design of steel deck for concentrated and non-uniform loading

71
Presented by: Copyright © 2018 Steel Joist Institute. All Rights Reserved. MARCH 21, 2018 Design of Steel Deck for Concentrated and Non-Uniform Loading Michael Martignetti, CANAM Mike Antici, NUCOR

Upload: others

Post on 20-Oct-2021

6 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Design of Steel Deck for Concentrated and Non-Uniform Loading

Presentedby:

Copyright©2018SteelJoistInstitute.AllRightsReserved.

M A R C H 2 1 , 2 0 1 8

DesignofSteelDeckforConcentratedandNon-UniformLoading

MichaelMartignetti,CANAMMikeAntici,NUCOR

Page 2: Design of Steel Deck for Concentrated and Non-Uniform Loading

PollingQuestion

2

•  NewrequirementtoearnPDHcredits

•  Twoquestionswillbeaskedduringthedurationoftoday’spresentation

•  ThequestionwillappearwithinthepollingsectionofyourGoToWebinarControlPaneltorespond

Page 3: Design of Steel Deck for Concentrated and Non-Uniform Loading

Disclaimer

3

Theinformationpresentedhereinisdesignedtobeusedbylicensedprofessionalengineersandarchitectswhoarecompetenttomakeaprofessionalassessmentofitsaccuracy,suitabilityandapplicability.TheinformationpresentedhereinhasbeendevelopedbytheSteelJoistInstituteandisproducedinaccordancewithrecognizedengineeringprinciples.TheSJIanditscommitteeshavemadeaconcertedefforttopresentaccurate,reliable,andusefulinformationonthedesignofsteeljoistsandJoistGirders.ThepresentationofthematerialcontainedhereinisnotintendedasarepresentationorwarrantyonthepartoftheSteelJoistInstitute.Anypersonmakinguseofthisinformationdoessoatone’sownriskandassumesallliabilityarisingfromsuchuse.

Page 4: Design of Steel Deck for Concentrated and Non-Uniform Loading

4

LearningObjectives• Recognizeloadcasesthatrequireadditionalanalysisbeyonddistributionasauniformload• Understandthelimitstatesfordesignunderconcentratedloads• Examinedifferentloadpathsforvaryingconcentratedloadconditions• ReviewcurrentSDIdesignapproachforconcentratedloads• Demonstratepotentialshortcutstoconcentratedloaddesign• Presentexampleproblemsfordesignwithconcentratedloads

