design report-v5.1 (1).docx

47
JURASSIC SPARX 690 2 0 1 4 LECTURER NAME: CESAR ORTEGA- SANCHEZ UNIT NAME: ADVANCED DIGITAL DESIGN 320 GROUP MEMBERS MACIEJ KRZYSIK18013591 STEPHEN DODD 13950839 CHRIS PUNZALAN16150865 GANESH MARATHAMUTHU16111066 LAURENCE DEAN14758610 DYLAN PRATT16262896 KAR LIP14855294 04/09/14 1

Upload: sonia-hayes

Post on 26-Dec-2015

53 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Design Report-v5.1 (1).docx

JURASSIC

SPARX 690

2 0 1 4

LECTURER NAME: CESAR ORTEGA-SANCHEZUNIT NAME: ADVANCED DIGITAL DESIGN 320

GROUP MEMBERSMACIEJ KRZYSIK18013591STEPHEN DODD 13950839

CHRIS PUNZALAN16150865GANESH MARATHAMUTHU16111066

LAURENCE DEAN14758610DYLAN PRATT16262896

KAR LIP14855294

04/09/141

Page 2: Design Report-v5.1 (1).docx

Table of Contents1.0 Abstract 04/09/14.................................................................................................4

2.0 Problem Statement.........................................................................................................................5

2.1 Overview......................................................................................................................................5

2.2 Requirements [3].........................................................................................................................5

2.3 Proposed Team Requirements....................................................................................................5

2.4 Materials Supplied by the University...........................................................................................6

2.3.1 Module for the Crazy Machine Project.................................................................................6

2.3.2 Dimension of the module and steel ball...............................................................................6

3.0 Plan..................................................................................................................................................7

3.1 Plan Outline.................................................................................................................................7

3.2 Weekly Project Overview.............................................................................................................8

3.3 Schedule, Milestones, & Deliverables..........................................................................................9

3.3.1 Week 01 – Introduction to Project........................................................................................9

3.3.2 Week 02 – Group Formation................................................................................................9

3.3.3 Week 03 – Project Design & Planning...................................................................................9

3.3.4 Week 04 – Design Confirmations........................................................................................10

3.3.5 Tuition Free Week 1 – Design Document Finalisation.........................................................10

3.3.6 Week 05 – Design Evaluations............................................................................................10

3.3.7 Week 06 – Construction Week 1.........................................................................................10

3.3.8 Week 07 – Construction Week 2.........................................................................................10

3.3.9 Tuition Free Week 2 – Construction Week 3.......................................................................11

3.3.10 Week 08 – Construction Week 4.......................................................................................11

3.3.11 Week 09 – Construction Week 5.......................................................................................11

3.3.12 Week 10 – Integration of Components.............................................................................11

3.3.13 Week 11 – Integration of Crazy Machine Modules...........................................................12

3.3.14 Week 12 – Demonstration, Presentation & Project Close Out..........................................12

3.4 Meeting Schedule......................................................................................................................13

3.5 Appendix - Timing Definitions....................................................................................................13

4.0 Machine Design Sketches..............................................................................................................14

4.1 Isometric Right View..................................................................................................................14

4.2 Isometric Right View without floor............................................................................................14

4.3 Left View....................................................................................................................................15

4.4 Top View....................................................................................................................................15

2

Page 3: Design Report-v5.1 (1).docx

4.5 Front View.................................................................................................................................16

4.6 Rear View...................................................................................................................................16

4.7 Right View..................................................................................................................................17

4.8 Isometric Right View Zoomed....................................................................................................17

4.9 Isometric Left View....................................................................................................................18

4.10 Volcano Front View..................................................................................................................18

4.11 Pterodactyl Side View..............................................................................................................19

5.0 Machine Description......................................................................................................................20

5.1 Overview....................................................................................................................................20

5.2 Sub-Module 1 – Volcano Spiral..................................................................................................21

5.3 Sub-Module 2 – Duelling Dinosaurs...........................................................................................22

5.4 Sub-Module 3 – To the Pterodactyl’s nest.................................................................................24

6.0 Block Diagram................................................................................................................................25

6.1 Hardware component Block Diagram [5]...................................................................................25

6.2 Software Component Block Diagram [5]....................................................................................25

