆ ๐‘(๐ผ) isjust a ฤŒech cochain of the type we defined earlier, i.e., a map ๐‘๐‘˜(U) โ†’ ๐‘. Therefore, thekernel of this map ๐‘‘โˆถ ๐ถ๐‘˜(U; ๐›บ0) โ†’ ๐ถ๐‘˜(U; ๐›บ1) is ๐ถ0(U; ๐‘); and, adjoining this term to thesequence (5.8.13) we get the exact sequence (5.8.12).

Lastly we note that the two operations weโ€™ve defined above, the ๐‘‘ operation๐‘‘โˆถ ๐ถ๐‘˜(U; ๐›บโ„“) โ†’ ๐ถ๐‘˜(U; ๐›บโ„“+1)

Page 211: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

ยง5.8 ฤŒech Cohomology 199

and the ๐›ฟ operation ๐›ฟโˆถ ๐ถ๐‘˜(U; ๐›บโ„“) โ†’ ๐ถ๐‘˜+1(U; ๐›บโ„“), commute. i.e., for ๐‘ โˆˆ ๐ถ๐‘˜(U; ๐›บโ„“) wehave

(5.8.14) ๐›ฟ๐‘‘๐‘ = ๐‘‘๐›ฟ๐‘ .

Proof of equation (5.8.14). For ๐ผ โˆˆ ๐‘๐‘˜+1(U)

๐›ฟ๐‘(๐ผ) =๐‘˜โˆ‘๐‘Ÿ=0(โˆ’1)๐‘Ÿ๐›พ๐‘Ÿ๐‘(๐ผ๐‘Ÿ) ,

so if ๐‘(๐ผ๐‘Ÿ) โ‰• ๐œ”๐ผ๐‘Ÿ โˆˆ ๐›บโ„“(๐‘ˆ๐ผ๐‘Ÿ), then

๐›ฟ๐‘(๐ผ) =๐‘˜โˆ‘๐‘Ÿ=0(โˆ’1)๐‘Ÿ๐œ”๐ผ๐‘Ÿ |๐‘ˆ๐ผ

and

๐‘‘๐›ฟ(๐ผ) =๐‘˜โˆ‘๐‘Ÿ=0๐‘‘๐œ”๐ผ๐‘Ÿ |๐‘ˆ๐ผ = ๐›ฟ๐‘‘๐‘(๐ผ) . โ–ก

Putting these results together we get the following commutative diagram:

โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ

0 ๐›บ2(๐‘‹) ๐ถ0(U; ๐›บ2) ๐ถ1(U; ๐›บ2) ๐ถ2(U; ๐›บ2) โ‹ฏ

0 ๐›บ1(๐‘‹) ๐ถ0(U; ๐›บ1) ๐ถ1(U; ๐›บ1) ๐ถ2(U; ๐›บ1) โ‹ฏ

0 ๐›บ0(๐‘‹) ๐ถ0(U; ๐›บ0) ๐ถ1(U; ๐›บ0) ๐ถ2(U; ๐›บ0) โ‹ฏ

0 ๐ถ0(U; ๐‘) ๐ถ1(U; ๐‘) ๐ถ2(U; ๐‘) โ‹ฏ

0 0 0 .

๐‘‘

๐›ฟ ๐›ฟ

๐‘‘

๐›ฟ

๐‘‘

๐›ฟ

๐‘‘ ๐‘‘

๐‘‘

๐›ฟ

๐‘‘

๐›ฟ

๐‘‘ ๐‘‘

๐›ฟ ๐›ฟ

In this diagram all columns are exact except for the extreme left and column, which is theusual de Rham complex, and all rows are exact except for the bottom row which is the usualฤŒech cochain complex.

Exercises for ยง5.8Exercise 5.8.i. Deduce from this diagram that if a manifold ๐‘‹ admits a finite good coverU, then๐ป๐‘˜(U; ๐‘) โ‰… ๐ป๐‘˜(๐‘‹).

Hint: Let ๐‘ โˆˆ ๐›บ๐‘˜+1(๐‘‹) be a form such that ๐‘‘๐‘ = 0. Show that one can, by a sequence ofโ€œchess movesโ€ (of which the first few stages are illustrated in the (5.8.15) below), convert ๐‘

Page 212: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

200 Chapter 5: Cohomology via forms

into an element ๐‘ of ๐ถ๐‘˜+1(U; ๐‘) satisfying ๐›ฟ( ๐‘) = 0

(5.8.15)

๐‘ ๐‘๐‘˜+1,0

๐‘๐‘˜,0 ๐‘๐‘˜,1

๐‘๐‘˜โˆ’1,1 ๐‘๐‘˜โˆ’1,2

๐‘๐‘˜โˆ’2,2 ๐‘๐‘˜โˆ’2,3

๐‘๐‘˜โˆ’3,3 โ‹ฏ

๐‘‘

๐›ฟ

๐‘‘

๐›ฟ

๐‘‘

๐›ฟ

๐‘‘

๐›ฟ

Page 213: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

APPENDIX a

Bump Functions & Partitions of Unity

Wewill discuss in this section a number of โ€œglobal to localโ€ techniques inmulti-variablecalculus: techniques which enable one to reduce global problems on manifolds and largeopen subsets of ๐‘๐‘› to local problems on small open subsets of these sets. Our starting pointwill be the function ๐œŒ on ๐‘ defined by

(a.1) ๐œŒ(๐‘ฅ) โ‰” {๐‘’โˆ’ 1๐‘ฅ , ๐‘ฅ > 00, ๐‘ฅ โ‰ค 0 ,

which is positive for ๐‘ฅ positive, zero for ๐‘ฅ negative and everywhere ๐ถโˆž. (We will sketch aproof of this last assertion at the end of this appendix). From ๐œŒ one can construct a numberof other interesting ๐ถโˆž functions.

Example a.2. For ๐‘Ž > 0 the function ๐œŒ(๐‘ฅ) + ๐œŒ(๐‘Ž โˆ’ ๐‘ฅ) is positive for all ๐‘ฅ so the quotient๐œŒ๐‘Ž(๐‘ฅ) of ๐œŒ(๐‘ฅ) by this function is a well-defined ๐ถโˆž function with the properties:

{{{{{

๐œŒ๐‘Ž(๐‘ฅ) = 0, for ๐‘ฅ โ‰ค 00 โ‰ค ๐œŒ๐‘Ž(๐‘ฅ) โ‰ค 1๐œŒ๐‘Ž(๐‘ฅ) = 1, for ๐‘ฅ โ‰ฅ ๐‘Ž .

Example a.3. Let ๐ผ be the open interval (๐‘Ž, ๐‘), and ๐œŒ๐ผ the product of ๐œŒ(๐‘ฅ โˆ’ ๐‘Ž) and ๐œŒ(๐‘ โˆ’ ๐‘ฅ).Then ๐œŒ๐ผ(๐‘ฅ) is positive for ๐‘ฅ โˆˆ ๐ผ and zero on the complement of ๐ผ.

Example a.4. More generally let ๐ผ1,โ€ฆ, ๐ผ๐‘› be open intervals and let ๐‘„ = ๐ผ1 ร—โ‹ฏ ร— ๐ผ๐‘› be theopen rectangle in ๐‘๐‘› having these intervals as sides. Then the function

๐œŒ๐‘„(๐‘ฅ) โ‰” ๐œŒ๐ผ1(๐‘ฅ1)โ‹ฏ๐œŒ๐ผ๐‘›(๐‘ฅ๐‘›)is a ๐ถโˆž function on ๐‘๐‘› thatโ€™s positive on ๐‘„ and zero on the complement of ๐‘„.

Using these functions we will prove:

Lemma a.5. Let ๐ถ be a compact subset of ๐‘๐‘› and ๐‘ˆ an open set containing ๐ถ. Then thereexists function ๐œ™ โˆˆ ๐ถโˆž0 (๐‘ˆ) such that

{๐œ™(๐‘ฅ) โ‰ฅ 0, for all ๐‘ฅ โˆˆ ๐‘ˆ๐œ™(๐‘ฅ) > 0, for ๐‘ฅ โˆˆ ๐ถ .

