designing new polymeric electrolytes for lithium – ion battery applications

42
De De signing new signing new polymeric polymeric electrolytes for electrolytes for Lithium Lithium – Ion – Ion Battery Battery Applications Applications

Upload: shonda-bishop

Post on 13-Dec-2015

228 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

DeDesigning new signing new polymeric electrolytes polymeric electrolytes

for for Lithium Lithium – Ion – Ion Battery ApplicationsBattery Applications

Page 2: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Alistore ERI | www.alistore.eu

OutlineOutline

• Polymer electrolytes advantages and drawbacksPolymer electrolytes advantages and drawbacks

• Composite polymeric electrolytes: fillers and anion receptorsComposite polymeric electrolytes: fillers and anion receptors

• Role of salt anionsRole of salt anions

• New types of imidazole saltsNew types of imidazole salts

• ConclusionsConclusions

Page 3: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Copyrights Marek Marcinek

Li+

PEO

Polymer Electrolytes Polymer Electrolytes

• Electrodonor polymersElectrodonor polymers• O,N,S (sufficient donor ability for O,N,S (sufficient donor ability for

complexation)complexation)• Sufficient distance between sitesSufficient distance between sites• AmorphousAmorphous• Polyethers - good candidatesPolyethers - good candidates• Low Tg (flexibility)Low Tg (flexibility)

General classification General classification Polymer ComplexesPolymer ComplexesPolymer GelsPolymer GelsPolyelectrolytes (Single Ion Conductors)Polyelectrolytes (Single Ion Conductors)

Page 4: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

•nonvolatility,•no decomposition at the electrodes,•no possibility of leaks,•use of metallic lithium in secondary cells (lithium dendrites growing on

the electrode surface would be stopped by the non-porous and solid electrolyte),

•lowering the cell price (PEO is cheaper than organic carbonates; it could be used as a binder for electrodes to improve the compatibility of consecutive layers; moreover fabrication of such a cell would be easier –cost),

•strengthening of cells thanks to the all-solid-state construction,•shape flexibility,•lowering the cell weight – non-volatile, all-solid-state cells don’t need

heavy steel casing,•improved shock resistance,•better overheat and overcharge allowance,•improved safety!!!

Solid Polymer Electrolytes AdvantagesSolid Polymer Electrolytes Advantages

Page 5: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

low cationic transference number (close to 0.1-0.3) of most conventional P(EO)-LiX polymer electrolytes,

forming of highly resistive layers at the anode-electrolyte interface,

high degree of crystallinity of PEO based electrolytes,

conductivity at ambient temperature not high enough for application in batteries.

Limitations of polymeric Limitations of polymeric electrolyteselectrolytes

Page 6: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Three component systems:Three component systems:

Composite electrolytes

polymer

Lithium salt

filler able to impact ion-ion and ion-polymer interaction

PEO-DME - (Mw=500) dicapped with methyl groups(Mw=500) dicapped with methyl groups

LiClOLiClO44, LiNTFSi, LiCF, LiNTFSi, LiCF33SOSO33, LiI, LiBF, LiI, LiBF44

•Ceramic fillers•TriphenylboraneTriphenylborane•CalixareneCalixarene•Calix[6]pyrolleCalix[6]pyrolle

Page 7: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

ConductivityConductivity

PEGME-LiClO4

PEGME-LiClO4 -Al2O3neutral

PEGME-LiClO4 -Al2O3basidic

PEGME-LiClO4 -Al2O3acidic c / mol kg-1

10-5 10-4 10-3 10-2 10-1 100

log

/ S

cm

-1

-7

-6

-5

-4

-3

Page 8: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Viscosity as a function of salt Viscosity as a function of salt concentrationconcentration