7.0 Description of Hardware and Software components.....................................................................26

7.1 Hardware Components..............................................................................................................26

7.1.1 Machine Entry Tube - Major Hardware Component...........................................................26

7.1.2 Volcano Lift – Major Hardware Component.......................................................................26

7.1.3 Volcano Descent.................................................................................................................27

7.1.4 Duelling Dinosaurs - Major Hardware Component.............................................................27

7.1.5 Go-Around Tube.................................................................................................................28

7.1.6 Pterodactyl Swoop - Major Hardware Component............................................................28

7.2 Software Components...............................................................................................................30

7.2.1 Pin assignment....................................................................................................................30

7.2.2 FPGA Hardware Description...............................................................................................30

7.2.3 Application files..................................................................................................................30

7.2.4 Application Libraries...........................................................................................................30

8.0 Assumptions and Decisions...........................................................................................................31

8.1 - Assumptions............................................................................................................................31

8.2 - Decisions..................................................................................................................................32

9.0 References.....................................................................................................................................33

3

Page 4: Design Report-v5.1 (1).docx

1.0 Abstract 04/09/14

The Crazy Machine project is an educational project assigned to groups, working together as

a team to apply their knowledge on digital design. The project’s motive is to design an

environment that a steel ball can successfully navigate in a creative way, by utilising

mechanical aids to help transport the ball. Whilst the machine may not have many practical

uses, the theory used in this project could be applied to many real world applications when

requiring a machines part to react in a certain way when its sensor is triggered.

This report is prepared by JURASSIC SPARX 690 team (Group 3), to illustrate the group’s

crazy machine design and plan for the machine.

4

Page 5: Design Report-v5.1 (1).docx

Figure 1.01 Dino Domain Crazy Machine

5

Page 6: Design Report-v5.1 (1).docx

2.0 Problem Statement

2.1 OverviewThe Crazy Machine project encloses a series of 40 x 40 x 40 cm modules. The aim of each

module is to keep a steel ball, diameter of 2cm in motion with a series of events. As the ball

moves through the module it should navigate its way successfully though various

mechanical elements. At the exit of the module, the steel ball should be passed to the entry

of another module. The entry and exit points of each module are fixed at 5cm in diameter

on the halfway point at the top left and right of the module. The steel ball should be

independent of human intervention from the entry to the exit of the module.

2.2 Requirements [3] The steel ball should be in motion for at least 30 seconds and a maximum of 60

seconds in the module. There should be no human interaction with the steel ball

during this period of time. On the other hand, the ball can be used to trigger a

moving mechanism. [3]

The ball’s path may expand out of the module as long it does not interfere with

other modules.

At least 2 different actuators and 2 different sensors should be used in the module.

The available sensors include touch switches, pressure sensors, tilt sensors, infrared

proximity and current sensors while the available actuators are servo motors, LEDs,

small speakers and DC motors with H-bridge controller.

The materials for the machine are not provided by the university and must be

supplied or purchased by team members. [3]

The machine operates using a PC power supply that will provide access to 12V, 5V

and 3.3V.

The machine should be controlled by a self-operating processor (FPGA).

2.3 Proposed Team Requirements

The cost of the module should be kept to a minimum.

The module should use as many recycled products as possible.

The machine should be built 10 days before the due date for testing and debugging.

Utilize as much spaces as possible in the module.

The module should appear outstanding.

6

Page 7: Design Report-v5.1 (1).docx

2.4 Materials Supplied by the University

2.3.1 Module for the Crazy Machine Project

2.3.2 Dimension of the module and steel ball

Figure 2.3.2 Module Views [3]

7

DIMENSION of the Module and Steel ball (cm)

Entry and Exit Points

Page 8: Design Report-v5.1 (1).docx

3.0 Plan

3.1 Plan OutlineThe planning process has been divided into key areas:

Plan Section Description1. Weekly Project Overview Weekly project overview designed to provide a brief

description of key tasks and resources required for the project.

2. Project Master Schedule Project Master Schedule to describe tasks, times, people and resources on a week by week basis.

3. Meeting Schedule Meeting schedule to define essential meetings over the course of the project. Additional meetings will be scheduled as required.