Proof. For each ๐‘ โˆˆ ๐ถ let๐‘„๐‘ be an open rectangle with ๐‘ โˆˆ ๐‘„๐‘ and๐‘„๐‘ โŠ‚ ๐‘ˆ. The๐‘„๐‘โ€™s cover๐ถ๐‘– so, by Heineโ€“Borel there exists a finite subcover๐‘„๐‘1 ,โ€ฆ,๐‘„๐‘๐‘ . Now let ๐œ™ โ‰” โˆ‘๐‘๐‘–=1 ๐œŒ๐‘„๐‘๐‘– โ–ก

This result can be slightly strengthened. Namely we claim:

Theorem a.6. There exists a function ๐œ“ โˆˆ ๐ถโˆž0 (๐‘ˆ) such that 0 โ‰ค ๐œ“ โ‰ค 1 and ๐œ“ = 1 on ๐ถ.201

Page 214: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

202 Appendix a: Bump Functions & Partitions of Unity

Proof. Let ๐œ™ be as in Lemma a.5 and let ๐‘Ž > 0 be the greatest lower bound of the restrictionof ๐œ™ to ๐ถ. Then if ๐œŒ๐‘Ž is the function in Example a.2 the function ๐œŒ๐‘Ž โˆ˜ ๐œ™ has the propertiesindicated above. โ–ก

Remark a.7. The function๐œ“ in this theorem is an example of a bump function. If one wantsto study the behavior of a vector field ๐’— or a ๐‘˜-form ๐œ” on the set ๐ถ, then by multiplying ๐’—(or ๐œ”) by ๐œ“ one can, without loss or generality, assume that ๐’— (or ๐œ”) is compactly supportedon a small neighborhood of ๐ถ.

Bump functions are one of the standard tools in calculus for converting global problemsto local problems. Another such tool is partitions of unity.

Let ๐‘ˆ be an open subset of ๐‘๐‘› and U = {๐‘ˆ๐›ผ}๐›ผโˆˆ๐ผ a covering of ๐‘ˆ by open subsets (in-dexed by the elements of the index set ๐ผ). Then the partition of unity theorem asserts:

Theorem a.8. There exists a sequence of functions ๐œŒ1, ๐œŒ2,โ€ฆ โˆˆ ๐ถโˆž0 (๐‘ˆ) such that(1) ๐œŒ๐‘– โ‰ฅ 0(2) For every ๐‘– there is an ๐›ผ โˆˆ ๐ผ with ๐œŒ๐‘– โˆˆ ๐ถโˆž0 (๐‘ˆ๐›ผ)(3) For every ๐‘ โˆˆ ๐‘ˆ there exists a neighborhood ๐‘ˆ๐‘ of ๐‘ in ๐‘ˆ and an ๐‘๐‘ > 0 such that๐œŒ๐‘–|๐‘ˆ๐‘ = 0 for ๐‘ข > ๐‘๐‘.

(4) โˆ‘๐œŒ๐‘– = 1

Remark a.9. Because of item (3) the sum in item (4) is well defined. We will derive thisresult from a somewhat simpler set theoretical result.

Theorem a.10. There exists a countable covering of ๐‘ˆ by open rectangles (๐‘„๐‘–)๐‘–โ‰ฅ1 such that(1) ๐‘„๐‘– โŠ‚ ๐‘ˆ(2) For each ๐‘– there is an ๐›ผ โˆˆ ๐ผ with ๐‘„๐‘– โŠ‚ ๐‘ˆ๐›ผ(3) For every ๐‘ โˆˆ ๐‘ˆ there exists a neighborhood ๐‘ˆ๐‘ of ๐‘ in ๐‘ˆ and๐‘๐‘ > 0 such that ๐‘„๐‘– โˆฉ ๐‘ˆ๐‘

is empty for ๐‘– > ๐‘๐‘We first note that Theorem a.10 implies Theorem a.8. To see this note that the func-

tions ๐œŒ๐‘„๐‘– in Example a.4 above have all the properties indicated in Theorem a.8 except forproperty (4). Moreover since the ๐‘„๐‘–โ€™s are a covering of ๐‘ˆ the sum โˆ‘โˆž๐‘–=1 ๐œŒ๐‘„๐‘– is everywherepositive. Thus we get a sequence of ๐œŒ๐‘–โ€™s satisfying (1)โ€“(4) by taking ๐œŒ๐‘– to be the quotient of๐œŒ๐‘„๐‘– by this sum.

Proof of Theorem a.10. Let ๐‘‘(๐‘ฅ, ๐‘ˆ๐‘) be the distance of a point ๐‘ฅ โˆˆ ๐‘ˆ to the complement๐‘ˆ๐‘ โ‰” ๐‘๐‘› โˆ– ๐‘ˆ of ๐‘ˆ in ๐‘๐‘›, and let ๐ด๐‘Ÿ be the compact subset of ๐‘ˆ consisting of points, ๐‘ฅ โˆˆ ๐‘ˆ,satisfying ๐‘‘(๐‘ฅ, ๐‘ˆ๐‘) โ‰ฅ 1/๐‘Ÿ and |๐‘ฅ| โ‰ค ๐‘Ÿ. By Heineโ€“Borel we can find, for each ๐‘Ÿ, a collection ofopen rectangles,๐‘„๐‘Ÿ,๐‘–, ๐‘– = 1,โ€ฆ,๐‘๐‘Ÿ, such that๐‘„๐‘Ÿ,๐‘– is contained in int(๐ด๐‘Ÿ+1โˆ–๐ด๐‘Ÿโˆ’2) and in some๐‘ˆ๐›ผ and such that the๐‘„๐‘–, ๐‘Ÿโ€™s are a covering of๐ด๐‘Ÿโˆ–int(๐ด๐‘Ÿโˆ’1).Thus the๐‘„๐‘Ÿ,๐‘–โ€™s have the propertieslisted in Theorem a.10, and by relabelling, i.e., setting๐‘„๐‘– = ๐‘„1,๐‘– for 1 โ‰ค ๐‘– โ‰ค ๐‘๐‘–,๐‘„๐‘1+๐‘– โ‰” ๐‘„2,๐‘–,for 1 โ‰ค ๐‘– โ‰ค ๐‘2, etc., we get a sequence, ๐‘„1, ๐‘„2,โ€ฆ with the desired properties. โ–ก

ApplicationsWe will next describe a couple of applications of Theorem a.10.

Application a.11 (Improper integrals). Let ๐‘“โˆถ ๐‘ˆ โ†’ ๐‘ be a continuous function. We willsay that ๐‘“ is integrable over ๐‘ˆ if the infinite sum

(a.12)โˆžโˆ‘๐‘–=1โˆซ๐‘ˆ๐œŒ๐‘–(๐‘ฅ) |๐‘“(๐‘ฅ)| ๐‘‘๐‘ฅ

Page 215: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

203

converges and if so we will define the improper integral of ๐‘“ over ๐‘ˆ to be the sum

(a.13)โˆžโˆ‘๐‘–=1โˆซ๐‘ˆ๐œŒ๐‘–(๐‘ฅ)๐‘“(๐‘ฅ)๐‘‘๐‘ฅ

(Notice that each of the summands in this series is the integral of a compactly supportedcontinuous function over ๐‘๐‘› so the individual summands are well-defined. Also itโ€™s clearthat if ๐‘“ itself is a compactly supported function on ๐‘๐‘›, (a.12) is bounded by the integral of|๐‘“| over ๐‘๐‘›, so for every ๐‘“ โˆˆ ๐ถ0 (๐‘๐‘›) the improper integral of ๐‘“ over ๐‘ˆ is well-defined.)

Application a.14 (An extension theorem for ๐ถโˆž maps). Let ๐‘‹ be a subset of ๐‘๐‘› and ๐‘“ โˆถ๐‘‹ โ†’ ๐‘๐‘š a continuous map. We will say that ๐‘“ is ๐ถโˆž if, for every ๐‘ โˆˆ ๐‘‹, there exists anopen neighborhood, ๐‘ˆ๐‘, of ๐‘ in ๐‘๐‘› and a ๐ถโˆž map, ๐‘”๐‘ โˆถ ๐‘ˆ๐‘ โ†’ ๐‘๐‘š such that ๐‘”๐‘ = ๐‘“ on๐‘ˆ๐‘ โˆฉ ๐‘‹.