Page 5: Design of Steel Deck for Concentrated and Non-Uniform Loading

PresentationOutline

5

ü IdentifyTypicalDeckTypes

ü IntroductiontoConcentratedLoadsTypes

ü RoofDeckLimitStatesandDesignExample

ü FloorDeckLimitStatesandCurrentDesignMethodology

ü CompositeDeckDesignExamples–ShortcutsforMultipleLoads

ü FormDeckandSteelFibers

Page 6: Design of Steel Deck for Concentrated and Non-Uniform Loading

6

DeckTypes

RoofDeck• PermanentStructuralMember• NoConcreteTopping

CompositeDeck• DeckandConcreteWorkTogether• Embossments–CompositeAction

FormDeck• DeckisPermanentForm• DeckOftenCarriesSlabWeight

Page 7: Design of Steel Deck for Concentrated and Non-Uniform Loading

7

ConcentratedLoadsonRoofDeck

SafetyAnchors

SuspendedLoads SolarPanels

RoofDrains

Page 8: Design of Steel Deck for Concentrated and Non-Uniform Loading

8

ConcentratedLoadsonRoofDeckConstructionLoads

• People• Dollies

• Pallets• ToolChests

• RoofingMachinery

Page 9: Design of Steel Deck for Concentrated and Non-Uniform Loading

ConcentratedLoadsonFloorDeck

9

StorageRacks

Page 10: Design of Steel Deck for Concentrated and Non-Uniform Loading

ConcentratedLoadsonFloorDeckEquipmentLoads

10

Page 11: Design of Steel Deck for Concentrated and Non-Uniform Loading

11

ConcentratedLoadsonFloorDeckWallLoads

Parallel Transverse

Page 12: Design of Steel Deck for Concentrated and Non-Uniform Loading

12

RoofDeckDesignStandard/Manual

Availableatwww.sdi.org

Page 13: Design of Steel Deck for Concentrated and Non-Uniform Loading

13

RoofDeckDesignLimitStates

Deflection

WebCrippling

Shear

Stress

Bending/ShearInteraction

Page 14: Design of Steel Deck for Concentrated and Non-Uniform Loading

14

RoofDeck–TransverseDistribution

L=SpanX=%ofSpan

Basedon1½”Deck…

Page 15: Design of Steel Deck for Concentrated and Non-Uniform Loading

15

RoofDeckDesignExampleExample7FromRDDM…

Page 16: Design of Steel Deck for Concentrated and Non-Uniform Loading

16

RoofDeckDesignExample

L=SpanX=%ofSpan

Page 17: Design of Steel Deck for Concentrated and Non-Uniform Loading

17

RoofDeckDesignExampleP=210lb

W=30lb/ft

Page 18: Design of Steel Deck for Concentrated and Non-Uniform Loading

18

RoofDeckDesignExample

Page 19: Design of Steel Deck for Concentrated and Non-Uniform Loading

19

RoofDeckDesignExample

Page 20: Design of Steel Deck for Concentrated and Non-Uniform Loading

20

FloorDeckDesignStandards/Manual

Availableatwww.sdi.org

Page 21: Design of Steel Deck for Concentrated and Non-Uniform Loading

21

FloorDeckDesignLimitStates

My Bending(+ifsimplespan,+/-ifmultiplespan)Vn OneWayBeamShearVpr PunchingShearΔ DeflectionMwTransverse(Weakaxis)BendingMn,Mr ProprietaryDeck-SlabBending(nostuds)

Page 22: Design of Steel Deck for Concentrated and Non-Uniform Loading

22

wbe

LoadDistribution

Page 23: Design of Steel Deck for Concentrated and Non-Uniform Loading

SDICDDM/FDDM/C-2017

23

CurrentSDIDesignMethod

Page 24: Design of Steel Deck for Concentrated and Non-Uniform Loading

24

LimitStates

Page 25: Design of Steel Deck for Concentrated and Non-Uniform Loading

25

PollingQuestion#1

WhichLimitStateisNOTApplicableforDesigningConcentratedLoadsonConcreteSlabsonFLOORDeck?

a) WeakAxisBending

b) WebCrippling

c)  PunchingSheard)  PositiveBendinge) NegativeBending

Page 26: Design of Steel Deck for Concentrated and Non-Uniform Loading

P

a b

L

Thiswebinarmakesoneassumption....thewebinee(that’syou)cansolvethissimplebeamforshearandbending.Additionallimitstates(deflection,punching)aredefinedinthestandards,butunlikelytocontrol.Shearandbendingwillbediscussedindetail.Problemsolutionsareshown,butintendedasexamplesandguidesforfuturereference.Pleasefocusonthediagramsandtechniquesforloaddistribution,notthemathematicalsolution.

26

P

CanWeSolveThisLoadDiagram?

Page 27: Design of Steel Deck for Concentrated and Non-Uniform Loading

NEWforthisPresentation

27

ShortcutTheory

Page 28: Design of Steel Deck for Concentrated and Non-Uniform Loading

Influencezonesmay(andusuallydo)overlapasillustrated.Thissuggeststhestressintheseareasisgreaterthanthestressinnon-lappedzones.Theeffectivewidthsoftheseinfluencezones(be1andbe2)changeasloadsP1andP2movealongthespan.Insituationswhereloadlocationsarefixed(storageracks,scaffolds),asimplebeamdiagramforshearandbendingcaneasilybedefined.

28

2Loads“In-Line”

Page 29: Design of Steel Deck for Concentrated and Non-Uniform Loading

P1be1

P2be2

a b

L

ForanalysispurposesofMyandVn,twoloadsareonthebeamandequationsforshearandbendingarecumbersome,butsimplistic.Forcalculationpurposes,P1andP2aretypicallyequalloads,butdistributionwidthsbe1andbe2maydiffer;hence,loadsareillustratedasbeingdifferent.Variables“L”,“a”and“b”areconsistentwithtraditionalengineeringloaddiagrams.Nothingnewsofar,exceptbeamsaretobeanalyzedusingdistributedconcentratedloads,P/be,inlieuofuniformloadssuggestedintheliterature.