4. Hardware Hardware describes the tasks and deadlines required to complete hardware components.

5. Software Software describes tasks and deadlines required to complete software components.

6. Mechanical Mechanical describes the tasks and deadlines required to complete the structural and mechanical components of the Crazy Machine.

This essentially incorporates any other component that isn’t covered under hardware or software.

7. Timing Definitions Timing Definition is attached as an appendix as a reference for the dates and timing conventions used throughout the plan.

8

Page 9: Design Report-v5.1 (1).docx

3.2 Weekly Project OverviewWeeks will be referenced according to Curtin University’s Semester 2, 2014 Academic Calendar.

University Week Planned ResourcesWeek 01Introduction to Project

1. Introduction to ADD 320 unit Personal logbooks

Week 02Group Formation

2. Team formation Design document Blackboard

Week 03Project Design & Planning

3. Create theme proposal4. Choose final theme5. Discuss possible elements

Design document Blackboard Personal logbooks

Week 04Design Confirmations

6. Finalise individual elements7. Finalise layout and interactions8. Work on design document

sections

Design document Blackboard Personal logbooks

Tuition Free Week 1Design Document Finalisation

9. Complete design document Design document Blackboard Personal logbooks

Week 05Design Evaluations

10. Evaluate other team designs Blackboard Personal logbooks

Week 06Construction Week 1

11. Hardware 112. Software 113. Structural 1

Sensors and actuators FPGA Quartus II Building materials

Week 07Construction Week 2

14. Hardware 215. Software 216. Structural 2

Sensors and actuators FPGA Quartus II Building materials

Tuition Free Week 2Construction Week 3

17. Hardware 318. Software 3

Sensors and actuators FPGA Quartus II

Week 08Construction Week 4

19. Hardware 420. Software 4

Sensors and actuators FPGA Quartus II

Week 09Construction Week 5

21. Hardware 522. Software 5

Sensors and actuators FPGA Quartus II

Week 10Integration of Components

23. Integration of elements24. Wiring

Additional resources as required

Week 11Integration of Crazy Machine Modules

25. Final testing26. Aesthetics

Additional resources as required

Week 12Demonstration, Presentation & Project Close Out

27. Machine demonstration28. Group presentation

Additional resources as required

9

Page 10: Design Report-v5.1 (1).docx

3.3 Schedule, Milestones, & DeliverablesWhere one person is assigned to a task, they will be responsible to ensure completion.

3.3.1 Week 01 – Introduction to ProjectMonday, 04 August, 2014 - Sunday, August 10, 2014

Task & Time People Description & Comments04 August, 2014Monday 4-6pm

Attend introductory Advanced Digital Design 320 lecture

All Introductory week to ADD 320

A personal evaluation form was submitted to the lecturer to assist group selections

3.3.2 Week 02 – Group FormationMonday, 11 August, 2014 - Sunday, August 17, 2014

Task & Time People Description & CommentsPost comments on Blackboard regarding previous Crazy Machine Designs

All

Comment on team members contributions

All

Create Decalogue Chris

Allocate team roles Mac, Dylan

3.3.3 Week 03 – Project Design & PlanningMonday, 18 August, 2014 - Sunday, August 24, 2014

Task & Time People Description & CommentsCreate theme proposals All

Choose final theme All

Define plan of action Dylan

Page 11: Design Report-v5.1 (1).docx

3.3.4 Week 04 – Design ConfirmationsMonday, 25 August, 2014 - Sunday, August 31, 2014

Task & Time People Description & CommentsFinalise individual elements All

Finalise layout interactions Jason

3.3.5 Tuition Free Week 1 – Design Document FinalisationMonday, 01 September, 2014 - Sunday, September 07, 2014

Task & Time People Description & CommentsSubmit plan to group file exchange

Steve

Design document submission Steve

3.3.6 Week 05 – Design EvaluationsMonday, 08 September, 2014 - Sunday, September 14, 2014

Task & Time People Description & CommentsEvaluate other team designs Laurence Use rubric to assess two other

design documents

3.3.7 Week 06 – Construction Week 1Monday, 15 September, 2014 - Sunday, September 21, 2014

Task & Time People Description & CommentsBegin building All

3.3.8 Week 07 – Construction Week 2Monday, 22 September, 2014 - Sunday, September 28, 2014

Task & Time People Description & CommentsHalf way review

Meeting minutes and documentation up to date

Mac, Dylan

Chris

Record learnings in individual logbooks

Post problems and solutions on Blackboard in forum

Record discrepancies

11

Page 12: Design Report-v5.1 (1).docx

3.3.9 Tuition Free Week 2 – Construction Week 3Monday, 29 September, 2014 - Sunday, October 05, 2014

Task & Time People Description & CommentsSensors and actuators working individually