Theorem a.15 (Extension Theorem). If ๐‘“โˆถ ๐‘‹ โ†’ ๐‘๐‘š is ๐ถโˆž there exists an open neighbor-hood ๐‘ˆ of๐‘‹ in ๐‘๐‘› and a ๐ถโˆž map ๐‘”โˆถ ๐‘ˆ โ†’ ๐‘๐‘š, such that ๐‘” = ๐‘“ on๐‘‹.Proof. Let ๐‘ˆ = โ‹ƒ๐‘โˆˆ๐‘‹๐‘ˆ๐‘ and let (๐œŒ๐‘–)๐‘–โ‰ฅ1 be a partition of unity subordinate to the coveringU = {๐‘ˆ๐‘}๐‘โˆˆ๐‘‹ of๐‘ˆ. Then, for each ๐‘–, there exists a ๐‘ such that the support of ๐œŒ๐‘– is containedin ๐‘ˆ๐‘. Let

๐‘”๐‘–(๐‘ฅ) = {๐œŒ๐‘–๐‘”๐‘(๐‘ฅ), ๐‘ฅ โˆˆ ๐‘ˆ๐‘0, ๐‘ฅ โˆˆ ๐‘ˆ๐‘๐‘ .

Then ๐‘” = โˆ‘โˆž๐‘–=1 ๐‘”๐‘– is well defined by item (3) of Theorem a.8 and the restriction of ๐‘” to๐‘‹ isgiven by โˆ‘โˆž๐‘–=1 ๐œŒ๐‘–๐‘“, which is equal to ๐‘“. โ–ก

Exercises for Appendix aExercise a.i. Show that the function (a.1) is ๐ถโˆž.

Hints:(1) From the Taylor series expansion

๐‘’๐‘ฅ =โˆžโˆ‘๐‘˜=0

๐‘ฅ๐‘˜๐‘˜!

conclude that for ๐‘ฅ > 0๐‘’๐‘ฅ โ‰ฅ ๐‘ฅ

๐‘˜+๐‘›

(๐‘˜ + ๐‘›)!.

(2) Replacing ๐‘ฅ by 1/๐‘ฅ conclude that for ๐‘ฅ > 0,

๐‘’1/๐‘ฅ โ‰ฅ 1(๐‘› + ๐‘˜)!

1๐‘ฅ๐‘›+๐‘˜

.

(3) From this inequality conclude that for ๐‘ฅ > 0,

๐‘’โˆ’ 1๐‘ฅ โ‰ค (๐‘› + ๐‘˜)!๐‘ฅ๐‘›+๐‘˜ .(4) Let ๐‘“๐‘›(๐‘ฅ) be the function

๐‘“๐‘›(๐‘ฅ) โ‰” {๐‘’โˆ’ 1๐‘ฅ ๐‘ฅโˆ’๐‘›, ๐‘ฅ > 00, ๐‘ฅ โ‰ค 0 .

Conclude from (3) that for ๐‘ฅ > 0,๐‘“๐‘›(๐‘ฅ) โ‰ค (๐‘› + ๐‘˜)!๐‘ฅ๐‘˜

for all ๐‘˜

Page 216: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

204 Appendix a: Bump Functions & Partitions of Unity

(5) Conclude that ๐‘“๐‘› is ๐ถ1 differentiable.(6) Show that

๐‘‘๐‘‘๐‘ฅ๐‘“๐‘› = ๐‘“๐‘›+2 โˆ’ ๐‘›๐‘“๐‘›+1

(7) Deduce by induction that the ๐‘“๐‘›โ€™s are ๐ถ๐‘Ÿ differentiable for all ๐‘Ÿ and ๐‘›.Exercise a.ii. Show that the improper integral (a.13) is well-defined independent of thechoice of partition of unity.

Hint: Let (๐œŒโ€ฒ๐‘— )๐‘—โ‰ฅ1 be another partition of unity. Show that (a.13) is equal toโˆžโˆ‘๐‘–=1

โˆžโˆ‘๐‘—=1โˆซ๐‘ˆ๐œŒ๐‘–(๐‘ฅ)๐œŒโ€ฒ๐‘— (๐‘ฅ)๐‘“(๐‘ฅ)๐‘‘๐‘ฅ .

Page 217: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

APPENDIX b

The Implicit FunctionTheorem

Let ๐‘ˆ be an open neighborhood of the origin in ๐‘๐‘› and let ๐‘“1,โ€ฆ, ๐‘“๐‘˜ be ๐ถโˆž functionson ๐‘ˆ with the property ๐‘“1(0) = โ‹ฏ = ๐‘“๐‘˜(0) = 0. Our goal in this appendix is to prove thefollowing implicit function theorem.

Theorem b.1. Suppose the matrix

(b.2) [ ๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘— (0)]

is non-singular.Then there exists a neighborhood๐‘ˆ0 of 0 in๐‘๐‘› and a diffeomorphism๐‘”โˆถ (๐‘ˆ0, 0) โ†ช(๐‘ˆ, 0) of ๐‘ˆ0 onto an open neighborhood of 0 in ๐‘ˆ such that

๐‘”โ‹†๐‘“๐‘– = ๐‘ฅ๐‘– , ๐‘– = 1,โ€ฆ, ๐‘˜and

๐‘”โ‹†๐‘ฅ๐‘— = ๐‘ฅ๐‘— , ๐‘— = ๐‘˜ + 1,โ€ฆ, ๐‘› .

Remarks b.3.(1) Let ๐‘”(๐‘ฅ) = (๐‘”1(๐‘ฅ),โ€ฆ, ๐‘”๐‘›(๐‘ฅ)). Then the second set of equations just say that

๐‘”๐‘—(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) = ๐‘ฅ๐‘—for ๐‘— = ๐‘˜ + 1,โ€ฆ, ๐‘›, so the first set of equations can be written more concretely in theform

(b.4) ๐‘“๐‘–(๐‘”1(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›),โ€ฆ, ๐‘”๐‘˜(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›), ๐‘ฅ๐‘˜+1,โ€ฆ, ๐‘ฅ๐‘›) = ๐‘ฅ๐‘–for ๐‘– = 1,โ€ฆ, ๐‘˜.

(2) Letting ๐‘ฆ๐‘– = ๐‘”๐‘–(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) the equations (b.4) become(b.5) ๐‘“๐‘–(๐‘ฆ1,โ€ฆ, ๐‘ฆ๐‘˜, ๐‘ฅ๐‘˜+1,โ€ฆ, ๐‘ฅ๐‘›) = ๐‘ฅ๐‘– .

Hence what the implicit function theorem is saying is that, modulo the assumption (b.2)the system of equations (b.5) can be solved for the ๐‘ฆ๐‘–โ€™s in terms of the ๐‘ฅ๐‘–โ€™s.

(3) By a linear change of coordinates:

๐‘ฅ๐‘– โ†ฆ๐‘˜โˆ‘๐‘Ÿ=1๐‘Ž๐‘–,๐‘Ÿ๐‘ฅ๐‘Ÿ , ๐‘– = 1,โ€ฆ, ๐‘˜

we can arrange without loss of generality for the matrix (b.2) to be the identity matrix,i.e.,

(b.6) ๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘—(0) = ๐›ฟ๐‘–,๐‘— , 1 โ‰ค ๐‘–, ๐‘— โ‰ค ๐‘˜ .

Our proof of this theorem will be by induction on ๐‘˜.First, letโ€™s suppose that ๐‘˜ = 1 and, for the moment, also suppose that ๐‘› = 1. Then the

theorem above is just the inverse function theoremof freshman calculus. Namely if๐‘“(0) = 0and ๐‘‘๐‘“/๐‘‘๐‘ฅ(0) = 1, there exists an interval (๐‘Ž, ๐‘) about the origin on which ๐‘‘๐‘“/๐‘‘๐‘ฅ is greater

205

Page 218: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

206 Appendix b: The Implicit Function Theorem

than 1/2, so ๐‘“ is strictly increasing on this interval and its graph looks like the curve in thefigure below with ๐‘ = ๐‘“(๐‘Ž) โ‰ค โˆ’ 12๐‘Ž and ๐‘‘ = ๐‘“(๐‘) โ‰ฅ

12๐‘.

