development and implementation of a closure and remediation plan

34
Julia Horvath (556 6648) [email protected] Queen’s University Kingston, Ontario April 2011 Development and Implementation of a Closure and Remediation Plan: A Case Study of the Faro Mine Closure Project, YT [Document Subtitle] ABSTRACT At the height of its production, the Faro Mine, located in southcentral Yukon, Canada, was one of the largest producers of lead and zinc in the world. In 1998 mining operations ceased indefinitely after almost thirty years of activity, leaving behind over 360 million tonnes of waste rock and 55 million tonnes of tailings. In 2003, the governments of Canada and the Yukon and the affected Yukon First Nations collaborated to initiate a closure and remediation plan for the contaminated site. The purpose of this research project was to use the Faro Mine Closure Project as a case study to gain a comprehensive understanding of the processes involved with developing and implementing a closure and remediation plan for a mine that is no longer operating. An analysis of several government and technical reports as well as peer reviewed journal articles were used to complete this document. The main environmental challenges faced by the remediation project are the generation of acid mine drainage (AMD); water contamination by metals; metalbearing dust from tailings and stability of existing structures such as tailings dams and diversion channels. Socioeconomic concerns are also examined. Several remediation options were proposed for the site and are described in this paper. Some options favor the relocation of the waste rock and tailings to the excavated pits while other options involve an approach to stabilize the waste in place. Many technical reports and rounds of community consultation resulted in consensus on a plan that involves stabilizing and covering the waste in place. A brief discussion of the subsequent phases of the closure plan, including the design and regulatory phases, is included in this report.

Upload: lethu

Post on 05-Feb-2017

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Development and Implementation of a Closure and Remediation Plan

 

 

               

Julia  Horvath  (556  6648)  [email protected]  Queen’s  University  Kingston,  Ontario  

 April  2011  

 

Development  and  Implementation  of  a  Closure  and  Remediation  Plan:  A  Case  Study  of  the  Faro  Mine  Closure  Project,  YT  [Document  Subtitle]  

Julia  

ABSTRACT  

At  the  height  of  its  production,  the  Faro  Mine,  located  in  south-­‐central  Yukon,  Canada,  was  one  of  the  largest  producers  of  lead  and  zinc  in  the  world.  In  1998  mining  operations  ceased  indefinitely  after  almost  thirty  years  of  activity,  leaving  behind  over  360  million  tonnes  of  waste  rock  and  55  million  tonnes  of  tailings.  In  2003,    the  governments  of  Canada  and  the  Yukon  and  the  affected  Yukon  First  Nations  collaborated  to  initiate  a  closure  and  remediation  plan  for  the  contaminated  site.  The  purpose  of  this  research  project  was  to  use  the  Faro  Mine  Closure  Project  as  a  case  study  to  gain  a  comprehensive  understanding  of  the  processes  involved  with  developing  and  implementing  a  closure  and  remediation  plan  for  a  mine  that  is  no  longer  operating.  An  analysis  of  several  government  and  technical  reports  as  well  as  peer  reviewed  journal  articles  were  used  to  complete  this  document.  The  main  environmental  challenges  faced  by  the  remediation  project  are  the  generation  of  acid  mine  drainage  (AMD);  water  contamination  by  metals;  metal-­‐bearing  dust  from  tailings  and  stability  of  existing  structures  such  as  tailings  dams  and  diversion  channels.  Socio-­‐economic  concerns  are  also  examined.  Several  remediation  options  were  proposed  for  the  site  and  are  described  in  this  paper.  Some  options  favor  the  relocation  of  the  waste  rock  and  tailings  to  the  excavated  pits  while  other  options  involve  an  approach  to  stabilize  the  waste  in  place.  Many  technical  reports  and  rounds  of  community  consultation  resulted  in  consensus  on  a  plan  that  involves  stabilizing  and  covering  the  waste  in  place.  A  brief  discussion  of  the  subsequent  phases  of  the  closure  plan,  including  the  design  and  regulatory  phases,  is  included  in  this  report.    

Page 2: Development and Implementation of a Closure and Remediation Plan

  2  

 

Table  of  Contents  

1.0  Introduction  and  Objective........................................................................................................ 1  2.0  Methodology ................................................................................................................................... 2  3.0  Location  of  the  Faro  Mine  Site  and  Description  of  Nearby  Communities .................. 2  4.0  Description  of  the  Site ................................................................................................................. 3  5.0  Brief  History  of  Production  at  the  Faro  Mine  Complex .................................................... 5  6.0  Challenges  of  the  Faro  Mine  Remediation  Project............................................................. 8  6.1  Assessment  of  human  health  and  ecological  risks ....................................................................... 8  6.2  Geochemical  Issues:  Sulphides  and  Acid  Rock  Drainage .........................................................11  

7.0.  Finding  a  Solution ......................................................................................................................13  7.1  Five  Remediation  Options ..................................................................................................................15  7.1.1  Remediation  Options  for  the  Combined  Faro  Pit  and  Rose  Creek  Tailings  Area .................. 15  7.1.2  Remediation  Options  for  the  Vangorda/Grum  Mine  Area .............................................................. 19  

7.2  Relocating  Tailings  and/or  Waste  Rock  as  a  Remediation  Technique................................21  7.3  Soil  Covers    as  a  Remediation  Technique ......................................................................................22  7.4  Water  Treatment ...................................................................................................................................24  

8.0  Community  Consultation  and  Socio-­economic  Concerns ..............................................26  9.0  The  Next  Steps..............................................................................................................................28  10.0  Summary  of  Main  Conclusions .............................................................................................28  Acknowledgements ...........................................................................................................................30  Works  Cited..........................................................................................................................................31      

Page 3: Development and Implementation of a Closure and Remediation Plan

 

1.0  Introduction  and  Objective       The  Faro  mine  was  officially  opened  in  1969  when  it  began  commercial  production  

of  lead  and  zinc  ore.  At  the  height  of  its  production  the  Faro  Mine,  located  in  south-­‐central  

Yukon,  was   the   largest   lead-­‐zinc   producer   in   the  world   and  was   at   one   time,   the   largest  

open   pit   mine   in   Canada.   In   1998   the   mine   was   closed   after   it   was   no   longer   deemed  

economical   to  develop  any   further.  Since   the   last  company  that  owned  the  Faro  property  

went  into  receivership  the  mine  fell  into  the  hands  of  the  federal  government.  By  2003,  the  

Government  of  Yukon,  Indian  and  Northern  Affairs  Canada  (INAC)  and  affected  Yukon  First  

Nations   had   come   together   to   collaborate   on   an   initiative   to   develop   a   closure   and  

remediation   plan   for   the   Faro   Mine   complex.   Closure   and   remediation   plans   are  

implemented  when  a  mine  is  no  longer  producing.  In  general,  the  goal  of  a  closure  plan  is  to  

eliminate  any  contamination  related  to  mining  activities  and  to  return  the  site  to  its  natural  

land  use.  The  Faro  Mine  Closure  Project   is  estimated  to  cost  between  $500M  and  $700M,  

making  this  one  of  the  most  expensive  environmental  clean-­‐ups  in  Canada  (FMRP,  2011).  

The  project  is  to  be  funded  by  the  Federal  Contaminated  Sites  Action  Plan.      

  The  purpose  of  this  research  paper  is  to  examine  and  gain  an  understanding  of  the  

processes  involved  with  creating  and  implementing  a  closure  and  remediation  plan  after  a  

mine  has   ceased  operations.   The  Faro  Mine  was   chosen   as   a   case   study   to   illustrate   this  

process   as   it   provides   an   example   of   a   large   scale   closure   project   currently   involving  

extensive  remediation.  This  particular  project  also  made  for  a  desirable  subject  because  of  

the   significant   involvement   of   the   affected   communities   in   the   area   of   the   mine.  

Additionally,  an  appreciation  can  be  gained  for  the  vast  amount  of  time  that  is  needed  for  a  

Page 4: Development and Implementation of a Closure and Remediation Plan

  2  

contaminated  site   to  be  remediated  as  some  predictions   indicate  that  Faro  Mine  complex  

will   only   return   to   more   natural   conditions   after   several   hundred   years   of   remediation  

activities  and  maintenance  (IPRP,  2007).      