Jason

3.3.10 Week 08 – Construction Week 4Monday, 06 October, 2014 - Sunday, October 12, 2014

Task & Time People Description & CommentsMechanical components finished

Ganesh

3.3.11 Week 09 – Construction Week 5Monday, 13 October, 2014 - Sunday, October 19, 2014

Task & Time People Description & CommentsIntegration of components begins

Laurence

Additional week to complete any components behind schedule

All

3.3.12 Week 10 – Integration of ComponentsMonday, 20 October, 2014 - Sunday, October 26, 2014

Task & Time People Description & CommentsFinal building activities Ganesh

Integration of sensors and actuators completed

Jason

Wiring Steve

12

Page 13: Design Report-v5.1 (1).docx

3.3.13 Week 11 – Integration of Crazy Machine ModulesMonday, 27 October, 2014 - Sunday, November 02, 2014

Task & Time People Description & Comments31 October, 2014Final testing complete

Laurence

31 October, 2014Aesthetics complete

Steve

31 October, 2014Crazy Machine modules integrated

Mac

3.3.14 Week 12 – Demonstration, Presentation & Project Close OutMonday, 03 November, 2014 - Sunday, November 09, 2014

Task & Time People Description & Comments05 November, 2014Post copy of final presentation PowerPoint on Blackboard

Chris

06 November, 2014Submit individual logbook on day of presentation

All Also submit 1 page document for marking

06 November, 2014Group Presentation

Dylan Also submit 1 page document for marking

07 November, 2014Peer assessment form completed

All Slide form under office doorClive Maynard: 204.215Cesar Ortega: 314.339

If no peer review submitted, receive zero marks for entire Crazy Machine component

07 November, 2014Crazy Machine demonstration

All

09 November, 2014Submit final report

All Submit to Blackboard

13

Page 14: Design Report-v5.1 (1).docx

3.4 Meeting ScheduleProvide at least one copy of the meeting minutes to Blackboard

Date Task Comments08 Aug No meeting – Week 1 Groups formation week15 Aug Team Meeting 01 – Week 2 Decalogue and group roles22 Aug Team Meeting 02 – Week 3 Project planning and design29 Aug Team Meeting 03 – Week 4 Design confirmations05 Sep Tuition Free Week 1 Design document finalisation via online

collaboration12 Sep Team Meeting 04 – Week 5 Building updates19 Sep Team Meeting 05 – Week 6 Building updates26 Sep Team Meeting 06 – Week 7 Halfway checkpoint meeting03 Oct Tuition Free Week 2 Plan review and updates via online

collaboration10 Oct Team Meeting 07 – Week 8 Problem discussions17 Oct Team Meeting 08 – Week 9 Building updates24 Oct Team Meeting 09 – Week 10 Finalise design change documentation31 Oct Team Meeting 10 – Week 11 Final project check meeting07 Nov Team Meeting 11 – Week 12 Project close out meeting

3.5 Appendix - Timing DefinitionsThe following timing conventions are used throughout the report. Where a ‘week’ is referred to, it is to be assumed that the ‘university week’ is the correct week.

It is assumed throughout the document that the week begins on Monday and ends on Sunday.