c / mol kg-1

10-6 10-5 10-4 10-3 10-2 10-1 100 101

/ P

a s

0.1

1

10

100

PEGME-LiClO4

PEGME-LiClO4 -Al2O3neutral

PEGME-LiClO4 -Al2O3basidic

PEGME-LiClO4 -Al2O3acidic

…and temperature

temperatura/ oC

0 20 40 60 80 100

lepk

oϾ/

Pa

s0,1

1

10

100

PEGME-LiClO4 3 mol kg -1

PEGME-LiClO4-Al2O3 kw. 3 mol kg -1

PEGME-LiClO4-Al2O3 oboj. 3 mol kg -1

PEGME-LiClO4-Al2O3 zas. 3 mol kg -1

PEODME-LiClO4 3 mol kg -1

PEODME-LiClO4-Al2O3 kw. 3 mol kg -1

PEODME-LiClO4-Al2O3 oboj. 3 mol kg -1

PEODME-LiClO4 4 mol kg -1

PEODME-LiClO4-Al2O3 oboj. 4 mol kg -1

Page 9: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Fuoss-KrausFuoss-Kraus

PEGME-LiClO4

PEGME-LiClO4 -Al2O3 neutral

PEGME-LiClO4 -Al2O3 basidic

PEGME-LiClO4 -Al2O3 acidic

c / mol kg-1

10-6 10-5 10-4 10-3 10-2 10-1 100 101

% p

ar j

onow

ych

0

20

40

60

80

100

0

20

40

60

80

100

1e-4 1e-3 1e-2 1e-1 1e+015

20

25

30

35

C / mol * kg-1

T /

oC

% of free ions in PEO-DME neutral system as a function of temperature

0 %20 %40 %60 %80 %100 % 0

20

40

60

80

100

1e-5

1e-4

1e-31e-2

1e-11e+0

15

20

25

30

35

% o

f ion

pai

rs

% of ion pairs in PEO-DME neutral system as a function of temperature

0 %20 %40 %60 %80 %100 %

0

20

40

60

80

100

1e-4 1e-3 1e-2 1e-1 1e+015

20

25

30

35

% of ions triplets in PEO-DME neutral system as a function of temperature

0 %20 %40 %60 %80 %100 %

Page 10: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Changes of the interface resistance in time

Page 11: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Lithium transference numbers for (PEO)20LiClO4 based composite electrolytes containing 10% by weight of inorganic filler additivesType of the electrolyte

Type of the filler Temperature/oC Lithium transference number

(PEO)20LiClO4 Filler free sample 40 0.31

(PEO)20LiClO4 Al2O3 40 0.61

(PEO)20LiClO4 Al2O3 (1% ASG) 40 0.66

(PEO)20LiClO4 Al2O3 (4% ASG) 40 0.72

(PEO)20LiClO4 Al2O3 (8% ASG) 40 0.77

(PEO)20LiBF4 0 70 0.32

(PEO)20LiBF4 Surface modified ZrO2 70 0.81

PEO-based electrolytes transference numberPEO-based electrolytes transference number

Page 12: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

CC7272HH9696NN44OO66

MW=1113.56 gr/moleMW=1113.56 gr/mole

Calixarene 1

CC7272HH9494NN66OO1010

MW=1203.55 gr/moleMW=1203.55 gr/mole

Calixarene 2

CC6868HH104104NN44OO66

MW=1073.58 gr/moleMW=1073.58 gr/mole

Calixarene 3

Calix[6]pyrrole

CC7272HH6666NN66

MW= MW= 1014.52 1014.52 gr/molegr/mole

Supramolecular compoundsSupramolecular compounds

Page 13: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Polymer Type Temp (o

C)t+

LiI:PEO7 55 0.51

LiI:PEO7 75 0.56

LiI:PEO7 90 0.51

LiI:P(EO)7 (Calix.2) 0.3 75 0.74

LiI:P(EO)7 (Calix.2) 0.3 90 0.69

LiI:P(EO)7 (Calix.1) 0.3 75 0.35

LiI:P(EO)7 (Calix.1) 0.3 90 0.24

LiI:P(EO)7 (Calix.3) 0.3 75 0.70

LiI:P(EO)7 (Calix.3) 0.3 90 0.33

LiI:PEO20 55 0.35

LiI:P(EO)20 (Calix.2) 1 50 1

LiI:P(EO)20 (Calix.2) 1 75 0.93

LiI:P(EO)20 (Calix.2) 1 90 0.80

LiI:P(EO)20 (Calix.2) 0.3 50 0.51

LiI:P(EO)20 (Calix.1) 0.3 55 0.48

LiI:P(EO)20 (Calix.1) 1 55 0.45

LiI:P(EO)100 90 0.14

LiI:P(EO)100(Calix.1)0.25 90 0.15

LiI:P(EO)100(Calix.1)0.5 90 0.18

Experiment time - 60 minutes, applied voltage 0.01Volt.