29

2Loads“In-Line”,MyandVn

Page 30: Design of Steel Deck for Concentrated and Non-Uniform Loading

P1/be1 P2/be2

Mn

30

ThisgraphillustratesbendingmomentsforP1/be1,P2/be2andanyuniformloadalongthebeam.Noticethatthemomentsarecumulativeandmustnotexceedtheallowable.

2Loads“In-Line”,My

Page 31: Design of Steel Deck for Concentrated and Non-Uniform Loading

P1/be1

P2/be2

Vn

ΣV

VP1

VP2

31

Asimilargraphforshear.Again,P1/be1,P2/be2andanyuniformloadalongthebeamarecumulativeandmustnotexceedallowable

2Loads“In-Line”,Vn

Page 32: Design of Steel Deck for Concentrated and Non-Uniform Loading

32

Weakaxisbendingfor“in-line”loadswilltakealittlemoreexplanation.Thebasicpremiseis“Loadsareuniformlydistributedalongthelength“w”.”Ifinfluencezonesoverlap(andtheyusuallydo),thegenericweakaxisbendingequationprovidedbySDIneedsaslightmodification.

2Loads“In-Line”,Mw

Page 33: Design of Steel Deck for Concentrated and Non-Uniform Loading

1

2

3

4

5

6

7

0 w

P/w

Overlap

Thenewequationformultiple“in-line”loadsforweakaxisbendingissimplyalinearinterpolationbetweenasingleloadanalysisandtwoloadscombined.Thegreatadvantagetothisequationis“ ITWORKSEVERYWHERE” regardlessoftheoverlap.

33

2Loads“In-Line”,Mw

Page 34: Design of Steel Deck for Concentrated and Non-Uniform Loading

• 2x12x20gacompositedeck• 8-0span• 5”NWslab(t=3”)• W6xW6-W2.1xW2.1(d=1.5”)• Scaffoldpost,b=4”• WL=0• Wd=(1.2)52psfFDDM2C• φMy=4140ft-lbs/ftFDDM4C• φVn=5116lb/ftFDDM8BφMw=2757in-lb/ft

Todemonstratethemechanicsfor“in-line”loads,considerscaffoldingduringconstruction.Thesubcontractorhasaskedtousescaffoldingforthebrickfascia.Howshouldyourespond?PunchingshearanddeflectionareunlikelytolimitPandwillnotbeshowninthisexample.

34

2Loads“In-Line”,ScaffoldExample

Page 35: Design of Steel Deck for Concentrated and Non-Uniform Loading

φP13.30

φP24.78

1.5’ 4.5’

8.0’

2.0’

Shear:FromFDDM8B,φVn=5116lbs.DistributeloadsP1andP2overtheireffectivewidths,be1andbe2,assumeP1=P2andsolveforP.Don’tforgettoadddeadandapplicableliveloads.

• be1=3.30ft• be2=4.78ft• w=4.33ft• Lap=2.33ft(use2.0)• Wd=62psf

35

2Loads“In-Line”,ScaffoldExample,Vn

Page 36: Design of Steel Deck for Concentrated and Non-Uniform Loading

φP13.30

φP24.78

1.5’ 4.5’

8.0’

2.0’

Bending:FromFDDM4C,φMy=4140ft-lbs.Again,distributeloadsP1andP2overtheireffectivewidthsandsolveforP.

36

• be1=3.30ft• be2=4.78ft• w=4.33ft• Lap=2.33ft(use2.0)• Wd=62psf

2Loads“In-Line”,ScaffoldExample,My

Page 37: Design of Steel Deck for Concentrated and Non-Uniform Loading

withNEWMwequationφP4.33

Weak:Thiswilltakemoreexplanation.1. NoticethattheloadPisdistributedoveraneffectivewidth“w”,not“be”.2. Theweakaxisbeamlength=beandwilldifferforP1andP2.3. bemaxwillcontrol.4. Withmultiple“in-line”loads,usethenewφMwtocorrectforinfluencezoneoverlap.5. Useφ=0.75andΩ=2.0,notACIfactors.