๏ฟฝ

๏ฟฝ

๏ฟฝ

๏ฟฝ

๏ฟฝ

๏ฟฝ

Figure b.1. The implicit function theorem

The graph of the inverse function ๐‘”โˆถ [๐‘, ๐‘‘] โ†’ [๐‘Ž, ๐‘] is obtained from this graph by justrotating it through ninety degrees, i.e., making the ๐‘ฆ-axis the horizontal axis and the ๐‘ฅ-axisthe vertical axis. (From the picture itโ€™s clear that ๐‘ฆ = ๐‘“(๐‘ฅ) โŸบ ๐‘ฅ = ๐‘”(๐‘ฆ) โŸบ ๐‘“(๐‘”(๐‘ฆ)) =๐‘ฆ.)

Most elementary text books regard this intuitive argument as being an adequate proofof the inverse function theorem; however, a slightly beefed-up version of this proof (which iscompletely rigorous) can be found in [12, Ch. 12].Moreover, as Spivak points out in [12, Ch.12], if the slope of the curve in the figure above at the point (๐‘ฅ, ๐‘ฆ) is equal to ๐œ† the slope ofthe rotated curve at (๐‘ฆ, ๐‘ฅ) is 1/๐œ†, so from this proof one concludes that if ๐‘ฆ = ๐‘“(๐‘ฅ)

(b.7) ๐‘‘๐‘”๐‘‘๐‘ฆ(๐‘ฆ) = (๐‘‘๐‘“๐‘‘๐‘ฅ(๐‘ฅ))โˆ’1= (๐‘‘๐‘“๐‘‘๐‘ฅ(๐‘”(๐‘ฆ)))

โˆ’1.

Since ๐‘“ is a continuous function, its graph is a continuous curve and, therefore, since thegraph of ๐‘” is the same curve rotated by ninety degrees, ๐‘” is also a continuous functions.Hence by (b.7), ๐‘” is also a ๐ถ1 function and hence by (b.7), ๐‘” is a ๐ถ2 function, etc. In otherwords ๐‘” is in ๐ถโˆž([๐‘, ๐‘‘]).

Letโ€™s now prove that the implicit function theorem with ๐‘˜ = 1 and ๐‘› arbitrary. Thisamounts to showing that if the function ๐‘“ in the discussion above depends on the param-eters, ๐‘ฅ2,โ€ฆ๐‘ฅ๐‘› in a ๐ถโˆž fashion, then so does its inverse ๐‘”. More explicitly letโ€™s suppose๐‘“(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) is a ๐ถโˆž function on a subset of ๐‘๐‘› of the form [๐‘Ž, ๐‘] ร—๐‘‰ where๐‘‰ is a compact,convex neighborhood of the origin in ๐‘๐‘› and satisfies ๐œ•๐‘“/๐œ•๐‘ฅ1 โ‰ฅ 12 on this set. Then by theargument above there exists a function, ๐‘” = ๐‘”(๐‘ฆ, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) defined on the set [๐‘Ž/2, ๐‘/2]ร—๐‘‰with the property

(b.8) ๐‘“(๐‘ฅ1, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) = ๐‘ฆ โŸบ ๐‘”(๐‘ฆ, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) = ๐‘ฅ1 .Moreover by (b.7) ๐‘” is a ๐ถโˆž function of ๐‘ฆ and

(b.9) ๐œ•๐‘”๐œ•๐‘ฆ(๐‘ฆ, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) =

๐œ•๐‘“๐œ•๐‘ฅ1(๐‘ฅ1, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›)โˆ’1

Page 219: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

207

at ๐‘ฅ1 = ๐‘”(๐‘ฆ). In particular, since ๐œ•๐‘“๐œ•๐‘ฅ1 โ‰ฅ12

0 < ๐œ•๐‘”๐œ•๐‘ฆ< 2

and hence

(b.10) |๐‘”(๐‘ฆโ€ฒ, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›) โˆ’ ๐‘”(๐‘ฆ, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›)| < 2|๐‘ฆโ€ฒ โˆ’ ๐‘ฆ|for points ๐‘ฆ and ๐‘ฆโ€ฒ in the interval [๐‘Ž/2, ๐‘/2].

The ๐‘˜ = 1 case of Theorem b.1 is almost implied by (b.8) and (b.9) except that we muststill show that ๐‘” is a ๐ถโˆž function, not just of ๐‘ฆ, but of all the variables, ๐‘ฆ, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›, and thisweโ€™ll do by quoting another theorem from freshman calculus (this time a theorem from thesecond semester of freshman calculus).

Theorem b.11 (Mean Value Theorem in ๐‘› variables). Let ๐‘ˆ be a convex open set in ๐‘๐‘› and๐‘“โˆถ ๐‘ˆ โ†’ ๐‘ a ๐ถโˆž function. Then for ๐‘Ž, ๐‘ โˆˆ ๐‘ˆ there exists a point ๐‘ on the line interval joining๐‘Ž to ๐‘ such that

๐‘“(๐‘) โˆ’ ๐‘“(๐‘Ž) =๐‘›โˆ‘๐‘–=1

๐œ•๐‘“๐œ•๐‘ฅ๐‘–(๐‘)(๐‘๐‘– โˆ’ ๐‘Ž๐‘–) .

Proof. Apply the one-dimensional mean value theorem to the function

โ„Ž(๐‘ก) โ‰” ๐‘“((1 โˆ’ ๐‘ก)๐‘Ž + ๐‘ก๐‘) . โ–ก

Letโ€™s now show that the function ๐‘” in (b.8) is a ๐ถโˆž function of the variables, ๐‘ฆ and ๐‘ฅ2.To simplify our notation weโ€™ll suppress the dependence of ๐‘“ on ๐‘ฅ3,โ€ฆ, ๐‘ฅ๐‘› and write ๐‘“ as๐‘“(๐‘ฅ1, ๐‘ฅ2) and ๐‘” as ๐‘”(๐‘ฆ, ๐‘ฅ2). For โ„Ž โˆˆ (โˆ’๐œ€, ๐œ€), ๐œ€ small, we have

๐‘ฆ = ๐‘“(๐‘”(๐‘ฆ, ๐‘ฅ2 + โ„Ž), ๐‘ฅ2 + โ„Ž) = ๐‘“(๐‘”(๐‘ฆ, ๐‘ฅ2), ๐‘ฅ2) ,and, hence, setting ๐‘ฅโ€ฒ1 = ๐‘”(๐‘ฆ, ๐‘ฅ2 + โ„Ž), ๐‘ฅ1 = ๐‘”(๐‘ฆ, ๐‘ฅ2) and ๐‘ฅโ€ฒ2 = ๐‘ฅ2 + โ„Ž, we get from the meanvalue theorem

0 = ๐‘“(๐‘ฅโ€ฒ1, ๐‘ฅโ€ฒ2) โˆ’ ๐‘“(๐‘ฅ1, ๐‘ฅ2)

= ๐œ•๐‘“๐œ•๐‘ฅ1(๐‘)(๐‘ฅโ€ฒ1 โˆ’ ๐‘ฅ1) +

๐œ•๐‘“๐œ•๐‘ฅ2(๐‘)(๐‘ฅโ€ฒ2 โˆ’ ๐‘ฅ2)

and therefore

(b.12) ๐‘”(๐‘ฆ, ๐‘ฅ2 + โ„Ž) โˆ’ ๐‘”(๐‘ฆ, ๐‘ฅ2) = (โˆ’๐œ•๐‘“๐œ•๐‘ฅ1(๐‘))โˆ’1 ๐œ•๐‘“๐œ•๐‘ฅ2(๐‘) โ„Ž

for some ๐‘ on the line segment joining (๐‘ฅ1, ๐‘ฅ2) to (๐‘ฅโ€ฒ1, ๐‘ฅโ€ฒ2). Letting โ„Ž tend to zero we can drawfrom this identity a number of conclusions:(1) Since ๐‘“ is a ๐ถโˆž function on the compact set [๐‘Ž, ๐‘] ร— ๐‘‰ its derivatives are bounded on

this set, so the right hand side of (b.12) tends to zero as โ„Ž tends to zero, i.e., for fixed ๐‘ฆ,๐‘” is continuous as a function of ๐‘ฅ2.