Lithium transferrence numbers Lithium transferrence numbers tt++ for for LiI:PEOLiI:PEO77 and and LiI:PEOLiI:PEO2020

Page 14: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Conductivity of the system P(EO)10(LiI)1(Calixarene)x

2,6 2,8 3,0 3,2 3,4 3,6 3,810-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3 Calixarene 1

tota

l / S

cm -

1

1000T -1 / K -1

x = 0 x = 0.1 x = 0.2 x = 0.4 x = 0.6 x = 0.8

110 100 90 80 70 60 50 40 30 20 10 0

t / °C

Page 15: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Temperature dependence of the bulk conductivity and interphase resistance RSEI of

the LiTf:P(EO)20 and LiTf:P(EO)20(C6P)0.5 Electrolytes

RSEI

Bulk conductivity

Page 16: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Lithium transference numbers for PEO-LiX-Calix-6-pyrrole electrolytes

Type of the electrolyte

Molar fraction of calix-6-pyrrole

Temperature/oC Lithium transference

number

(PEO)20LiI 0 70 0.25

(PEO)20LiI 0.125 70 0.56

(PEO)20LiI 0.25 70 0.75

(PEO)20LiI 0.5 70 0.78

(PEO)20LiBF4 0 70 0.32

(PEO)20LiBF4 0.125 70 0.78

(PEO)20LiBF4 0.25 70 0.81

(PEO)20LiBF4 0.5 70 0.85

(PEO)20LiCF3SO3 0 75 0.45

(PEO)20LiCF3SO3 0.5 70 0.76

Page 17: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Self-diffusion coefficients D and t+ at 363 K

Dpolymer10-8 cm2/s

D-

10-8 cm2/s

D+

10-8 cm2/s

t+

PEO-LiBF4-calixpyrrole

6.51 27.5 24.6 0.47

PEO-LiBF4 3.37 36.1 20.0 0.36

Page 18: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

How does it (probably) work?

O OO

O

O

ClO4- Li+

Li+ClO4

-

ClO4-

Li+

Calix

CalixCalix

O

KI>Kcal>KT KI>KT>Kcal Kcal>KI>KT

KI-ion pairs formation constantKT-ionic tiplets formationKcal-calix-anion complex constant

Page 19: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Ion pairs (KA) and Ionic Triplets (KT) formation constans calculated for PEO-LiX (X=I-, CF3SO3

-) electrolytes

SaltKA KT

LiI 3,87x104 130

LiCF3SO3 3,18x104 72

LiBF4 1.75x105 77.69Kcal6-anion=27x103

Page 20: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Cyclic voltammograms of LiTf:PEO20 membranes with and without C6P and SiO2 additives at (a)75˚C and (b)90˚C over potential range

of 0-5.0V using SS/PE/SS cell configurationH. Mazor, D. Golodnitsky, E. Peled, W. Wieczorek, B. Scrosati, J.Power Sources, 178 (2008) 736-743

PEO-based electrolytes additives stabilityPEO-based electrolytes additives stability

Page 21: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Inhibition of crystallization

New Types of Ceramic Composites New Types of Ceramic Composites 1/2 – Concept and Structure 1/2 – Concept and Structure

Page 22: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

New Types of Ceramic Composites New Types of Ceramic Composites 2/2 – Preliminary/First!!! 2/2 – Preliminary/First!!!