2.0  Methodology  Research  for  this  project  was  conducted  primarily  through  a  review  of  a  variety  of  

sources   that   can   be   classified   as   “grey”   literature.   This   includes   government   reports   and  

technical  reports  prepared  for  the  mining  industry.  A  selection  of  peer  reviewed  scientific  

journal   articles  were  also  used   to   solidify  understanding  of   certain   concepts.  Most  of   the  

literature  used   for   this   research  project  was  published  within   the   last   ten   years   so   as   to  

provide  the most current information available.  

3.0  Location  of  the  Faro  Mine  Site  and  Description  of  Nearby  Communities    

The  Faro  mine  was  a   large  open  pit   lead-­‐zinc  mine   located   in  south-­‐central  Yukon  

approximately  15km  north  of  the  town  of  Faro  (see  Figure  1).  The  site  is  relatively  remote,  

situated  approximately  350km  northeast  of  the  capital  

city   of   Whitehorse.   The   Faro   property   lies   within  

traditional  territory  of  the  Kaska  Nation.    

The   town   of   Faro  was   established   in   1969   for  

the  purpose  of   servicing   the  newly  opened  mine.  The  

population   of   the   town   has   decreased   dramatically  

since   the   mine   closed   and   is   now   home   to  

Figure  1  Map  of  the  Yukon  Territory  showing  location  of  the  Faro  mine  site.  http://faromine.ca/mine/location.html  

 

Page 5: Development and Implementation of a Closure and Remediation Plan

  3  

approximately   400   residents   (Government   of   Yukon,   2009).   Presently,   the   town   is  

developing   in   the   eco-­‐tourism   industry,   the   arts,   and   as   a   retirement   community.   Ross  

River   is   a   small   community   located   approximately   65km   east   of   the  mine   complex.   It   is  

home   to   the   Ross   River   Dena   who   are   members   of   the   Kaska   Nation.   There   are  

approximately   340   inhabitants   who   represent   a   community   rich   in   Kaska   culture   and  

tradition  (Government  of  Yukon,  2009).    

Members   of   the   Selkirk   First   Nation   living   in   Pelly   Crossing   make   up   a   third  

community  strongly  tied  to  the  Faro  Mine  Closure  Project.  There  are  290  people   living  in  

Pelly   Crossing,   which   is   located   directly   on   the   banks   of   the   Pelly   River,   approximately  

300km  west  of  the  Faro  Mine  (Government  of  Yukon,  2009).  Rose  Creek  is  a  tributary  of  the  

Pelly   River   and   flows   through   the   Faro  Mine   site   (see   Figure   2).  While   Pelly   Crossing   is  

situated   relatively   far   away   downstream   from   the   mine   site,   potential   contamination   of  

Rose  Creek  creates  a  direct  concern  for  the  people  of  Pelly  Crossing  .    

 

4.0  Description  of  the  Site    

The   Faro  Mine   complex   has   a   total   footprint   of   approximately   25km2   and   can   be  

divided  into  three  main  areas:  Faro  Mine  area,  Rose  Creek  Tailings  area,  and  the  Vangorda  

Plateau   (see   Figure   2).   Throughout   the   site   two   main   types   of   mine   waste   have  

accumulated,  waste  rock  piles  and  mine  tailings.  Material   in  the  waste  rock  piles  includes  

coarse  rock  that  was  excavated  from  the  open  pits  but  was  not  economical  to  process  and  

extract   the   valuable   metals.   Mine   tailings   are   very   fine-­‐grained   waste   that   is   generated  

when   the   processed   rock   is   ground   up   to   extract  metals   for   economical   purposes.  Mine  

tailings   are   usually   saturated   with   water.   This   is   in   contrast   with   waste   rock,   which   is  

Page 6: Development and Implementation of a Closure and Remediation Plan

  4  

usually   dry.   However,   tailings   can   be   dry   and   fine   particles   can   be   picked   up   and  

transported  large  distances  by  the  wind  (Spitz  &  Trudinger,  2009).            

The   Faro   Mine   area,   labeled   as   1   on   Figure   2,   consists   of   the   Faro   pit   and   the  

decommissioned  processing  mill  with  associated  buildings.  The  Faro  pit  covers  an  area  of  

approximately  1.06  km2.  Over  250  million   tonnes  of  waste   rock  surround   the  Faro  pit   in  

several  piles.    A  rock  lined  diversion  channel  was  constructed  around  the  northern  edge  of  

the   pit   in   which   the   Faro   Creek   is   currently   flowing.   The  mill   and   associated   buildings,  

which  are  no  longer  in  use,  are  sited  south  of  the  Pit  (FMRP,  2011).      

The  Rose  Creek  Tailings  area  is  located  south  of  the  Faro  Pit.  Over  55  million  tonnes  

of  tailings  were  accumulated  between  1962  and  1992.  These  tailings  are  currently  stored  

in  an  unlined  containment  area  within  the  Rose  Creek  Valley.  Four  dams  were  constructed  

in  the  area.  Three  are  holding  tailings  and  the  fourth  dam  is  retaining  contaminated  water.  

Another   rock   lined   diversion   channel   was   constructed   to   allow   the   Rose   Creek   to   flow  

around  the  tailings  area  (FMRP,  2011).    

The  third  area  in  the  complex  is  the  Vangorda  Plateau.  Within  this  section  there  are  

two   open   pits,   the   Vangorda   pit   and   Grum   pit.   The   Vangorda/Grum   mining   area   is  

connected  to  the  Faro  mine  area  by  a  13  km  heavy  haul  road.  This  road  was  constructed  to  

allow  transportation  of  ore  from  the  Vangorda  Plateau  to  the  Faro  mill.  Approximately  16  

million   tonnes  of  waste   rock  surround   the  Vangorda  pit.  The  Vangorda  Creek   is  diverted  

around  the  northwest  side  of  the  pit  in  a  culvert.  The  Grum  pit  is  surrounded  by  over  100  

million   tonnes   of   waste   rock.   The   mining   operations   ceased   before   the   Grum   pit   was  

developed  to  its  original  design  specifications  (FMRP,  2011).    

Page 7: Development and Implementation of a Closure and Remediation Plan

  5  

The  watercourses  that  flow  through  the  mine  site,  including  the  Faro,  Vangorda,  and  

Rose  Creeks,   are   all   part   of   the  Pelly  River  drainage   system.  The  Faro  Creek   is   currently  

diverted   into   the  North  Fork  of  Rose  Creek.  Rose  Creek   flows   into  Anvil   Creek,  which   in  

turn  flows  into  the  Pelly  River  (see  Figure  2).    

 

 

 

 

   

5.0  Brief  History  of  Production  at  the  Faro  Mine  Complex    

In   1953   the   prospector   Al   Kulan   first   discovered   the   Vangorda   lead-­‐zinc   deposit.  

Prospector   Airways   obtained   the   newly   discovered   property   and   from   1953   to   1955  

diamond  drilling   took  place.  Kerr-­‐Addison  Mines   Limited  ultimately   acquired  Prospector  

Figure  2  Map  of  the  Faro  Mine  site  showing  relative  location  of  the  Faro  Pit  (1),  Rose  Creek  tailings  (2)  and  Vangorda  Plateau  (3).  The  drainage  system  of  the  area  is  also  depicted.  http://faromine.ca/reference/library.html  

Page 8: Development and Implementation of a Closure and Remediation Plan

  6  

Airways   but   their   interest   in   the   property   diminished   as   the   market   for   metals   was  

declining   due   to   low   prices   and   also   because   the   area   was   very   remote.   By   1962   Kerr-­‐

Addison   began   to   explore   the   Vangorda   plateau   again.   In   1963   a   lead-­‐zinc   deposit  

southeast  of  Vangorda  was  discovered.    At  the  same  time  an  exploration  program  began  on  

the   Faro   claims.   By   1965   the   Faro   lead-­‐zinc   deposit   was   discovered.   Cyprus   Mines   and  

Dynasty   joined   together   to   form   Cyrpus   Anvil   and   began   to   develop   the   Faro   deposit.  

(FMRP,  2011)    

By  1969  open  pit  mining  had  begun,  moving  up  to  10  000  tonnes  per  day.  In  1973  

the   Grum   lead-­‐zinc   deposit   was   discovered   and   subsequently   purchased   by   the   Cyprus  

Anvil  Mining  Corporation.  By  1982  most  of  the  production  ceased  due  to  the  combination  

of  a  significant  drop   in  metal  prices,  a  drop   in  productivity,  high  operating  costs,  and  the  

accumulated   debt   obtained   through   expansion   of   the   property.   By   1984   production  was  

completely  halted  (FMRP,  2011).    