(2) Nowdivide the right hand side of (b.12) by โ„Ž and let โ„Ž tend to zero. Since๐‘” is continuousin ๐‘ฅ2, the quotient of (b.12) by โ„Ž tends to its value at (๐‘ฅ1, ๐‘ฅ2). Hence for fixed ๐‘ฆ ๐‘“ isdifferentiable as a function of ๐‘ฅ2 and

(b.13) ๐œ•๐‘”๐œ•๐‘ฅ2(๐‘ฆ, ๐‘ฅ2) = โˆ’(

๐œ•๐‘“๐œ•๐‘ฅ1)โˆ’1(๐‘ฅ1, ๐‘ฅ2)

๐œ•๐‘“๐œ•๐‘ฅ2(๐‘ฅ1, ๐‘ฅ2)

where ๐‘ฅ1 = ๐‘”(๐‘ฆ, ๐‘ฅ2).

Page 220: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

208 Appendix b: The Implicit Function Theorem

(3) Moreover, by the inequality (b.10) and the triangle inequality

|๐‘”(๐‘ฆโ€ฒ, ๐‘ฅโ€ฒ2) โˆ’ ๐‘”(๐‘ฆ, ๐‘ฅ2)| โ‰ค |๐‘”(๐‘ฆโ€ฒ, ๐‘ฅโ€ฒ2) โˆ’ ๐‘”(๐‘ฆ, ๐‘ฅโ€ฒ2)| + |๐‘”(๐‘ฆ, ๐‘ฅโ€ฒ2) โˆ’ ๐‘”(๐‘ฆ, ๐‘ฅ2)|โ‰ค 2|๐‘ฆโ€ฒ โˆ’ ๐‘ฆ| + |๐‘”(๐‘ฆ, ๐‘ฅโ€ฒ2) โˆ’ ๐‘”(๐‘ฆ, ๐‘ฅ2)| ,

hence ๐‘” is continuous as a function of ๐‘ฆ and ๐‘ฅ2.(4) Hence by (b.9) and (b.13), ๐‘” is a ๐ถ1 function of ๐‘ฆ and ๐‘ฅ2, and henceโ€ฆ.

In other words ๐‘” is a ๐ถโˆž function of ๐‘ฆ and ๐‘ฅ2. This argument works, more or lessverbatim, for more than two ๐‘ฅ๐‘–โ€™s and proves that ๐‘” is a ๐ถโˆž function of ๐‘ฆ, ๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›. Thuswith ๐‘“ = ๐‘“1 and ๐‘” = ๐‘”1Theorem b.1 is proved in the special case ๐‘˜ = 1.

Proof of Theorem b.1 for ๐‘˜ > 1. Weโ€™ll now prove Theorem b.1 for arbitrary ๐‘˜ by inductionon ๐‘˜. By induction we can assume that there exists a neighborhood ๐‘ˆโ€ฒ0 , of the origin in ๐‘๐‘›and a ๐ถโˆž diffeomorphism ๐œ™โˆถ (๐‘ˆโ€ฒ0 , 0) โ†ช (๐‘ˆ, 0) such that

(b.14) ๐œ™โ‹†๐‘“๐‘– = ๐‘ฅ๐‘–for 2 โ‰ค ๐‘– โ‰ค ๐‘˜ and(b.15) ๐œ™โ‹†๐‘ฅ๐‘— = ๐‘ฅ๐‘—for ๐‘— = 1 and ๐‘˜ + 1 โ‰ค ๐‘— โ‰ค ๐‘›. Moreover, by (b.6)

( ๐œ•๐œ•๐‘ฅ1๐œ™โ‹†๐‘“1) (0) =

๐‘˜โˆ‘๐‘–=1

๐œ•๐‘“๐‘–๐œ•๐‘ฅ1(0) ๐œ•๐œ•๐‘ฅ๐‘–๐œ™๐‘–(0) =

๐œ•๐œ™1๐œ•๐‘ฅ1= 1

since๐œ™1 = ๐œ™โ‹†๐‘ฅ1 = ๐‘ฅ1.Thereforewe can applyTheoremb.1, with ๐‘˜ = 1, to the function,๐œ™โ‹†๐‘“1,to conclude that there exists a neighborhood ๐‘ˆ0 of the origin in ๐‘๐‘› and a diffeomorphism๐œ“โˆถ (๐‘ˆ0, 0) โ†’ (๐‘ˆโ€ฒ0 , 0) such that ๐œ“โ‹†๐œ™โ‹†๐‘“1 = ๐‘ฅ1 and ๐œ“โ‹†๐œ™โ‹†๐‘ฅ๐‘– = ๐‘ฅ๐‘– for 1 โ‰ค ๐‘– โ‰ค ๐‘›. Thus by (b.14)๐œ“โ‹†๐œ™โ‹†๐‘“๐‘– = ๐œ“โ‹†๐‘ฅ๐‘– = ๐‘ฅ๐‘– for 2 โ‰ค ๐‘– โ‰ค ๐‘˜, and by (b.15) ๐œ“โ‹†๐œ™โ‹†๐‘ฅ๐‘— = ๐œ“โ‹†๐‘ฅ๐‘— = ๐‘ฅ๐‘— for ๐‘˜ + 1 โ‰ค ๐‘— โ‰ค ๐‘›.Hence if we let ๐‘” = ๐œ™ โˆ˜ ๐œ“ we see that:

๐‘”โ‹†๐‘“๐‘– = (๐œ™ โˆ˜ ๐œ“)โ‹†๐‘“๐‘– = ๐œ“โ‹†๐œ™โ‹†๐‘“๐‘– = ๐‘ฅ๐‘–for ๐‘– โ‰ค ๐‘– โ‰ค ๐‘˜ and

๐‘”โ‹†๐‘ฅ๐‘— = (๐œ™ โˆ˜ ๐œ“)โ‹†๐‘ฅ๐‘— = ๐œ“โ‹†๐œ™โ‹†๐‘ฅ๐‘— = ๐‘ฅ๐‘—for ๐‘˜ + 1 โ‰ค ๐‘— โ‰ค ๐‘›. โ–ก

Weโ€™ll derive a number of subsidiary results from Theorem b.1. The first of these is the๐‘›-dimensional version of the inverse function theorem:

Theoremb.16. Let๐‘ˆ and๐‘‰ be open subsets of๐‘๐‘› and๐œ™โˆถ (๐‘ˆ, ๐‘) โ†’ (๐‘‰, ๐‘ž) a๐ถโˆžmap. Supposethat the derivative of ๐œ™ at ๐‘

๐ท๐œ™(๐‘)โˆถ ๐‘๐‘› โ†’ ๐‘๐‘›

is bijective. Then ๐œ™ maps a neighborhood of ๐‘ in ๐‘ˆ diffeomorphically onto a neighborhood of๐‘ž in ๐‘‰.

Proof. By pre-composing and post-composing ๐œ™ by translations we can assume that ๐‘ =๐‘ž = 0. Let ๐œ™ = (๐‘“1,โ€ฆ, ๐‘“๐‘›). Then the condition that ๐ท๐œ™(0) be bijective is the condition thatthe matrix (b.2) be non-singular. Hence, by Theorem b.1, there exists a neighborhood๐‘‰0 of0 in ๐‘‰, a neighborhood ๐‘ˆ0 of 0 in ๐‘ˆ, and a diffeomorphism ๐‘”โˆถ ๐‘‰0 โ†’ ๐‘ˆ0 such that

๐‘”โ‹†๐‘“๐‘– = ๐‘ฅ๐‘–for ๐‘– = 1,โ€ฆ, ๐‘›. However, these equations simply say that ๐‘” is the inverse of ๐œ™, and hencethat ๐œ™ is a diffeomorphism. โ–ก

Page 221: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

209

A second result which weโ€™ll extract from Theorem b.1 is the canonical submersion the-orem.