Electrochemical Testing Electrochemical Testing

Page 23: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Anions:

• are an important part of SEI build-upat +/- electrodes

• Control transport numbers t+ /t-

• Control dissociation and conductivity

• Control aluminium corrosion

Page 24: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

AsF6-

BF4-

PF6- SbF6

-

ClO4-

Classics…Classics…

Tendency to decompose according to equilibrium:LiBF4 BF3 + <LiF>

LiPF6 PF5 + <LiF>Fast reaction above 80°C

Destruction of electrolyte and interfaces

Explosive ! Toxic !

Page 25: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Conceptual approach to anion design

“N, C” are favorable:

Weak interactions Li—N but easy oxidation

“O” is not a favorable building block:

Strong Li—O interactions ion pairing, ≠ ClO4-, BOB-

If O present, F or CnF2n+1 is required

Page 26: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Stability Domains

Li4Ti5PO12

LiV3O8

LiMnPO4

LiFePO4

LiCoPO4

Li metal

LiMO2 mixed oxides

Graphite

Fluorinated anions

Non fluorinated anions

Page 27: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Diagonally Diagonally OOpposed pposed IInterests?nterests?

+ -

Enhance the activity of anions (SN)

Li+

Organic chemistry Electrochemistry

Maximize the conductivity

Ionic processes +-

-

- I- = 2,2 Å design of polyatomic

anions

Page 28: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Hückel anions…

X = N, C-CN, CRF, S(O)RF

See P. Johansson et alPhysical Chemistry Chemical Physics, volume 6, issue 5, (2004).

Aromaticity 4n + 2 «  » electrons

pKA = 10-60 pKA = 10-20

Gain of > 1 eV by resonance

Page 29: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

LiDCTA

NN

N

CNNC

-

DCTA

Stable to 3.8 V (La Sapienza, KZ) inexpensive

NH2H2N

CNNC

ON

O-

NC CN

NN

N--2H2O

Gives quite fluid ILs N

NC CN

NN

N-

Page 30: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Most Stable Lithium Imidazole Configurations

LiTDI LiPDI

B3LYP/6-311+G(d)Scheers et al. 2009

1.88 Å 1.87 Å

1.92 Å

1.93 Å

Page 31: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

LiTDI < LiPDI < LiDCTA < LiTFSI < LiPF6

Gas Phase Ion Pair Dissociation Energies

Ion pair (g) Li+ (g) + Anion- (g)

MP2/6-31G(d)

LiTDI LiPDI LiDCTA LiTFSI LiPF6 Scheers et al. 2009

Page 32: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

LiTDI (2-trifluoromethyl-4,5-LiTDI (2-trifluoromethyl-4,5-dicyanoimidazole lithium salt)dicyanoimidazole lithium salt)

C

CN

C

N-

CF3

C

C

N

N

Li+

d io x a n e / T

+ L i2 C O 3 / w a te r

C NH2

NH2CN

N O

C

O

C

O

CF3

CF3

+

- Easy, low‑demanding, inexpensive, one‑step, high yield syntheses;

- Salts are pure, stable in air atmosphere, non‑hygroscopic, stable up to 250°C, easy to handle;

Page 33: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

New saltsNew salts

- NN

CF3

N N

- NN

C2F5

N N

- NN

n-C3F7

N N

-

N

NN

N

CF3

Li+

Li+

Li+

Li+

LiTDI LiPDI LiHDI

LiTPI

Page 34: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Conductivity in PEO

2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.51E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

cond

uctiv

ity / -1

cm-1

1000/T / K-1

DCTA PDI TDI

SS / PEO20LiX / SS

cooling scan

LiDCTALiPDILiTDI

Page 35: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

N

NN

NC CN

Li+

2.4 2.6 2.8 3.0 3.2 3.4 3.61E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

T/°C2139,460,184

C

ondu

cibi

lità

/ S

cm-1

x: 10%

1000T-1 / K-1

111,5

x: 0%

PEO20LiCF3SO3+ ZrO2SACasting

PEO20LiDCTAHot-Pressing

2.4 2.6 2.8 3.0 3.2 3.4 3.61E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.0121