In   1985   the   Cyprus   Anvil   assets   were   obtained   by   Curragh   Inc   who   resumed  

operations   at   the   Faro  mine   in   1986.   The  Vangorda  Plateau  began  development   in   1989  

with   the   stripping   of   the   Grum   and   Vangorda   deposits.   Ore   removed   from   these   two  

deposits  contributed  to  the  mill  feed  at  the  Faro  mine  area.    

In  1991  Curragh  began  to  strip  the  Grum  deposit.  193.2  million  tonnes  of  waste  was  

required  stripping   from   the  Grum  deposit.  At   this   time   the   reserves   in   the  Faro  pit  were  

being  exhausted.  By  late  1992  enough  material  had  been  stripped  in  the  open  pit  to  expose  

the   Grum   deposit   .   Approximately   21.4   million   tonnes   of   rock   was   removed   before  

stripping  in  the  Grum  area  came  to  a  close  in  December  1992  (FMRP,  2011).    

Page 9: Development and Implementation of a Closure and Remediation Plan

  7  

All   of   the  mining   operations   stopped   again   in   1993  when  metal   prices   fell   below  

profitable   levels.   As   a   result,   Curragh   was   forced   into   receivership.   Subsequently,   Anvil  

Range  Mining  was   created   and   purchased   the   Faro   properties   from   the   receiver   for   $27  

million  dollars.  ARM  began  production  from  the  Grum  and  Vangorda  open  pits  in  1995  and  

reached   commercial   production   later   that   year.  Mining   operations  were   suspended   once  

again  at  the  end  of  1996  when  the  Vangorda  pit  was  diminished  and  because  of  low  metal  

prices  (FMRP,  2011).    

1997   the   mine   reopened   one   last   time   and   operated   until   January   16th,   1998,   at  

which   time   Anvil   Range   filed   for   court   protection   from   creditors.   In   1998,   Deloitte   and  

Touche  was  appointed  by  the  court  as  an  interim  receiver  and  is  responsible  for  managing  

and   maintenance   of   the   site   (Indian   and   Northern   Affairs   Canada,   2005).   In   2003   the  

government   of   Yukon   and   the   Department   of   Indian   Northern   Affairs   Canada   (INAC)  

established  that  the  mine  would  not  reopen.  As  a  result,  a  long-­‐term  closure  plan  was  to  be  

designed  under  the  responsibility  of  governments.    

At   the   height   of   production,   the   Faro   mine   was   the   largest   open   pit   mine   in  

Canada(FMRP,  2011).  According  to  the  Faro  Mine  Closure  (FMC)  project  website  the  mine  

site   accounted   for   approximately   15%   of   the   world’s   lead   and   zinc   production   and  

contributed   to   20%   of   the   Yukon   economy   during   the   years   of   peak   production(FMRP,  

2011).    

 

 

Page 10: Development and Implementation of a Closure and Remediation Plan

  8  

http://faromine.ca/mine/history.html  

     

6.0  Challenges  of  the  Faro  Mine  Remediation  Project    

6.1  Assessment  of  human  health  and  ecological  risks      

An  Independent  Peer  Review  Panel  (IPRP)  was  commissioned  in  2006  to  review  the  

several    remediation  options  suggested  for  the  Faro  Mine  (discussed  further  in  section  7.0).  

The  Panel   reviewed   the   several   human  health   and  ecological   risk   assessments   that  were  

conducted  and  agrees  that  under  current  management  practices  the  site  is  being  properly  

contained.  However,  it  is  strongly  believed  that  if  appropriate  actions  are  not  taken,  there  is  

potential   for   a   great   risk   to   human   and   ecological   health   in   the   future.   One   of   the  main  

Figure  3  Timeline  summarizing  production  and  activity  of  the  Faro  Mine  Site  from  1953-­2003.  http://faromine.ca/mine/history.html  

Page 11: Development and Implementation of a Closure and Remediation Plan

  9  

causes   for   concern   is   the   wind   blown   dust   from   the   tailings   piles   containing   residual  

amounts  of  metals.  Fine  metal-­‐bearing  particles   can  be  easily  picked  up  by   the  wind  and  

carried   several   kilometers   from   the   site   thereby   expanding   the   areas   of   contamination.  

Some  worries  exist  about   the  direct   toxicity   to  humans   from  affected  animal   species  and  

traditional   food   sources.     As   well,   there   are   greater   concerns   about   toxicity   to   fish   in  

aquatic   environments.   This   is   especially   true   for   the   Pelly   River   and   its   tributaries:   the  

Anvil,  Rose,  and  Vangorda  Creeks.  In  aquatic  ecosystems,  wind  blown  dust  can  bring  about  

an  accumulation  of  metals,  which  can  severely  impact  the  reproduction  of  fish  populations  

(Franssen,   2009).   In   terrestrial   environments   metals   can   accumulate   to   toxic   levels   in  

animal   species,   many   of   which   are   important   traditional   food   sources   for   some   local  

residents.  The  wind  blown  tailings  pose  a  threat  to  human  health  because  of  the  potential  

uptake  of  the  accumulated  metals  through  the  consumption  of  contaminated  fish  and  game.    

Another  potential  risk  to  human  health  and  the  environment  could  occur  as  a  result  

of  the  instability  of  tailings  dams  during  significant  seismic  events.  If  the  tailings  dams  are  

not   capable   of   withstanding   a   maximum   credible   earthquake   for   the   region   severe  

contamination   could  occur.  The   risk  of   failure  of   the  dams  however,  was  deemed   low  as  

these  engineered  structures  are  considered  to  be  stable  (IPRP,  2007).  

Gartner   Lee   Limited  was   commissioned   to   collect   data   over   a   period   from   2003-­‐

2005.  SENES  Consultants  Limited   (SENES)  prepared  a  Human  Health  and  Ecological  Risk  

Assessment  (HHERA)  of  the  Faro  Mine  complex  using  this  data.  The  SENES  report  focused  

on   the   probable   impacts   to   both   aquatic   and   terrestrial   ecosystems   as   well   as   human  

receptors.   Their   report   used   four   possible   scenarios   combined   with   three   different  

projections  of  seepage  chemistry.    The  purpose  of  these  combinations  was  to  encompass  a  

Page 12: Development and Implementation of a Closure and Remediation Plan

  10  

large  range  of  potential  environmental  conditions  in  the  future  and  describe  a  range  from  

low   to   maximum   risk   estimates.   The   four   scenarios   are   as   follows:   1)   the   mine   in   its  

existing   conditions;   2)   the   conditions   of   the   mine   if   no   human   intervention   occurs;   3)  

conditions   of   the   site   after   implementing   a   hypothetical   remediation   scheme;   and  4)   the  

best  possible  scenario  wherein  all  water   flow  from  the  mine  site   is  collected  and  treated.  

Three   sub-­‐scenarios   were   created   under   scenarios   2   through   4.   These   sub-­‐scenarios,  

termed  Futures  1  through  3,  were  fashioned  based  on  three  different  estimates  reflecting  

the  uncertainty  involved  with  the  chemistry  of  the  future  seepage.    Assessment  of  human  

exposure  was  modeled  based  on  the  different  possible  land  use  patterns  as  well  as  the  rate  

of  traditional  food  use  for  adults,  children  and  toddlers.    However,  there  was  no  assessment  

made   for   the   limited  number  of  people  who  only  consume  traditional   food.    Even  though  

the  number  of  people  who   fall  under   these  extreme  circumstances   is   small   it   is   still  very  

important  from  the  perspective  of  First  Nations  stakeholders  for  this  group  to  be  included  

in  the  assessment.  The  IPRP  suggests  that  this  receptor  be  included  in  future  iterations  of  

the  HHERA  (IPRP,  2007).    

 The   IPRP   report   states   that   the   sampling  done  by  Gartner  Lee  was  very   thorough  

and  comprehensive  and  is  sufficient  to  support  the  HHERA.  There  are,  however,  sources  of  

uncertainty  due  to  a  large  number  of  non-­‐detectable  constituents  in  the  samples.  This  issue  

is   a   common   problem   that   is   usually   inevitable   for   analytical   laboratories   to   deal   with,  

especially  with  samples   taken   from  remote   locations.  While   the   IPRP  agrees   that  Gartner  

Lee  was  consistent  with  the  non-­‐detects,  following  the  common  protocol  of  using  values  of  

one-­‐half   the   reported   detection   limits   for   analyses,   there   remains   a   question   of   the  

representativeness  of  the  samples  (IPRP,  2007).      