Theorem b.17. Let ๐‘ˆ be an open subset of ๐‘๐‘› and ๐œ™โˆถ (๐‘ˆ, ๐‘) โ†’ (๐‘๐‘˜, 0) a ๐ถโˆž map. Suppose๐œ™ is a submersion at ๐‘, i.e., suppose its derivative

๐ท๐œ™(๐‘)โˆถ ๐‘๐‘› โ†’ ๐‘๐‘˜

is onto. Then there exists a neighborhood ๐‘‰ of ๐‘ in ๐‘ˆ, a neighborhood ๐‘ˆ0 of the origin in ๐‘๐‘›,and a diffeomorphism ๐‘”โˆถ (๐‘ˆ0, 0) โ†’ (๐‘‰, ๐‘) such that the map ๐œ™ โˆ˜ ๐‘”โˆถ (๐‘ˆ0, 0) โ†’ (๐‘๐‘›, 0) is therestriction to ๐‘ˆ0 of the canonical submersion:

๐œ‹โˆถ ๐‘๐‘› โ†’ ๐‘๐‘˜ , ๐œ‹(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) โ‰” (๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘˜) .Proof. Let ๐œ™ = (๐‘“1,โ€ฆ, ๐‘“๐‘˜). Composing ๐œ™ with a translation we can assume ๐‘ = 0 and by apermutation of the variables ๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘› we can assume that the matrix (b.2) is non-singular.By Theorem b.1 we conclude that there exists a diffeomorphism ๐‘”โˆถ (๐‘ˆ0, 0) โ†ช (๐‘ˆ, ๐‘) withthe properties ๐‘”โ‹†๐‘“๐‘– = ๐‘ฅ๐‘– for ๐‘– = 1,โ€ฆ, ๐‘˜, and hence,

๐œ™ โˆ˜ ๐‘”(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) = (๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘˜) . โ–ก

As a third application of Theorem b.1 weโ€™ll prove a theorem which is similar in spirit toTheorem b.17, the canonical immersion theorem.

Theorem b.18. Let ๐‘ˆ be an open neighborhood of the origin in ๐‘๐‘˜ and ๐œ™โˆถ (๐‘ˆ, 0) โ†’ (๐‘๐‘›, ๐‘)a ๐ถโˆž map. Suppose that the derivative of ๐œ™ at 0

๐ท๐œ™(0)โˆถ ๐‘๐‘˜ โ†’ ๐‘๐‘›

is injective. Then there exists a neighborhood ๐‘ˆ0 of 0 in ๐‘ˆ, a neighborhood ๐‘‰ of ๐‘ in ๐‘๐‘›, anda diffeomorphism.

๐œ“โˆถ ๐‘‰ โ†’ ๐‘ˆ0 ร— ๐‘๐‘›โˆ’๐‘˜

such that the map ๐œ“ โˆ˜ ๐œ™โˆถ ๐‘ˆ0 โ†’ ๐‘ˆ0 ร— ๐‘๐‘›โˆ’๐‘˜ is the restriction to ๐‘ˆ0 of the canonical immersion๐œ„ โˆถ ๐‘๐‘˜ โ†’ ๐‘๐‘˜ ร— ๐‘๐‘›โˆ’๐‘˜ , ๐œ„(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘˜) = (๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘˜, 0,โ€ฆ, 0) .

Proof. Let ๐œ™ = (๐‘“1,โ€ฆ, ๐‘“๐‘›). By a permutation of the ๐‘“๐‘–โ€™s we can arrange that the matrix

[ ๐œ•๐‘“๐‘–๐œ•๐‘ฅ๐‘— (0)] , 1 โ‰ค ๐‘–, ๐‘— โ‰ค ๐‘˜

is non-singular and by composing ๐œ™ with a translation we can arrange that ๐‘ = 0. Hence byTheorem b.16 the map

๐œ’โˆถ (๐‘ˆ, 0) โ†’ (๐‘๐‘˜, 0) ๐‘ฅ โ†ฆ (๐‘“1(๐‘ฅ),โ€ฆ, ๐‘“๐‘˜(๐‘ฅ))maps a neighborhood ๐‘ˆ0 of 0 diffeomorphically onto a neighborhood ๐‘‰0 of 0 in ๐‘๐‘˜. Let๐œ“โˆถ (๐‘‰0, 0) โ†’ (๐‘ˆ0, 0) be its inverse and let

๐›พโˆถ ๐‘‰0 ร— ๐‘๐‘›โˆ’๐‘˜ โ†’ ๐‘ˆ0 ร— ๐‘๐‘›โˆ’๐‘˜

be the map๐›พ(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) โ‰” (๐œ“(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘˜), ๐‘ฅ๐‘˜+1,โ€ฆ, ๐‘ฅ๐‘›) .

Then(๐›พ โˆ˜ ๐œ™)(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘˜) = ๐›พ(๐œ’(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘˜), ๐‘“๐‘˜+1(๐‘ฅ),โ€ฆ, ๐‘“๐‘›(๐‘ฅ))(b.19)

= (๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘˜, ๐‘“๐‘˜+1(๐‘ฅ),โ€ฆ, ๐‘“๐‘›(๐‘ฅ)) .Now note that the map

โ„Žโˆถ ๐‘ˆ0 ร— ๐‘๐‘›โˆ’๐‘˜ โ†’ ๐‘ˆ0 ร— ๐‘๐‘›โˆ’๐‘˜

Page 222: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

210 Appendix b: The Implicit Function Theorem

defined byโ„Ž(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘›) โ‰” (๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘˜, ๐‘ฅ๐‘˜+1 โˆ’ ๐‘“๐‘˜+1(๐‘ฅ),โ€ฆ, ๐‘ฅ๐‘› โˆ’ ๐‘“๐‘›(๐‘ฅ))

is a diffeomorphism. (Why? What is its inverse?) and, by (b.19),(โ„Ž โˆ˜ ๐›พ โˆ˜ ๐œ™)(๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘˜) = (๐‘ฅ1,โ€ฆ, ๐‘ฅ๐‘˜, 0,โ€ฆ, 0) ,

i.e., (โ„Ž โˆ˜ ๐›พ) โˆ˜ ๐œ™ = ๐œ„. Thus we can take the ๐‘‰ in Theorem b.18 to be ๐‘‰0 ร— ๐‘๐‘›โˆ’๐‘˜ and the ๐œ“ to beโ„Ž โˆ˜ ๐›พ. โ–กRemark b.20. The canonical submersion and immersion theorems can be succinctly sum-marized as saying that every submersion โ€œlooks locally like the canonical submersionโ€ andevery immersion โ€œlooks locally like the canonical immersionโ€.

Page 223: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

APPENDIX c

Good Covers & ConvexityTheorems

Let ๐‘‹ be an ๐‘›-dimensional submanifold of ๐‘๐‘. Our goal in this appendix is to provethat๐‘‹ admits a good cover. To do so weโ€™ll need some basic facts about convexity.

Definition c.1. Let ๐‘ˆ be an open subset of ๐‘๐‘› and ๐œ™ a ๐ถโˆž function on ๐‘ˆ. We say that ๐œ™ isconvex if the matrix(c.2) [ ๐œ•

2๐œ™๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘—(๐‘)]

is positive-definite for all ๐‘ โˆˆ ๐‘ƒ.Suppose now that๐‘ˆ itself is convex and ๐œ™ is a convex function on๐‘ˆwhich has as image

the half open interval [0, ๐‘Ž) and is a proper map ๐‘ˆ โ†’ [0, ๐‘Ž). (In other words, for 0 โ‰ค ๐‘ < ๐‘Ž,the set { ๐‘ฅ โˆˆ ๐‘ˆ | ๐œ™(๐‘ฅ) โ‰ค ๐‘ } is compact).

Theorem c.3. For 0 < ๐‘ < ๐‘Ž, the set๐‘ˆ๐‘ โ‰” { ๐‘ฅ โˆˆ ๐‘ˆ | ๐œ™(๐‘ฅ) < ๐‘ }

is convex.

Proof. For ๐‘, ๐‘ž โˆˆ ๐œ•๐‘ˆ๐‘ with ๐‘ โ‰  ๐‘ž, let๐‘“(๐‘ก) โ‰” ๐œ™((1 โˆ’ ๐‘ก)๐‘ + ๐‘ก๐‘ž) ,

for 0 โ‰ค ๐‘ก โ‰ค 1. We claim that

(c.4) ๐‘‘2๐‘“๐‘‘๐‘ก2(๐‘ก) > 0

and

(c.5) ๐‘‘๐‘“๐‘‘๐‘ก(0) < 0 < ๐‘‘๐‘“

๐‘‘๐‘ก(1) .