T / °C39,460,184111,5

Cond

ucib

ilità

/ Sc

m-1

1000T-1 / K-1

PEO20

LiBOB

PEO20

LiBF4

PEO20LiBOB/ LiBF4

Hot-Pressing

2.4 2.6 2.8 3.0 3.2 3.4 3.61E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.0121

T / °C39,460,184111,5

Con

duci

bilit

à / S

cm-1

1000T-1 / K-1

PEO20

LiDCTA

PEO20

LiBF4

2.6 2.8 3.0 3.21E-6

1E-5

1E-4

1E-3

0.01

Conduct

ivity

S

/ cm

1000 / T K-1

PEO 20

A

PEO 20

B

PEO20LiTDIPEO20LiPDI

Hot-PressingPEO20LiTDIPEO20LiPDI

Page 36: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

0.00

0.05

0.10

0.15

0.20

curr

ent /

mA

/cm

2

Potential / V

DCTA PDI TDI

Li / PEO20LiX / Super P

Anodic breakdown voltage vs. Li

P(EO)20LiDCTA 3.6V

P(EO)20LiPDI 4.0V

P(EO)20LiTDI 4.0V

Anodic stability

LiDCTALiPDILiTDI

Page 37: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

0 40 80 120 160 2000

-20

-40

-60

-80

-100

Zim

m /

Ohm

Zreal / Ohm

2h 4.5h 7h 1d 2d 5d 7d 12d

0 40 80 120 160 2000

-20

-40

-60

-80

-100

Zim

m /

Ohm

Zreal / Ohm

2h 4.5h 7h 1d 2d 5d 7d 12d

0 40 80 120 160 2000

-20

-40

-60

-80

-100

Zim

m /

Ohm

Zreal / Ohm

2h 4.5h 7h 1d 2d 5d 7d 12d

LiPDI

LiTDILiDCTA

Li / PEO20LiX / Li

Interphase resistance - PEO

Page 38: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

0 3 6 9 12 150

40

80

120

160

200

240

resi

stan

ce /

Ohm

time / d

PDIa PDIb TDIa TDIb DCTAa DCTAb

Interphase resistance - PEOLi / PEO20LiX / Li

LiPDIaLiPDIbLiTDIaLiTDIbLiDCTAaLiDCTAb

Page 39: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Cycling behaviour

Page 40: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Rate capability (PEO)

% o

f ca

paci

ty a

t C

/20

Page 41: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Rate capability (PEO)

% o

f ca

paci

ty a

t C

/20

Page 42: Designing new polymeric electrolytes for Lithium – Ion Battery Applications

Research team working on new saltsResearch team working on new salts

Presentation of research teamworking on new lithium salts:

Warsaw University of Technology: - L. NiedzickiL. Niedzicki, J. Syzdek J. Syzdek and W. WieczorekW. Wieczorek – characterization of salts and low molecular weight polyether electrolytes- J. PrejznerJ. Prejzner, P. SzczecińskiP. Szczeciński, M. BukowskaM. Bukowska - synthesis of new salts- A. Błażejczyk, M. KalitaA. Błażejczyk, M. Kalita – synthesis of anion receptors- Z. ŻukowskaZ. Żukowska M. Marcinek M. Marcinek – spectroscopic studies

Universite de Picardie Jules Verne, Laboratoire de Reactivite et de Chimie des Solides- S. GrugeonS. Grugeon, S. LaruelleS. Laruelle - characterization of solid polymeric electrolytes, studies of electrochemical stability and battery performance- and M. ArmandM. Armand – development of new salt systems

Faculty of Chemistry, University of Rome, “ La Sapienza- S. PaneroS. Panero, P. RealeP. Reale and B. ScrosatiB. Scrosati, - characterization of solid polymeric electrolytes; conductivity, transference numbers and electrochemical stability

Department of Applied Physics, Chalmers University of Technology, - J. ScheersJ. Scheers, P. JohanssonP. Johansson, P. JacobssonP. Jacobsson – modeling and spectroscopic studies