development of sensors, systems and techniques for low-frequency seismic and newtonian noise...

25
DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND GW DETECTORS Proposal for ILIAS-next (JRA1)

Upload: jair-brathwaite

Post on 01-Apr-2015

215 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND

DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE

IN UNDERGROUND GW DETECTORS

Proposal for ILIAS-next (JRA1)

Page 2: DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND

PARTICIPANTS

INFN (Italy)• F. Acernese University of Salerno – INFN Napoli• F. Barone University of Salerno – INFN Napoli• E. Calloni University of Napoli Federico II – INFN Napoli• E. Coccia University of Roma Tor Vergata – INFN Tor Vergata• R. De Rosa University of Napoli Federico II – INFN Napoli• L. Di Fiore INFN Napoli• V. Fafone University of Roma Tor Vergata - INFN Tor Vergata• F. Garufi University of Napoli Federico II – INFN Napoli• L. Milano University of Napoli Federico II – INFN Napoli• Y. Minenkov INFN Tor Vergata• L. Palladino University of L’Aquila – LNGS-INFN Tor Vergata• A. Rocchi INFN Tor Vergata• R. Romano University of Salerno – INFN NapoliNIKHEF (The Netherlands)• J.F.J. van den Brand Vrije University , Amsterdam - NIKHEF• T. Bauer NIKHEF• E. Hennes NIKHEF• M. Doets NIKHEF

Page 3: DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND

OUTLINE

• Sensitivity at low-frequency is affected by:– Seismic noise– Newtonian noise– Control noise

• Main goals of this proposal:– development of suitable integrated sensors and techniques to quantify

and reduce the LF noise contributions– development of suitable position sensors and actuators for the last two

stages of the suspension chain

Page 4: DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND

Mechanical Model: Folded PendulumThe Folded Pendulum (FP) “horizontal” configuration allows arbitrary low resonant frequenciesIt basically consists of an arm (pendulum) connected through a rigid bar to an inverse arm (inverted pendulum).It doesn’t need an elastic restoring force (material stress)It can be easily obtained from a single piece of material with electric discharge machining (EDM)

Tunable Mechanical Monolithic Horizontal Seismometer

Accelerometer

Single block of Al alloy 7075-T6 of 140x134x40 mm EDM with a 250 m thick wire to cut the internal

surfaces. 8 elliptical notch hinges for torsional flexures

(ellipticity ratio 16/5) Flexure joints 100 m thick One central hole to place the calibration mass

Mechanical design

Pendulum

Central Mass

Inverted Pendulum

Central Window

Page 5: DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND

The Folded Pendulum Prototype (mod. 08F_100_AL1)

Pendulum

Mirror (inside)

Interferometric and/or optical lever readout

Coil-magnet (inside)for closed-loop configuration

Inverted Pendulum

Central Mass

Hinges

Page 6: DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND

First tests on prototype

Measured sensitivities with different optical readouts:- Optical lever (PSD and Quadrant Photodiode)- Laser Interferometer.

Mechanical Quality Factor

70 mHz

Folded Pendulum Tuning Test

Page 7: DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND

600m

Operation at DUSEL

PSD of ground displacement @ 600m underground level (4 week of data) compared with theoretical FP noise and Peterson’s New Low Noise Model

Page 8: DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND

Monolithic Horizontal Seismometer/Accelerometers Goals

Development and integration of the horizontal mechanical monolithic

seismometer/accelerometer for:

1. Low frequency horizontal seismic noise measurement• Long term tests of horizontal seismic noise acquisition at DUSEL and at Gran Sasso

INFN Laboratory for their characterization in terms of sensitivity to environmental

noises.

• Low frequency characterization (and modeling in term of seismic and Newtonian

noise) of candidate underground sites for the implementation of the Einstein

Telescope.

2. Integration of monolithic horizontal sensors in the control of the

mechanical suspensions of GW interferometric detectors.