Page 13: Development and Implementation of a Closure and Remediation Plan

  11  

 

6.2  Geochemical  Issues:  Sulphides  and  Acid  Rock  Drainage     One   of   the  most   significant   impacts   of  mining   is   the   degradation   of   nearby  water  

systems.  Acid  Rock  Drainage  (ARD)  is  a  term  referring  to  the  outflow  of  acidic  water  and  is  

a   common   side   effect   of   mining   projects   associated   with   metal   sulphides   (Spitz   &  

Trudinger,  2009).  The  lead  and  zinc  ore  mined  at  the  Faro  site  are  associated  with  sulfide  

meaning  that  ARD  is  an  immediate  concern  in  the  remediation  process.  Acid  is  generated  

when   sulphide-­‐rich   materials   from   the   mine  

site   react   with   oxygen   and   water   to   form  

sulphuric   acid.   This   process   is   illustrated   in    

simplified   diagram   in   Figure4   (Natural  

Resources   Canada,   2008).   The   generation   of   sulphuric   acid   is   a   natural   occurrence   over  

periods   of   thousands   of   years   as   sulphide-­‐bearing   rocks   are   exposed   to   weathering  

processes.   Small   amounts   of   acid   naturally   released   into   the   environment   are   usually  

neutralized  in  the  environment  or  the  organisms  are  adapted  to  handle  the  small  amounts  

of  acid.  This  natural  process  of  acid  generation  is  greatly  accelerated  when  mining  activities  

are   taking   place.   Mining   removes   filtering   topsoil   layers   and   increases   the   amount   of  

exposed,   fragmented   sulphide-­‐bearing   materials   to   the   atmosphere   (Spitz   &   Trudinger,  

2009).      

  ARD  develops  in  three  stages  including  oxidation,  leaching  and  drainage.  Oxidation  

of  the  sulphide  minerals  occurs  when  they  react  with  oxygen  in  the  presence  of  water.  The  

actual   reaction   is   complex   and   is   often   catalyzed   by   bacterial   activity.   Leaching   is   the  

process   where   the   oxidized   sulphide   minerals   are   dissolved   in   water   and   washed   from  

Figure  4  Simplified  diagram  of  acid  generation.  Source:  Natural  Resources  Canada  http://geoscape.nrcan.gc.ca/whitehorse/copper_e.php  

 

Page 14: Development and Implementation of a Closure and Remediation Plan

  12  

their   source   and   discharged   into   the   environment   creating   potential   for   adverse   effects.  

Leaching  usually  takes  place  after  a  rainfall  event.  In  open  pit  mines,  such  as  the  Faro  Mine  

Complex,   leaching  occurs  where   rainfall   runoff   flows  over   the  pit   slopes.   It   also  happens  

when  rainfall  percolates  through  oxidizing  tailings  and  waste  rock  piles.    There  are  several  

possible   drainage   pathways   by   which   the   oxidized   materials   are   transported   to   the  

environment.  For  example,  seepage  of  acidic  water  can  emerge  from  the  base  of  waste  rock  

piles   or   tailings   ponds.   Drainage   can   also   occur   if   there   is   an   overflow   from   the   tailings  

storage  areas  into  the  surrounding  environment  (Spitz  &  Trudinger,  2009).    

  ARD   poses   multiple   threats   to   the   environment,   especially   to   freshwater   aquatic  

ecosystems.   The   decrease   in   pH   is   likely   to   negatively   impact   the   sensitive   biota   in   the  

affected  aquatic  system.  The  sulphuric  acid  is  also  capable  of  dissolving  other  metals  found  

in   the   surrounding   rocks   and   can   therefore   contribute   to   the   transport  of  metals   in  high  

concentrations   to   the   aquatic   environment.   Many   metals   can   accumulate   in   aquatic  

ecosystems  to  toxic  levels.      

  Several   geochemical   studies   were   conducted   at   the   Faro   Mine   site   to   aid   in  

understanding  the  geochemical  composition  of  the  mined  rock  and  to  aid  in  predicting  the  

future  seepage  quality.  The  55  million  tonnes  of  sulphide  tailings  and  32.4  million  tonnes  of  

sulphide   waste   rock   pose   the   greatest   concern   because   of   the   high   concentration   of  

sulphide  minerals.  There  are  also  more   that   two  hundred  million   tonnes  of   low  sulphide  

waste   rock  and   the  mine  walls   that  have  potential   to  produce   less  acidic  drainage   (IPRP,  

2007).These  materials   have   been   oxidizing   for   approximately   30   years   and   some   of   the  

seepage   already   contains   toxic   levels   of   trace   elements.     This   water   is   currently   being  

collected   and   treated   before   being   discharged   to   the   environment.   Even   though   the  

Page 15: Development and Implementation of a Closure and Remediation Plan

  13  

materials  have  been  oxidizing  for  30  years  already  the  majority  of  the  sulphide  minerals  at  

the  Faro  Mine  site  have  not  yet  been  oxidized.  This  means  that  as  the  mined  rock  remains  

exposed  to  air  and  water,  the  concentrations  of  the  contaminants  will  continue  to  increase  

over  time  and  the  amount  of  acidic  drainage  will  also  increase  (IPRP,  2007).  

  The   SENES   report   proposed   three   geochemical   scenarios,   Future   1,   2   and   3,   to  

demonstrate  potential  conditions  of  seepage  chemistry  for  the  waste  rock  found  at  the  Faro  

Mine  Complex.  Future  1   is  a  scenario  based  on  the  average  contaminant  concentration  of  

the   current   seepage.   Future   2   is   formulated   based   on   the   maximum   contaminant  

concentration  of  current  seepage.  Finally,  Future  3  is  a  scenario  that  predicts  a  worst-­‐case  

seepage   chemistry.   The   IPRP   agrees   that   Future   2   seepage   chemistry   is   a   very   probable  

situation  due  to  the  presence  of  the  large  mass  of  sulphidic  rock  at  the  Faro  Mine  site.  Since  

Future  3  seepage  chemistry  is  still  a  possible  occurrence,  the  Panel  suggests  this  scenario  

still  be  given  consideration  in  subsequent  assessments  (IPRP,  2007).    

 

7.0.  Finding  a  Solution     The   Faro   Mine   Remediation   Project   team   was   formed   in   2003   when   the  

governments   of   Yukon   and   INAC   established   the   need   to   clean   up   the   site.   The   team  

consists   of   several   engineers   and   environmental   scientists.   The   process   of   designing   a  

closure   plan   was   intended   to   be   transparent   and   involve   input   from   the   affected  

communities.  To  begin,  five  objectives  of  the  closure  project  were  defined.  These  are:    

1. Protect  human  health  and  safety  

2. Protect  and,   to   the  extent  practicable,   restore   the  environment   including   land,   air,  

water,  fish  and  wildlife.  

Page 16: Development and Implementation of a Closure and Remediation Plan

  14  

3. Return  the  mine  site  to  an  acceptable  state  of  use  that  reflects  pre-­‐mining  land  use  

where  practicable.  

4. Maximize  local  and  Yukon  socio-­‐economic  benefits  

5. Manage  long-­‐term  site  risk  in  a  cost-­‐effective  manner  (FMRP,  2011)  

To   start   the   process   of   meeting   these   objectives   several   technical   studies   and  

assessments  were   undertaken   to   classify   potential   environmental   risks   at   the  mine   site.  

Over   100   technical   studies   were   conducted   since   2003   in   order   to   find   the   most  

appropriate   methods   to   reduce   the   major   environmental   concerns   at   the   Faro   Mine  

complex,  which  were  previously  discussed.  In  the  spring  of  2006  the  results  of  the  various  

studies  were  combined  to  come  up  with  a  range  of  engineered  designs  or  alternatives  for  

the   closure   project.   Four   alternatives   or   designs   were   created   for   each   of   the   three  

distinctive   areas   of   the   site,   the   Faro   Mine   area,   Rose   Creek   Tailings,   and   the  

Vangorda/Grum  area.  This  made  twelve  alternatives  in  total.  Each  alternative  was  designed  

to  meet  five  objectives  of  the  Faro  Mine  remediation  project  (FMRP,  2011).  