To prove (c.4) we note that๐‘‘2๐‘“๐‘‘๐‘ก2(๐‘ก) = โˆ‘1โ‰ค๐‘–,๐‘—โ‰ค๐‘›

๐œ•2๐œ™๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘—((1 โˆ’ ๐‘ก)๐‘ + ๐‘ก๐‘ž)(๐‘๐‘– โˆ’ ๐‘ž๐‘–)(๐‘๐‘— โˆ’ ๐‘ž๐‘—)

and that the right-hand side is positive because of the positive-definiteness of (c.2).To prove (c.5) we note that ๐‘‘๐‘“๐‘‘๐‘ก is strictly increasing by (c.4). Hence ๐‘‘๐‘“๐‘‘๐‘ก (0) > 0 would

imply that ๐‘‘๐‘“๐‘‘๐‘ก (๐‘ก) > 0 for all ๐‘ก โˆˆ [0, 1] and hence would imply that ๐‘“ is strictly increasing.But

๐‘“(0) = ๐‘“(1) = ๐œ™(๐‘) = ๐œ™(๐‘ž) = ๐‘ ,so this would be a contradiction. We conclude that ๐‘‘๐‘“๐‘‘๐‘ก (0) < 0. A similar argument showsthat ๐‘‘๐‘“๐‘‘๐‘ก (1) > 0.

Now we use equations (c.4) and (c.5) to show that ๐‘ˆ๐‘ is convex. Since ๐‘‘๐‘“๐‘‘๐‘ก is strictlyincreasing it follows from (c.5) that ๐‘‘๐‘“๐‘‘๐‘ก (๐‘ก0) = 0 for some ๐‘ก0 โˆˆ (0, 1) and that ๐‘‘๐‘“๐‘‘๐‘ก (๐‘ก) < 0 for

211

Page 224: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

212 Appendix c: Good Covers & Convexity Theorems

๐‘ก โˆˆ [0, ๐‘ก0) and๐‘‘๐‘“๐‘‘๐‘ก (๐‘ก) > 0 for ๐‘ก โˆˆ (๐‘ก0, 1]. Therefore, since ๐‘“(0) = ๐‘“(1) = ๐‘, we have ๐‘“(๐‘ก) < ๐‘

for all ๐‘ก โˆˆ (0, 1); so ๐œ™(๐‘ฅ) < ๐‘ on the line segment defined by (1โˆ’ ๐‘ก)๐‘+ ๐‘ก๐‘ž for ๐‘ก โˆˆ (0, 1). Hence๐‘ˆ๐‘ is convex. โ–ก

Coming back to the manifold ๐‘‹ โŠ‚ ๐‘๐‘, let ๐‘ โˆˆ ๐‘‹ and let ๐ฟ๐‘ โ‰” ๐‘‡๐‘๐‘‹. We denote by ๐œ‹๐‘the orthogonal projection

๐œ‹๐‘ โˆถ ๐‘‹ โ†’ ๐ฟ๐‘ + ๐‘ ,i.e., for ๐‘ž โˆˆ ๐‘‹ and ๐‘ฅ = ๐œ‹๐‘(๐‘ž), we have that ๐‘ž โˆ’ ๐‘ฅ is orthogonal to ๐ฟ๐‘ (itโ€™s easy to see that ๐œ‹๐‘is defined by this condition). We will prove that this projection has the following convexityproperty.

Theorem c.6. There exists a positive constant ๐‘(๐‘) such that if ๐‘ž โˆˆ ๐‘‹ satisfies |๐‘ โˆ’ ๐‘ž|2 < ๐‘(๐‘)and ๐‘ < ๐‘(๐‘), then the set

(c.7) ๐‘ˆ(๐‘ž, ๐‘) โ‰” { ๐‘žโ€ฒ โˆˆ ๐‘‹ | |๐‘žโ€ฒ โˆ’ ๐‘ž| < ๐‘ }is mapped diffeomorphically by ๐œ‹๐‘ onto a convex open set in ๐ฟ๐‘ + ๐‘.

Proof. We can, without loss of generality, assume that ๐‘ = 0 and that

๐ฟ = ๐‘๐‘› = ๐‘๐‘› ร— {0}

in ๐‘๐‘› ร— ๐‘๐‘˜ = ๐‘๐‘, where ๐‘˜ โ‰” ๐‘ โˆ’ ๐‘›. Thus ๐‘‹ can be described, locally over a convex neigh-borhood ๐‘ˆ of the origin in ๐‘๐‘› as the graph of a ๐ถโˆž function ๐‘“โˆถ (๐‘ˆ, 0) โ†’ (๐‘๐‘˜, 0) and since๐‘๐‘› ร— {0} is tangent to๐‘‹ at 0, we have

(c.8) ๐œ•๐‘“๐œ•๐‘ฅ๐‘–= 0 for ๐‘– = 1,โ€ฆ, ๐‘› .

Given ๐‘ž = (๐‘ฅ๐‘ž, ๐‘“(๐‘ฅ๐‘ž)) โˆˆ ๐‘‹, let ๐œ™๐‘ž โˆถ ๐‘ˆ โ†’ ๐‘ by the function

(c.9) ๐œ™๐‘ž(๐‘ฅ) โ‰” |๐‘ฅ โˆ’ ๐‘ฅ๐‘ž|2 + |๐‘“(๐‘ฅ) โˆ’ ๐‘“(๐‘ฅ๐‘ž)|2 .

Then by (c.7) ๐œ‹๐‘(๐‘ˆ(๐‘ž, ๐‘)) is just the set

{ ๐‘ฅ โˆˆ ๐‘ˆ | ๐œ™๐‘ž(๐‘ฅ) < ๐‘ } ,

so to prove the theorem it suffices to prove that if ๐‘(๐‘) is sufficiently small and ๐‘ < ๐‘(๐‘), thisset is convex. However, at ๐‘ž = 0, by equations (c.8) and (c.9) we have

๐œ•2๐œ™๐‘ž๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘—= ๐›ฟ๐‘–,๐‘— ,

and hence by continuity ๐œ™๐‘ž is convex on the set { ๐‘ฅ โˆˆ ๐‘ˆ | |๐‘ฅ|2 < ๐›ฟ } provided that ๐›ฟ and|๐‘ž| are sufficiently small. Hence if ๐‘(๐‘) is sufficiently small, then ๐œ‹๐‘(๐‘ˆ(๐‘ž, ๐‘)) is convex for๐‘ < ๐‘(๐‘). โ–ก

We will now use Theorem c.6 to prove that๐‘‹ admits a good cover: for every ๐‘ โˆˆ ๐‘‹, let

๐œ€(๐‘) โ‰” โˆš๐‘(๐‘)3

and let๐‘ˆ๐‘ โ‰” { ๐‘ž โˆˆ ๐‘‹ | |๐‘ โˆ’ ๐‘ž| < ๐œ€(๐‘) } .

Theorem c.10. The ๐‘ˆ๐‘โ€™s are a good cover of๐‘‹.

Page 225: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

213

Proof. Suppose that the intersection(c.11) ๐‘ˆ๐‘1 โˆฉโ‹ฏ โˆฉ ๐‘ˆ๐‘๐‘˜is nonempty and that

๐œ€(๐‘1) โ‰ฅ ๐œ€(๐‘2) โ‰ฅ โ‹ฏ โ‰ฅ ๐œ€(๐‘๐‘˜) .Then if ๐‘ is a point in the intersection๐‘ˆ๐‘1 โˆฉโ‹ฏโˆฉ๐‘ˆ๐‘๐‘˜ , then for ๐‘– = 1,โ€ฆ, ๐‘˜ we have |๐‘ โˆ’ ๐‘๐‘–| <๐œ€(๐‘1), hence |๐‘๐‘–โˆ’๐‘1| < 2๐œ€(๐‘1).Moreover, if ๐‘ž โˆˆ ๐‘ˆ๐‘๐‘– and |๐‘žโˆ’๐‘๐‘–| < ๐œ€(๐‘1), then |๐‘žโˆ’๐‘1| < 3๐œ€(๐‘1)and so |๐‘ž โˆ’๐‘1|2 < ๐‘(๐‘1). Therefore the set๐‘ˆ๐‘๐‘– is contained in๐‘ˆ(๐‘๐‘–, ๐‘(๐‘1)) and consequentlyby Theorem c.6 is mapped diffeomorphically onto a convex open subset of ๐ฟ๐‘1 + ๐‘1 by theprojection ๐œ‹๐‘1 . Consequently the intersection (c.11) is mapped diffeomorphically onto aconvex open subset of ๐ฟ๐‘1 + ๐‘1 by ๐œ‹๐‘1 . โ–ก

Page 226: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

Page 227: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

Bibliography

1. Vladimir Igorevich Arnolโ€™d, Mathematical methods of classical mechanics, Vol. 60, Springer Science & BusinessMedia, 2013.