Week of 2014

University Week

Date Beginning(Monday)

Date Ending(Sunday)

Week 32 Week 01 Monday, 04 August, 2014 Sunday, August 10, 2014Week 33 Week 02 Monday, 11 August, 2014 Sunday, August 17, 2014Week 34 Week 03 Monday, 18 August, 2014 Sunday, August 24, 2014Week 35 Week 04 Monday, 25 August, 2014 Sunday, August 31, 2014Week 36 Tuition Free

Week 1Monday, 01 September, 2014 Sunday, September 07, 2014

Week 37 Week 05 Monday, 08 September, 2014 Sunday, September 14, 2014Week 38 Week 06 Monday, 15 September, 2014 Sunday, September 21, 2014Week 39 Week 07 Monday, 22 September, 2014 Sunday, September 28, 2014Week 40 Tuition Free

Week 2Monday, 29 September, 2014 Sunday, October 05, 2014

Week 41 Week 08 Monday, 06 October, 2014 Sunday, October 12, 2014Week 42 Week 09 Monday, 13 October, 2014 Sunday, October 19, 2014Week 43 Week 10 Monday, 20 October, 2014 Sunday, October 26, 2014Week 44 Week 11 Monday, 27 October, 2014 Sunday, November 02, 2014Week 45 Week 12 Monday, 03 November, 2014 Sunday, November 09, 2014

14

Page 15: Design Report-v5.1 (1).docx

4.0 Machine Design Sketches

4.1 Isometric Right View

Figure 4.1: Isometric Right view of the machine design

4.2 Isometric Right View without floor

Figure 4.2: Isometric Right view, without floor of the machine design

15

Page 16: Design Report-v5.1 (1).docx

4.3 Left View

Figure 4.3: Left view of the machine design

4.4 Top View

Figure 4.4: Top View of the machine design

16

Page 17: Design Report-v5.1 (1).docx

4.5 Front View

Figure 4.5: Front View of the machine design

4.6 Rear View

Figure 4.6: Rear View of the machine design

17

Page 18: Design Report-v5.1 (1).docx

4.7 Right View

Figure 4.7: Right view of the machine design

4.8 Isometric Right View Zoomed

Figure 4.8: Isometric Right Zoomed of the machine design

18

Page 19: Design Report-v5.1 (1).docx

4.9 Isometric Left View

Figure 4.9: Isometric Left view of the machine design

4.10 Volcano Front View

Figure 4.10: Volcano Front view of the machine design

19

Page 20: Design Report-v5.1 (1).docx

4.11 Pterodactyl Side View

Figure 4.11: Pterodactyl Front view of the machine design

20

Page 21: Design Report-v5.1 (1).docx

5.0 Machine Description

5.1 OverviewThe Dino Domain module as the name implies is based on a dinosaur theme. It consists of

three sub-modules;

1. the volcano spiral,

From the bottom of the earth the ball spirals up the middle of the volcano where it is

eventually spat out down the edge of the volcano.

2. duelling dinosaurs,

The ball comes across two dinosaurs who want to take the ball for themselves, they

have decided to settle their dispute through a game of rock-paper-scissors.

3. Hunting pterodactyl.

Desperate and hungry, a mother pterodactyl hovers around the Dino Domain in

search for food, the shiny ball has caught her eyes.

The ball will travel around the Dino Domain and will encounter dinosaurs trying to get a hold

of it. The ball’s fate lies on the mightiest dinosaur of the Dino Domain.

Figure 5.1: Dino Domain

21

Page 22: Design Report-v5.1 (1).docx

The ball enters the module through the entrance hole and is detected by a sensor. It goes

into a tube which descends to a tunnel and goes into the first sub-module, the volcano

spiral. From the volcano spiral, it goes into the next sub-module the duelling dinosaurs who

are competing for the ball from which its next path is determined by the result of the duel.

The last sub-module is the pterodactyl, attracted to the shiny ball, it flies carrying the ball to

its nest/exit.

The path of the ball is made up of two metal wires which runs throughout the Dino Domain

module. [2] [4] The Dino Domain also consist of a sub-level in which a tunnel runs from the

tube entrance connected to the bottom of sub-module 1 the volcano spiral, and to sub-

module 2 the duelling dinosaurs.

5.2 Sub-Module 1 – Volcano Spiral

Figure 5.2: Volcano Spiral

The first of the three modules the ball will have to pass through. The ball will enter this

module from the underground tunnel. The main structure of the module is the cone which

is made out of papier-mâché with the top and its side cut-open. The top is cut-open to serve

22

Page 23: Design Report-v5.1 (1).docx

as the exit point for the ball from the inside of the cone, and the side is also cut-open to

allow viewers to see what is happening inside.