  In  October  2006,  the  Faro  Project  Management  Team  commissioned  an  Independent  

Technical   Peer   Review   Panel   to   review   the   twelve   alternatives.   This   panel   was  made   of  

nine   leading  experts   in  mine  closure  procedures.  The  purpose  of   the  panel  was   to  assess  

the   adequacy   of   the   twelve   proposed   alternatives,   determine   if   all   remediation   options  

have  been  identified  and  make  note  of  any  need  for  additional  research  (FMRP,  2011).    

  Based   on   recommendations   by   the   Independent   Peer   Review   Panel   the   twelve  

alternatives  were  refined  to  five  closure  options  in  2007.  The  five  options  are  broken  into  

four  options  for  the  combined  areas  of  the  Faro  Pit  and  Rose  Creek  Tailings  impoundment  

and  two  options  for  the  Vangorda/Grum  mine  area.  A  final  closure  plan  would  incorporate  

Page 17: Development and Implementation of a Closure and Remediation Plan

  15  

one   of   the   proposed   options   for   the   Faro/Rose   Creek   area   and   one   option   for   the  

Vangorda/Grum  area  (FMRP,  2011).    

7.1  Five  Remediation  Options  Certain  reclamation  activities  are  incorporated  into  each  of  the  different  options  and  would  

occur  no  matter  which  options  are  implemented  in  the  final  closure  plan.  These  activities  

include  :  re-­‐sloping  and  covering  of  waste  rock  piles;  re-­‐vegetation  of  soil  covers  and  other  

areas  within   the   site;   diversion   of   clean  water   around   the   site;   long   term   collection   and  

treatment  of  contaminated  water  from  the  site;  long  term  management  of  water  treatment  

sludge;   long   term   storage   of   water   in   pits;   long   term   maintenance   of   remaining   site  

facilities;   long   term  monitoring   of   environmental   conditions;   avoid   unacceptable   risks   to  

public  health  and  safety;  avoid  unacceptable  risks   to  worker  health  and  safety;  and  meet  

appropriate  environmental  standards  and  guidelines  (FMRP,  2011).    

7.1.1  Remediation  Options  for  the  Combined  Faro  Pit  and  Rose  Creek  Tailings  Area    Each   of   the   options   will   also   include   certain   processes   to   be   undertaken   at   the  

combined  Faro  mine  and  Rose  Creek   tailings  area.  This   includes  re-­‐sloping,   covering  and  

re-­‐vegetating  the  Faro  waste  rock  piles  and  upgrading  the  Faro  Creek  diversion.  Upgrading  

the   Faro   Creek   diversion  would   involve   construction   of   a   new  diversion   channel   for   the  

Faro  Creek  as  well  as  building  a  lined  channel  for  the  North  Fork  of  the  Rose  Creek.    Water  

will   need   to   be   collected   and   treated   from   under   the   waste   rock   piles   for   an   extended  

period  of  time.  These  pieces  of  the  reclamation  process  are  estimated  to  cost  approximately  

$150M   to   build   and   maintain.   It   is   estimated   that   this   part   of   the   project   will   provide  

approximately  230  person  years  of  employment,  which  can   translate   to  230   jobs   for  one  

year  or  115  jobs  for  two  years,  etc.    Figure  5  is  a  depiction  showing  the  Faro  mine  area  in  its  

Page 18: Development and Implementation of a Closure and Remediation Plan

  16  

current  condition  and  what  the  area  is  estimated  to  appear  as  in  approximately  forty  years  

after  the  steps  previously  described  are  implemented.    

  In  addition  to  the  above  project,  three  options  were  proposed  to  remediate  the  rest  

of   the  combined  Faro  and  Rose  Creek  area.  The  

first  option  involves  the  relocation  of  all  the  Rose  

Creek  tailings  to  the  Faro  Pit.  The  second  option  

is  to  leave  the  tailings  and  cover  them  in  place.  A  

third   option   is   a   combination   of   the   first   two  

alternatives  where  some  of  the  tailings  would  be  

pumped   into   the   Faro   Pit   and   the   remaining  

tailings  covered  in  place  (FMRP,  2011).    

Option  1:  Move  all  tailings  

  In  order  to  move  all  the  tailings  from  the  

Rose   Creek   tailings   impoundment,   the   tailings  

would  first  be  mixed  with  lime  and  water.  This  is  

an   important   step   to   increase   the   pH   and  

decrease  the  acidity  of  the  mixture.    The  tailings  would  then  be  hydraulically  pumped  from  

the  impoundment  into  the  Faro  Pit.  As  with  the  remediated  waste  rock  piles,  contaminated  

water  from  under  the  tailings  would  need  to  be  collected  and  treated  for  several  decades.  

The   existing   tailings   dams  would   be   restructured   and   the   valley  would   be   re-­‐vegetated.  

After   the  soils  and  waters  are  clean  enough,  a  channel  would  be  constructed   in  order   for  

Rose   Creek   to   be   returned   to   its   original   position   in   the   valley.   Figure   6   provides   an  

Figure  5  Faro  waste  rock  and  Faro  Creek  diversion    before  and  after  remediation.http://faromine.ca/reference/library.html  

Page 19: Development and Implementation of a Closure and Remediation Plan

  17  

illustration   of   what   the   remediated   valley   would   look   like   should   the   tailings   all   be  

relocated.    

  Of   the   three   proposed   options   for   the  

combined   Faro   and   Rose   Creek   areas,   this   first  

alternative   is   the   most   expensive,   estimated   at  

approximately  $440M  to  construct  and  maintain.  

If   this   option   were   to   be   selected   an   estimated  

745   person   years   of   employment   would   be  

provided  (FMRP,  2011).      

Option  2:  Cover  the  tailings  in  place  

  The   second   remediation   option   for   the  

combined   Faro   and   Rose   Creek   area   is   to   cover  

the  mine  tailings  in  place  with  an  engineered  soil  

cover.  The  tailings  dams  would  need  to  be  upgraded  to  ensure  long-­‐term  stabilization.  The  

tailings  would  be  regarded  to  improve  stability.  After  the  tailings  are  covered  with  soil  they  

can   be   re-­‐vegetated.   Diversions,   channels   and   spillways   in   the   area   would   need   to   be  

upgraded   in   order   to   handle   possible   flooding   events.   Collection   and   treatment   of  

contaminated  water   from  under   the   tailings  would   need   to   occur   for   hundreds   of   years.  

Maintenance   of   the   soil   covers,   dams,   and   channels   would   also   need   to   be   done   for  

hundreds   of   years.   Unlike   the   first   option,   the   Rose   Creek   channel   would   remain   in   its  

current  location.  Figure  7  shows  the  current  conditions  of  the  tailings  impoundment  as  well  

as   what   the     area   is   predicted   to   look   like   after   remediation   activities   have   been  

Figure  6  Rose  Creek  Valley  before  (top)  and  after  (bottom)  relocation  of  mine  tailings.  http://faromine.ca/reference/library.html  

Page 20: Development and Implementation of a Closure and Remediation Plan

  18  

implemented.  Remediation  of   the  tailings   in  place   is  considerably   less  expensive  than  the  

option   of   relocating   the   tailings.   It   is   estimated   that   this   remediation   option  would   cost  

approximately   $260M   and   provide   roughly   336  

person  years  of  employment  (FMRP,  2011).    

 

Option   3:   Move   some   tailings   and   cover   some  

tailings  with  soil  

  The   third   proposed   alternative   for   the  

combined   Faro   and   Rose   Creek   Tailings   area   is  

essentially   a   combination   of   the   first   two   options  

already   described.   Some   tailings   would   be   mixed  

with   lime   and   pumped   to   the   Faro   Pit   while   the  

remaining  tailings  would  be  re-­‐graded,  covered  with  

soil   and   re-­‐

vegetated.   As  

with   the   previous   options,   hundreds   of   years   of  

monitoring,  maintenance,  and  water  treatment  would  

be   necessary   factors.   Once   the   tailings   are   covered  

with  soil  and  deemed  stable,  a  channel  for  Rose  Creek  

could   be   constructed   to   allow   the   watercourse   to  

return  to  its  natural  path  in  the  valley.  A  depiction  of  

what   the   valley   might   look   like   after   implementing  

Figure  7  Comparison  of  current  (top)  conditions  at  Rose  Creek  Tailings  impoundment  and  predicted  (bottom)  conditions  after  remediation.  http://faromine.ca/reference/library.html7  

 

Figure  8  Rose  Creek  tailings  area  before  (top)  and  after  implementation  of  option  3  remediation  steps  (bottom).    http://faromine.ca/reference/library.html  

Page 21: Development and Implementation of a Closure and Remediation Plan

  19  

this  remediation  option  is  shown  in  Figure  8.  This  third  alternative  has  been  estimated  to  

cost   $340M   to   construct   and   maintain   and   provide   approximately   552   person   years   of  

employment  (FMRP,  2011).    