• be1=3.30ft• be2=4.78ft• w=4.33ft• Lap=2.33ft(use2.0)

4.78’

37

2Loads“In-Line”,ScaffoldExample,Mw

Page 38: Design of Steel Deck for Concentrated and Non-Uniform Loading

38

Influencezonesfor“adjacent”loadswilloverlap,buttheoverlapdoesnotmeantwicethestress.Intuitively,weknowstressesaregreatestdirectlyundertheloadanddissipatealongtheedges.Effectivewidthformulasfor“be”and“w”compensateforthisstressgradient.Forshearandbending,adjustbesoconcreteisnotusedtwice.be’=be/2+loadspacing/2.Forweakaxisbending,ΣMwwillrequireamoredetaileddiscussion.

2Loads“Adjacent”

Page 39: Design of Steel Deck for Concentrated and Non-Uniform Loading

Pbe’

a b

L

ForanalysispurposesofMyandVn,loadPisdistributedoverbeorbe’.Simple.

39

2Loads“Adjacent”,MyandVn

Page 40: Design of Steel Deck for Concentrated and Non-Uniform Loading

Pw

be+Loadspacing

Overlappinginfluencezonesmayresultincumulativeweakaxisbendingmoments,andtraditionalengineeringmechanicsarenotappropriateforatwo-wayslabproblemwithsinusoidalstressdistribution.

Sinusoidalstressdistribution?Twowayslabdesign?Thissoundscomplicated,butthenextfewgraphsandexampleproblemmakesunderstandingandanalysisrelativelyeasy.

Pw

40

2Loads“Adjacent”,Mw

Page 41: Design of Steel Deck for Concentrated and Non-Uniform Loading

beoverlap<loadspacing

MWn

ΣM

P/w P/w

41

2Loads“Adjacent”,Mw

Page 42: Design of Steel Deck for Concentrated and Non-Uniform Loading

MWn

ΣM

P/w P/w

42

beoverlap>loadspacing

2Loads“Adjacent”,Mw

Page 43: Design of Steel Deck for Concentrated and Non-Uniform Loading

MWnΣM

P/w P/w

43

beoverlap>>>loadspacing

2Loads“Adjacent”,Mw

Page 44: Design of Steel Deck for Concentrated and Non-Uniform Loading

Samedeckas“in-line”example• WL=0• Wd=(1.2)52psfFDDM2C• φMy=4140ft-lbs/ftFDDM4C• φVn=5116lb/ftFDDM8B• φMw=2757in-lb/ft

Todemonstratethemechanicsfor“adjacent”loads,let’srotatethescaffoldfromourpreviousexample.Atx=3-6,thedistributionwithbe=4.78ft,andadjacentinfluencezonesoverlap.ThemechanicsforMyandVnaresimilartothepreviousexampleusingamodifiedbe.Again,punchingshearanddeflectionareunlikelytolimitPandwillnotbeshowninthisexample.

44

2Loads“Adjacent”,ScaffoldExample

Page 45: Design of Steel Deck for Concentrated and Non-Uniform Loading

φP3.14

3.5’ 4.5’

8.0’

• be=4.78ft• be’=3.14ft• W=4.33ft• Wd=62psf

45

2Loads“Adjacent”,ScaffoldExample,MyandVn

Page 46: Design of Steel Deck for Concentrated and Non-Uniform Loading

4.33’

Aloaddevelopsasinusoidalmomentenvelopeoverabeamlength=beandisresistedbytheavailableweakaxisbendingmoment=φMw

46

2Loads“Adjacent”,ScaffoldExample,Mw

Page 47: Design of Steel Deck for Concentrated and Non-Uniform Loading

4.33’

2.16’

x=0.65’

Andwecancalculatethemomentatanypointxalongthiscurve.Inthisexample,weareinterestedinthemomentatx=0.65’.

47

2Loads“Adjacent”,ScaffoldExample,Mw

Page 48: Design of Steel Deck for Concentrated and Non-Uniform Loading

Mx=0.65

ΣMx<2757

Focusonthe

picture,nottheequation.