Page 9: DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND

9

Need for tiltmeters• Acceleration signal coming from tilt has the wrong sign: noise amplification• Need independent information

VIR-NOT-FIR-1390-318

(a) pure translation: the table moves leftward, the accelerometer gives a positive signal and the feedback push the table rightward towards the zero position; (b) tilt: the table tilts, the accelerometer gives a positive signal and the feedback push the table rigthwards: wrong direction

Page 10: DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND

Angular Accelerometers Goals

1. Development and characterization of an angular accelerometer

2. Low frequency tilt noise measurement in underground sites

3. Integration in the control of the mechanical suspensions of GW

interferometric detectors.

Page 11: DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND

SITE SELECTIONAmbient ground motion and gravity gradient noise

At 1 Hz:Hiidenvesi cave: <1 nm/√HzMoxa station: 0.5 nm/ √HzAsse 900 m: 0.5 nm/ √Hz

Ongoing studies at Homestake with seismic network

Down to 1500m

Ground motion is strongly site dependent

Page 12: DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND

Large geological variations in Europe• large sediment regions• homogeneous materials: crystalline graniteTest candidate sites using a seismic network

Page 13: DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND

Finite element analysis

• Reaction to vertical point oscillation– Two layer geology

• Wave attenuation has two components– Geometrical (expansion of wave fronts) ~ rn

• Rayleigh, n=-1/2• Body waves at depth, n=-1

– Material (damping)

Rayleigh

HeadShearPressure

Surface waves

Body waves

Example: sandstone, = 3.5 x 10-8 f sec/cm, a plane wave disturbance at 1 Hz would be attenuated over 10 km by less than 4%

Mark Beker, David Rabeling, Caspar van Leeuwen, Eric Hennes

Page 14: DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND

Effects of seismic noise

• Seismic noise suppression– Development of superattenuators

• Gravity gradient noise– Cannot be shielded– Network of seismometers and development of data

correction algorithms

Figure: M.Lorenzini

Page 15: DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND

Underground detectors - Cella

Surface

Surface

Z=-10 m

Z=-10 m

Z=-100 m

Z=-100 m

Z=-1000 m

Z=-1000 m

Frequency (Hz)

Assumptions:• CL = 1000 m/s (lower is better)• CT/CL = 0.5 (lower is worse)• Surface modes and transverse mode only

Feasible• Can we do better?especially in the low frequency region• Volume waves!

Analytical results by G. CellaThe 58th Fujihara Seminar (May 2009)

Page 16: DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND

axazaycPcS

P-wave passing 600m

depth

S-wave passing 400m

depth

H=400 m

H=500 m

H=600 m

Time [ s ]

a [ m/s2 ]-16

-16

-16

More realistic model and impulse response– All wave types included– GGN drops less than order of magnitude– Little geometric suppression

Impulse response - halve space - damping

Page 17: DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND

Decomposition of GGN signal

×10-16

×10-16

z

x

GGN composition– Both surface and bulk contributions– GGN signal `instantaneous’, sensors delayed response– GGN subtractions schemes under study

Page 18: DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND

Summary

• Site selection– Requires dedicated tests at candidate sites in Europe

• Effects of geology• Influence of cultural noise• Use results as input for FEA

• Gravity gradient noise– Limits sensitivity at low frequencies (1 – 10 Hz)– FEA studies (and GGN subtraction schemes) in progress

Page 19: DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND

Mirror and Marionetta Local Position Sensors

- Local position sensors are used for the damping and pre-alignment of the payload;

-The main characteristic of a such sensing system are:

- Large dynamic in order to manage huge (some mm or mrad) displacements and rotations of the payload components;

- Good sensitivity in order to allow the locking engagement within the residual displacement or angular noise (fraction of µm or µrad);

- Often these requirements can only be achieved by using a set of hierarchical systems (Virgo: CCD cameras and optical levers)

Page 20: DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND

Mirror and Marionetta Local Position Sensors

- The ultimate sensitivity of the local sensor is limited by the seismic noise, since the sensing is performed respect to the ground;

- For ground detectors it is not useful to use very sensitive set-up, since the seismic vibration will mask the sensor performances (about 0.1 µm at 1 Hz);

- For second generation detectors the residual motion of the test masses, allowing the locking engagement, has to be very slow: < 0.3 µm/s, giving a displacement around: 0.1 µm.