 

7.1.2  Remediation  Options  for  the  Vangorda/Grum  Mine  Area     Both   of   the   proposed   remediation   options   for   the   Vangorda   Plateau   involve  

resloping   and   covering   the   Grum   waste   rock   in   place   which   would   be   similar   to   the  

procedures  used  for  the  Faro  waste  rock  as  described  earlier.    As  with  each  of  the  combined  

Faro  and  Rose  Creek  area  options  there  will  be  a  need  for  hundreds  of  years  of  collection  

and  treatment  of  contaminated  water  as  well  as  hundreds  of  years  of  maintenance  of  soil  

covers  and  the  channel  (FMRP,  2011).    

Option  1:  Relocate  Vangorda  Waste  Rock  into  Vangorda  Pit  

  In   addition   to   covering   the   Grum   waste   rock,   the   first   option   proposed   for  

remediation   of   the   Vangorda   Plateau   involves  

mixing   the   Vangorda   waste   rock   with   lime   and  

relocating   it   to   the   Vangorda   Pit.   The   relocated  

waste  rock  would  subsequently  be  covered  with  soil  

and  vegetated.  If  this  alternative  were  chosen  a  new  

channel   for   Vangorda   Creek   would   be   constructed  

over  the  filled  Vangorda  Pit.  This  remediation  option  

is   estimated   to   cost   approximately   $110M   and  

provide   roughly   225   person   years   of   employment.  

Figure  7  Illustration  of  what  the  Vangorda  Plateau  might  look  like  after  implementation  of  Option  1  compared  to  present  conditions  http://faromine.ca/reference/library.html  

Page 22: Development and Implementation of a Closure and Remediation Plan

  20  

Figure  9  illustrates  what  the  Vangorda  Plateau  might  look  like  after  implementation  of  this  

particular  option  (FMRP,  2011).    

 

Option  2:  Cover  Vangorda  Waste  Rock  In-­Place  

  Alternative   to  relocating   the  Vangorda  waste  rock  engineered  soil  covers  could  be  

used  to  cover   the  waste  rock  piles   in   their  current   locations.  The  rock  piles  would  be  re-­‐

sloped  and  shaped   to   increase   stability  and   to  adopt  a  more  natural   appearance.  The   re-­‐

sloped  rock  piles  would  be  covered  in  soil  and  then  re-­‐vegetated.  A  new  diversion  channel  

would   also   be   built   for   the   Vangorda   Creek.   The   cost   of   this   process   is   estimated   to   be  

approximately  $80M  and  provide  employment  for  roughly  80  person  years.  This  option  is    

less   expensive   than   the   alternative   involving   the   relocation   of   the   Vangorda   waste   rock  

(FMRP,  2011).  An   illustration  of  what  the  area  might   look   like  after   following  this  plan   is  

depicted  in  Figure  10.  

 

 

 

 

 

 

 

 

Figure  8  Illustration  of  what  the  Vangorda  Plateau  might  look  like  after  following  the  plan  from  Option  2  compared  to  present  conditions.  http://faromine.ca/reference/library.html  

Page 23: Development and Implementation of a Closure and Remediation Plan

  21  

7.2  Relocating  Tailings  and/or  Waste  Rock  as  a  Remediation  Technique    Backfilling   of   open   pit   mines   has   been   carried   out   extensively   internationally,  

however   it   is   only   recently   that   backfilling   closure   programs   have   been   created   for   the  

disposal   of   sulphide   waste   rock   and   tailings   (MEND,   2001).   The   main   objective   in  

relocating   the   sulphide   wastes   to   the   open   pit   is   to   provide   a   suitable   geochemical  

environment   to   prevent   the   generation   of   acid   and   reduce   the   negative   impacts   to  

groundwater  and  surface  water  resources.  The  addition  of  lime  to  the  backfill  material  can  

be  used  to  neutralize  existing  acidity  or  acidity  that  could  potentially  be  generated   in  the  

future  (MEND,  2001).  In  the  case  of  the  Faro  Mine  complex  the  addition  of  alkali  materials  

would  be  essential  to  the  backfilling  process  to  promote  an  increase  in  pH  levels.  Once  the  

pit   was   filled,   the   waste   material   would   subsequently   be   covered   as   another   control   to  

prevent  acid  generation.  

 The    proposed  options  involving  the  relocation  of  the  mine  waste  material  from  the  

Faro  Mine  complex  are  generally   less  desirable  because  of   the  relatively  higher  costs  and  

greater   risks   to   human   and   environmental   health   (IPRP,   2007).   In   the   case   of   the   Rose  

Creek   tailings   facility,   partial   or   complete   relocation   could   be   a   practicable   option.  

However,  the  Panel  believes  the  environmental,  economic,  and  engineering  risks  linked  to  

this   alternative   have   been   underestimated.   The   several   engineering   assessments   suggest  

that   stabilizing   the   tailings   in   place   presents   an   adequately   low   risk   and   can   be  

implemented  at  an  acceptable  cost.  Many  engineering  analyses  and  risk  assessments  had  

been  conducted  and  demonstrate   that   the   tailings  and  the  associated  dams  will  be  stable  

under  maximum  credible   earthquake   (MCE)  and  probable  maximum   flood   (PMF)  events.  

Page 24: Development and Implementation of a Closure and Remediation Plan

  22  

Based  on  these  conclusions,  the  opinion  of  the  Panel  is  that  there  is  no  technical  reason  for  

relocation  of  the  tailings  (IPRP,  2007).  

  The   process   of   relocating   the   tailings   would   likely   require   two   decades   to  

implement.  There  are  also  several  environmental  and  engineering  risks  connected  with  the  

intermittent  character  of  the  process  throughout  the  year.  There  are  also  potential  impacts  

from  high  precipitation  or  seismic  events  as  well  as  possible  worker  related  injuries  (IPRP,  

2007).  

 

7.3  Soil  Covers    as  a  Remediation  Technique  The   favoured  method   of   remediating   the   Rose   Creek   Tailings   and   the  waste   rock  

piles  is  based  on  an  option  to  stabilize  the  material  in  place.  A  popular  means  of  mitigating  

ARD   in  place   is   to  use  a  dry   soil   cover   to  prevent   infiltration  of  oxygen  and  water   in   the  

mine  waste.   Different   types   of  materials   can   be   used   including   natural   soil   or   clay,   non-­‐

reactive   waste   rock,   crushed   limestone,   or   geosynthetic   materials   (MEND,   2001).   The  

selection  of  material  to  be  used  is  based  strongly  on  the  budget  of  a  project  as  well  as  what  

suitable   materials   are   present   locally.   Covering   the   sulphide   bearing   material   prevents  

precipitation   and   meltwater   from   interacting   with   the   sulphides   and   creating   ARD.  

Installation  of  soil  covers  over  the  tailings  will  also  eliminate  the  dust  problem  at  the  Faro  

Mine  site.  The  fine  metal-­‐bearing  particles  will  not  be  exposed  to  wind  and  would  no  longer  

be   transported  outside   the  boundaries   of   the   site.   Another  benefit   of   using  dry   covers   is  

that  they  provide  a  substrate  for  establishing  a  vegetative  cover,  which  can  aid  in  returning  

the  land  to  its  previous  state  and  add  to  aesthetic  quality  (Kavalench,  2010).  As  described  

earlier,  one  of  the  objectives  of  this  remediation  project  is  to  return  the  mine  site  to  a  state  

Page 25: Development and Implementation of a Closure and Remediation Plan

  23  

that  reflects  pre-­‐mining  land  use.  Vegetative  covers  also  help  to  protect  against  wind  and  

water  erosion   thereby   increasing   the   long-­‐term  stability  of   the  dry  cover  system  (MEND,  

2001).     Dry   covers   can   range   from   very   simple,   single   layer   designs   to   complex   designs  

with  several  layers  of  multiple  materials.  