48

18”

2Loads“Adjacent”,ScaffoldExample,Mw

Page 49: Design of Steel Deck for Concentrated and Non-Uniform Loading

Youguessedit....4loads....“In-line”and“adjacent”.Iftheseloadsarestatic,thecalculationsaretedious,butnotdifficult.Ifloadsaremoving,hireaninternforthesummer.ForMyandVn,useP1/be1’andP2/be2’withsimpleshearandmomentenvelopes.ForMw,usenewMwlapequationandnewsinusoidalmomentenvelope.

49

4Loads“In-Line”and“Adjacent”

Page 50: Design of Steel Deck for Concentrated and Non-Uniform Loading

50

“Whatsizeliftcanthisfloorsupport?”Slab(FDDMExample4)• 2x12compositedeck• 20gage• 4½”totaldepth• 3ksiNWconcrete• 9-0clearspan• 25psfconcurrentLL• 6x6–W2.1xW2.1WWR• d=1.25”AssumedLift• 52“length• 30“width• 12”x4.5“tires• 2.5mph

ExampleProblem

Page 51: Design of Steel Deck for Concentrated and Non-Uniform Loading

Asageneralruleforscissorliftshear,locateonetirenearthesupportandtheshortaxle“adjacent”createsmaximumshear.Ifso,be1=1.12ft,be2=4.94ft,andw=4.88ft.Forshear,P2adjacentinfluencezonesoverlapandbe2’shouldbeused.P1influencezonesdonotoverlap,sodistributionwidthbe1needsnocorrection.

be2’=4.94/2+2.66/2=3.80ft.

51

“Whatsizeliftcanthisfloorsupport?”

ExampleProblem

Page 52: Design of Steel Deck for Concentrated and Non-Uniform Loading

φP1.12

4.5’

9.0’

4.33’

φP3.8

52

“Whatsizeliftcanthisfloorsupport?”

ExampleProblem

Page 53: Design of Steel Deck for Concentrated and Non-Uniform Loading

Asageneralruleforscissorliftbending,locateonetireatmidspanandtheshortaxle“in-line”createsmaximumpositivebending.Ifso,be1=3.9ft.be2=4.94ftandw=4.88ft.Forpositivebending,P2adjacentinfluencezonesoverlapandbe2’shouldbeused.P1influencezonesdonotoverlap,sodistributionwidthbe1needsnocorrection.

be2’=4.94/2+4.33/2=4.64ft.

53

“Whatsizeliftcanthisfloorsupport?”

ExampleProblem

Page 54: Design of Steel Deck for Concentrated and Non-Uniform Loading

φP3.90

2.0’ 4.5’

9.0’

2.5’

φP4.64

54

“Whatsizeliftcanthisfloorsupport?”

ExampleProblem

Page 55: Design of Steel Deck for Concentrated and Non-Uniform Loading

Thelimitingliftlocationforweakaxisbendingandpositivebendingaresimilar...Locateonewheelatmidspanwiththeshortaxlein-line.Noticethatin-lineloadsP1andP2overlapandlap=4.88’–2.5’=2.38’;therefore,in-linecorrectionsarerequired.AdjacentloadsP2andP2overlap,buttheoverlap<wheelspacing,sonoadjacentcorrectionsarerequired.

55

“Whatsizeliftcanthisfloorsupport?”

ExampleProblem

Page 56: Design of Steel Deck for Concentrated and Non-Uniform Loading

Whencomparingbe2andthewheelspacing,influencelinesoverlap,buttheoverlapislessthan52”.Thisisgoodnews;ΣMwcalculationsarenotrequired.Weonlyneedtocorrectforin-lineloadswiththenewMwequation.

φP2w

52”

φP2w

be2=4.94’

be2=4.94’

56

“Whatsizeliftcanthisfloorsupport?”