From the top, a pair of metal wires are wound around the outer layer going downwards

about halfway through the bottom of the cone. This pair of metal wires serves as a path to

the next sub-module, the duelling dinosaurs. [2] [4]

Inside the cone lies the spiral mechanism positioned at the center, which will drive the ball

from the bottom to the top of the cone. The spiral mechanism is made up of a stationary

metal wire which is wound around like a spring to a motor driven rod/pole. The winding of

the wire has enough room for the ball to move upwards. [2] The rod/pole itself is made up

of PVC material and covered with a rubber material for friction.

The function of the rod/pole is to constantly spin with enough speed to move the ball

upwards to the top of the cone. As the ball is moved upwards to the top of the cone, it will

descend through a pair of metal wires wound around the outer layer of the cone, and exit in

a diagonal position (facing downwards) towards the next sub-module. This rod/spiral will

run from the moment the ball is detected as it enters the whole Dino Domain module up

until the ball exits the module.

5.3 Sub-Module 2 – Duelling Dinosaurs

Figure 5.3: Duelling Dinosaurs

23

Page 24: Design Report-v5.1 (1).docx

This sub-module consists of two duelling dinosaurs (printed cut-out images) which controls

the next path of the ball. Aside from the dinosaurs, it has three different LEDs (red, green,

and blue) for each dinosaurs to indicate the rock-paper-scissors, a servo motor to control

the path of the ball, and a sensor to detect the arrival of the ball.

As soon as the arrival of the ball is detected by the sensor, the three different LEDs

(positioned right next to each dinosaurs) on both dinosaurs will flash three times to indicate

the duel process. The result of the rock-paper-scissors for each dinosaurs will be indicated

by the respective LED which is momentarily turned ON until the ball has passed through, the

rest of the LEDs will be turned off.

Depending on the result of the duel, the winning dinosaur controls the path of the ball. The

ball is either redirected back into sub-module 1 or directed to the next sub-module, sub-

module 3. This is achieved by controlling the position/direction of the servo motor.

As the ball enters sub-module 2 diagonally downwards, its path is blocked by the servo arm

(customized as a platform) in a horizontal position blocking two different paths. When the

result of the duel is detected, the servo arm will either move clockwise or anti-clockwise

direction which tilts the platform to allow the ball to move either left or right into the

respective path.

As the ball exits this sub-module, all actuators and sensors go back to the default position.

The choice of the winning dinosaur and the sensor will depend on the designer.

24

Page 25: Design Report-v5.1 (1).docx

5.4 Sub-Module 3 – To the Pterodactyl’s nest

Figure 5.4 Pterodactyl

The last of the three sub-modules, it consists of a pterodactyl which will fly carrying the ball

to its nest/exit. It also consists of a servo motor which drives the pulleys to which the

pterodactyl is attached. The larger pulley is positioned at the point of origin and the smaller

pulley positioned at the destination (the nest). It has two sensors, one positioned at the

point of origin to detect the ball at the start, and one at the point of destination.

As the ball exits sub-module 2, it goes into the pterodactyl’s claw which is a non-dynamic

scoop. The balls then triggers the sensor which drives the motors, and the pulleys then

begins to move the pterodactyl carrying the ball upwards into the nest. The ball remains

stationary in the scoop during the flight.

As the pterodactyl reaches the point of destination, it then triggers another sensor which

releases the ball into the nest/exit. The ball then proceeds to the next world/module.

25

Page 26: Design Report-v5.1 (1).docx

6.0 Block Diagram

6.1 Hardware component Block Diagram [5]

6.2 Software Component Block Diagram [5]

26

Page 27: Design Report-v5.1 (1).docx

7.0 Description of Hardware and Software components

This section describes the hardware and software components for the crazy machine project.

The ball will move through the major elements in the following sequence:

1. Machine Entry Tube2. Volcano Lift3. Volcano Descent4. Duelling Dinosaurs (Decision to go around)5. Go-Around Tube6. Pterodactyl Claw 7. (Exit)

7.1 Hardware Components

7.1.1 Machine Entry Tube - Major Hardware Component

Hardware Components Photoresistor 1 LED over photoresistor Tube

Operation A photoresistor will detect when the ball has passed through the machine entry

point. The entry tube drops the ball down to the lowest point in the machine. This needs

to be done without allowing the ball to retain too much energy.

Entry Considerations The ball will enter the machine either manually or from a previous machine.

