development of remote sensing methods for assessing and mapping soil pollution with heavy metals

11
Development of remote sensing methods for assessing and mapping soil pollution with heavy metals 4-6 December , 2013, FAO HQ, Rome, Italy, Asmaryan Sh. G., Muradyan V. S.Sahakyan L.V. Saghatelyan A. K. The Center for Ecological-Noosphere Studies of the National Academy of Sciences of the Republic of Armenia

Upload: fao

Post on 15-Apr-2017

896 views

Category:

Education


2 download

TRANSCRIPT

Page 1: Development of remote sensing methods for assessing and mapping soil pollution with heavy metals

Development of remote sensing

methods for assessing and

mapping soil pollution with heavy

metals

4-6 December , 2013, FAO HQ, Rome, Italy,

Asmaryan Sh. G., Muradyan V. S.Sahakyan L.V. Saghatelyan A. K.

The Center for Ecological-Noosphere Studies of the National

Academy of Sciences of the Republic of Armenia

Page 2: Development of remote sensing methods for assessing and mapping soil pollution with heavy metals

Co

Fe

Pb Ti

Zn Cu

Ba

Soil pollution

One of dominant environmental pollutants are known to be the so-called heavy

metals (HM). In this respect most problematic are mining centers and urban sites.

Mn

Page 3: Development of remote sensing methods for assessing and mapping soil pollution with heavy metals

Development of remote sensing methods for assessing

and mapping soil pollution with heavy metals

Terrestrial

ecogeochemical

investigations Spectrometry

of soils (400-2500nm)

Soil Transects - From Sample Bags

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

400 700 1000 1300 1600 1900 2200 2500

Wavelength (nm)

Refle

ctan

ce fa

ctor

1b.000.sco

1b.001.sco

1b.002.sco

1b.003.sco

1d.000.sco

1d.001.sco

1d.002.sco

1d.003.sco

1f.000.sco

1f.001.sco

1f.002.sco

1f.003.sco

1h.000.sco

1h.001.sco

1h.002.sco

1h.003.sco

1j.000.sco

1j.001.sco

1j.002.sco

1j.003.sco

Spectral analysis

of satellite images

Collation of data

calibration-validation

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

400,

000

444,

000

488,

000

532,

000

576,

000

620,

000

664,

000

708,

000

752,

000

796,

000

840,

000

884,

000

928,

000

972,

000

1016

,000

1060

,000

1104

,000

1148

,000

1192

,000

1236

,000

1280

,000

1324

,000

1368

,000

1412

,000

1456

,000

1500

,000

1544

,000

1588

,000

1632

,000

1676

,000

1720

,000

1764

,000

1808

,000

1852

,000

1896

,000

1940

,000

1984

,000

2028

,000

2072

,000

2116

,000

2160

,000

2204

,000

2248

,000

2292

,000

2336

,000

2380

,000

2424

,000

2468

,000

Co

Fe

Pb

Cr

Ti

Cu

Mo

Zn

Sr

V

Zr

Ba

Mn

Mapping soil

pollution

Page 4: Development of remote sensing methods for assessing and mapping soil pollution with heavy metals

City Kadjaran

Page 5: Development of remote sensing methods for assessing and mapping soil pollution with heavy metals

SOFTWARE & DATA SUPPORT

Satellite images GIS-softwares

ENVI

ArcGIS

Ecogeochemical

data of soils

Spectrophotometry data

of soils“Fieldspec3

ASD” WorldView 2

EO-1

Sensors

Page 6: Development of remote sensing methods for assessing and mapping soil pollution with heavy metals

Correlation coefficients in different spectral ranges between HM in Kajaran soils and

spectral irradiation values (reflectance) obtained with help of a spectrophotometer

HM 2005 2011

Spectral

wavl

engt

h

(nm)

Correlation

coeffi

cient

(R)

Spectral

wavl

engt

h

(nm)

Correlation

coeffici

ent (R)

Co 401 0,22 1033 -0,12

Fe 2476 0,29 2206 -0,14

Pb 2498 -0,61 1282 -0,21

Cr 2500 -0,28 2460 -0,34

Ti 2498 0,51 1639 0,27

Cu 1251 -0,27 402 0,31

Mo 685 -0,33 408 0,24

Zn 2498 -0,56 1720 -0,33

Sr 1199 -0,30 408 0,34

V 2498 0,38 408 -0,16

Zr 2498 0,21 408 -0,25

Ba 417 0,44 713 -0,10

Mn 2114 0,50 1654 0,37

Soil Transects - From Sample Bags

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

400 700 1000 1300 1600 1900 2200 2500

Wavelength (nm)R

efl

ect

ance

fac

tor

1b.000.sco

1b.001.sco

1b.002.sco

1b.003.sco

1d.000.sco

1d.001.sco

1d.002.sco

1d.003.sco

1f.000.sco

1f.001.sco

1f.002.sco

1f.003.sco

1h.000.sco

1h.001.sco

1h.002.sco

1h.003.sco

1j.000.sco

1j.001.sco

1j.002.sco

1j.003.sco

Page 7: Development of remote sensing methods for assessing and mapping soil pollution with heavy metals

HM Spectral wavelength (nm) Correlation

coefficient

(R)

Co 770-895 -0,58

Fe 770-895 -0,59

Pb 400-450 0,59

Cr 450-510 0,74

Ti 585-625 -0,20

Cu 770-895 -0,64

Mo 630-690 -0,25

Zn 400-450 0,52

Sr 860-1040 0,39

V 585-625 -0,54

Zr 860-1040 0,38

Ba 585-625 -0,22

Mn 630-690 0,34

As 770-895 -0,50

W 630-690 -0,59

Correlation coefficients in different spectral ranges between HM in Kajaran soils and

spectral irradiation values (reflectance) obtained with help of satellite image

WorldView-2

Page 8: Development of remote sensing methods for assessing and mapping soil pollution with heavy metals

Calculated possible distribution of heavy metals contents in Kajaran

barren soils by satellite images

1. NDVI= (NIR- RED)/(NIR+RED),

2. Selected were pixels having 0,08-0,3 values that correspond

to barren soils.

Zn = 0,9552*( SIV) - 149,69 (1)

Cr = 0,4048*( SIV)- 26,742 (2)

Pb = 0,3458*( SIV)- 75,527 (3)

3. Employing a Raster Calculator instrument into ArcGIS.

4. Then, in the first approach a picture of possible distribution of Pb, Zn and

Cr contents in Kajaran barren soils

Page 9: Development of remote sensing methods for assessing and mapping soil pollution with heavy metals

Possible contents of Zn and Cr in Kajaran barren soils according to a

hyperspectral satellite image EO-1 and a multi-spectral satellite image

WorldView-2

Page 10: Development of remote sensing methods for assessing and mapping soil pollution with heavy metals

1. There exists a direct and inverse correlation between actual contents

of HM vis Pb, Zn, Cr, Ti, Cu, Mn in the soils of city of Kajaran and spectral

irradiation values obtained with help of a spectrophotometer and

satellite images. However, the highest correlation is detected in respect

to Pb, Zn и Cr.

Conclusions

2. To verify the objectivity of the method one needs to collate between

produced maps and geochemical maps of contents of the given

elements, whereas further improvement of the methods will help

implement direct mapping of heavy metal pollution of soils through

treatment and classification of satellite images.

3. Collation of data of terrestrial ecogeochemical investigations, a

spectrophotometric survey and remote observations may underlie

creation of a remote system of soil monitoring.

Page 11: Development of remote sensing methods for assessing and mapping soil pollution with heavy metals