ExampleProblem

Page 57: Design of Steel Deck for Concentrated and Non-Uniform Loading

57

5.0 6.0 7.0 8.0 9.0 10.02740 2648 2422 2284 2190 2272 2043

22 3730 2881 2876 2867 2854 2657 20435470 2881 2876 2867 2854 2657 20432740 2648 2422 2284 2190 2272 22933730 3122 3120 3112 2985 3097 27375470 3122 3120 3112 3102 3466 27372740 2648 2422 2284 2190 2272 22933730 3570 3302 3113 2985 3097 31265470 3570 3571 3568 3560 4535 38443300 3117 2861 2704 2598 2539 2657

22 4520 3442 3438 3430 3417 3377 26576640 3442 3438 3430 3417 3377 26573300 3117 2861 2704 2598 2539 28174520 3704 3703 3694 3549 3468 34966640 3704 3703 3697 3686 4353 34963300 3117 2861 2704 2598 2539 28174520 4198 3908 3694 3549 3468 38486640 4198 4202 4200 4193 5100 4885

Pleaseconsultwithappropriateprofessionalforφ,impactorunbalancedloadfactors.

30"x52"(52"x30")loadfootprintconcurrentwith25psfconstructionliveload. φMw

4.5"wheel φVn

WWRd=t/2 φMy

6x6-W2.9xW2.94x4-W2.9xW2.9

206x6-W2.1xW2.16x6-W2.9xW2.94x4-W2.9xW2.9

186x6-W2.1xW2.1

6x6-W2.9xW2.94x4-W2.9xW2.9

6x6-W2.1xW2.16x6-W2.9xW2.94x4-W2.9xW2.9

6x6-W2.1xW2.16x6-W2.9xW2.94x4-W2.9xW2.9

6x6-W2.1xW2.16x6-W2.9xW2.94x4-W2.9xW2.9

6x6-W2.1xW2.1

φP/SpanSlab Gage WWR φMw

20

18

4.5"(t=2.5")

5.0"(t=3.0")

FDDMScissorLiftTables?

Page 58: Design of Steel Deck for Concentrated and Non-Uniform Loading

58

Slab• 1.5x6x18gacompositedeck• 5.0”TotalDepth• 3ksiNWConcrete• 7-0ClearSpan• 40psfConcurrentLL• 6x6–W2.9xW2.9WWR• d=1.0”DataRack• 42“deep• 28“overallwidth• 21”casterspacing• 3“casters• 3000#staticcapacityFirstthought–3000#/(28”x42”)+40psf=407psf

FDDMTable6A=400psfNoGood!

“Canmyfloorsupportthisdatarack(s)?”

ExampleProblem

Page 59: Design of Steel Deck for Concentrated and Non-Uniform Loading

59

750# 750# 750# 750# 750# 750# 750# 750# 750# 750#

“Canmyfloorsupportthisdatarack(s)?”

ExampleProblem

Page 60: Design of Steel Deck for Concentrated and Non-Uniform Loading

60

The“stacked”datarackorientationmayvary.Ifstackedadjacent,castersmayonlybe14”apart,soloadswouldcombine(1500lbs)withamodifieddistributedwidthof=2.33’.Ifstackedin-line,multiple750lbloadsoccuralongthespanwithamodifieddistributionwidth=3.57’width.

“Canmyfloorsupportthisdatarack(s)?”

ExampleProblem

Page 61: Design of Steel Deck for Concentrated and Non-Uniform Loading

61

1.75’

7.0’

1.75’3.5’

750lbs0.83’

0’

7.0’

3.5’

1500lbs2.33’

3.5’

7.0’

643plf3.57’

1500lbs2.33’

1500lbs2.33’

DataRack–Vn,My

Page 62: Design of Steel Deck for Concentrated and Non-Uniform Loading

62

7.0’

643plf3.57’

φ=1.6or1.2?

DataRack–Mw

Page 63: Design of Steel Deck for Concentrated and Non-Uniform Loading

63

1.75’

L

1500w

1.75’3.5’

1500w

12”

be=4.33’

750w

12”21”

Adjacentloadspacing=7”and21”<be/2,soweakaxisbendingmomentswillbecumulative

14”14”

750w

750w

750w

DataRack–Mw

Page 64: Design of Steel Deck for Concentrated and Non-Uniform Loading

64

21”

be=4.33’

14” 14”26”

14” 12” 14” 12”

26”

DataRack–Mw-ShortAxleAdjacent

Page 65: Design of Steel Deck for Concentrated and Non-Uniform Loading

65

“Canmyfloorsupportthisdatarack(s)?”