Fortunately,  the  Faro  Mine  Complex  has  adequate  supplies  of  glacial  sediments  (till)    

that  would  be  suitable  for  construction  of  dry  covers  for  the  tailings  and  waste  rock  piles.    

The  most  significant  source  of   this  material   is   the  overburden  which  was  removed  when  

excavating  the  Grum  Pit.  Since  the  haul  distance  between  this  supply  is  relatively  far  from  

the   Faro   Mine   area   the   efficiency   of   the   cover   design   will   be   important   to   consider.   A  

thinner   but   effective   soil   cover  would   help  minimize   the   cost   of   the   remediation   project  

(IPRP,  2007).    

When  the  soil  covers  are  being  designed,  the  thickness  of  the  cover  is  largely  based  

on  the  water  retention  capacity  of  the  tills  and  the  need  to  retain  a  certain  percentage  of  the  

mean  annual  precipitation  (IPRP,  2007).  Three  different  soil  covers  have  been  considered  

for  the  waste  rock  piles.  The  first  is  a  rudimentary  cover  of  50cm  of  lightly  compacted  till.  

This  would  reduce  infiltration  to  15-­‐25%  of  mean  annual  precipitation.  The  second  is  a  low  

infiltration   cover   of   150cm   of   lightly   compacted   till   overlaying   50cm   of   compacted   till  

which  would  reduce  infiltration  to  3-­‐8%  of  mean  annual  precipitation.  A  possible  example  

of  a  low  infiltration  cover  is  shown  in  Figure  11.  The  third  option  is  a  very  low  infiltration  

cover  which  would  reduce   infiltration   to   less   than  2%  of  mean  annual  precipitation.  One  

possible   design   for   the   very   low   infiltration   cover   is   150cm   of   lightly   compacted   till  

overlaying   100cm   of   compacted   till.   This   cover   could   also   consist   of   100cm   of   till  

overlaying  a  geomembrane  placed  on  a  compacted  subgrade.  Upon  review  of   these   three  

Page 26: Development and Implementation of a Closure and Remediation Plan

  24  

cover   types,   the   Independent   Review  

Panel   considered   each   of   the  

conceptual   designs   to   be   a   sufficient  

representation   of   the   range   in  

performance  that  could  be  needed  for  

soil  cover  function  (IPRP,  2007).    

The   soil   covers   to   be   installed  

at  the  Faro  Mine  Complex  will  need  to  

be   functional   for   several   hundred   years   and   consequently   will   require   ongoing  

maintenance  to  preserve  their  design  function.  Therefore,  part  of  the  remediation  plan  will  

need   to   incorporate   a   proactive  maintenance  plan   that  would  detect,   prevent   and   repair  

any   deterioration   of   the   covers   due   to   settlement,   weathering,   desiccation,   freeze-­‐thaw  

cycles,  erosion,  and  animal  or  human  activity  (IPRP,  2007).    

 

7.4  Water  Treatment     Any   water   that   is   discharged   from   the   Faro   Mine   property   must   meet   specific  

quality   standards   according   to   the   water   license   granted   to   Deloitte   and   Touche   by   the  

Yukon   Water   Board.   In   order   to   abide   by   this   requirement   treatment   of   seepage,  

groundwater,   and   open   pit   waters   at   the   Faro   Mine   site   will   need   to   be   conducted   in  

perpetuity.  This  will  be  a  factor  of  the  closure  project  no  matter  what  remediation  options  

are  implemented  within  the  Faro  Mine  Site  (IPRP,  2007).    

  According   to   the   Independent   Peer   Review   Panel,   the   high   density   sludge   (HDS)  

process   would   be   the  most   appropriate   treatment   technology   to   implement   at   the   Faro  

Figure  9  Illustration  of  a  very  low  infiltration  soil  cover  http://faromine.ca/project/solutions.html  

 

Page 27: Development and Implementation of a Closure and Remediation Plan

  25  

Mine  Complex  both  presently  and   in  the   future.  The  HDS  process   is  proven  to  be  reliable  

and  has  minimal  sludge  production  relative  to  other  treatment  processes.  In-­‐situ  biological  

treatments  were  also  evaluated  as  a  potential  method  of  water  treatment.    

  The   high   density   sludge   (HDS)   process   uses   lime   precipitation   to   treat   water  

affected  by   acid  mine  drainage.  Contaminated  water   is   collected   in   a   treatment   tank  and  

mixed  with  a   lime  slurry   to   increase   the  pH  of   the  water   to  approximately  9.    At   this  pH  

most   metals   of   concern   are   no   longer   soluble   and   will   precipitate   out   of   solution.   The  

mixture   is   then  moved   to   a   settling   tank  where  metal  precipitates,   the   sludge,   fall   out   of  

suspension.  The  clean  water  can  then  be  released  while  the  lime  sludge  will  be  recycled  for  

further  use  in  the  treatment  tank.  Since  the  lime  sludge  can  be  recycled  in  the  HDS  process  

this  method  is  considered  to  be  more  efficient  than  other  similar  processes  (Aube  &  Zinck,  

2003).  

  A  three  year,  full  scale  field  trial  within  the  Grum  Pit  was  used  to  evaluate    an  in-­‐situ  

biological   treatment  as  an  alternative   to  a   conventional   chemical   treatment   such  as  HDS.  

Examples  of  biological  treatments  can  include  the  use  of  algae  to  uptake  and  remove  metals  

and  the  use  of  sulphate  reducing  bacteria  to  consume  acidity  and  precipitate  metals.    

Biological   treatments   are   often   seen   as   passive   applications,   however   this   is   usually   not  

true.  This   technology  requires  extensive  ongoing  maintenance  supplied  by  highly   trained  

staff  .  Observations  from  the  three  year  trial  indicated  that  the  biological  treatment  process  

was  not  successful  in  reaching  the  required  standards  for  effluent  quality  as  outlined  by  the  

water   license   issued  by   the  Yukon  Water  Board,   therefore   this   treatment  option  was  not  

viewed  as  a  viable  primary  treatment  process  (IPRP,  2007).      

 

Page 28: Development and Implementation of a Closure and Remediation Plan

  26  

8.0  Community  Consultation  and  Socio-­‐economic  Concerns    An  important  part  of  the  Faro  Mine  Closure  Project  was  to  include  input  from  local  

residents  and  consider  any  concerns  raised  by  residents  of  nearby  communities  including  

the   town   of   Faro   and   the   communities   of   Ross   River   and   Pelly   Crossing.   From   the   time  

when  planning  of  this  remediation  project  began,  the  federal  and  Yukon  governments  have  

been  working  in  conjunction  with  the  Ross  River  Dena  Council  and  Selkirk  First  Nation  to  

provide   a   strategy   for   the   overall   closure   plan.   The   planning   process   for   the   project   is  

meant   to   be   transparent   and   able   to   provide   information   to   aid   in   community  

understanding   and   involvement   (FMRP,   2011).   Fact   sheets   and   newsletters   providing  

regular  updates  to  the  communities  continue  to  be  distributed.  The  Faro  Mine  Remediation  

Project     includes  community-­‐based  First  Nations  offices   in  Ross  River  and  Pelly  Crossing.  

The   project   coordinators   based   in   these   offices   have   responsibilities   that   are   directly  

involved   with   communications,   field   studies,   and   technical   and   information   workshops.  

These  offices  provide  a  constant  connection  between  the  project  and  the  members  of   the  

communities  (FMRP,  2011).  

Local  stakeholders  also  had  the  opportunity  to  be  involved  with  the  assessment  of  

the  twelve  closure  alternatives  in  conjunction  with  the  technical  review  conducted  by  the  

IPRP.  Two  rounds  of  community  consultations  were  held  in  the  Fall  of  2006  and  Spring  of  

2007.   These   were   concurrent   with   the   technical   review   of   the   twelve   alternatives.   The  

combination  of    recommendations  made  by  the  IPRP  and  feedback  from  the  two  rounds  of  

consultation   resulted   in   the   twelve   alternatives   being   refined   into   five   closure   options  

(FMRP,  2011).  