2. Garrett Birkhoff and Gian-Carlo Rota, Ordinary differential equations, 4th ed., John Wiley & Sons, 1989.3. Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Vol. 82, Springer Science & Business

Media, 2013.4. Victor Guillemin and Alan Pollack, Differential topology, Vol. 370, American Mathematical Society, 2010.5. Victor Guillemin and Shlomo Sternberg, Symplectic techniques in physics, Cambridge University Press, 1990.6. Nikolai V. Ivanov, A differential forms perspective on the Lax proof of the change of variables formula, The Amer-

ican Mathematical Monthly 112 (2005), no. 9, 799โ€“806.7. John L. Kelley, General topology, Graduate Texts in Mathematics, vol. 27, Springer, 1975.8. Peter D. Lax, Change of variables in multiple integrals, The American Mathematical Monthly 106 (1999), no. 6,

497โ€“501.9. , Change of variables in multiple integrals II, The American Mathematical Monthly 108 (2001), no. 2,

115โ€“119.10. James R. Munkres, Analysis on manifolds, Westview Press, 1997.11. , Topology, 2nd ed., Prentice Hall, 2000 (English).12. Michael Spivak, Calculus on manifolds: a modern approach to classical theorems of advanced calculus, Mathe-

matics Monographs, Westview Press, 1971.13. Frank W. Warner, Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics,

vol. 94, Springer-Verlag New York, 1983.

215

Page 228: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

Page 229: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

Index of Notation

A๐‘˜(๐‘‰), 14Alt, 14

๐ต๐‘˜(๐‘‹), 149๐ต๐‘˜๐‘ (๐‘‹), 149(๐‘›๐‘˜), 16

๐ถ๐‘˜(U; ๐›บโ„“), 196๐ถ๐‘˜(U; ๐‘), 195๐œ’(๐‘‹), 189

deg, 77๐ท๐‘“, 33๐‘‘๐‘“, 33dim, 1๐‘‘๐‘ฅ๐‘–, 35๐œ•/๐œ•๐‘ฅ๐‘–, 34

๐ป๐‘˜(๐‘‹), 149๐ป๐‘˜(U; ๐‘), 195๐ป๐‘˜๐‘ (๐‘‹), 149โ‰ƒ, 56

I๐‘˜(๐‘‰), 17im, 2๐œ„๐‘ฃ, 23๐œ„๐’—, 36

ker, 2

๐ฟ(๐‘“), 184L๐‘˜(๐‘‰), 8

๐›ฌ๐‘˜(๐‘‰โ‹†), 19๐ฟ๐’—, 34

๐‘(U), 195๐‘๐‘˜(U), 194

๐›บ๐‘˜(๐‘‹), 110๐›บ๐‘˜๐‘ (๐‘‹), 111

๐‘“โ‹†๐’—, 40

๐‘†๐‘˜, 12๐›ด๐‘˜, 12(โˆ’1)๐œŽ, 12supp, 39, 71

๐‘‡๐‘๐‘๐‘›, 33๐‘‡๐‘(๐‘‹), 104, 105โŠ—, 9๐‘‡๐‘Œ, 176๐‘‡๐œŽ, 13๐œ๐‘Œ, 176

๐‘Š(๐‘‹, ๐‘), 139โˆง, 20

๐‘๐‘˜(๐‘‹), 149๐‘๐‘˜๐‘ (๐‘‹), 149

217

Page 230: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

Page 231: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

Glossary of Terminology

alternation operation, 14annihilator of a subspace, 6

basis, 1positively oriented, 29

bilinear, 191bilinear pairing, 171

non-singular, 171

canonical immersion theorem, 108, 209canonical submersion theorem, 107, 209chain rule

for manifolds, 106change of variables formula

for manifolds, 126cochain complex, 158cohomology class, 149configuration space, 66contractable, 56

manifold, 137convex, 141

open set, 166convexโ€“concave, 141coset, 3cotangent space

to ๐‘๐‘›, 35critial point, 135critical

point, 85value, 85

critical value, 135current density, 62ฤŒech

cochain complex, 195cohomology groups, 195

Darboux form, 63de Rham cohomology, 149

compactly supported, 149

decomposable element, 21degree

of a map, 77derivative

of a ๐ถโˆž map between manifolds, 106determinant, 26diagonal, 184diffeomorphism, 97

orientation preserving, 117orientation reversing, 118

differential formclosed, 48compactly supported, 71, 111exact, 48on an open subset of ๐‘๐‘›, 44one-form, 35

dimensionof a vector space, 1

divergence theoremfor manifolds, 130

dual vector space, 4

electric field, 62energy

conservation of, 67kinetic, 66total, 66

Euler characteristic, 189exact sequence, 158

short, 159exterior derivative, 46

๐‘“-relatedvector fields, 40vector fields on manifolds, 109

finite topology, 167Frobeniusโ€™ Theorem, 92

genus, 143

219

Page 232: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

220 Glossary of Terminology

global Lefschetz number, 184good cover, 165gradient, 60

homotopic, 56homotopy, 56

equivalence, 156invariant, 151proper, 87

imageof a linear map, 2

immersioncanonical, 209

implicit function theorem, 205index

local, 144of a vector field, 143

inner product, 2integral

of a system, 38integral curve, 37, 111

maximal, 38interior product

for vector spaces, 24of differential forms, 51of forms, 36

intersectiontransverse, 180

intersection numberlocal, 180of a map with a submanifold, 183

inverse function theoremfor manifolds, 107

Jacobi identityfor vector fields, 36

๐‘˜-formon an open subset of ๐‘๐‘›, 44๐‘˜-skeleton, 195kernel

of a linear map, 2

Lefschetz map, 184Lie algebra, 36Lie bracket

of vector fields, 36Lie derivative, 34

of a differential form, 52

line integral, 36linear independence, 1long exact sequence in cohomology, 162

magnetic field, 62manifold, 97Mayerโ€“Vietoris Theorem, 162multi-index, 8

repeating, 15strictly increasing, 15

nerve, 168nerve of a cover, 195Noetherโ€™s principle, 67

one-parameter groupassociated to a complete vector field,

40open set

parametrizable, 110star-shaped, 58

orientationcompatible, 180of a line in ๐‘2, 29of a manifold, 116of a one-dimensional vector space, 29of a vector space (in general), 29reversed, 116smooth, 116standard, 116

orientation preservingdiffeomorphism, 117

orientation reversingdiffeomorphism, 118

orientation-preservingmap of vector spaces, 30

orthonormal vectors, 7

parametrizable open set๐ท-adapted, 120

parametrization, 104oriented, 118

permutation, 12transposition, 12

elementary, 12phase space, 66Poincarรฉ lemma

for compactly supported forms, 76for manifolds, 150for rectangles, 72

Page 233: DifferentialForms - Mathematicsmath.mit.edu/classes/18.952/2018SP/files/18.952_book.pdfDraft: March28,2018 Organization vii of dual space and quotient space. Then inSection 1.3 we

Draft: March 28, 2018

221

Poincarรฉ recurrence, 67Poisson bracket, 68projection formula, 176proper

map, 77pullback

of a one-form, 41of forms, 54of vector fields, 43, 109

pushforwardof a vector field, 40of vector fields, 109

quotientvector space, 3

regular value, 85, 99, 135

saddle, 146Sardโ€™s theorem, 86scalar charge density, 62scalar curvature, 141sign

of a permutation, 13simply connected, 157sink, 146smooth domain, 118source, 146submersion, 209sumbersion

canonical, 209support

of a differential formon ๐‘๐‘›, 71on a manifold, 111

of a vector field, 39symmetric group, 12symplectomorphism, 64

tangent spaceof a manifold, 98, 104, 105to ๐‘๐‘›, 33

tensor, 8alternating, 14decomposable, 10redundant, 17symmetric, 19

tensor product, 192of linear maps, 9

Thomclass, 176form, 176

vector, 1positively oriented, 29

vector field, 34compactly supported, 39complete, 38, 111Hamiltonian, 65Lefschetz, 190on a manifold, 109smooth, 110symplectic, 64

vector space, 1volume element

of a vector space, 31volume form

on a manifold, 116Riemannian, 117symplectic, 64

wedge productof forms, 45

winding number, 139

zeronon-degenerate, 144