Exit Considerations The ball must enter the Volcano Lift at a relatively low speed.

7.1.2 Volcano Lift – Major Hardware Component

Hardware Components DC/Stepper Motor Central driving rod Spiral track and supports

27

Page 28: Design Report-v5.1 (1).docx

Operation A motor is used to directly drive the central rod. The motor can be controlled but

will probably need to be always on at a constant speed while the machine has a ball in play. This will ensure the central rod is up to speed when needed.

There is no automation in this section.

Entry Considerations The entry needs to be sloping downward so that the ball enters the lift correctly and

is accepted into the spiral.

Exit Considerations Depending on the central rod speed, the ball may come out of the lift with some

speed. Measures will need to be taken to ensure it remains on the track. This may involve slowing the rod rotation, retarding the ball or enclosing the exit track.

The next element is the Volcano Descent.

7.1.3 Volcano Descent

Hardware Components Spiral track consisting of:

o rail front tracko tube rear track

General There are currently no plans for sensors in this section.

Exit Considerations Depending on the Volcano Lift exit speed and the energy gained in the descent, the

ball may leave this section with some speed. Measures will need to be taken to ensure it remains on the track.

The next element is the Duelling Dinosaurs.

7.1.4 Duelling Dinosaurs - Major Hardware Component

Hardware Components Servo motor Photoresistor Capture and redirection track 6 LEDs with Rock/Paper/Scissors facades 1 LED over photoresistor

28

Page 29: Design Report-v5.1 (1).docx

Operation When the ball enters the capture area the servo is set to the blocking position. The ball is captured by a barrier on the track. The photoresistor detects that the ball has been captured. A pseudo-random rock-paper-scissors game is displayed with the LEDs. The servo changes position and redirects the ball to the selected exit track. The servo resets to the blocking position.

Entry Considerations The ball may be moving at a high speed when entering this section. Measures may

need to be taken to retard its speed, such as a rising track section before the element. The capture section must be preceded by a downward slope to ensure the ball is captured and sits in a position suitable to trigger the photoresistor.

Exit Considerations The exit tracks need to slope downward adequately, as the ball will not have much

energy when exiting. There are 2 exit paths:o A go-around tube will lead the ball back to the Volcano Lift.o The Pterodactyl Swoop component will be used to exit the ball from the

machine.

General The photoresistor may need to have an always on LED positioned above it to ensure

adequate light. This should allow a wider logic level configuration.

7.1.5 Go-Around Tube

Hardware Components Tube

Exit Considerations The ball is fed back into the Volcano Lift.

7.1.6 Pterodactyl Swoop - Major Hardware Component

Hardware Components Servo motor 2x Photoresistor Capture track 2x LED over photoresistors Claw

29

Page 30: Design Report-v5.1 (1).docx

Operation When the ball enters the capture area, the claw is set to the lowest position on the

belt. The ball is captured by a barrier on the track. The lower photoresistor detects that the ball has been captured. A servo motor moves the claw along the belt. The claw scoops up the ball and carries it. The claw drops the ball into the nest. The upper photoresistor detects that the ball has been dropped. The servo motor moves the claw back to the lowest position.

Entry Considerations The capture section must be preceded by a downward slope to ensure the ball is

captured and sits in a position suitable to trigger the photoresistor.

Exit Considerations A photoresistor will detect when the ball has passed through the machine exit point.

General The Claw is composed of 2 stiff wires, bent into a cradle. When the claw moves

through the lower nest, it passes between the rails of the capture track and scoops up the ball. At the rear of the claw is a rod which turns the claw into a ‘capture’ position at the lower next by pushing against the nest. Likewise, at the upper nest, the claw rod allows the claw to drop the ball.

FPGA BoardAn Altera DE-0 board. [1]

Power SupplyGeneric power supply offering 12V, 5V and 3V.

Laptop ComputerDue to license restrictions, it is believed a laptop computer must be connected to the FPGA board when running.

GeneralWe’ll be using these elements for extra effects. The specifics are yet to be determined.