-Still above the seismic position noise of the local sensor by using some care;

- For third generation detectors the residual allowed displacement could be easily lowered to less than 0.01 µm, depending on: cavity finesse, mirror mass, …

-But this requirement could be achieved thanks to the lower seismic noise content in underground quiet locations (at least a factor 10 less respect to surface);

-The target is the development of a position sensor with a sensitivity around 1 nm/Hz1/2 in the band 0.1-10 Hz;

Page 21: DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND

Mirror and Marionetta Local Position Sensors

- A little more critical is the sensor set-up in order to be compliant with the cryogenic payload; - There are two contrasting requirements:

-“No” optical window for auxiliary beam transmission to increase the thermal isolation;-No dissipating devices inside the vacuum chamber;

-Different solutions, based on optical levers, to investigate on:

- Uncoupling optics and PSD inside the vacuum chamber outside the cold shields;

Vacuum Fiber

PSD and uncoupling optics

Cold shield with holes

Page 22: DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND

Mirror and Marionetta Local Position Sensors

- Uncoupling optics inside the tank and probe beam driven outside by fiber bundles or fiber tapers;-No optical uncoupling, multiple probe beams for geometrical uncoupling driven outside by fiber tapers;

-The investigation will be mainly focused on the performances of the different solutions in terms of sensitivity (compared to the standard position sensor) and compliance with cryogenic environment.

Page 23: DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND

Mirror and Marionetta Actuators

- No particular effort is required about the marionetta actuators:

- Coil magnets pairs should easily fit the requirements;

- Electrostatic actuators are useful for the test mass control:-No need to use magnets on the test mass;-Better immunity from EM noise;

- The idea is to use the test mass level actuator only for the lock acquisition;

- Both longitudinal and angular controls from the marionetta stage in standard conditions;

- In this way the actuator could be placed on ground: no recoil mass;

- The use of low temperature opens the possibility to adopt superconducting devices for the actuation on the marionetta and the test mass;

- The investigation will be focused on the actuator characterization and compatibility/optimization with cryogenic environment;

Page 24: DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND

TASKS AND OUTPUT OF THE PROJECT1. Acquisition of seismic data in different underground sites in Europe, to get information

about attenuation of seismic noise with depth, dependence on geology, e.g. sediments, hardrock and salt, and coherence length of signals among different sensors.

2. Analysis and validation of seismic models and study of suitable underground architectures and sensors configurations for NN measurement and reduction in underground sites.

3. Development and validation of low-frequency, low-noise and large-band seismic sensors (seismometers and accelerometers) for Seismic and NN measurement;

4. Development and characterization of low-frequency, high sensitivity tiltmeters and performances test on inverted pendulum.

5. Optimization of the developed seismic sensors for their application in the control of the suspension chains through their characterization in the facilities of INFN – Napoli and INFN - Roma Tor Vergata.

6. Data Analysis of the acquired data for geophysical applications and modeling of the underground sites.

7. Development and characterization of contactless sensors for the test mass and marionetta position sensing, optimization and integration in the suspended chain and validation in cryogenic environment.

8. Development of actuators for test mass position control, characterization in different working configuration using the suspended chain, validation at cryogenic temperatures and optimization for cryogenic environment.

Page 25: DEVELOPMENT OF SENSORS, SYSTEMS AND TECHNIQUES FOR LOW-FREQUENCY SEISMIC AND NEWTONIAN NOISE MONITORING AND FOR REDUCTION OF CONTROL NOISE IN UNDERGROUND

INVOLVEMENT OF THE PARTICIPANTS IN THE TASKS

Year 1:Half seismic array + data acquisition ready; Preliminary characterization of actuators and position sensors in vacuum;Year 2:Position sensor with sensitivity better than 5·10-9 m in the band 0.1-10 Hz in single sensor configuration;Full seismic array installed for 1st measurement;Monolithic sensors with sensitivity better than 10-9 m in the band 0.1-10 Hz;Preliminary measurements of actuators and position sensors at low temperatureYear 3:Integration of monolithic sensors in the suspension;Comparison of the performances of ground based and suspended actuators for the test mass;Characterization of tiltmeter in low frequency range;Year 4:Characterization of the underground sites on the basis of NN measurement;Suspension chain control with local controls based on the developed sensors and actuators;Full characterization of the developed sensors and actuators in cryogenic environment;

PLANNING