Regardlessofdatarackorientation,shearandbendingcapacitiesweremorethanadequate.Ifthedatarackisconsideredaliveloadandφ=1.6,weakaxisbendingfails.Ifφ=1.2,weakaxisbendingcapacityisadequate.Mysuggestion.....dropWWRto1.25”.

ExampleProblem

Page 66: Design of Steel Deck for Concentrated and Non-Uniform Loading

66

AllCases Influencezonesfordataracks,lift,scaffoldswilloverlap. Deflectionandpunchingareunlikelytogovernwithtraditionalframing. Loadfactorsmaybesubjective(φ=1.2,1.4,1.6) FDDMtabulatesφMyandφVn. Ifslabisnotrestrained(nostuds),consultwithsupplierforφMn.

BeamShear Locateoneloadatmidspanandtheshortaxleadjacent

Usebe’soconcreteisnotusedtwice. Don’tforgetuniformloads.

PositiveBending Locateoneloadatmidspanandtheshortaxlein-line.

Usebe’soconcreteisnotusedtwice. Don’tforgetuniformloads.

WeakAxisBending Locateoneloadatmidspanandtheshortaxlein-line.

Usebeincalculations,notbe’ Uniformdeadandliveloadsaresupportedinpositivebending,sonota componentofweakaxisbending. Ifadjacentloadspacing>be/2,momentsarenotcumulative. Equationscompensatefor“w”overlap.Noothercorrectionsarerequired. Ifadjacentloadspacing<be/2,ΣMwusingsinusoidalequationisrequired.

SummaryPageforMultipleLoads

Page 67: Design of Steel Deck for Concentrated and Non-Uniform Loading

Priorexampleswerecompositedecksandsimplespans.Formdecksaretypicallymulti-spanwithnegativebendingandinteractionoverthesupports.Deadload(slab)issupportedbytheformdeck,sonotavariableforshearorbending;otherwise,thedesignapproachissimilar.DistributeP,compareVmaxtoVn,+Mmaxto+Myand-Mmaxto-My.

67

φP1be1

φP2be2

+M1-2

-M2

-V2

+V1

+V2

+M2-3 +M3-4

+V3

-V3 -V4

-M3

FormDeck

Page 68: Design of Steel Deck for Concentrated and Non-Uniform Loading

Intheory,fibersarenotareplacementforWWRasatensilecomponent,soAs=0.Ifso,Mw=0,whichsuggestsP=0.Thissimplycannotbetrue.Loaddistributionwithsteelfibersisun-known,butoldtestingshowedpositiveresults.Canwerationallyestimateloadcapacitywithsteelfibers?• Oneoptionisignoringthecontributionoftheconcreteandusingdeckonlyfortransversedistribution.ThisoptionreducesdistributionwidthbeandφPabout70%.

• Asecondoptionusesbe=1’.ThisoptionreducesφPabout75%.Areductioninloadcapacitywouldbeanticipated,but70-75%maybeconservative.AdditionaltestinganddesignproceduresusingsteelfibersisrequiredbeforeSDIcouldconfidentlyprovideguidance.

68

SteelFibers

Page 69: Design of Steel Deck for Concentrated and Non-Uniform Loading

69

PollingQuestion#2

TrueorFalse…Theuseofshearstudsonthebeamswillincreasetheallowablemagnitudeofconcentratedloadsonaslabmostofthetime.

a)True

b)False

Page 70: Design of Steel Deck for Concentrated and Non-Uniform Loading

PollingQuestionAnswers

WhichLimitStateisNOTApplicableforDesigningConcentratedLoadsonConcreteSlabsonFLOORDeck?

B)WebCrippling

TrueorFalse…Theuseofshearstudsonthebeamswillincreasetheallowablemagnitudeofconcentratedloadsonaslabmostofthetime.

B)False

70

Page 71: Design of Steel Deck for Concentrated and Non-Uniform Loading

Presentedby:

Copyright©2018SteelJoistInstitute.AllRightsReserved.

THANKYOU

MichaelMartignetti,CANAMMikeAntici,NUCOR