Lights Speaker

30

Page 31: Design Report-v5.1 (1).docx

7.2 Software Components

7.2.1 Pin assignment The pin assignment file contains the relevant pin assignments for the FPGA (extension .qsf).

7.2.2 FPGA Hardware DescriptionA hardware descriptor file of the system components used in the FPGA. These will include the following:

NIOS II Processor SDRAM Timer Parallel IO for sensors and actuators

7.2.3 Application filesThese components are yet to be determined. We will require at least the following:

Main program file (main.c) Component files

7.2.4 Application LibrariesThese are yet to be determined. We will require the following:

Servo motor libraries.

31

Page 32: Design Report-v5.1 (1).docx

8.0 Assumptions and Decisions

8.1 - Assumptions

-The ball can be easily detached from the pterodactyl and exit the module once it reaches

the top.

-The ball will not drop halfway from the pulley while it is being carried to the top.

- All materials can be found in recycling centres, team member's homes and markets with

minimum cost.

-The power supply will be able to provide enough power to all components, no matter how

many are on at a particular time.

-The power coming from the supply is well regulated and will not have any noticeable effect

on the sensor readings or actuator control.

-The motors speed and direction can be modified

- Coat-hanger wire would be thick enough to successfully support the steel ball. This has

since been confirmed. [2]

- That ADC and DAC will be performed without too much trouble.

-That the available sensors will be able to identify the steel ball.

-Memory available is sufficient to run our lava/dinosaur sound files

-Many unforeseen problems will eventuate and so we have allowed plenty of time for testing.

32

Page 33: Design Report-v5.1 (1).docx

8.2 - Decisions

-Using a magnet for the pterodactyl can cause the ball to drop halfway while it’s being

carried. A non-dynamic scoop with hinge is to be used to carry the ball up instead of the

magnet.

-Originally the last element was going to be the Duelling dinosaurs. It was decided that it

would be better if the ball looped through the elements multiple times before exiting and so

the duelling dinosaurs were swapped with the pterodactyl.

-After some discussion a solution was reached that the ball would be dropped through a

clear tube upon entering the machine to move to the volcano spiral element.

-Entry tube will be split into two segments, vertical and horizontal. The horizontal segment

will join the vertical one at a sharp angle which will reduce the ball velocity and allow for

easier control when entering the volcano.

-Using metallic railing instead of a cardboard or similar alternative. This was purely based on

aesthetics as it will make the project more complex.

- Take a divide and conquer approach with the main elements because of team member's

geographical location. Will meet up weekly to make sure the whole team is up to date and

involved in all important decisions.

- Deciding on a pseudorandom approach for the duelling dinosaurs to ensure our ball stays

within the module in-between the required time limits.

- Stay one lab ahead of schedule to allow for bonus lab and extra testing

- Use facebook as our primary communication tool

-Use GoogleDocs as our main cloud file storage, sharing and collaboration tool

33

Page 34: Design Report-v5.1 (1).docx

9.0 References

[1] Altera Corporation.1995-2013.DEO Development and Educaton Board.[Accessed 13-Aug-2014].http://www.altera.com /education/univ/materials/boards/de0/unv-de0-board.html

[2] Rollingballsculpture.com.au, 'Rolling Ball Sculpture - Kinetic rolling ball sculptures designed and created by David Morrell', 2014. [Online]. Available: http://www.rollingballsculpture.com.au/. [Accessed: 14- Aug- 2014].

[3] C Ortega Sanchez, ADD Lab Notes, Curtin University [Accessed: 04 - Aug -2014]

[4] Instructables.com, 'How to make a ball bearing rollercoaster', 2014. [Online]. Available: http://www.instructables.com/id/How-to-make-a-ball-bearing-rollercoaster/. [Accessed: 15- Aug- 2014].

[5]P. Ashenden, The designer's guide to VHDL, 1st ed. San Francisco, CA: Morgan Kaufmann, 2002.

[6]P. Ashenden and P. Ashenden, The student's guide to VHDL, second edition, 1st ed. Amsterdam: Elsevier, 2008.

[7]2014. [Online]. Available: http://www.canakit.com/Media/Manuals/UK1122.pdf. [Accessed: 17- Aug- 2014].

[8]M. Pont, Embedded C, 1st ed. London: Addison-Wesley, 2002.

[9]C. Hellebuyck, Beginner's guide to embedded C programming, 1st ed. Milford, MI: Electronic Products, 2008.

34