Page 29: Development and Implementation of a Closure and Remediation Plan

  27  

In  February  of  2009,   the  governments  of  Canada,  Yukon,   and  affected  Yukon  First  

Nations     made   public   that   they   reached   a   consensus   on   a   final   remediation   plan   that  

focuses  on  a  stabilize  in  place  approach.  This  announcement  marked  the  beginning  of  the  

next   phase   of   the   closure   project   which   is   the   regulatory   phase.   This   begins   with  

environmental  and  socioeconomic  assessments  under  the  Yukon  Environmental  and  Socio-­‐

economical   Assessment   Act   (YESSA).   YESAA   is   a   process   unique   to   the   Yukon   that   uses  

public  input  to  determine  the  possible  effects  a  proposed  project  might  have  on  the  Yukon’s  

environment,  people,  and  economy.  This  act  is  under  federal  legislation  and  was  developed  

by   the  Council   of   Yukon  First  Nations,   the  Government  of   Yukon  and   the  Government  of  

Canada  (YESAB,  2011).  The  effects  of  the  Faro  Mine  Closure  Project  are  generally  expected  

to  be  beneficial   since   the  project   objectives  were  designed   to   restore   the   land   to  natural  

uses,  protect  the  health  of  the  environment  and  humans,  and  provide  economic  benefits  for  

Yukoners  by  means  of  training,  jobs  and  business  opportunities.    

A  series  of  public  meetings  held  in  Faro,  Ross  River  and  Pelly  Crossing  took  place  in  

February  of  2009  to  begin  the  socio-­‐economic  assessment  (SEA)  process.  Representatives  

from  the  government  of  Yukon,  INAC,  affected  Yukon  First  Nations  and  technical  advisors  

made  up  the  team  responsible  for  conducting  these  meetings.  The  purpose  of  the  meetings  

was  to  provide  an  update  and  general  understanding  of  the  recommended  closure  plan  for  

the  Faro  Mine  complex.  The  meetings  were  also  held  in  order  to  commence  the  collection  of  

the  people’s   input  on  the  socio-­‐economic  and  environmental   issues  related  to   the  plan.  A  

summary   of   the   communities’   questions   and   answers   was   compiled   and   presented   at  

subsequent   meetings   that   took   place   the   following   May.   Additional   input   from   the  

communities   was   encouraged   at   these   follow-­‐up   meetings   as   well.   Feedback   from   the  

Page 30: Development and Implementation of a Closure and Remediation Plan

  28  

communities   is   regarded   as   fundamental   for   ensuring   that   the   final   closure   and  

remediation  plan  will  meet  the  needs  and  expectations  of  Yukoners  (FMRP,  2011).  

 

9.0  The  Next  Steps     Currently,   the   final   design   of   the   Faro  Mine   final   closure   and   remediation   plan   is  

underway.  Regular  meetings  between  the  project  personnel  and  the  communities  occur  as  

part   of   the   regulatory   process   pertaining   to   the   Yukon   Environmental   and   Socio-­‐

economical   Assessment   Act.   Upon   completion   of   a   detailed   engineering   design   for   the  

remediation   project,   the   plan   can   be   submitted   for   regulatory   approval   process.   This  

includes   the   YESAA   process   as  well   as   obtaining   the   necessary   land   and  water   licenses.  

Based   on   the   size   of   the   Faro   Mine   Closure   Project,   the   entire     regulatory   process   is  

estimated  to  last  approximately  three  years  before  the  project  is  granted  all  the  necessary  

regulatory   approvals   and   permits.   According   to   these   estimates,   the   final   closure   and  

remediation  plan  is  expected  to  be  put  into  action  in  2013  (FMRP,  2011).    

 

10.0  Summary  of  Main  Conclusions  1. The  Faro  Mine   complex   is   a   large   site   contaminated  mostly  by   acid   rock  drainage  

and  high  concentrations  of  metals.    

2.  After  more  than  100  technical  studies  were  conducted  and  community  consultation  

had   occurred   several   remediation   options   were   put   under   review.   Based   on  

recommendations   by   an   Independent   Technical   Review   Panel,   five   remediation  

options  were  proposed  for  the  final  closure  plan.    

Page 31: Development and Implementation of a Closure and Remediation Plan

  29  

3. Of   the   five   remediation  options   the  alternatives   involving   the  use  of   soil   covers   to  

cover  waste  rock  piles  and  tailings  were  deemed  most  appropriate  compared  to  the  

options  involving  the  relocation  of  the  wastes.    

4. The  risk  of  failure  of  the  existing  structures  at  the  site  was  assessed  to  be  low.    

5. Treatment   of   water   and  maintenance   of   structures   from   the   site   will   need   to   be  

done  in  perpetuity.  

6. Consideration  of  the  input  and  concerns  of  members  of  the  local  communities  were  

regarded   as   necessary   to   properly   conduct   the   mine   closure   process.  

Page 32: Development and Implementation of a Closure and Remediation Plan

 

   

Acknowledgements      

I  would  like  to  thank  Dr.  Heather  Jamieson  for  supervising  this  research  project  and  

for   providing  me  with   invaluable   direction   and   feedback.   I   would   also   like   to   thank   Dr.  

Graham  Whitelaw  for  acting  as  a  second  examiner  for  this  assignment.    

 

                                                         

Page 33: Development and Implementation of a Closure and Remediation Plan

  31  

 

Works  Cited  Aube,  B.,  &  Zinck,  J.  (2003).  Lime  Treatment  of  Acid  Mine  Drainage  in  Canada.  Brazil-­Canada  Seminar  on  Mine  Rehabiliitation.  Florianopolis,  Brazil.    Faro  Mine  Remediation  Project.  (2006,  June).  Faro  Mine  Closure:  Library.  Retrieved  March  20,  2011,  from  Faro  Mine  Closure  :  http://faromine.ca/reference/library.html    Faro  Mine  Remediation  Project.  (2011).  Faro  Mine  Closure:  Location.  Retrieved  January  25,  2011,  from  Faro  Mine  Closure:  http://faromine.ca/mine/location.html    Faro  Mine  Remediation  Project.  (2011).  Faro  Mie  Closure:  Solutions.  Retrieved  January  8,  2011,  from  Faro  Mine  Closure:  http://faromine.ca/project/solutions.html    Faro  Mine  Remediation  Project.  (2011).  Faro  Mine  Closure:  General  Information.  Retrieved  January  8,  2011,  from  Faro  Mine  Closure:  http://faromine.ca/mine/general.html    Faro  Mine  Remediation  Project.  (2011).  Faro  Mine  Closure:  History.  Retrieved  January  8,  2011,  from  Faro  Mine  Closure:  http://faromine.ca/mine/history.html    Franssen,  C.  (2009).  The  effects  of  heavy  metal  mine  drainage  on  population  size  structure,  and  condition  of  Western  Mosquitofish,  Ganbusia  affinis.  Archives  of  Environmental  Contamination  and  Toxicology  ,  57  (1),  145-­‐156.    Government  of  Yukon.  (2009,  August  24).  Government  of  Yukon.  Retrieved  February  7,  2011,  from  Communities:  http://www.gov.yk.ca/aboutyukon/communities.html    Indian  and  Northern  Affairs  Canada.  (2005,  April).  INAC:  Norther  Contaminated  Sites  Program.  Retrieved  March  20,  2011,  from  INAC:  http://www.ainc-­‐inac.gc.ca/nth/ct/ncsp/pubs/csrep0304/csrep0304-­‐eng.asp    IPRP.  (2007).  Review  of  Remediation  Alternatives  for  the  Anvil  Range  Mine  Complex  Final  Report.      Kavalench,  J.  (2010).  Effect  Of  Tailings  Mineralogy  And  Infiltration  Water  Chemistry  On  Arsenic  Release  From  Historic  Gold  Mine  Tailings.    MEND.  (2001).  MEND  Manual  Volume  4-­‐  Prevention  and  Control.  In  G.  A.  Tremblay,  &  C.  M.  Hogan  (Ed.).    Natural  Resources  Canada.  (2008,  January  3).  Natural  Resources  Canada:  Geoscape  Canada.  Retrieved  March  18,  2011,  from  Natural  Resources  Canada:  http://geoscape.nrcan.gc.ca/whitehorse/copper_e.php    

Page 34: Development and Implementation of a Closure and Remediation Plan

  32  

Spitz,  K.,  &  Trudinger,  J.  (2009).  Mining  and  the  Environment.  London,  UK:  Taylor  &  Francis  Group.  YESAB.  (2011).  Yukon  Enivornment  an  Socioeconomic  Assessment  Board.  Retrieved  March  18,  2011,  from  History  of  YESSA:  http://www.yesab.ca/act_regulations/act_history.html